Memorandum

DATE: April 3, 2007
TO: Heath Cowan
DEPT: Region 3
FROM: Scott A. Hayden
DEPT: Highway Program
SUBJECT: Final Soils Memo – Jay-Wilton, Rte. 156, Pin 12774.00
No. 2007-105

Site Description

A subsurface investigation has been completed for a 1.8 mile portion of Route 156 in the towns of Jay and Wilton. The project begins at the intersection of Route 133 and extends west 1.8 miles.

The investigation included the use of a drill rig and falling weight deflectometer (FWD). Project stationing was marked in the field by Region 3 survey. A distance measuring instrument (DMI) was used to locate specific boring and FWD locations based upon several survey points marked in the field. The beginning of the project (intersection of Rte. 133/156) was designated as station 10+00. All offsets used in this investigation are referenced from the existing roadway centerline.

FWD Results

The entire FWD results are included as a separate attachment to this memo. A summary of the FWD results follows:

- % of project found to be deficient: 73%
- Range of Recommended Overlay Thickness: 0.5” – 5”
- Average Recommended Overlay Thickness: 2.5”

The subgrade resilient modulus is very low (< 3000psi) for approximately 12% of the project length (See FWD Summary Sheet and PDS). It is anticipated that this is due to the presence of moist to wet silty sands and sandy silt soils. These areas could be soft especially during the spring. Depending on the conditions at the time of construction the use of additional base material may be necessary to enable these soils to support traffic during construction. Construction operations should take this into consideration. The greatest continuous concentration of low subgrade modulus values was encountered between stations 35+00 – 50+00. A complete list of areas with a low modulus is listed on Table 1.
<table>
<thead>
<tr>
<th>Station</th>
<th>Soil Type</th>
<th>Water Content</th>
<th>% Passing #200</th>
<th>Ave Subgrade Modulus (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14+00 – 16+00</td>
<td>SiSa</td>
<td>14</td>
<td>41</td>
<td>2758</td>
</tr>
<tr>
<td>34+00 – 36+00</td>
<td>SiSa</td>
<td>14</td>
<td>38-53</td>
<td>2109</td>
</tr>
<tr>
<td>38+00 – 43+00</td>
<td>SiSa</td>
<td>14</td>
<td>53</td>
<td>2651</td>
</tr>
<tr>
<td>46+00 – 51+00</td>
<td>SaSi</td>
<td>14</td>
<td>53</td>
<td>2600</td>
</tr>
<tr>
<td>69+00 – 72+00</td>
<td>SaSi</td>
<td>25</td>
<td>52</td>
<td>2600</td>
</tr>
<tr>
<td>94+00 – 97+00</td>
<td>SiSa</td>
<td>14</td>
<td>39</td>
<td>2700</td>
</tr>
</tbody>
</table>

Boring Information

The subsurface investigation consisted of 9 power auger borings and 16 pavement cores (See Boring Logs and Pavement Core Summary Sheet). Boring locations were determined based upon FWD deflection results and visual observations during an on-site visit. Soils were described and sampled in the field. Samples of the existing base material and subgrade soils were collected and analyzed in the Bangor lab. Testing results are summarized on the attached Laboratory Testing Summary Sheet.

Pavement Conditions

Pavement conditions vary from poor to good. The good pavement conditions are limited to a 2000’ section that was overlaid (state aid?) several years ago. The details of what actually took place and when could not be confirmed by the designer/resident engineer.

Four power auger borings and ten pavements cores encountered an unbound pavement layer beneath a solid pavement layer. For a detail listing of pavement measurements refer to the “Pavement Depth Information” sheet included with this memo. A pavement thickness summary follows:

- Range of Solid Pavement (SP) Thickness: 3.6” – 7.8”
- Average Solid Pavement Thickness: 5”
- Range of Unbound Pavement (UP) Thickness: 1.2” – 3.6”
- Average Unbound Pavement Thickness: 2”
- Range of Combined (SP+UP) Pavement Thickness: 3.6” – 9.6”
- Average Combined Pavement Thickness: 6”

Note: Pavement thickness estimates are based upon 24 sample locations. Measurements were taken from boring holes and pavement cores. Actual pavement thickness may vary. The maximum sample spacing is 2250 feet.
Base Material

Existing Base Material Type: SiGSa, SiSaG, SiSa
Percent Passing #200: 5 %-17 %
Range of Base Material Thickness: 6” – 20”
Average Base Thickness: 16”
Quality of Drainage (AASHTO): Poor - Good
Estimated Existing Permeability: 4-160 ft/day

The existing base material consists of silty gravelly sand or silty sandy gravel, and silty sand. This material has approximately 5%-17% passing the #200 sieve. In the silty gravelly sands and silty sands, the high percentage of fines has affected the permeability. Permeability estimates based upon grain size distribution, are as low as 4 ft/day in areas.

These limited performance characteristics should be taken into consideration when developing performance expectations related to strength and drainage.

Subgrade Soils

The subgrade soils along this project consist of silty sands and sandy silts. These till soils may be very cobbly in areas. The sandy silts and silty sands are very similar. It may be difficult to distinguish between these two soil types in the field. Samples indicate a silt content ranging between 38 % - 53 % passing the # 200 sieve. These soils are classified as A-4 soils using the AASHTO classification system. These soils can perform adequately with proper moisture and compaction. However, they can swell and lose much of their stability unless properly compacted and drained. Careful field control of moisture content and pneumatic-tired rollers are normally required for proper compaction. These soils are highly frost susceptible.

A summary of the anticipated subgrade soil type is provided below. This summary is derived from boring logs, FWD deflections, and visual observations. Actual conditions may vary.

Summary of the anticipated subgrade soil type

<table>
<thead>
<tr>
<th>Station</th>
<th>Soil Type</th>
<th>AASHTO</th>
<th>Sample</th>
<th>% #200</th>
<th>Subgrade Modulus x1000</th>
<th>Average RM x1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>10+00 – 32+50</td>
<td>SiSa</td>
<td>A-4</td>
<td>S2,4</td>
<td>38 - 41</td>
<td>2.7 – 5.6</td>
<td>4.2</td>
</tr>
<tr>
<td>32+50 – 52+00</td>
<td>SaSi</td>
<td>A-4</td>
<td>S6</td>
<td>53</td>
<td>2.1 – 3.5</td>
<td>2.7</td>
</tr>
<tr>
<td>*52+00 – 67+50</td>
<td>SaSi</td>
<td>A-4</td>
<td>S6</td>
<td>53</td>
<td>4.4 – 5.6</td>
<td>5.3</td>
</tr>
<tr>
<td>67+50 – 105+00</td>
<td>SiSa/SaSi</td>
<td>A-4</td>
<td>S8,11</td>
<td>39 – 52</td>
<td>2.5 – 7.1</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Shaded areas represent areas of low subgrade modulus.
*Possible State Aid Section?

