

Antibiotic Stewardship: *Peeling Back the Layers*

Minkey Wungwattana, PharmD, BCPS-AQ ID

Clinical Pharmacy Specialist, Infectious Diseases Director, Antimicrobial Stewardship Program Director, PGY-2 Infectious Diseases Pharmacy Residency Program Maine Medical Center

Disclosures

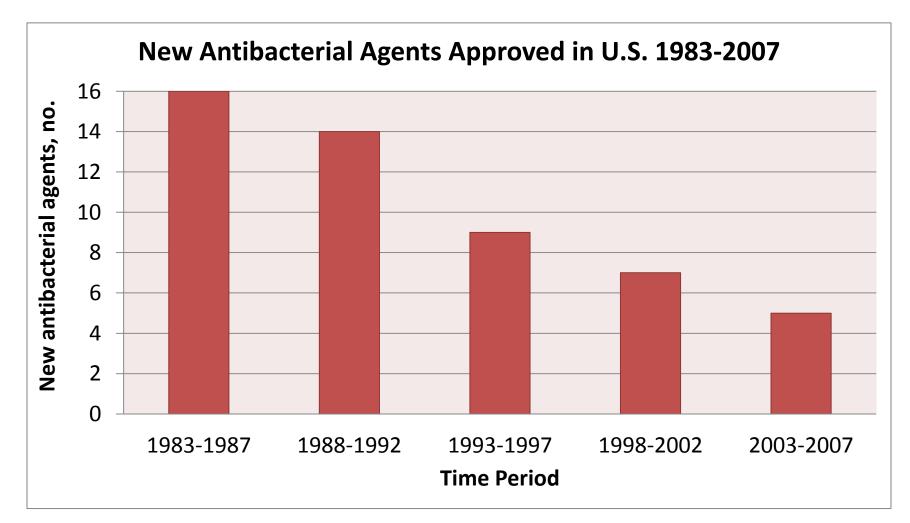
• The content of this presentation does not relate to any product of a commercial interest.

• No relevant financial relationships to disclose.

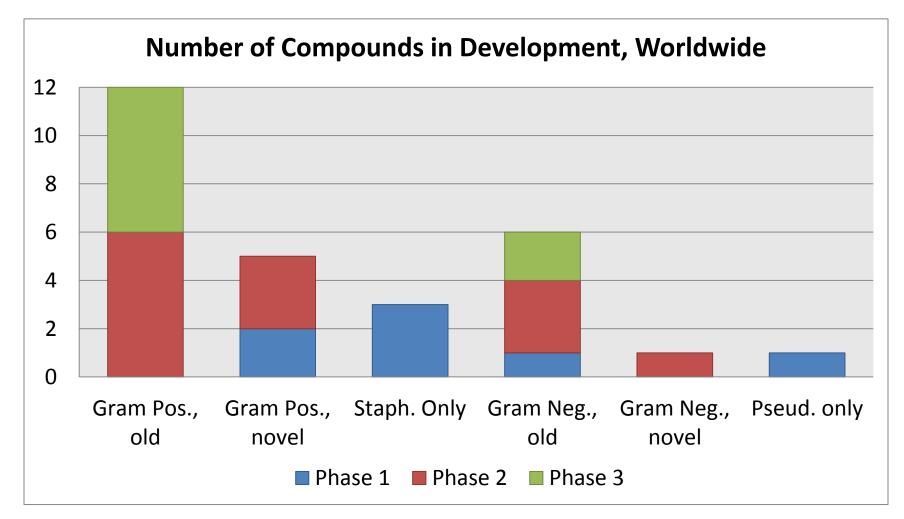
Learning Outcomes

- Appreciate the impact of drug-resistant organisms on the community and on his or her own health care.
- Understand the primary goals of practicing antimicrobial stewardship and what types of activities qualify as antimicrobial stewardship.
- Identify certain activities that he/she can perform at his/her practice setting that would contribute to the goals of antimicrobial stewardship

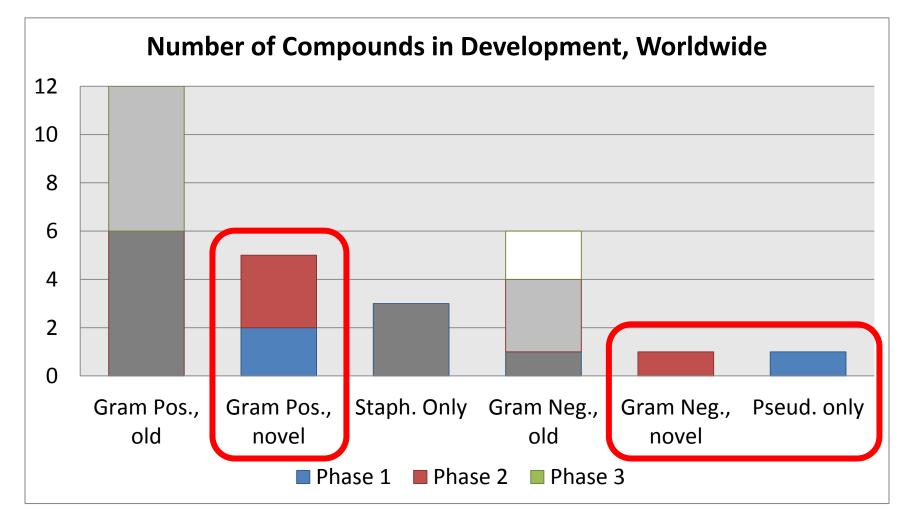
WHY STEWARDSHIP


Why Stewardship

- Death tolls
 - At least 2 million people infected with antibiotic resistant bacteria
 - At least 23,000 deaths resulting from drug-resistant bacteria
- Financial burden on society
 - Compared to drug-susceptible infection episodes, drug-resistant infection episodes have higher costs (\$6,000-\$30,000 per episode)
- Ability to respond to resistance and increasing mortality
- 1. Centers for Disease Control and Prevention. Antibiotic / Antimicrobial Resistance. Available at: https://www.cdc.gov/drugresistance/about.html. Accessed November 6, 2018.
- 2. Maragakis LL et al. Expert Rev Anti Infect Ther 2008;6:751-63.


Balancing Act of Antimicrobial Stewardship

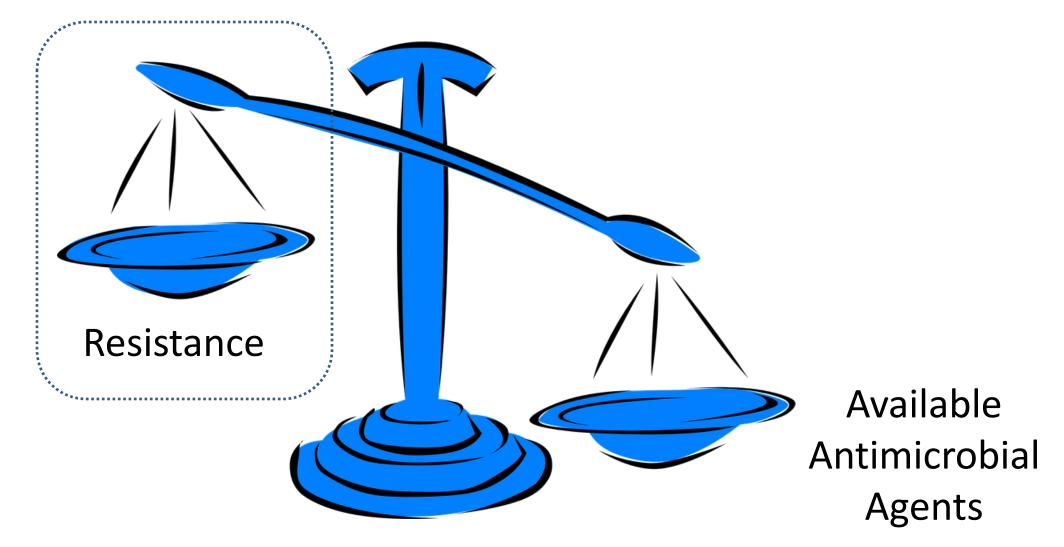
"Post-Antibiotic Era"

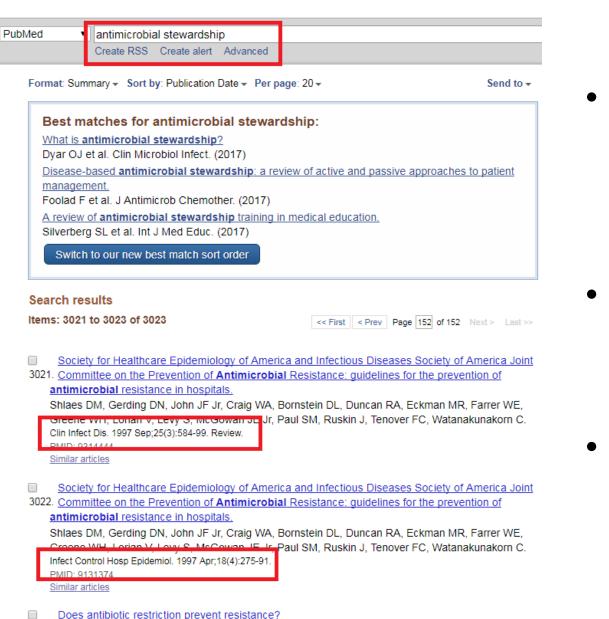


Antimicrobial Pipeline

Adapted from: Theuretzbacher U. Int J Antimicrob Agents. 2012; 39:295-9.

