Mosquito/Arbovirus Surveillance

Charles Lubelczyk
Maine Medical Center Research Institute
Scarborough, ME
Wildlife Health and Emerging Disease

Silent cycles of wildlife disease - *enzootic*

Flanders virus, trivitattus virus – mosquito-borne

Squirrel pox – squirrel to squirrel transmission

No impact other than to specific wildlife host

Minimal public health or veterinary importance
Wildlife Health and Emerging Disease

• *Epizootic or epidemic cycles of wildlife disease* (“Jumping the species barrier”)

• West Nile virus, eastern equine encephalitis – mosquito-borne

• Lyme disease, Powassan encephalitis – tick-borne

• Chronic wasting disease – deer to livestock transmission

• Human, veterinary, livestock, wildlife health issues
 - Non-target spillover of disease (accidental hosts)
Arboviral cycle

• Reservoirs
 – Avian species

• Arthropod vectors (ticks/mosquitoes)
 – Seasonality of disease
 – Host preference
 • ‘Dead End’ Hosts
Mosquito Vectors - EEE

• Enzootic vectors
 – Genus Culiseta
 • Ornithophillic
 • Habitat – forested wetlands

• Bridge vectors
 – Genera Coquillettiddia, Aedes (Ochleratutus), Culex
 • Catholic feeders’
 • Habitat – variable, but wetland associated
Mosquito Vectors – WNV/SLE

• Enzootic vectors
 – Genus Culex
 • Ornithophillic
 • Habitat – container breeders (nutrient rich water source)
 – Urban vs natural areas (Rochlin et al 2008)

• Bridge vectors
 – Genera Coquillettiddia, Aedes (Ochleratutus), Culex
 • Catholic feeders’
 • Habitat – variable, but wetland associated
Mosquito Habitat

- *Cs melanura* (EEE)
 - Red maple swamps or other acidic forested wetlands
 - Open forested uplands (eastern hemlock)
 - Oftentimes low visibility of disease activity (it takes a dead horse to see it!)
Mosquito Habitat

- *Culex pipiens/Cx restuans* (WNV)
 - Artificial container breeding, with high nutrient content
 - Tires
 - ‘Kiddie pools’
 - Buckets
 - Cemeteries
 - Suburban or urban environments
 - Disease activity may be highly visible
 - “There’s a dead crow on the lawn, honey!”
Mosquito Habitat

- *Aedes vexans*(EEE & WNV)
 - Temporary waterbodies following rainfall
- *Aedes canadensis*(EEE & WNV)
 - Permanent woodland (shaded) pools
- *Aedes sollicitans*(EEE & WNV)
 - Saltmarshes
- *Cq perturbans*(EEE & WNV)
 - Cattail marshes
Deer Sero-surveys

AIM: evaluate the potential for using deer sero surveys to track and map the distribution of EEEV in the state of Maine.

The overall aim is to develop a comprehensive EEEV surveillance system based on detailed information of EEEV regional distribution and focal locations within the state of Maine.
Tracking Disease

- Use of cervids to look for EEE activity
 - ~7-12% antibody + animals across Maine

Deer Sera Tested = 226
EEE Positive = 16
% Positive = 7.1%
Tracking Disease

• Large samples to look for clusters spatially and temporally
EEE Ab+ Animals

Both WTD and Moose, 2009-2014

High clustering of positivity in northern Maine
 3 sites in Aroostook County
 Kennebec County

Lower Clustering of Positives
 Piscataquis County
 Interior York County
 Washington County
 Lower Penobscot County
Tracking Disease

• Entomologic Surveillance (mosquito trapping)
 – 30 sites across Maine
 – Collaborative effort between MMCRI, MECDC and ME DACF
Tracking Disease

• Veterinary/public health surveillance
 – Rapid response investigation at site of activity (sick horse)
 • Mosquito collection and testing
Summer 2012 - Pheasant Outbreak

- Captive pheasant flock (Lebanon, ME), reports of sudden deaths occurring in flock
 - Original flock size of 75 birds; one dead bird tested positive for EEEV
• Of the original 75 birds:
 – 39 birds died suddenly, as reported by landowner
 – 36 birds were euthanized
Rapid Response - Methods

• Rapid response mosquito trapping on site (Lebanon)

• Two light traps placed in forested wetlands near flock enclosure
 – Red maple swamp
 – Hemlock swamp

• September 7 - September 30
Predicting Disease

• Models created with geographic information systems (GIS)
 – Adding biologic data with environmental data to predict where either vectors or disease may concentrate
WNV model – urban mosquitoes
EEE model v2 – across rural counties, targeting small locations

• Created to improve mosquito surveys but also emergency response
The New Kid on the Block - Zika

• How to track, where to look?
 – Use of emergent cups to collect Ae albopictus/Ae egypti larvae
 – Concentrations on port districts with incoming ship traffic in southern Maine (Portland, Kittery)

• Urban environments
 – Search for artificial containers that may act as breeding habitat for vectors
 – GIS model for urban Culex sampling