Bedrock

No bedrock was encountered in any of the borings. It is anticipated that bedrock will not be encountered within 5’ below the existing road surface. The subgrade modulus is quite high (8148 psi) in the vicinity of station 67+50. This could be indicative of the presence of a relatively shallow bedrock surface.
Performance Data Summary

A Performance Data Summary (PDS) sheet has been provided as a separate attachment to this memo. The PDS indicates that the first two thirds of the project (Sta. 10+00 - 72+00) fails to meet at least two of the four minimum performance data criteria.

A visual inspection of the pavement conditions between stations 52+00 – 75+00 (Davis Road) indicates that pavement is in good condition. However, the PDS indicates a lack of adequate base thickness and the existing structural number fails to meet the future traffic structural number. The good pavement conditions are likely because it appears that this section of roadway was recently overlaid or was part of a recent state aid reconstruction? (The designer could not confirm what was done in this area). Another likely factor contributing to the good pavement conditions is that this section is built upon fill and subgrade is well above the existing ground surface. In areas where the road is built upon native soils (cut sections), pavement distress is visible. Frequently, transverse cracks are present along the transition between the cut and fill sections. A power auger boring at station 62+50 indicates that the existing base material consist of silty sand with 17 % passing the #200 sieve rather than gravel. Although the pavement conditions are generally good at this time, this section (especially the cut areas) should be included for rehabilitation consideration.

The PDS indicates that the last third of the project (Sta. 72+00 – 105+00) generally meets 3 or 4 of the minimum performance criteria. Borings indicate that adequate pavement and base thickness exists. However the pavement conditions are only fair. It is anticipated that this area is under performing due to age and the lack of drainage. Much of this section consists of a closed or box section without the existence of any underdrain system.

The following table is a summary of the PDS sheet. Please refer to the PDS Sheet for a detailed listing of existing conditions and minimum performance data criteria.

<table>
<thead>
<tr>
<th>Station</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10+00 – 32+50</td>
<td>Additional pavement, base and drainage improvements may be required to meet the future structural number and performance expectations. Variable depth gravel placement between stations 12+50 – 20+00 could be considered.</td>
</tr>
<tr>
<td>32+50 – 52+00</td>
<td>Additional pavement, base and drainage improvements are required to meet the future structural number and performance expectations. Very low subgrade resilient modulus values (< 3000 psi) were encountered throughout much of this section. Some areas could be problematic during construction if moist to wet conditions exist. Improvements to the existing drainage will be very important. Variable depth gravel placement has been recommended.</td>
</tr>
<tr>
<td>52+00 – 75+00</td>
<td>Additional pavement, base and drainage improvements may be required to meet the future structural number and performance expectations. Ditching within the existing cut sections will be important in approving performance. Variable depth gravel placement could be considered between stations 52+00 – 71+00.</td>
</tr>
<tr>
<td>75+00 – 90+00</td>
<td>Additional pavement and drainage improvements will be required to meet future performance expectations. Adequate ditching in this area is critical.</td>
</tr>
<tr>
<td>90+00 – 105+00</td>
<td>Additional pavement, base and drainage improvements may be required to meet the future structural number and performance expectations. Low subgrade resilient modulus. Underdrain is recommended throughout this section if adequate ditches cannot be established.</td>
</tr>
</tbody>
</table>
Recommendations

1. It is recommended that additional base material be considered between stations 32+50 and 52+00 due to varying existing base thickness, low subgrade resilient modulus values, and steep grade (slow moving loaded truck traffic).

2. It is recommended that existing cross pipes be lowered to allow for adequate deepening of existing ditches as well as for the construction of new ditches. To aid in the prevention of differential heaving, it is recommended that the cross pipes be installed using the attached schematic for cross pipe installation in frost susceptible soils.

3. It is recommended that the entire project area be drained with aggressive ditching wherever possible. Ditching should extend a minimum of 3 feet below finished grade whenever possible.

4. It is recommended that underdrain be installed between stations 90+00 and 105+00.

5. Due to the cobbly nature of the till soils, scarifying (6 inches) should be considered if the pavement is removed in any areas. It is anticipated that some of these cobbles may be present in the existing base layer.
CROSS CULVERT IN FROST SUSCEPTIBLE SOILS

AGGREGATE SUBBASE COURSE GRAVEL

GRANULAR BORROW (Material for underwater backfill)

FROST SUSCEPTIBLE SOIL

CULVERT PIPE

BOTTOM OF SUBBASE 6d Slope Minimum

SAME AS PIPE DIAMETER
Falling Weight Deflectometer (FWD)
Summary Sheet

Project #: 12774.00
Town(s): Jay-Wilton
Route(s): #156
Date Tested: 05/24/2006
Requested By: S. Hayden
Direction of Testing: North

Of FWD tests: 38 # Of Power Augers/Spoons 9/0
Design Life: 12 Yrs Future 18-kip ESALs (Design Life): 477,420
Initial Serviceability: 4.5 Terminal Serviceability: 2.5
Reliability Level: 95% Overall Standard Deviation: .45

Locations

<table>
<thead>
<tr>
<th>Distance (Feet)</th>
<th>Description</th>
</tr>
</thead>
</table>