Dry Pipeline – Lack of Novelty

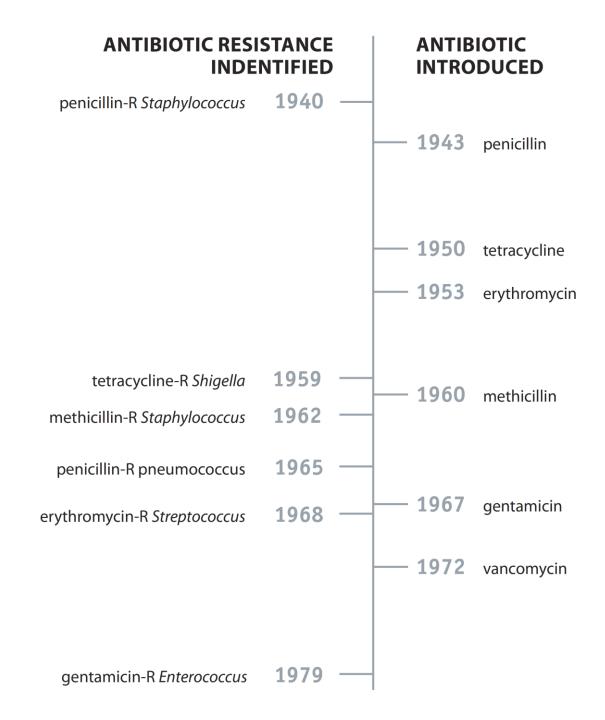


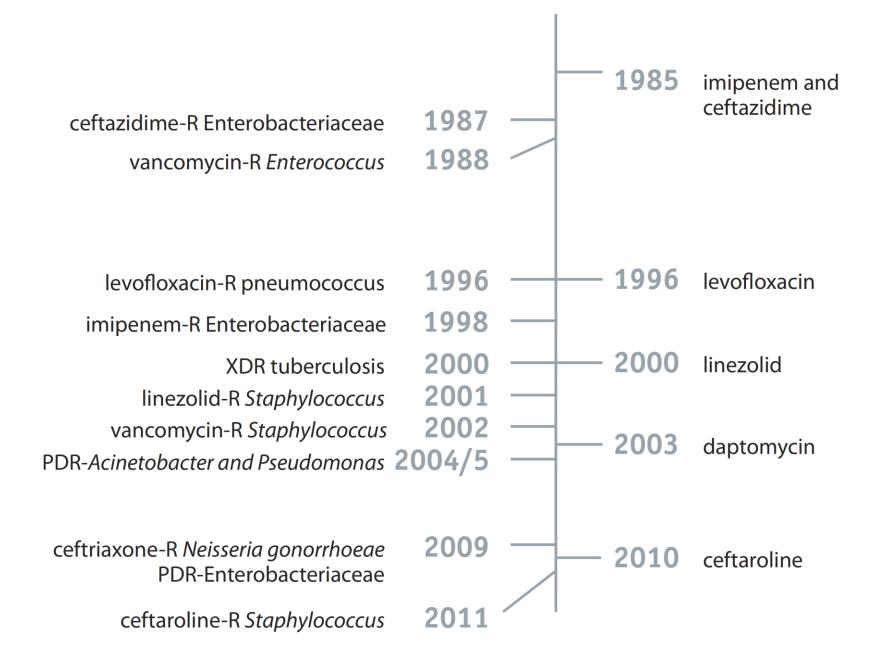

Adapted from: Theuretzbacher U. Int J Antimicrob Agents. 2012; 39:295-9.

Antibacterials: Low Return on Investment

Agent	Average Cost	Agent	Average Cos
Harvoni®		Daptomycin	
50% of market	\$165 billion	\$1,000 for 14d Assume 50% treat	\$1 billion / ye
Triumeq®			
50% of market	\$14.8 billion / year	1. Number of affect	ed individuals
Entresto® (sacubitril/valsartan)		X Duration requirii thera	
50% of market	\$13 billion / year		
25% of market	\$6.5 billion / year	2. Rarity of diseas	e

Are We Winning the Battle Against Resistance?

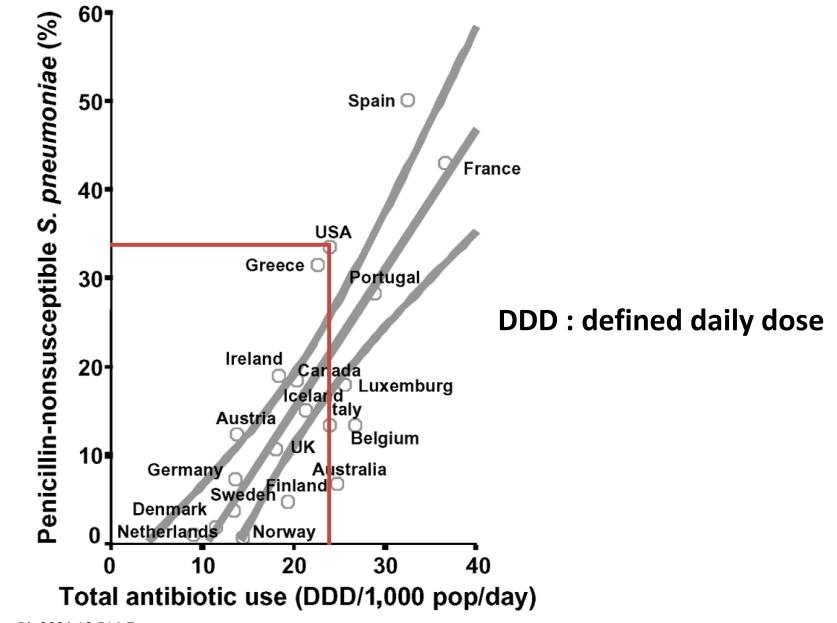




3023 McCowap JE Jr. Cording DN New Horiz, 1996 Aug;4(3);370-6, Review.

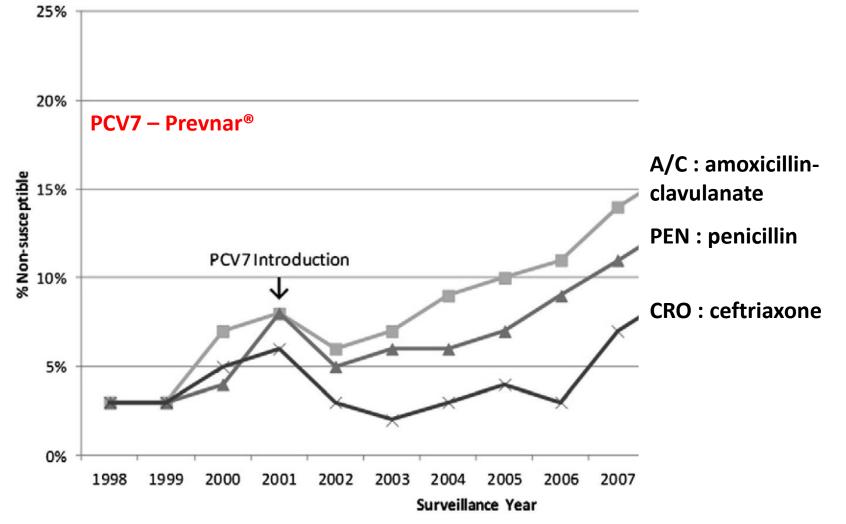
Similar articles

- Antibiotic resistance observations by epidemiologists in late 1980s to early 1990s
- Resistance non-existent until that time period?
- Staphylococcus resistance observed by Alexander Fleming upon discovery of penicillin in 1930-40s

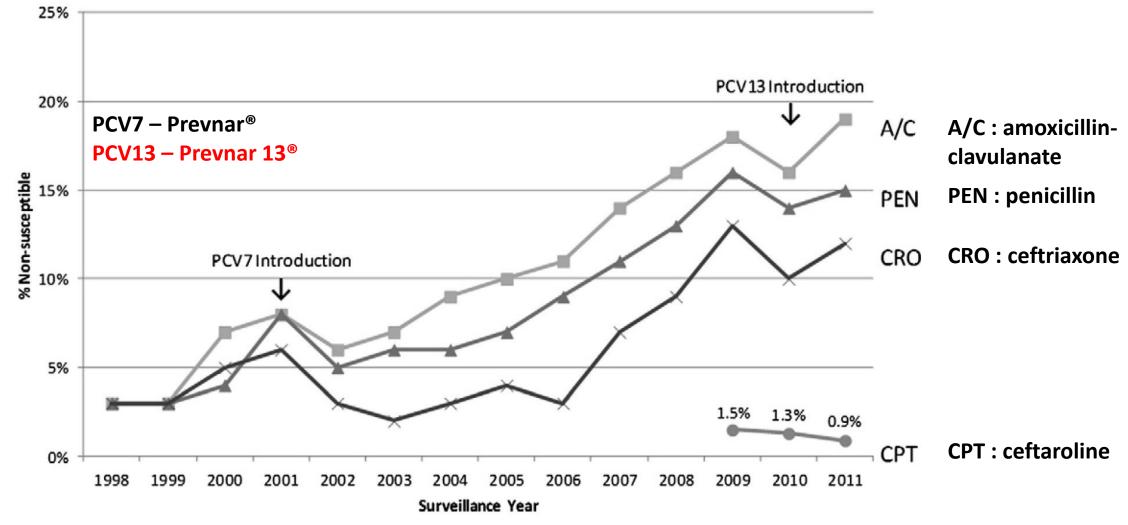

CDC Urgent Threats	CDC Serious Threats	CDC Concerning Threats
Clostridioides difficile	MDR Acinetobacter	Vancomycin-resistant Staphylococcus aureus (VISA)
Carbapenem-resistant Enterobacteriaceae (CRE)	Drug-resistant Campylobacter	Erythromycin-resistant Group A Streptococcus
Drug-resistant Neisseria gonorrhoeae	Fluconazole-resistant Candida	Clindamycin-resistant Group B Streptococcus
	Extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae	
	Vancomycin-resistant Enterococcus (VRE)	
	MDR Pseudomonas aeruginosa	
	Drug-resistant non-typhoidal Salmonella	
	Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA)	
	Drug-resistant Streptococcus pneumoniae	
	Drug-resistant Tuberculosis	

MDR : Multi-drug resistant

Biggest Threats in Antimicrobial Resistance


Threat	Infections	Deaths		
C.difficile	500,000	15,000		
CRE	9,000	600		
Drug-resistant Neisseria gonorrhoeae	246,000			
MDR Acinetobacter	7,300	500		
Drug-resistant Campylobacter	310,000			
Fluconazole-resistant Candida	3,400	220		
ESBL Enterobacteriaceae	26,000	1,700		
VRE	20,000	1,300		
MDR Pseudomonas aeruginosa	6,700	440		
MRSA	80,461	11,285		
Drug-resistant S.pneumoniae	1.2 million	7,000		

Available at: <u>https://www.cdc.gov/drugresistance/biggest_threats.html</u>. Accessed October 28, 2018


Adapted from: Albrich WC et al. Emerg Infect Dis 2004;10:514-7.

