MEMORANDUM

To:
Scott Rollins
Mackenzie Kersbergen
MaineDOT

From: Darin Bryant
T.Y. Lin International

Date: October 21, 2019
CC: File

Address: Brunswick/Topsham, ME
Re: \quad Frank J. Wood Bridge - 60% Submission - Materials and Finishes
As part of the Memorandum of Agreement for this project between the Maine Department of Transportation, Federal Highway Administration, and others, 60\% plans are to be submitted for review by the Maine SHPO, the Bridge Design Committee, and the consulting parties to ensure compatibility with the existing historic features. Design plans stamped " 60% Review Set; 10/21/2019" have been developed for this required submission which show the layouts, outlines, and limits for the project. To further clarify those preliminary plans, the additional information contained in this memo outlines the materials and finishes which have yet to be detailed on the design plans.

1. Bridge Rail

A combination parapet/rail system shown in the rendering below will be used on the bridge itself. Arched inset panels in the wall will be smooth, while the insets in the light columns will be inlaid with a brick pattern (but no color). The metal railing at the top will be black. The rendering below illustrates the appearance and configuration being designed for this feature.

TY•LININTERNATIONAL

engineers | planners | scientists

2. Approach Rail

The safety rail behind the sidewalk on the roadway approaches to the bridge will be a black, metal rail system with vertical elements which partially resemble the top portion of the combination parapet/rail system on the bridge. The photo below shows a similar system used on the Naples Causeway project. The rail system for this project will appear similar, except the posts will be solid and there will be an additional horizontal member at the bottom to support the bottom of the vertical elements. The photo below illustrates the appearance and configuration being designed for this feature.

3. Lighting Type

The type of lighting to be used on both on the bridge and on the roadway approaches is shown in the rendering below.

T.Y:LININTERNATIONAL

engineers | planners | scientists

4. Pier Shape

Trapezoidal piers are being designed as support for the bridge as shown here:

This trapezoidal shape seems to be a good fit for this site from an engineering perspective. Another option studied early in the design process (a daylight arch pier) would have been somewhat more challenging and expensive. Based on the March 14, 2018 DAC vote, the solid, trapezoidal shape was selected as the preferred pier shape and is currently being used in the design of the project.

5. Pier Surface Treatment

A stone color ashlar finish (faux-stone) is being designed for the pier concrete surfaces. The rendering in Item 4 (above) shows the pier surface treatment being used in the design. Final confirmation of the specific texture and shape of the stone finish will occur closer to the end of the design process.

TY-LININTERNATIONAL

engineers | planners | scientists

6. Bump-Out Geometry/Placement

MaineDOT has agreed to provide two crescent-shaped bump outs on the bridge, one on the upstream side and one on the downstream side. The current design shows 3 piers on the proposed replacement bridge. The first pier on the Brunswick side will be located just north of the power outfall channel (shown is the red circle to the right in the rendering below). The downstream bump out would be located over this pier. Pier 2 would have the upstream bump out (shown is the red circle to the left in the rendering below). Dimensions of the bump outs are shown in the detail below the rendering.

PIER NO. 1-BUMPOUT
T.Y-LININTERNATIONAL
engineers | planners | scientists

7. Added Bridge Width

MaineDOT has also agreed to provide 2 extra feet of bridge width, increasing the total bridge width from $45^{\prime}-2^{\prime \prime}$ to $47^{\prime}-2{ }^{\prime \prime}$. In addition, the final bridge rail may be somewhat narrower than the original design, providing a few more inches in available width. This added width is being split equally between the sidewalks on either side of the road. The following typical section illustrates the lane / shoulder-bike path / sidewalk configuration currently being designed for the bridge:

T•YㄴININTERNATIONAL
 engineers | planners | scientists

8. Shoulder/Bike Lane Color

The bike lanes will be painted brick red to match the adjacent Cabot Mill buildings. The final treatment will need to be slip-resistant. Options on how to achieve this in a durable manner will be developed later in the design process. The rendering below illustrates the appearance and configuration currently being designed for the colored shoulder/bike lane:

TY•LININTERNATIONAL

engineers | planners | scientists

9. Sidewalks

The sidewalks on the bridge and on the majority of the approach roadways will be brushed concrete. On the northerly end of the project, the sidewalks in Topsham will transition to brick to match in with the existing sidewalk materials in that location. The photo below illustrates the appearance currently being designed for the brushed concrete sidewalks:

STATE OF MAINE
 DEPARTMENT OF TRANSPORTATION

SPECIFICATIONS
Design: Load and Resistance Factor Design per AASHTO LRFD
Bridge Design Specifications, 8th Edition.
DESIGN LOADING
Live Load HL - 93 Modified for Strength I (Truck only increased 25\%)
TRAFFIC DATA
Current (20xx) AADT
Future (20XX) AAD
DHV - \% of AADT
Design Hour Volume
Heavy Trucks (\% of
Heavy Trucks (\% of AADT)
Heary Truck (\% of DHV).
Directional Distribution (\% of DHV)
18 kip Equivalent P 2.0
18 kip Equivalent P 2.5
Design Speed (mph)
HYDROLOGIC DATA
Drainage Area
Ordinary High Water Discharge (Q1.1)
Design Discharge (Q50)
Check Discharge (Q100)
Headwater Elevation \& Discharge Velocities vary due to
nearby dam and due to riverbed ropography

$\begin{array}{l}23,500 \mathrm{cfs} \\ .89,30 \mathrm{cfs} \\ 99,700 \mathrm{cfs}\end{array}$

MATERIALS
Concrete:
Sidewalk
Sidewalk and End Posts Seals....
All Other
Reinforcing Steel
Structural Steel:
All Material (ex High Strength Bolt as noted)

STM A 709, Grade 50 Metalized ASTM F 3125, Type I, Galvanized

BASIC DESIGN STRESSES

Concrete (Class A)	$\mathrm{f}^{\prime} \mathrm{c}=4000 \mathrm{psi}$
Concrete (Class LP)	$\mathrm{f}^{\prime} \mathrm{c}=5000 \mathrm{psi}$
Concrete (Class S)	$\mathrm{f}^{\prime} \mathrm{c}=3000 \mathrm{psi}$
Reinforcing Steel.	$\mathrm{fy}=60,000 \mathrm{psi}$
Structural Steel:	
ASTM A 709, Grade 50	$\mathrm{y}=50,000 \mathrm{psi}$
ASTM F $3125 \ldots \ldots \ldots$	120,000

BRUNSWICK - TOPSHAM
CUMBERLAND \& SAGADAHOC COUNTIES

FRANK J. WOOD BRIDGE OVER
ANDROSCOGGIN RIVER
ROUTE 201/24
PROJECT NO. STP-2260(300)X
PROJECT LENGTH 0.3 mi .
BRIDGE NO. 2016

LIST OF DRAWINGS
Title Sheet
Typical Sections
Preliminary Plan
Prelimininary Plan 1 of 3
Preliminary Plan 2 of 3
Plan 3 .
Preliminary Pran
Preliminary Profile 1 of
Prer
Preliminary Profile 2 of 3
Preliminary Profile 3 of 3
Preliminary Profile 3 of
Cross Sections Route 201/24
Bridge Plan
Bridge Plan \& Elevation
Pier No. 1 Footing Plan
Pier No. 1 Footitng Plan
Pier No. No. 1 Shaft Plan \& Elevation
Pier No
Pier No. 2 Footing Plan
Pier No. 2 Shaft Plan \& Eleyation
Pier No. 3 Footing Plan .i.a.i.
Pier No. 3 Shaft Plan \& Elevation
Framing Layout Plan
Girder Elevation 1
Girder Elevation 2
Superstructure 1 Slab Span No
\& Slab Squence Placement
Superstructure Slab Span No. 2
Superstructure Slab Span
Superstructure Slab Span No. 2
Superstructure Slab Span No. 3
Superstructure Slab Span No. 4
Superstructure Slab Spa
Transverse Section...

60\% REVIEW SET

 10/21/2019UTILITIES
$\stackrel{\text { Electric }}{\text { Telephon }}$
Cable TV
Water / Sewer
MAINTENANCE OF TRAFFIC
Maintain two lanes of traffic (one each direction) ove
existing bridge and approaches during construction.

PROJECT LOCATION	Frank J. Wood Bridge \# 2016 on the Brunswick-Topsham TL which carries Route 201/24 over the Androscoggin River. Latitude 43 55'14.27N" Longitude 69 57'57.46W"
PROGRAM AREA	BRIDGE PROGRAM
OUTLINE OF WORK	BRIDGE REPLACEMENT

BRUNSWICK APPROACH DESIGN SECTION

TOPSHAM APPROACH DESIGN SECTION

TRANSVERSE SECTION