Comments:
Jay/Wilton - Route #156
12774.00

<table>
<thead>
<tr>
<th>Station (Feet)</th>
<th>Existing Structural Number (in.)</th>
<th>Future Structural Number (in.)</th>
<th>Overlay Structural Number (Existing - Future)</th>
<th>Recommended Pavement Thickness (in.)</th>
<th>Pavement Modulus (psi)</th>
<th>Subgrade Resilient Modulus (psi)</th>
<th>Pavement Depth (in) for Calculation (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12+50</td>
<td>3.15</td>
<td>4.36</td>
<td>-1.21</td>
<td>2.75</td>
<td>70,740</td>
<td>3,066</td>
<td>3.6</td>
</tr>
<tr>
<td>15+00</td>
<td>2.75</td>
<td>4.52</td>
<td>-1.77</td>
<td>4.02</td>
<td>47,523</td>
<td>2,758</td>
<td>3.6</td>
</tr>
<tr>
<td>17+50</td>
<td>3.15</td>
<td>4</td>
<td>-0.85</td>
<td>1.93</td>
<td>72,295</td>
<td>3,958</td>
<td>3.6</td>
</tr>
<tr>
<td>20+00</td>
<td>2.66</td>
<td>3.54</td>
<td>-0.88</td>
<td>2</td>
<td>43,619</td>
<td>5,622</td>
<td>3.6</td>
</tr>
<tr>
<td>22+50</td>
<td>2.93</td>
<td>3.68</td>
<td>-1.39</td>
<td>3.16</td>
<td>58,310</td>
<td>3,089</td>
<td>3.6</td>
</tr>
<tr>
<td>25+00</td>
<td>2.66</td>
<td>4.05</td>
<td>-0.88</td>
<td>2</td>
<td>49,703</td>
<td>5,094</td>
<td>3.6</td>
</tr>
<tr>
<td>27+50</td>
<td>2.78</td>
<td>3.66</td>
<td>-0.88</td>
<td>2</td>
<td>56,707</td>
<td>4,386</td>
<td>3.6</td>
</tr>
<tr>
<td>30+00</td>
<td>2.9</td>
<td>3.86</td>
<td>-1.01</td>
<td>2.3</td>
<td>46,423</td>
<td>4,849</td>
<td>3.6</td>
</tr>
<tr>
<td>32+00</td>
<td>2.72</td>
<td>3.73</td>
<td>-2.25</td>
<td>5.11</td>
<td>73,597</td>
<td>2,109</td>
<td>6</td>
</tr>
<tr>
<td>35+00</td>
<td>2.68</td>
<td>4.93</td>
<td>-1.17</td>
<td>2.66</td>
<td>114,690</td>
<td>3,254</td>
<td>6</td>
</tr>
<tr>
<td>37+50</td>
<td>3.1</td>
<td>4.27</td>
<td>-2.09</td>
<td>4.75</td>
<td>61,516</td>
<td>2,599</td>
<td>6</td>
</tr>
<tr>
<td>40+00</td>
<td>2.52</td>
<td>4.61</td>
<td>-1.73</td>
<td>3.93</td>
<td>85,966</td>
<td>2,703</td>
<td>6</td>
</tr>
<tr>
<td>42+50</td>
<td>2.82</td>
<td>4.55</td>
<td>-1.38</td>
<td>3.14</td>
<td>80,763</td>
<td>3,585</td>
<td>6</td>
</tr>
<tr>
<td>45+00</td>
<td>2.76</td>
<td>4.14</td>
<td>-2.17</td>
<td>4.93</td>
<td>58,028</td>
<td>2,541</td>
<td>6</td>
</tr>
<tr>
<td>47+50</td>
<td>2.47</td>
<td>4.64</td>
<td>-1.53</td>
<td>3.48</td>
<td>107,982</td>
<td>2,659</td>
<td>6</td>
</tr>
<tr>
<td>50+00</td>
<td>3.04</td>
<td>4.57</td>
<td>-1.39</td>
<td>3.16</td>
<td>86,918</td>
<td>4,440</td>
<td>4.2</td>
</tr>
<tr>
<td>52+50</td>
<td>2.45</td>
<td>3.84</td>
<td>-1.05</td>
<td>2.39</td>
<td>104,662</td>
<td>5,098</td>
<td>4.2</td>
</tr>
<tr>
<td>55+00</td>
<td>2.61</td>
<td>3.66</td>
<td>-0.83</td>
<td>1.89</td>
<td>97,322</td>
<td>6,400</td>
<td>4.2</td>
</tr>
<tr>
<td>57+50</td>
<td>2.55</td>
<td>3.38</td>
<td>-0.89</td>
<td>2.02</td>
<td>116,939</td>
<td>5,368</td>
<td>4.2</td>
</tr>
<tr>
<td>60+00</td>
<td>2.71</td>
<td>3.6</td>
<td>-1.23</td>
<td>2.8</td>
<td>84,166</td>
<td>5,092</td>
<td>4.2</td>
</tr>
<tr>
<td>62+50</td>
<td>2.43</td>
<td>3.66</td>
<td>-1.06</td>
<td>2.41</td>
<td>89,661</td>
<td>5,628</td>
<td>4.2</td>
</tr>
<tr>
<td>65+00</td>
<td>2.48</td>
<td>3.54</td>
<td>-1.63</td>
<td>2.41</td>
<td>89,661</td>
<td>5,628</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Weak Subgrade

Strong Subgrade

* For actual Gravel Depths, see logdraft forms

Jay / Wilton - Route # 156

12774.00

Overlay SN

Subgrade Resilient Modulus (psi)
Existing Structural Number

<table>
<thead>
<tr>
<th>Station (Feet)</th>
<th>Existing Structural Number (in.)</th>
<th>Future Traffic Structural Number (in.)</th>
<th>Overlay Structural Number (Existing - Future)</th>
<th>Recommended Pavement Thickness (in.)</th>
<th>Pavement Modulus (psi)</th>
<th>Subgrade Resilient Modulus (psi)</th>
<th>Pavement Depth (in)</th>
<th>Depth Used for Calculation (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>67+50</td>
<td>2.38</td>
<td>3.1</td>
<td>-0.72</td>
<td>1.64</td>
<td>79,687</td>
<td>8,148</td>
<td>4.2</td>
<td>12.3</td>
</tr>
<tr>
<td>70+50</td>
<td>3.12</td>
<td>4.63</td>
<td>-1.51</td>
<td>3.43</td>
<td>35,318</td>
<td>2,563</td>
<td>4.6</td>
<td>21.1</td>
</tr>
<tr>
<td>72+50</td>
<td>4.07</td>
<td>4.24</td>
<td>-0.17</td>
<td>0.39</td>
<td>46,249</td>
<td>3,328</td>
<td>4.2</td>
<td>25.2</td>
</tr>
<tr>
<td>75+00</td>
<td>4.18</td>
<td>4.08</td>
<td>0.1</td>
<td>-</td>
<td>50,103</td>
<td>3,732</td>
<td>4.2</td>
<td>25.2</td>
</tr>
<tr>
<td>77+50</td>
<td>4.18</td>
<td>4.01</td>
<td>0.17</td>
<td>-</td>
<td>50,083</td>
<td>3,922</td>
<td>4.2</td>
<td>25.2</td>
</tr>
<tr>
<td>80+00</td>
<td>3.56</td>
<td>4.22</td>
<td>-0.66</td>
<td>1.5</td>
<td>30,971</td>
<td>3,385</td>
<td>4.2</td>
<td>25.2</td>
</tr>
<tr>
<td>82+50</td>
<td>4.4</td>
<td>3.89</td>
<td>0.51</td>
<td>-</td>
<td>41,803</td>
<td>4,299</td>
<td>4.2</td>
<td>28.2</td>
</tr>
<tr>
<td>85+00</td>
<td>5.04</td>
<td>3.64</td>
<td>1.4</td>
<td>-</td>
<td>62,669</td>
<td>5,168</td>
<td>4.2</td>
<td>28.2</td>
</tr>
<tr>
<td>87+50</td>
<td>4.8</td>
<td>3.61</td>
<td>1.19</td>
<td>-</td>
<td>54,239</td>
<td>5,326</td>
<td>4.2</td>
<td>28.2</td>
</tr>
<tr>
<td>90+00</td>
<td>5.87</td>
<td>3.25</td>
<td>2.62</td>
<td>-</td>
<td>99,224</td>
<td>7,129</td>
<td>4.2</td>
<td>28.2</td>
</tr>
<tr>
<td>92+50</td>
<td>4.59</td>
<td>4.26</td>
<td>0.33</td>
<td>-</td>
<td>57,494</td>
<td>3,276</td>
<td>7.8</td>
<td>26.4</td>
</tr>
<tr>
<td>95+00</td>
<td>3.49</td>
<td>4.57</td>
<td>-1.08</td>
<td>2.45</td>
<td>25,444</td>
<td>2,670</td>
<td>7.8</td>
<td>26.4</td>
</tr>
<tr>
<td>97+50</td>
<td>3.49</td>
<td>3.78</td>
<td>-0.29</td>
<td>0.66</td>
<td>46,469</td>
<td>4,647</td>
<td>6</td>
<td>21.6</td>
</tr>
<tr>
<td>100+00</td>
<td>3.72</td>
<td>4.36</td>
<td>-0.64</td>
<td>1.45</td>
<td>56,167</td>
<td>3,077</td>
<td>6</td>
<td>21.6</td>
</tr>
<tr>
<td>102+50</td>
<td>3.48</td>
<td>3.85</td>
<td>-0.37</td>
<td>0.84</td>
<td>46,001</td>
<td>4,417</td>
<td>6</td>
<td>21.6</td>
</tr>
<tr>
<td>105+00</td>
<td>4.22</td>
<td>3.84</td>
<td>0.38</td>
<td>-</td>
<td>81,655</td>
<td>4,446</td>
<td>6</td>
<td>21.6</td>
</tr>
</tbody>
</table>