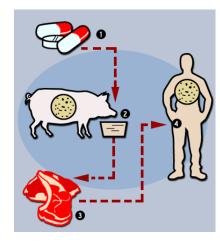
Resistance Correlative to Antibiotic Consumption

Adapted from: Jones RN et al. Diagn Microbiol Infect Dis 2013;75:107-9.

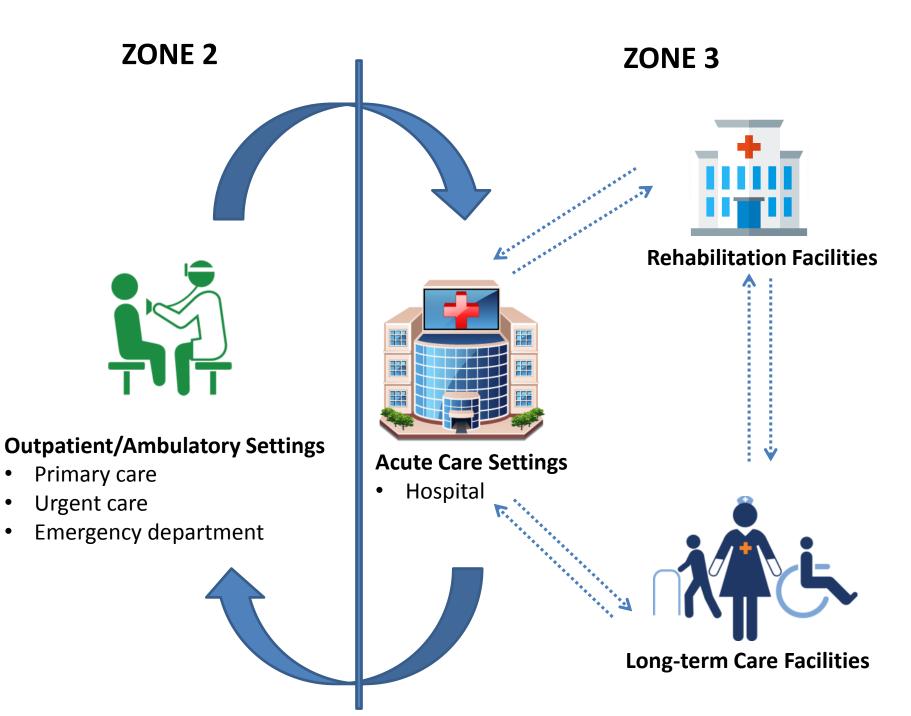
Resistance Correlative to Antibiotic Consumption

Adapted from: Jones RN et al. Diagn Microbiol Infect Dis 2013;75:107-9.

ANTIBIOTIC STEWARDSHIP

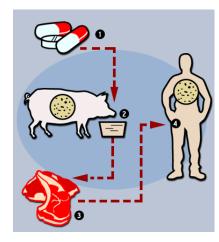

Multi-faceted, multi-disciplinary approach to making life miserable for bacteria...

10,000-foot View of Stewardship


ZONE 1

Antibiotic Overutilization in Livestock and Farming

Water Contamination



ZONE 1

ZONE 2

ZONE 3

Antibiotic Overutilization in Livestock and Farming

- Approximately 70% of medically important antibiotics sold in U.S. used in livestock and agriculture.
 - Disease treatment
 - Disease prevention
 - Growth promotion/feed efficiency
- Estimated global consumption in 2013: 131,109 tons

1. U.S. Food and Drug Administration, Center for Veterinary Medicine, 2016 Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals. Available at: https://www.fda.gov/downloads/forindustry/userfees/animaldruguserfeeactadufa/ucm588085.pdf. Accessed October 30, 2018.

2. Van Boeckel TP et al. Science 2017;357;1350-1352.

Antibiotic Overutilization n Livestock and Farming

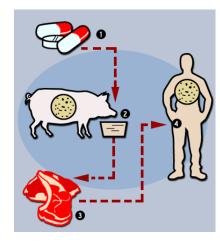
Increasing resistance profile

Outpatient/Ambulatory Settings

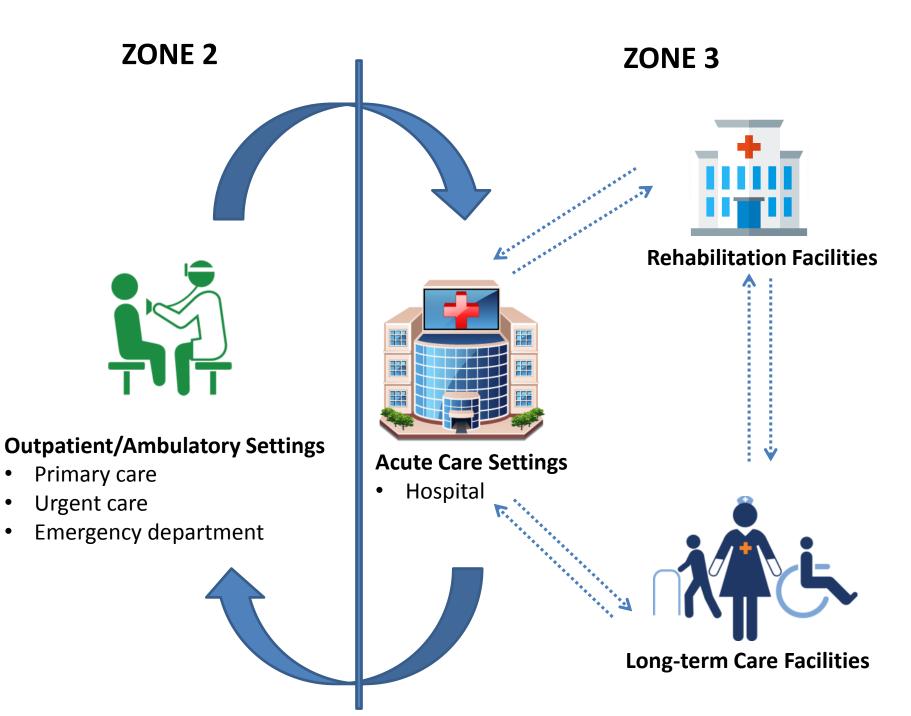
- Primary care
- Urgent care
- Emergency department

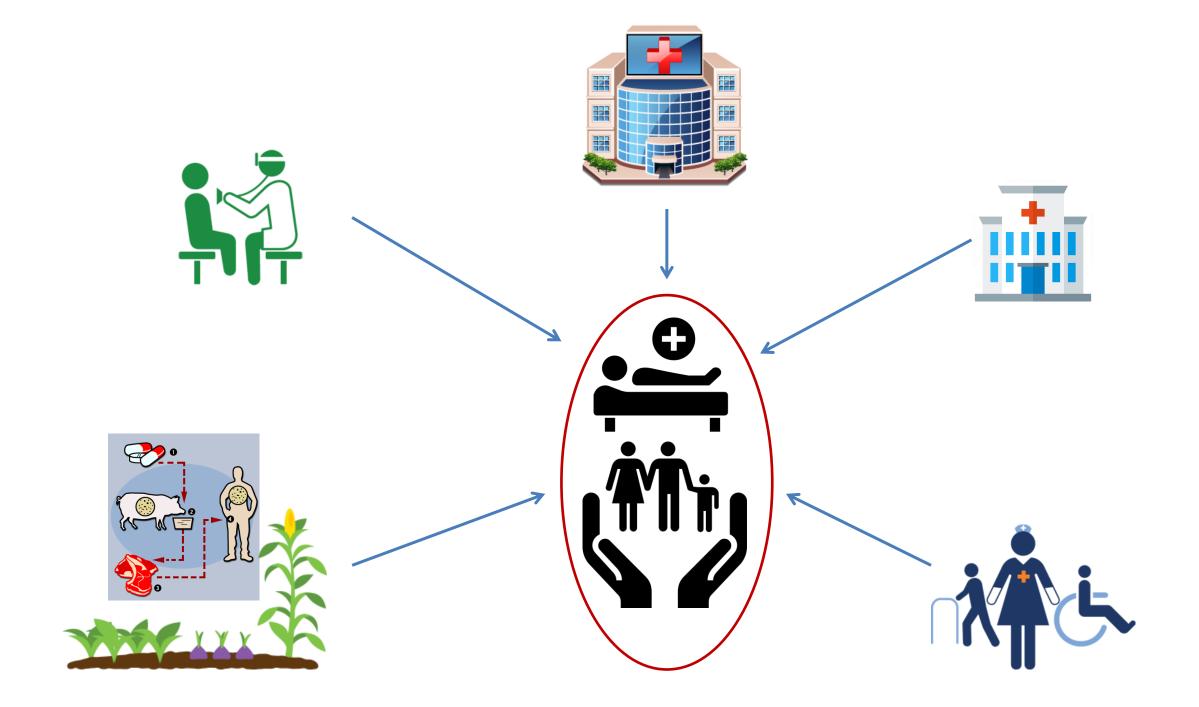
Rehabilitation Facilities

Acute Care Settings

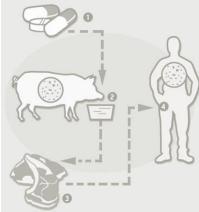

Hospital

Long-term Care Facilities


ZONE 1


Antibiotic Overutilization in Livestock and Farming

Water Contamination



ZONE 1

Antibiotic Overutilization in Livestock and Farming

INPATIENT EXAMPLE OF RESISTANCE

Outpatient/Ambulatory Settings

- Primary care
- Urgent care
- Emergency department

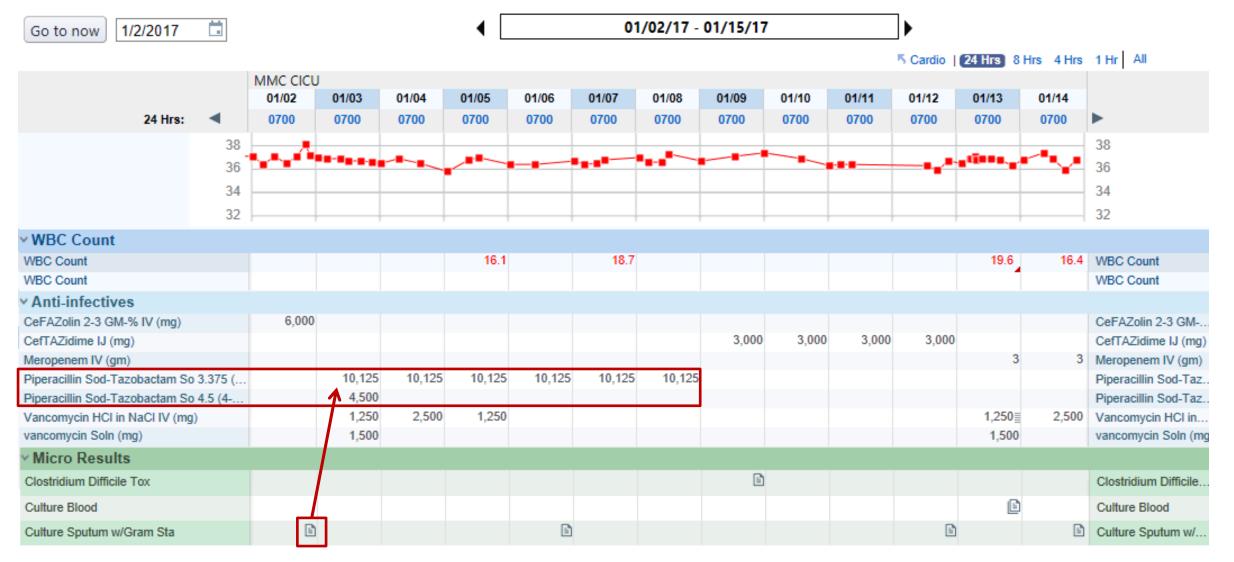
Acute Care Settings


Hospital

ZONE 3

Long-term Care Facilities

Challenges in Hospital Pathogens

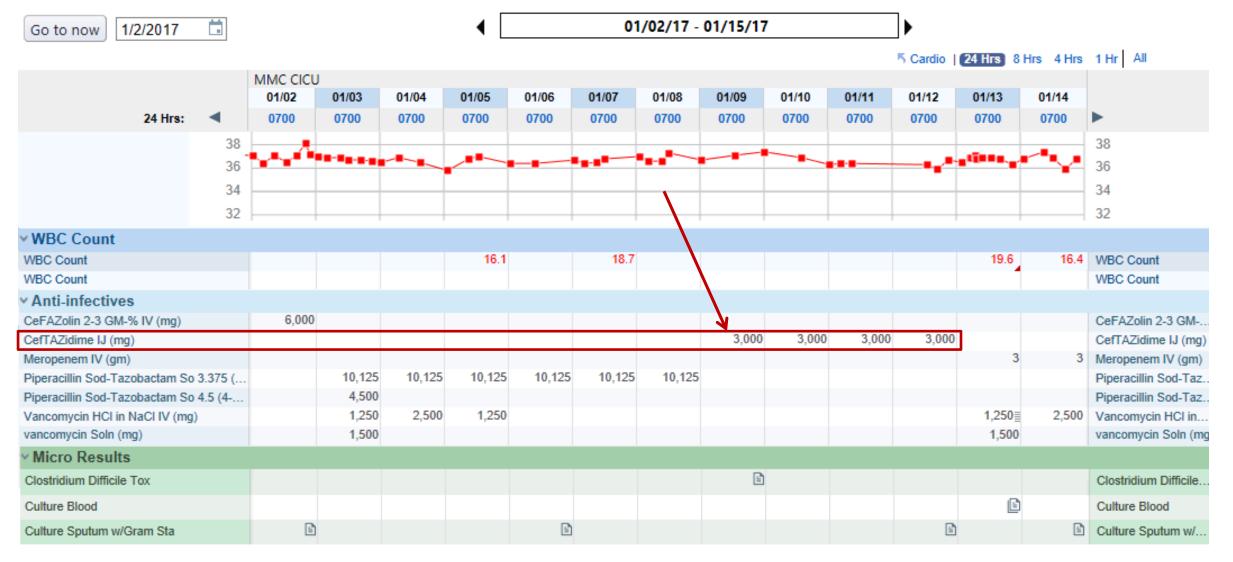

1/2/2017 Go to now MMC 01/0 24 Hrs: -34 VWBC Count WBC Count WBC Count Anti-infectives CeFAZolin 2-3 GM-% IV (mg) CefTAZidime IJ (mg) Meropenem IV (gm) Piperacillin Sod-Tazobactam So 3.375 (... Piperacillin Sod-Tazobactam So 4.5 (4-... Vancomycin HCI in NaCl IV (mg) vancomycin Soln (mg) Micro Results Clostridium Difficile Tox Culture Blood Culture Sputum w/Gram Sta

Culture Sputum w/ Gram Stain Status: Final result (Resulted: 1/5/2017 06:39) Order Questions Ouestion Answer Specimen Source: Endotracheal Culture Lower Respiratory+Gram Stn PSEUDOMONAS AERUGINOSA Culture & Susceptibility Pseudomonas Aeruginosa Not Specified Amikacin <=8 mcg/mL S 8 mcg/mL S Aztreonam Cefepime 8 mcg/mL S Ceftazidime 4 mcg/mL S Gentamicin 4 mcg/mL S 1 mcg/mL S Imipenem Levofloxacin <=1 mcg/mL S <=0.5 mcg/mL S Meropenem Piperacill +Tazobactam 4/4 mcg/mL S Tobramycin <=2 mcg/mL S **Specimen Information** Type: Sputum Collected: 1/2/2017 3:01 PM

 Indext
 Indext
 Indext
 Culture Blood

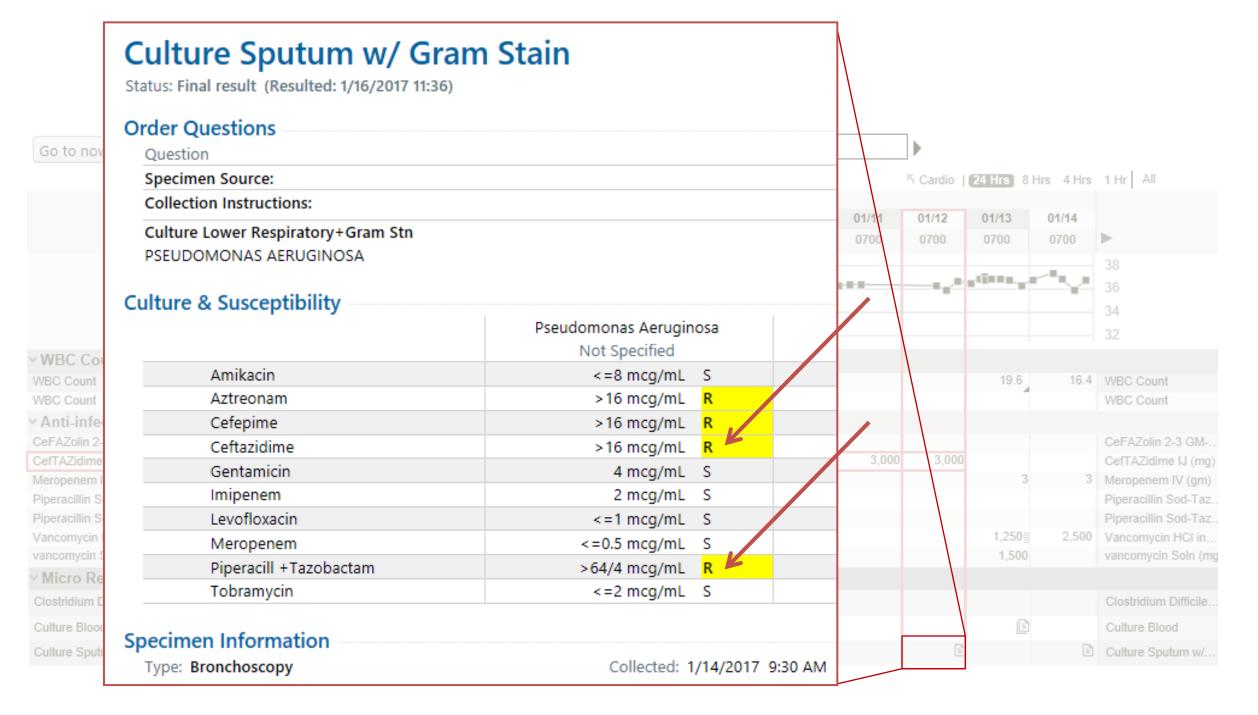
 tum w/Gram Sta
 Indext
 Indext
 Indext
 Culture Sputum w/...