Weak Subgrade

Strong Subgrade

* For actual Gravel Depths, see logdraft forms
Performance Data Summary Sheet

Jay – Wilton Rte 156
CHIP
11774.00

<table>
<thead>
<tr>
<th>Station (FWD)</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Minimum Performance Data Criteria</th>
<th>Boring Location (Plan View)</th>
<th>Base Material</th>
<th>Subgrade Soils</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AASHTO Class</td>
<td>AASHTO Class</td>
</tr>
<tr>
<td>KEY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station</td>
<td></td>
<td></td>
<td></td>
<td>Red – Fail</td>
<td>Solid Pavement Thickness</td>
<td>Soil Type</td>
<td>% 200 Frost</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Green - Met</td>
<td>Unbound Pavement - UP</td>
<td>AASHTO Class</td>
<td>Moisture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Base Thickness (inches)</td>
<td>Sample #</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% #200</td>
<td></td>
</tr>
<tr>
<td>12+50</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15+00</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17+50</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20+00</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22+50</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25+00</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27+50</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30+00</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32+50</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35+00</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37+50</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40+00</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42+50</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45+00</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47+50</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50+00</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52+50</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55+00</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57+50</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60+50</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62+50</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65+00</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67+50</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+50</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KEY:
- *SP* = Solid Pavement Layer
- *UP* = Unbound Pavement Layer
- *SP+UP* = Total Pavement Thickness
- Base Thickness = Red indicates presence of “treated base”
Performance Data Summary Sheet

Jay – Wilton Rte 156
CHIP
11774.00

Minimum Performance Data Criteria

<table>
<thead>
<tr>
<th>Station (FWD)</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Minimum Performance Data Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Solid Pave Thick</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unbound Pave - UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Base Thickness (inches)</td>
</tr>
</tbody>
</table>

Boring Location (Plan View)

<table>
<thead>
<tr>
<th>Station</th>
<th>Key</th>
<th>Boring Location</th>
<th>Base Material</th>
<th>Subgrade Soils</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>AASHTO Class</td>
<td>% #200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AASHTO Class</td>
</tr>
</tbody>
</table>

Station

<table>
<thead>
<tr>
<th>Station (FWD)</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Base Thickness</th>
<th>Soil Type</th>
<th>Moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td>70+50</td>
<td>2</td>
<td></td>
<td></td>
<td>4.6 SP</td>
<td>SiGSa</td>
<td></td>
</tr>
<tr>
<td>72+50</td>
<td>1</td>
<td></td>
<td></td>
<td>19.4</td>
<td>A-1-b</td>
<td>Damp</td>
</tr>
<tr>
<td>75+00</td>
<td>0</td>
<td></td>
<td></td>
<td>12</td>
<td>S7</td>
<td></td>
</tr>
<tr>
<td>77+50</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>SaSi</td>
<td>Damp</td>
</tr>
<tr>
<td>80+00</td>
<td>1</td>
<td></td>
<td></td>
<td>4.2 SP</td>
<td>SiSaG</td>
<td></td>
</tr>
<tr>
<td>82+50</td>
<td>0</td>
<td></td>
<td></td>
<td>3.0 UP</td>
<td>A-1-a</td>
<td></td>
</tr>
<tr>
<td>85+00</td>
<td>0</td>
<td></td>
<td></td>
<td>18.0</td>
<td>S10</td>
<td></td>
</tr>
<tr>
<td>87+50</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>SiSaG</td>
<td></td>
</tr>
<tr>
<td>90+00</td>
<td>0</td>
<td></td>
<td></td>
<td>4.2 SP</td>
<td>A-1-a</td>
<td></td>
</tr>
<tr>
<td>92+50</td>
<td>0</td>
<td></td>
<td></td>
<td>1.8 UP</td>
<td>S10</td>
<td></td>
</tr>
<tr>
<td>95+00</td>
<td>2</td>
<td></td>
<td></td>
<td>20.4</td>
<td>SiSaG</td>
<td></td>
</tr>
<tr>
<td>97+50</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>GSIa</td>
<td>Damp</td>
</tr>
<tr>
<td>100+00</td>
<td>3</td>
<td></td>
<td></td>
<td>7.8 SP</td>
<td>A-1-a</td>
<td></td>
</tr>
<tr>
<td>102+50</td>
<td>2</td>
<td></td>
<td></td>
<td>18.6</td>
<td>S10</td>
<td></td>
</tr>
<tr>
<td>105+00</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>GSISa</td>
<td></td>
</tr>
</tbody>
</table>