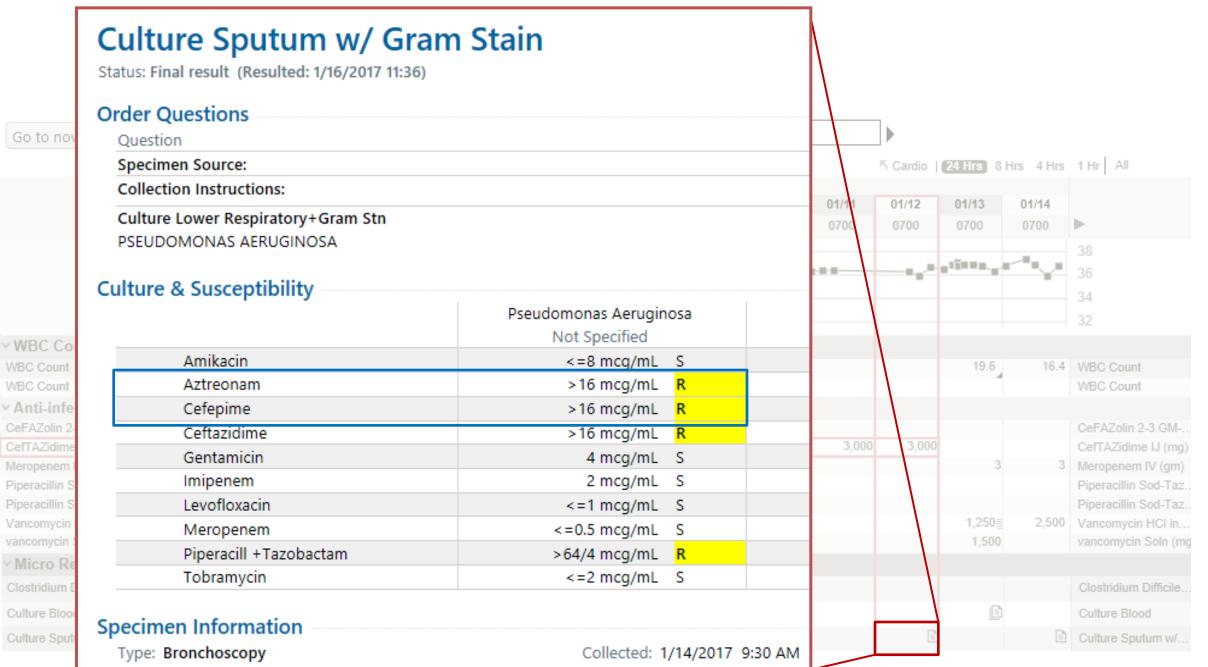
Initiation of Piperacillin-Tazobactam on 1/3



Mini-BAL Culture 1/6

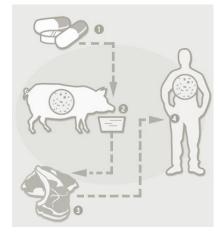
Go to now 1/2/2017 📋				- ∢ [01	/02/17 -	01/15/17]▶			
											5 Cardio	(24 Hrs)	8 Hrs 4 Hrs	1 Hr All
	MMC CICU													
	01/02	01/03	01/04	01/05	01/06	01/07	01/08	01/09	01/10	01/11	01/12	01/13	01/14	
24 Hrs: ┥	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	▶
38												_		38
36				<u></u>				_						36
34														34
32														32
VWBC Count														
WBC Count				16.1		18.7						19.6	16.4	WBC Count
WBC Count				10.1		10.7						13.0	4 10.4	WBC Count
Anti-infectives														WDO OOunt
CeFAZolin 2-3 GM-% IV (mg)	6,000													CeFAZolin 2-3 GM
CefTAZidime IJ (mg)	0,000							3,000	3,000	3,000	3,000			CertAZolin 2-3 GM CefTAZidime IJ (m
Meropenem IV (gm)								3,000	3,000	3,000	5,000		3 3	-
Piperacillin Sod-Tazobactam So 3.375 (10,125	10,125	10,125	10,125	10,125	10,125						J J	Piperacillin Sod-Ta
Piperacillin Sod-Tazobactam So 4.5 (4		4,500				,								Piperacillin Sod-Ta
Vancomycin HCl in NaCl IV (mg)		1,250	2,500	1,250								1,250	2,500	Vancomycin HCI in
vancomycin Soln (mg)		1,500										1,50		vancomycin Soln (i
 Micro Results 														
Clostridium Difficile Tox								E)						Clostridium Difficile
Culture Blood												(3	Culture Blood
Culture Sputum w/Gram Sta	B				B						E			Culture Sputum w/


		Status, Fil	nal result (Resulted: 1/10/2017	09.40)				
to now 1/2	2/2017	Order C	Questions					
	2/2017	Questi	on					Answer
		Specin	nen Source:					Mini-B/
PSEUDO	Lower Respiratory+Gram Stn MONAS AERUGINOSA							
Culture	& Susceptibility		Pseudomonas Aeruginos Not Specified	a	Pseudomonas Aerugir Not Specified	nosa		
	Amikacin		<=8 mcg/mL S		<=8 mcg/mL	S		
В	Aztreonam		8 mcg/mL S		8 mcg/mL	S		
	Cefepime		8 mcg/mL S		8 mcg/mL	S		
	Ceftazidime		4 mcg/mL S		4 mcg/mL	S		
1	Gentamicin		4 mcg/mL S		4 mcg/mL	S		
A.	Imipenem		1 mcg/mL S		1 mcg/mL	S		
	Levofloxacin		<=1 mcg/mL S		<=1 mcg/mL	S		
ra	Meropenem		<=0.5 mcg/mL S		<=0.5 mcg/mL	S		
ra	Piperacill +Tazobactam		4/4 mcg/mL S		4/4 mcg/mL			
	Tobramycin		<=2 mcg/mL S		<=2 mcg/mL	S		
	n Information		Collected: 1/2	/2017 3:01 PM	Collected:	1/6/2017 1	55 PM	


Therapy Change to Ceftazidime

Induction of Resistance in P.aeruginosa

Go to now 1/2/2017						01	/02/17 -	01/15/17	7		▶			
											5 Cardio	(24 Hrs) 8	Hrs 4 Hrs	1 Hr All
	MMC CICU	l -												
	01/02	01/03	01/04	01/05	01/06	01/07	01/08	01/09	01/10	01/11	01/12	01/13	01/14	
24 Hrs: ┥	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	0700	•
38									-				_	38
36			<		_						 _	ations.		36
34														34
32														32
	r r		T I											JZ
WBC Count														
WBC Count				16.1		18.7						19.6	16.4	WBC Count
WBC Count														WBC Count
Anti-infectives														
CeFAZolin 2-3 GM-% IV (mg)	6,000													CeFAZolin 2-3 GM-
CefTAZidime IJ (mg)								3,000	3,000	3,000	3,000			CefTAZidime IJ (mg
Meropenem IV (gm)												3	3	Meropenem IV (gm
Piperacillin Sod-Tazobactam So 3.375 (10,125	10,125	10,125	10,125	10,125	10,125							Piperacillin Sod-Taz
Piperacillin Sod-Tazobactam So 4.5 (4		4,500												Piperacillin Sod-Taz
Vancomycin HCI in NaCl IV (mg)		1,250	2,500	1,250								1,250		Vancomycin HCI in.
vancomycin Soln (mg)		1,500										1,500		vancomycin Soln (n
Micro Results														
Clostridium Difficile Tox								5						Clostridium Difficile
Culture Blood												E		Culture Blood
Culture Sputum w/Gram Sta	B				E						E		Ē	Culture Sputum w/.



Meropenem Vancomycin vancomycin Micro R Culture Bloo

Go to nov

ZONE 1

Antibiotic Overutilization in Livestock and Farming

Water Contamination

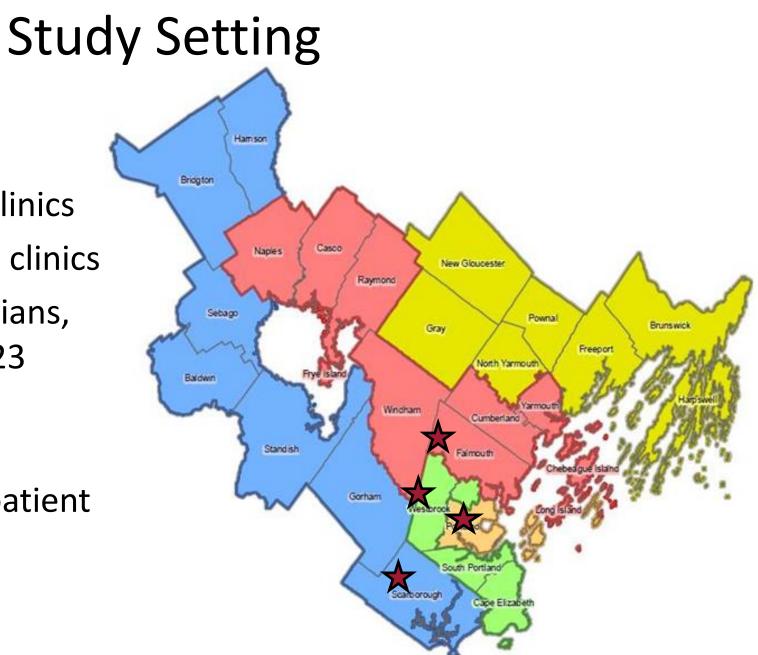
HOW DID WE GET TO THIS POINT?

Outpatient/Ambulatory Settings

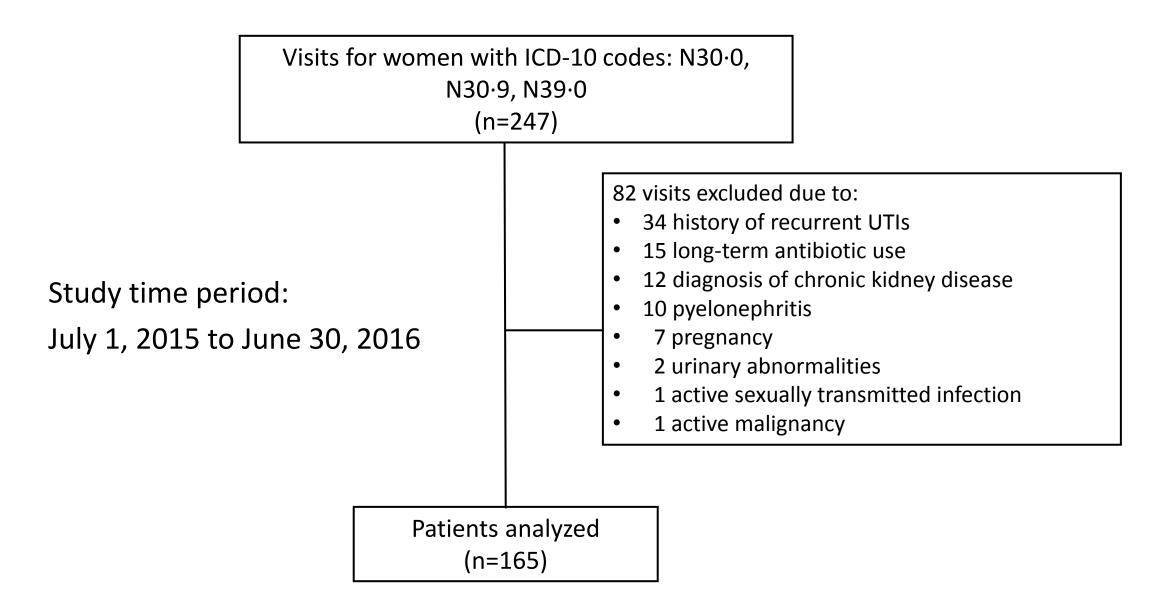
- Primary care
- Urgent care
- Emergency department

Acute Care Settings

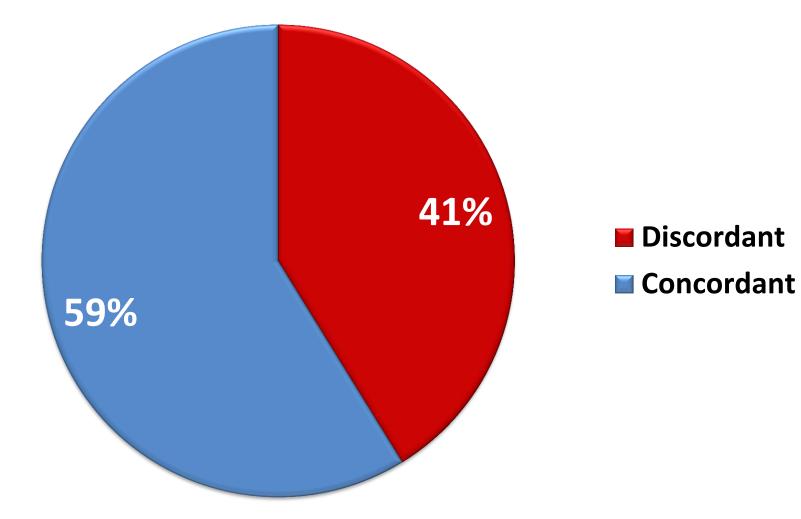
Hospita

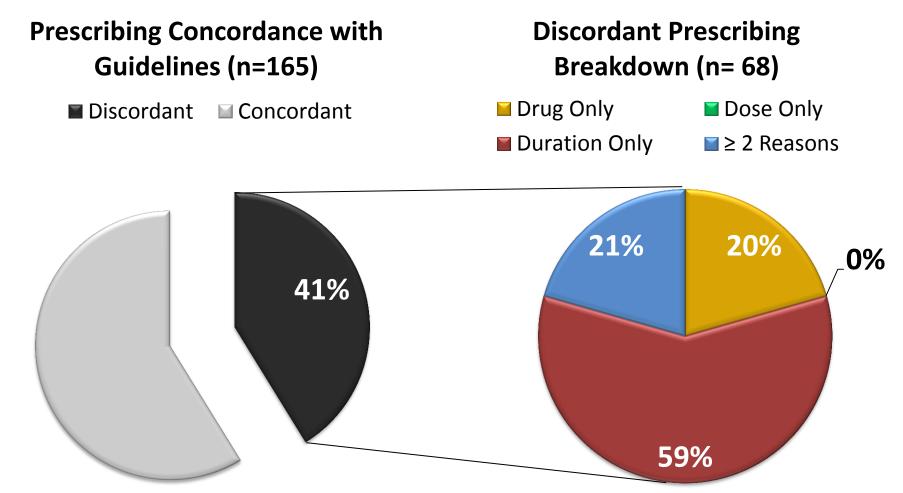


Long-term Care Facilities

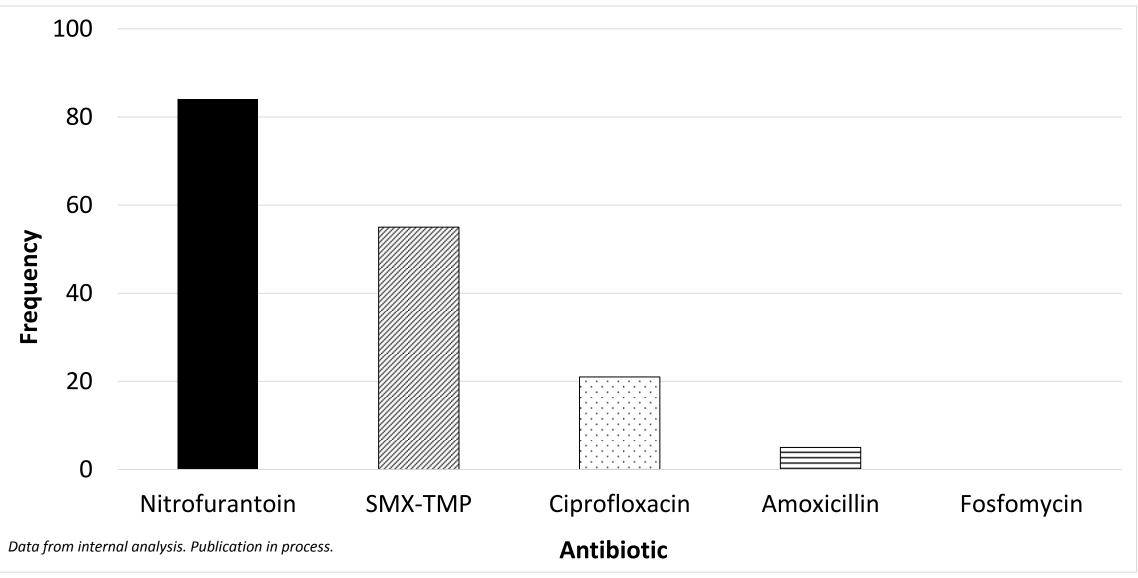


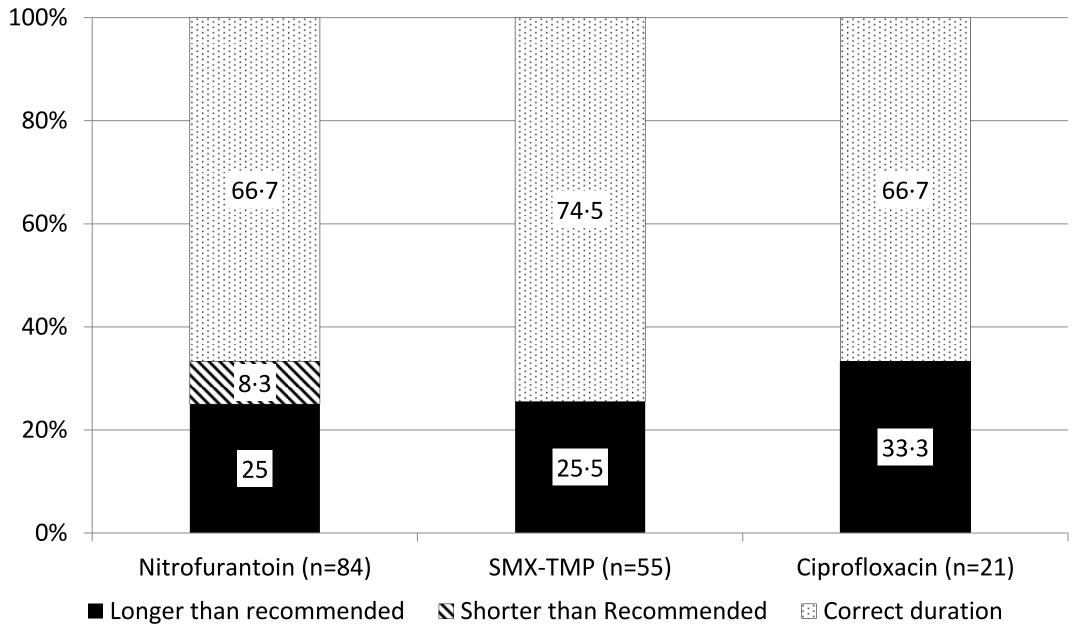
OUTPATIENT PRESCRIBING FOR UNCOMPLICATED CYSTITIS IN WOMEN