Darwin Results

- **SP** = Solid Pavement Layer
- **UP** = Unbound Pavement Layer
- **SP+UP** = Total Pavement Thickness
- **Base Thickness** = Red indicates presence of “treated base”
<table>
<thead>
<tr>
<th>STATION</th>
<th>LEFT</th>
<th>15'</th>
<th>10'</th>
<th>5'</th>
<th>CL</th>
<th>5'</th>
<th>10'</th>
<th>15'</th>
</tr>
</thead>
<tbody>
<tr>
<td>15+00</td>
<td>6.0 SP</td>
<td>4.2 SP</td>
<td>5.4 SP</td>
<td>3.6 SP</td>
<td>(9')</td>
<td>3.6 SP</td>
<td>4.8 UP</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>1.8 UP</td>
<td>3.0 UP</td>
<td>1.8 UP</td>
<td>3.6 UP</td>
<td>7.2</td>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25+00</td>
<td>(7.5')</td>
<td>3.6 SP</td>
<td>-</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40+00</td>
<td>6.0 SP</td>
<td>6.0 SP</td>
<td>5.4 SP</td>
<td>6.0 SP</td>
<td>(9')</td>
<td>6.0 SP</td>
<td>3.6 UP</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>1.8 UP</td>
<td>1.2 UP</td>
<td>1.8 UP</td>
<td>1.8 UP</td>
<td>7.2</td>
<td>7.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62+50</td>
<td>4.8 SP</td>
<td>3.6 SP</td>
<td>4.2 SP</td>
<td>3.6 SP</td>
<td>(8.0')</td>
<td>4.2 SP</td>
<td>-</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>3.6</td>
<td>-</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70+50</td>
<td>(7.0')</td>
<td>4.6 SP</td>
<td>-</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80+00</td>
<td>(6.5')</td>
<td>4.2 SP</td>
<td>3.0 UP</td>
<td>7.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87+50</td>
<td>4.8 SP</td>
<td>4.8 SP</td>
<td>5.4 SP</td>
<td>4.2 SP</td>
<td>-</td>
<td>4.2 SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 UP</td>
<td>-</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95+00</td>
<td>(6.8')</td>
<td>7.8 SP</td>
<td>-</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102+50</td>
<td>(6.3')</td>
<td>6.0 SP</td>
<td>-</td>
<td>6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* SP = Solid Pavement Layer, * UP = Unbound Pavement Layer, SP+UP = Total Pavement, (7.7') = actual offset
Non shaded data obtained from power auger borings, shaded data obtained from coring
<table>
<thead>
<tr>
<th>Station (Feet)</th>
<th>Offset (Feet)</th>
<th>Pavement Depth (Feet)</th>
<th>Unbound Pavement (Feet)</th>
<th>PC- Number</th>
<th>Saved Core</th>
<th>Comments / Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>15+00</td>
<td>10.0 Lt.</td>
<td>0.50</td>
<td>0.50-0.65</td>
<td>no</td>
<td>5" Solid Stem Auger</td>
<td></td>
</tr>
<tr>
<td>15+00</td>
<td>5.0 Lt.</td>
<td>0.35</td>
<td>0.35-0.60</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15+00</td>
<td>CL</td>
<td>0.45</td>
<td>0.45-0.60</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15+00</td>
<td>5.0 Rt.</td>
<td>0.30</td>
<td>0.30-0.60</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40+00</td>
<td>10.0 Lt.</td>
<td>0.50</td>
<td>0.50-0.65</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40+00</td>
<td>5.0 Lt.</td>
<td>0.50</td>
<td>0.50-0.60</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40+00</td>
<td>CL</td>
<td>0.45</td>
<td>0.45-0.60</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40+00</td>
<td>5.0 Rt.</td>
<td>0.50</td>
<td>0.50-0.65</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62+50</td>
<td>10.0 Lt.</td>
<td>0.40</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62+50</td>
<td>5.0 Lt.</td>
<td>0.30</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62+50</td>
<td>CL</td>
<td>0.35</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62+50</td>
<td>5.0 Rt.</td>
<td>0.30</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87+50</td>
<td>10.0 Lt.</td>
<td>0.40</td>
<td>0.40-0.60</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87+50</td>
<td>5.0 Lt.</td>
<td>0.40</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87+50</td>
<td>CL</td>
<td>0.45</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87+50</td>
<td>5.0 Rt.</td>
<td>0.35</td>
<td>0.35-0.50</td>
<td>no</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Laboratory Testing Summary Sheet

Town(s): Jay-Wilton
Project Number: 12774.00

<table>
<thead>
<tr>
<th>Boring & Sample Identification Number</th>
<th>Station (Feet)</th>
<th>Offset (Feet)</th>
<th>Depth (Feet)</th>
<th>Reference Number</th>
<th>G.S.D.C. W.C.</th>
<th>% Passing 200 Sieve</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>HB-JAWI-101, S1</td>
<td>15+00</td>
<td>9.0 Rt.</td>
<td>0.70-1.6</td>
<td>209776</td>
<td>1</td>
<td>7.0</td>
<td>SP-SM A-1-b 0</td>
</tr>
<tr>
<td>HB-JAWI-101, S2</td>
<td>15+00</td>
<td>9.0 Rt.</td>
<td>1.6-5.0</td>
<td>209777</td>
<td>1</td>
<td>14.1</td>
<td>SM A-4 III</td>
</tr>
<tr>
<td>HB-JAWI-102, S3</td>
<td>25+00</td>
<td>7.5 Rt.</td>
<td>0.30-2.0</td>
<td>209778</td>
<td>1</td>
<td>6.2</td>
<td>SM A-2-4 II</td>
</tr>
<tr>
<td>HB-JAWI-102, S4</td>
<td>25+00</td>
<td>7.5 Rt.</td>
<td>3.3-5.0</td>
<td>209779</td>
<td>1</td>
<td>14.3</td>
<td>SM A-4 III</td>
</tr>
<tr>
<td>HB-JAWI-103, S5</td>
<td>40+00</td>
<td>9.0 Rt.</td>
<td>0.80-1.3</td>
<td>209780</td>
<td>1</td>
<td>6.5</td>
<td>SM A-1-b II</td>
</tr>
<tr>
<td>HB-JAWI-103, S6</td>
<td>40+00</td>
<td>9.0 Rt.</td>
<td>1.3-5.0</td>
<td>209781</td>
<td>1</td>
<td>12.7</td>
<td>ML A-4 IV</td>
</tr>
<tr>
<td>HB-JAWI-105, S7</td>
<td>70+50</td>
<td>7.0 Rt.</td>
<td>0.38-2.0</td>
<td>209782</td>
<td>2</td>
<td>4.8</td>
<td>SW-SM A-1-b 0</td>
</tr>
<tr>
<td>HB-JAWI-105, S8</td>
<td>70+50</td>
<td>7.0 Rt.</td>
<td>2.0-3.7</td>
<td>209783</td>
<td>2</td>
<td>24.7</td>
<td>ML A-4 IV</td>
</tr>
<tr>
<td>HB-JAWI-105, S9</td>
<td>70+50</td>
<td>7.0 Rt.</td>
<td>3.7-5.0</td>
<td>209784</td>
<td>2</td>
<td>38.8</td>
<td>SM A-4 III</td>
</tr>
<tr>
<td>HB-JAWI-106, S10</td>
<td>80+00</td>
<td>6.5 Rt.</td>
<td>0.60-2.1</td>
<td>209785</td>
<td>2</td>
<td>2.7</td>
<td>GW-GM A-1-a 0</td>
</tr>
<tr>
<td>HB-JAWI-106, S11</td>
<td>80+00</td>
<td>6.5 Rt.</td>
<td>2.1-5.0</td>
<td>209786</td>
<td>2</td>
<td>13.8</td>
<td>SM A-4 III</td>
</tr>
<tr>
<td>HB-JAWI-107, S12</td>
<td>87+50</td>
<td>5.4 Rt.</td>
<td>2.2-3.9</td>
<td>209787</td>
<td>2</td>
<td>14.5</td>
<td>SM A-2-4 II</td>
</tr>
</tbody>
</table>

Classification of these soil samples is in accordance with AASHTO Classification System M-145-40. This classification is followed by the "Frost Susceptibility Rating" from zero (non-frost susceptible) to Class IV (highly frost susceptible). The "Frost Susceptibility Rating" is based upon the MDOT and Corps of Engineers Classification Systems.

GSDC = Grain Size Distribution Curve as determined by AASHTO T 88-93 (1996) and/or ASTM D 422-63 (Reapproved 1998)

WC = water content as determined by AASHTO T 265-93 and/or ASTM D 2216-98

LL = Liquid limit as determined by AASHTO T 89-96 and/or ASTM D 4318-98

PI = Plasticity Index as determined by AASHTO 90-96 and/or ASTM D4318-98
Maine Department of Transportation

Soil/Rock Exploration Log
US CUSTOMARY UNITS

Project: Route 156
Location: Jay-Wilton, Maine
Boring No.: HB-JAWI-101
PIN: 12774.00

Driller: MaineDOT
Elevation (ft.): 5' Dia.
Operator: E. Giguerre
Datum: NAVD 88
Logged By: G. Lidstone
Sampler: Off Flights
Date Start/Finish: 11/28/06-11/28/06
Drilling Method: Solid Mounted CME 45C
Core Barrel: N/A
Boring Location: 15+00, 9' Rt.
Casing ID/OD: N/A

Definitions: Definitions: Definitions:

D = Split Spoon Sample
MD = Unsuccessful Split Spoon Sample attempt
U = Thin Wall Tube Sample
R = Rock Core Sample
V = insitu Vane Shear Test
SSA = Solid Stem Auger

Definitions:

Sv = insitu Field Vane Shear Strength (psf)
Tpv = Pocket Torvane Shear Strength (psf)
qup = Unconfined Compressive Strength (ksf)
Su(lab) = Lab Vane Shear Strength (psf)
WOR = weight of 140lb. hammer

WC = water content, percent
LL = Liquid Limit
PI = Plasticity Index
G = Grain Size Analysis
C = Consolidation Test

Sample Information

Depth (ft.) Sample No. Pen./Rec. (in.) Sample Depth (ft.) Blows (/6 in.) Shear Strength (psf) or RQD (%) N-value Casing Blows Elevation (ft.) Graphic Log

Visual Description and Remarks

PAVEMENT.

Unbound PAVEMENT.

Dark brown, damp, fine to coarse SAND, some gravel, little silt, (Fill).

Brown, damp, sandy SILT, little gravel.

Bottom of Exploration at 5.00 feet below ground surface.

NO REFUSAL.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.
<table>
<thead>
<tr>
<th>Depth (ft.)</th>
<th>Sample No.</th>
<th>Pen./Rec. (in.)</th>
<th>Sample Depth (ft.)</th>
<th>Blows (/6 in.)</th>
<th>Shear Strength (psf) or RQD (%)</th>
<th>N-value</th>
<th>Casing Blows</th>
<th>Elevation (ft.)</th>
<th>Graphic Log</th>
<th>Visual Description and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S3</td>
<td>0.30 - 2.00</td>
<td>SSA</td>
<td>-0.30</td>
<td>PAVEMENT. Brown, damp, fine to medium SAND, little gravel, trace silt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>S4</td>
<td>3.30 - 5.00</td>
<td></td>
<td>-3.00</td>
<td>Similar to above, but with cobbles.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td>-5.00</td>
<td>Brown, moist, silty fine to medium SAND, cobbles, little gravel, trace coarse sand.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.
Maine Department of Transportation

Soil/Rock Exploration Log

US CUSTOMARY UNITS

Project: Route 156
Location: Jay-Wilton, Maine
Boring No.: HB-JAWI-103
PIN: 12774.00

Driller: MaineDOT
Operator: E. Giguere
Logged By: G. Lidstone
Date Start/Finish: 11/28/06-11/28/06
Boring Location: 40+00, 9' Rt.

Visual Description and Remarks

- Stratifcation lines represent approximate boundaries between soil types; transitions may be gradual.
- Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Definitions:

- D = Split Spoon Sample
- MD = Unsuccessful Split Spoon Sample attempt
- U = Thin Wall Tube Sample
- R = Rock Core Sample
- S = Soil/rock Test
- SSA = Solid Stem Auger
- T = Torvane Shear Strength (psf)
- q = Unconfined Compressive Strength (ksf)
- U = Unsuccessful Split Spoon Sample attempt

Laboratory Testing Results/AASHTO and Unified Class:

- Note: The laboratory testing results and AASHTO Unified Class are not visible in the image.

Sample Information

<table>
<thead>
<tr>
<th>Depth (ft.)</th>
<th>Sample No.</th>
<th>Pen./Rec. (in.)</th>
<th>Sample Depth (ft.)</th>
<th>Blows (/6 in.)</th>
<th>Shear Strength (psf) or RQD (%)</th>
<th>N-value</th>
<th>Casing Blows</th>
<th>Elevation (ft.)</th>
<th>Graphic Log</th>
<th>Visual Description and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S5</td>
<td>0.80 - 1.30</td>
<td>SSA</td>
<td>-0.50</td>
<td>-0.80</td>
<td>-1.30</td>
<td></td>
<td></td>
<td></td>
<td>PAVEMENT.</td>
</tr>
<tr>
<td>0</td>
<td>S6</td>
<td>1.30 - 5.00</td>
<td>SSA</td>
<td>-0.50</td>
<td>-0.80</td>
<td>-1.30</td>
<td></td>
<td></td>
<td></td>
<td>Unbound PAVEMENT.</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>SSA</td>
<td>-0.50</td>
<td>-0.80</td>
<td>-1.30</td>
<td></td>
<td></td>
<td></td>
<td>Brown, damp, fine to medium SAND, some gravel, trace coarse sand, (Fill).</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>SSA</td>
<td>-0.50</td>
<td>-0.80</td>
<td>-1.30</td>
<td></td>
<td></td>
<td></td>
<td>Brown, damp, sandy SILT, cobbles, little gravel.</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>SSA</td>
<td>-0.50</td>
<td>-0.80</td>
<td>-1.30</td>
<td></td>
<td></td>
<td></td>
<td>Bottom of Exploration at 5.00 feet below ground surface. NO REFUSAL.</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>SSA</td>
<td>-0.50</td>
<td>-0.80</td>
<td>-1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>SSA</td>
<td>-0.50</td>
<td>-0.80</td>
<td>-1.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

- Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.
Remarks:

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.
<table>
<thead>
<tr>
<th>Depth (ft.)</th>
<th>Sample No.</th>
<th>Pen./Rec. (in.)</th>
<th>Sample Depth (ft.)</th>
<th>Blows (/6 in.)</th>
<th>Shear Strength (psf) or RQD (%)</th>
<th>N-value</th>
<th>Casing Blows</th>
<th>Elevation (ft.)</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S7</td>
<td>0.38 - 2.00</td>
<td>SSA</td>
<td>-0.38</td>
<td>PAVEMENT. Brown, damp, fine to coarse SAND, some gravel, trace silt, (Fill).</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.00</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3.70</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-5.00</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visual Description and Remarks:
- Bottom of Exploration at 5.00 feet below ground surface.
- NO REFUSAL.