Retrospective assessment of 4 family medicine clinics


- Four family medicine clinics
- Across all primary care clinics
 - Staffed by 90 physicians, 100 residents, and 23 advanced practice providers
 - Perform >170,000 patient
 exams per year

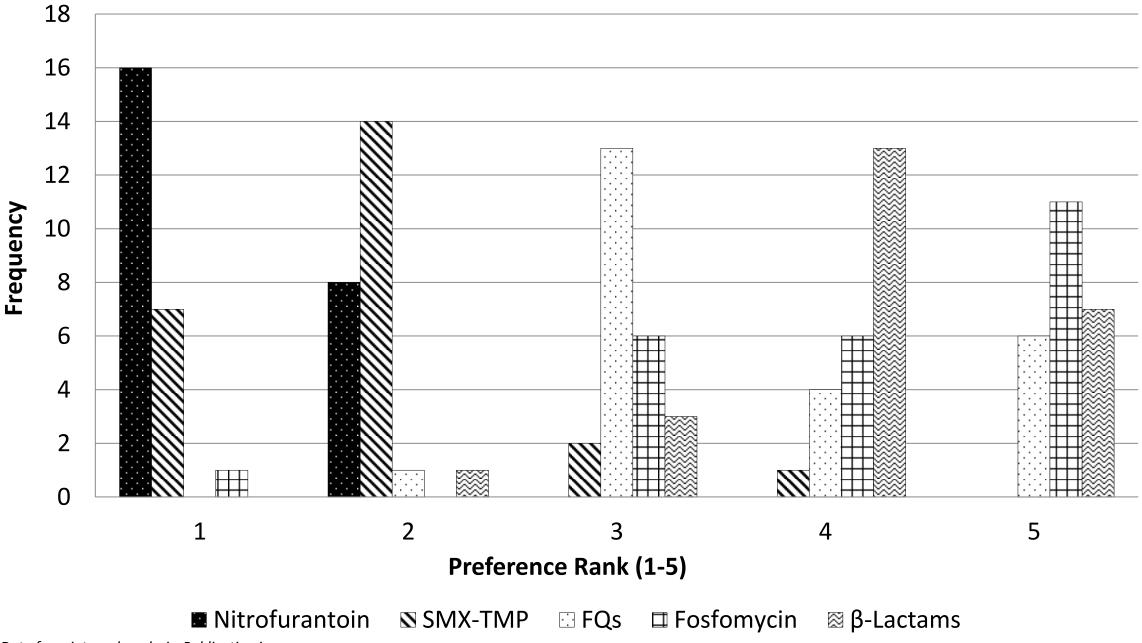
Prescribing Concordance to Guidelines




Dig A Little Deeper

Data from internal analysis. Publication in process.

Distribution of Prescribed Antibiotics



Data from internal analysis. Publication in process.

	Questions	Answer Choices
1.	Please select your title	 Attending physician Medical resident (specify year in training) Physician's assistant Nurse practitioner
2.	How long have you been a practicing clinician?	Specify years in practice (free text response)
3.	 Rank the following antibiotics 1 through 5 according to preference and select reason(s) for selection #1 and #5: β-lactams (i.e. amoxicillin-clavulanate, cephalexin) Fluoroquinolones (i.e. ciprofloxacin, levofloxacin) Fosfomycin trometamol Nitrofurantoin Sulfamethoxazole-trimethoprim 	 1 = most preferred 5 = least preferred Reasons that may be selected: Efficacy Side effect profile Ease of dosing (i.e. frequency, pill burden) Cost
5.	For selections ranked #1 and #2, please provide duration of therapy you would prescribe	Specify number of days (free text response)
6.	Do you use any resources to aid you in providing treatment to patients with acute uncomplicated cystitis?	 Select all that may apply: I do not utilize any resources Institution-specific order set Drug information resources MMC AgileMD App (Infectious Diseases) Johns Hopkins Antibiotic Guide

Data from internal analysis. Publication in process.

Data from internal analysis. Publication in process.

RESULTS OF SURVEY DISTRIBUTED

- Twenty-four out of 37 distributed surveys responded (65% response rate)
- Using first preferred agent selected as criteria for "Appropriate Drug", all 24 respondents chose a guideline-recommended agent
- Based on agent selected, only 75% of respondents paired the agent with the correct duration
- Six out of 24 respondents correctly identified fluoroquinolones as last line therapy

Data from internal analysis. Publication in process.

FQs for UTIs: Tip of the Iceberg?

- Drug use evaluation to compare two time periods (pre- vs. post- FDA drug label change in May 2016)
- Cohort included individuals age 18-65

Diagnoses reviewed:

- Acute sinusitis
- Acute exacerbation of chronic bronchitis
- Acute uncomplicated cystitis

Uncomplicated UTI	2016	2017	COPD w/ acute exacerbation	2016	2017	Acute sinusitis	2016	2017
n	10,900	14,110	п	5,210	6,876	n	7,697	9,166
Rx with FQ	1209 (11%)	1348 (9.5%)	Rx with FQ	308 (6%)	357 (5%)	Rx with FQ	452 (6%)	428 (5%)
Overlapping antibiotic	151 (12%)	145 (11%)	Overlapping antibiotic	62 (20%)	50 (14%)	Overlapping antibiotic	135 (30%)	95 (22%)

Data used with permission from single insurer.

FQs for UTIs: Tip of the Iceberg?

- Drug use evaluation to compare two time periods (pre- vs. post- FDA drug label change in May 2016)
- Cohort included individuals age 18-65

Diagnoses reviewed:

- Acute sinusitis
- Acute exacerbation of chronic bronchitis
- Acute uncomplicated cystitis

Uncomplicated UTI	2016	2017	COPD w/ acute exacerbation	2016	2017	Acute sinusitis	2016	2017
n	10,900	14,110	n	5,210	6,876	n	7,697	9,166
Rx with FQ	1209 (11%)	1348 (9.5%)	Rx with FQ	308 (6%)	357 (5%)	Rx with FQ	452 (6%)	428 (5%)
Overlapping antibiotic	151 (12%)	145 (11%)	Overlapping antibiotic	62 (20%)	50 (14%)	Overlapping antibiotic	135 (30%)	95 (22%)

Data used with permission from single insurer.

With Great Power Comes Great Responsibility..

1. Exceptional pharmacokinetics

- Absorption
- Site penetration

2. Broad spectrum of activity

- Ability to treat Grampositive, negative infections
- 3. Extremely potent!
 - Effective across many disease states

Severe adverse effects
 FDA black box warnings
 Tendonitis

SICONS

- 2. High collateral damage potential
 - Clostridioides difficile
- 3. Very large impact on resistance
 - Rapid resistance induction vs. Gram-positives
 - Cross-class resistance

ANTIBIOTICS IN DENTISTRY

Provider Prescribing Distribution, 2011

Provider Specialty	Prescriptions, No. in Millions (%)	Providers, No.	Prescriptions per Provider, Rate
All Providers	262.5	911,814	289
Family Practice	64.1 (24)	96,073	667
Dermatology	8.2 (3)	11,329	724
Pediatrics	32.4 (12)	54,228	598
Otolaryngology	4.1 (2)	9,536	430
Emergency medicine	13.8 (5)	32,346	427
Internal medicine/pediatrics	1.4 (1)	3,329	421
Internal medicine	32.1 (12)	83,841	383
Infectious diseases	1.3 (1)	6,166	211
Dentistry	25.6 (10)	122,706	208
Obstetrics/gynecology	6.7 (3)	37,590	178
Surgery (general)	6.9 (3)	69,536	99
Hicks IA at al Clin Infact Dis 2015:60:1308-16			

General Practitioner Prescribing

Provider Specialty	Prescriptions, No. in Millions (%)	Providers, No.	Prescriptions per Provider, Rate	
All Providers	262.5	911,814	289	
Family Practice	64.1 (24)	96,073	667	
Dermatology	8.2 (3)	11,329	724	
Pediatrics	32.4 (12)	54,228	598	
Otolaryngology	4.1 (2)	9,536	430	
Emergency medicine	13.8 (5)	32,346	427	
Internal medicine/pediatrics	1.4 (1)	3,329	421	
Internal medicine	32.1 (12)	83,841	383	
Infectious diseases	1.3 (1)	6,166	211	
Dentistry	25.6 (10)	122,706	208	
Obstetrics/gynecology	6.7 (3)	37,590	178	
Surgery (general)	6.9 (3)	69,536	99	
Hicks IA et al. Clin Infect Dis 2015:60:1308-16				