Notes:
- Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Definitions:
- D = Split Spoon Sample
- MD = Unsuccessful Split Spoon Sample attempt
- U = Thin Wall Tube Sample
- R = Rock Core Sample
- V = In situ Vane Shear Test
- SSA = Solid Stem Auger
- SSAL = Lab Vane Shear Strength (psf)
- Tl = Pocket Torvane Shear Strength (psf)
- WC = water content, percent
- LL = Liquid Limit
- PI = Plasticity Index
- PL = Plastic Limit
- G = Grain Size Analysis
- C = Consolidation Test
- WOR = weight of rods

Remarks:
Stratification lines represent approximate boundaries between soil types; transitions may be gradual.
Soil/Rock Exploration Log

Maine Department of Transportation

Project: Route 156
Location: Jay-Wilton, Maine
Boring No.: HB-JAWI-106
PIN: 12774.00

<table>
<thead>
<tr>
<th>Driller:</th>
<th>MaineDOT</th>
<th>Operator:</th>
<th>E. Giguere</th>
<th>Datum:</th>
<th>NAVD 88</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logged By:</td>
<td>G. Lidstone</td>
<td>Rig Type:</td>
<td>Truck Mounted CME 45C</td>
<td>Hammer Wt./Fall:</td>
<td>N/A</td>
</tr>
<tr>
<td>Date Start/Finish:</td>
<td>11/28/06-11/28/06</td>
<td>Drilling Method:</td>
<td>Solid Stem Auger</td>
<td>Core Barrel:</td>
<td>N/A</td>
</tr>
<tr>
<td>Boring Location:</td>
<td>80+00, 6.5’ Rt.</td>
<td>Auger ID/OD:</td>
<td>5” Dia.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Definitions:
- D = Split Spoon Sample
- MD = Unsuccessful Split Spoon Sample attempt
- U = Thin Wall Tube Sample
- R = Rock Core Sample
- V = In-situ Vane Shear Test
- SSA = Solid Stem Auger

Visual Description and Remarks:
- Bottom of Exploration at 5.00 feet below ground surface.

Laboratory Testing Results/AASHTO and Unified Class.

<table>
<thead>
<tr>
<th>Depth (ft.)</th>
<th>Sample No.</th>
<th>Pen./Rec. (in.)</th>
<th>Sample Depth (ft.)</th>
<th>Blows (/6 in.)</th>
<th>Shear Strength (psf) or RQD (%)</th>
<th>N-value</th>
<th>Casing Blows</th>
<th>Elevation (ft.)</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S10</td>
<td>0.60 - 2.10</td>
<td>SSA</td>
<td>-0.35</td>
<td>-0.60</td>
<td>-2.10</td>
<td>-5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5</td>
<td>S11</td>
<td>2.10 - 5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- PAVEMENT.
- Unbound PAVEMENT.
- Damp GRAVEL, some brown, fine to coarse sand, trace silt, (Fill).
- Brown, moist, silty fine SAND, trace medium and coarse sand, trace gravel.
- NO REFUSAL

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.
Maine Department of Transportation

Soil/Rock Exploration Log
US CUSTOMARY UNITS

Driller: MaineDOT
Operator: G. Lisstone
Logged By: E. Giguere
Date Start/Finish: 11/28/06-11/28/06
Boring Location: 87+50, 5.4' Rt.

Elevation (ft.): 0
Auger ID/OD: 5" Dia.
Datum: NAVD 88
Hammer Wt./Fall: N/A
Casing ID/OD: N/A
Water Level*: None Observed

Definitions:
- D = Split Spoon Sample
- U = Thin Wall Tube Sample
- R = Rock Core Sample
- V = In situ Vane Shear Test
- SSA = Solid Stem Auger
- MD = Unsuccessful Split Spoon Sample attempt
- SU(lab) = Lab Vane Shear Strength (psf)
- qP = Unconfined Compressive Strength (ksf)
- WO = weight of rods
- WC = water content, percent
- LL = Liquid Limit
- PI = Plasticity Index
- G = Grain Size Analysis
- C = Consolidation Test
- RQD (%) = Relative Quotient of Diameter
- N-value = Blow count of Standard Penetration Test
- Graphic Log
- Visual Description and Remarks
- Laboratory Testing Results/AASHTO and Unified Class.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.

Remarks:
- Stratification lines represent approximate boundaries between soil types; transitions may be gradual.
- Definitions:
- PAVEMENT. -0.35
- Unbound PAVEMENT. -0.50
- Damp GRAVEL, some brown, fine to coarse sand, trace silt, (Fill). ±S10 -2.20
- Grey, damp, silty fine to coarse SAND, frequent cobbles, little gravel. -3.90
- Brown, moist, silty fine SAND, trace medium and coarse sand, trace gravel. ±S11 -5.00
- Bottom of Exploration at 5.00 feet below ground surface.
- NO REFUSAL

G#209787
A-2-4, SM
WC=14.5%

G. Lidstone
12774.00
HB-JAWI-107

Maine DOT Project:
Route 156
Boring No.: HB-JAWI-107
Location: Jay-Wilton, Maine
PIN: 12774.00

E. Giguere
NAVD 88
Solid Stem Auger
N/A

11/28/06-11/28/06

Solid Stem Auger

0.35
0.50
-2.20
-3.90
-5.00

NO REFUSAL

-0.35
-0.50
-2.20
-3.90
-5.00

Visual Description and Remarks

Laboratory Testing Results/AASHTO and Unified Class.

- Stratification lines represent approximate boundaries between soil types; transitions may be gradual.
- Definitions:
- PAVEMENT. -0.35
- Unbound PAVEMENT. -0.50
- Damp GRAVEL, some brown, fine to coarse sand, trace silt, (Fill). ±S10 -2.20
- Grey, damp, silty fine to coarse SAND, frequent cobbles, little gravel. -3.90
- Brown, moist, silty fine SAND, trace medium and coarse sand, trace gravel. ±S11 -5.00
- Bottom of Exploration at 5.00 feet below ground surface.
- NO REFUSAL

G#209787
A-2-4, SM
WC=14.5%

Maine DOT Project:
Route 156
Boring No.: HB-JAWI-107
Location: Jay-Wilton, Maine
PIN: 12774.00

E. Giguere
NAVD 88
Solid Stem Auger
N/A

11/28/06-11/28/06

Solid Stem Auger

0.35
0.50
-2.20
-3.90
-5.00

NO REFUSAL

-0.35
-0.50
-2.20
-3.90
-5.00

Visual Description and Remarks

Laboratory Testing Results/AASHTO and Unified Class.

- Stratification lines represent approximate boundaries between soil types; transitions may be gradual.
- Definitions:
- PAVEMENT. -0.35
- Unbound PAVEMENT. -0.50
- Damp GRAVEL, some brown, fine to coarse sand, trace silt, (Fill). ±S10 -2.20
- Grey, damp, silty fine to coarse SAND, frequent cobbles, little gravel. -3.90
- Brown, moist, silty fine SAND, trace medium and coarse sand, trace gravel. ±S11 -5.00
- Bottom of Exploration at 5.00 feet below ground surface.
- NO REFUSAL

G#209787
A-2-4, SM
WC=14.5%

Maine DOT Project:
Route 156
Boring No.: HB-JAWI-107
Location: Jay-Wilton, Maine
PIN: 12774.00

E. Giguere
NAVD 88
Solid Stem Auger
N/A

11/28/06-11/28/06

Solid Stem Auger

0.35
0.50
-2.20
-3.90
-5.00

NO REFUSAL

-0.35
-0.50
-2.20
-3.90
-5.00

Visual Description and Remarks

Laboratory Testing Results/AASHTO and Unified Class.

- Stratification lines represent approximate boundaries between soil types; transitions may be gradual.
- Definitions:
- PAVEMENT. -0.35
- Unbound PAVEMENT. -0.50
- Damp GRAVEL, some brown, fine to coarse sand, trace silt, (Fill). ±S10 -2.20
- Grey, damp, silty fine to coarse SAND, frequent cobbles, little gravel. -3.90
- Brown, moist, silty fine SAND, trace medium and coarse sand, trace gravel. ±S11 -5.00
- Bottom of Exploration at 5.00 feet below ground surface.
- NO REFUSAL

G#209787
A-2-4, SM
WC=14.5%

Maine DOT Project:
Route 156
Boring No.: HB-JAWI-107
Location: Jay-Wilton, Maine
PIN: 12774.00

E. Giguere
NAVD 88
Solid Stem Auger
N/A

11/28/06-11/28/06

Solid Stem Auger

0.35
0.50
-2.20
-3.90
-5.00

NO REFUSAL

-0.35
-0.50
-2.20
-3.90
-5.00

Visual Description and Remarks

Laboratory Testing Results/AASHTO and Unified Class.

- Stratification lines represent approximate boundaries between soil types; transitions may be gradual.
- Definitions:
- PAVEMENT. -0.35
- Unbound PAVEMENT. -0.50
- Damp GRAVEL, some brown, fine to coarse sand, trace silt, (Fill). ±S10 -2.20
- Grey, damp, silty fine to coarse SAND, frequent cobbles, little gravel. -3.90
- Brown, moist, silty fine SAND, trace medium and coarse sand, trace gravel. ±S11 -5.00
- Bottom of Exploration at 5.00 feet below ground surface.
- NO REFUSAL

G#209787
A-2-4, SM
WC=14.5%
Maine Department of Transportation
Project: Route 156
Location: Jay-Wilton, Maine

PIN: 12774.00

Boring No.: HB-JAWI-108

Driller: MaineDOT
Elevation (ft.):
Auger ID/OD: 5" Dia.

Operator: E. Giguere
Datum: NAVD 88
Sampler: Off Flights

Logged By: G. Lidstone
Rig Type: Truck Mounted CME 45C
Hammer Wt./Fall: N/A

Date Start/Finish: 11/28/06-11/28/06
Drilling Method: Solid Stem Auger
Core Barrel: N/A

Boring Location: 95+00, 6.8' Rt.
Casing ID/OD: N/A
Water Level*: None Observed

Definitions:
- D = Split Spoon Sample
- MD = Unsuccessful Split Spoon Sample attempt
- U = Thin Wall Tube Sample
- R = Rock Core Sample
- V = Insitu Vane Shear Test
- SSA = Solid Stem Auger

- S_u = Insitu Field Vane Shear Strength (psf)
- V_p = Pocket Torvane Shear Strength (psf)
- q_u = Unconfined Compressive Strength (psf)
- $S_u(lab)$ = Lab Vane Shear Strength (psf)
- WOH = weight of 140lb. hammer

- WC = water content, percent
- LL = Liquid Limit
- PI = Plastic Limit
- G = Grain Size Analysis
- C = Consolidation Test

Sample Information

<table>
<thead>
<tr>
<th>Depth (ft.)</th>
<th>Sample No.</th>
<th>Pen./Rec. (in.)</th>
<th>Sample Depth (ft.)</th>
<th>Blows (/6 in.)</th>
<th>Shear Strength (psf) or RQD (%)</th>
<th>N-value</th>
<th>Casing Blows</th>
<th>Elevation (ft.)</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.65</td>
<td>SSA</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.20</td>
<td>-0.65</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-5.00</td>
<td>-2.20</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bottom of Exploration at 5.00 feet below ground surface. NO REFUSAL</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visual Description and Remarks:
- PAVEMENT.
- Damp GRAVEL, some brown, fine to coarse sand, trace silt, (Fill) ≥510
- Brown, moist, silty fine SAND, trace medium and coarse sand, trace gravel ≥511

Remarks:

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.

* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.
Maine Department of Transportation

Soil/Rock Exploration Log

US CUSTOMARY UNITS

Project: Route 156
Location: Jay-Wilton, Maine
Boring No.: HB-JAWI-109
PIN: 12774.00

Driller: MaineDOT
Elevation (ft.):
Auger ID/OD: 5" Dia.

Operator: E. Giguere
Datum: NAVD 88
Sampler: Off Flights

Logged By: G. Lidstone
Rig Type: Truck Mounted CME 45C
Hammer Wt./Fall: N/A

Date Start/Finish: 11/28/06-11/28/06
Drilling Method: Solid Stem Auger
Core Barrel: N/A

Boring Location: 102+50, 6.3' Rt.
Casing ID/OD: N/A
Water Level: None Observed

Definitions:
- D = Split Spoon Sample
- MD = Unsuccessful Split Spoon Sample attempt
- U = Thin Wall Tube Sample
- R = Rock Core Sample
- V = Insitu Vane Shear Test
- SSA = Solid Stem Auger

Sample Information

<table>
<thead>
<tr>
<th>Depth (ft.)</th>
<th>Sample No.</th>
<th>Pen./Rec. (in.)</th>
<th>Sample Depth (ft.)</th>
<th>Blows (6 in.)</th>
<th>Shear Strength (psf) or RQD (%)</th>
<th>N-value</th>
<th>Casing Blows</th>
<th>Elevation (ft.)</th>
<th>Graphic Log</th>
<th>Visual Description and Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSA</td>
<td>-0.50</td>
<td></td>
<td></td>
<td></td>
<td>PAVEMENT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.80</td>
<td></td>
<td></td>
<td></td>
<td>Damp GRAVEL, some brown, fine to coarse sand, trace silt, (Fill). ≅S10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-5.00</td>
<td></td>
<td></td>
<td></td>
<td>Brown, moist, silty fine SAND, trace medium and coarse sand, trace gravel. ≅S11</td>
</tr>
<tr>
<td></td>
<td>Bottom of Exploration at 5.00 feet below ground surface. NO REFUSAL</td>
</tr>
</tbody>
</table>

Remarks:

STRONG ODOR IN THIS BORING.

Stratification lines represent approximate boundaries between soil types; transitions may be gradual.
* Water level readings have been made at times and under conditions stated. Groundwater fluctuations may occur due to conditions other than those present at the time measurements were made.