Fourth Highest Antibiotic Prescribing

Provider Specialty	Prescriptions, No. in Millions (%)	Providers, No.	Prescriptions per Provider, Rate
All Providers	262.5	911,814	289
Family Practice	64.1 (24)	96,073	667
Dermatology	8.2 (3)	11,329	724
Pediatrics	32.4 (12)	54,228	598
Otolaryngology	4.1 (2)	9,536	430
Emergency medicine	13.8 (5)	32,346	427
Internal medicine/pediatrics	1.4 (1)	3,329	421
Internal medicine	32.1 (12)	83,841	383
Infectious diseases	1.3 (1)	6,166	211
Dentistry	25.6 (10)	122,706	208
Obstetrics/gynecology	6.7 (3)	37,590	178
Surgery (general)	6.9 (3)	69,536	99
Hicks IA at al Clip Infact Dis 2015,60,1208 16			

Prescriptions Prescribed by ID

Provider Specialty	Prescriptions, No. in Millions (%)	Providers, No.	Prescriptions per Provider, Rate
All Providers	262.5	911,814	289
Family Practice	64.1 (24)	96,073	667
Dermatology	8.2 (3)	11,329	724
Pediatrics	32.4 (12)	54,228	598
Otolaryngology	4.1 (2)	9,536	430
Emergency medicine	13.8 (5)	32,346	427
Internal medicine/pediatrics	1.4 (1)	3,329	421
Internal medicine	32.1 (12)	83,841	383
Infectious diseases	1.3 (1)	6,166	211
Dentistry	25.6 (10)	122,706	208
Obstetrics/gynecology	6.7 (3)	37,590	178
Surgery (general)	6.9 (3)	69,536	99
Hicks I A et al Clin Infect Dis 2015:60:1308-16			

Significant Antibiotic Footprint

• Dentists prescribed 24.5 million courses of outpatient antibiotics in 2013

• 77.5 prescriptions per 1,000 people

Characteristic	Prescriptions, No. in Millions (%) ^a	
Overall		
Antibiotic category		
Penicillins	60.3 (23)	193
Macrolides	59.1 (23)	190
Cephalosporins	35.6 (14)	114
Quinolones	27.6 (11)	89
β-lactams, increased activity	21.6 (8)	69
Tetracyclines	21.1 (8)	68
Trimethoprim- sulfamethoxazole	20.3 (8)	65
Urinary anti-infectives	8.5 (3)	27
Lincosamides	7.8 (3)	25
Other	0.5 (0.2)	2
Total	262.5	842

Cost-effectiveness of antibiotic prophylaxis for dental patients with prosthetic joints

Comparisons of antibiotic regimens for patients with total hip arthroplasty

Daniel D. Skaar, DDS, MS, MBA; Taehwan Park, PhD; Marc F. Swiontkowski, MD; Karen M. Kuntz, ScD

ABSTRACT

Background. Clinician uncertainty concerning the need for antibiotic prophylaxis to prevent prosthetic joint

Skaar DD et al. J Am Dent Assoc 2015;146:830-9.

Cost-effective prophylaxis prosthetic j

Comparisons of with total hip a

Daniel D. Skaar, DDS, MS, MBA; Taehwan Park, PhD; Marc F. Sw Karen M. Kuntz, ScD

Cost-effectiveness of antihiotic

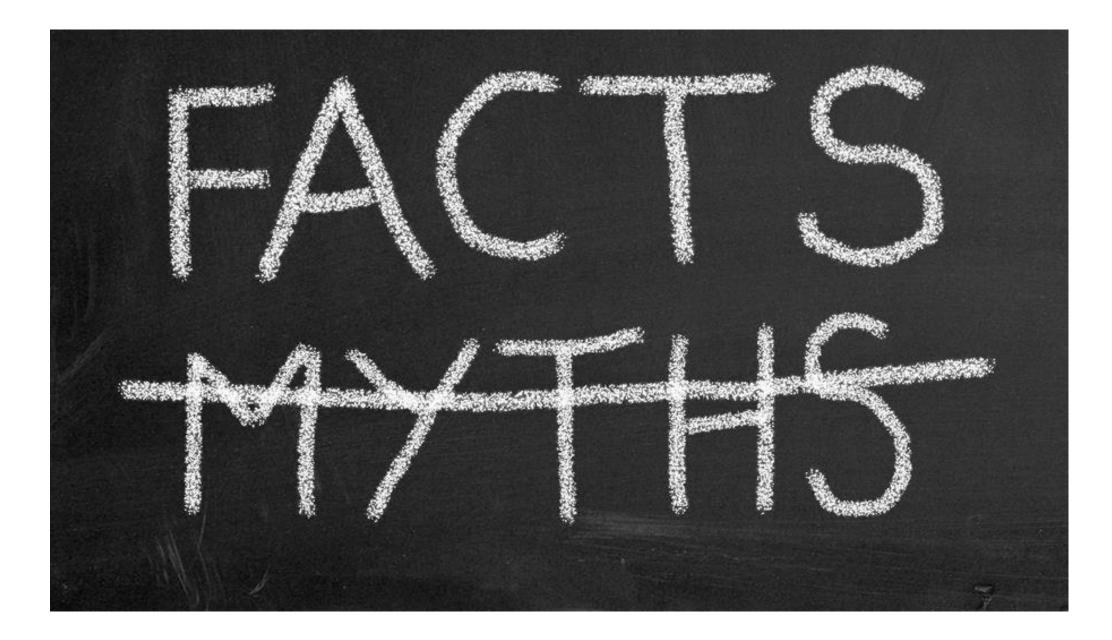
Conclusions. The results of Markov decision modeling indicated that a no-antibiotic prophylaxis strategy was cost-effective for dental patients who had undergone THA. These results support the findings of case-control studies and the conclusions of an American Dental Association

Council on Scientific Affairs report that questioned general recommendations for antibiotic prophylaxis before dental procedures.

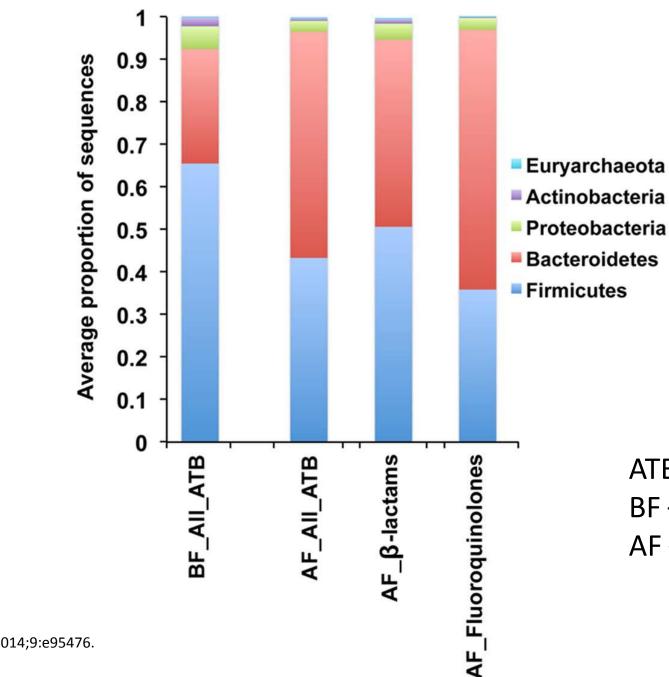
Practical Implications. The results of costeffectiveness decision modeling support the contention that routine antibiotic prophylaxis for dental patients with total joint arthroplasty should be reconsidered.

PERSPECTIVE

Myths of Dental-Induced Prosthetic Joint Infections

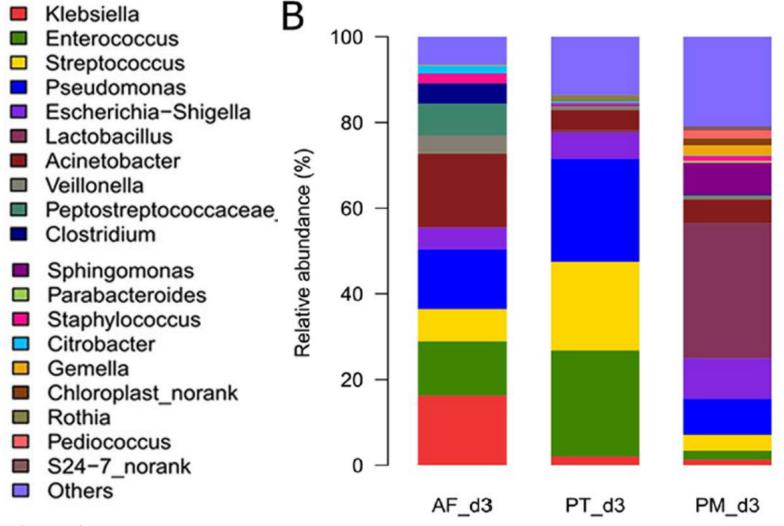

Michael J. Wahl, D.D.S.

Medical Center of Delaware, Wilmington, Delaware


The overwhelming majority of orthopedists and dentists surveyed recommend antibiotic prophylaxis for dental procedures to prevent late prosthetic joint infection. It is time to stop this practice, which is not based on scientific evidence but rather on "myths" of prosthetic joint infections after dental procedures. The first myth is that there are close similarities between late prosthetic valve endocarditis and late prosthetic joint infection. The second myth is that dental treatment is the probable cause of a large percentage of prosthetic joint infections. The third myth is that results of animal experiments have shown that transient bacteremia due to dental procedures can cause prosthetic joint infections in humans. The fourth myth is that the benefits of antibiotic prophylaxis for patients with prosthetic joints outweigh the risks and costs. The fifth and final myth is that clinicians should recommend antibiotic prophylaxis before dental treatment for patients with prosthetic joints to protect themselves legally.

Debunking the Myths of Antibiotics in Dentistry

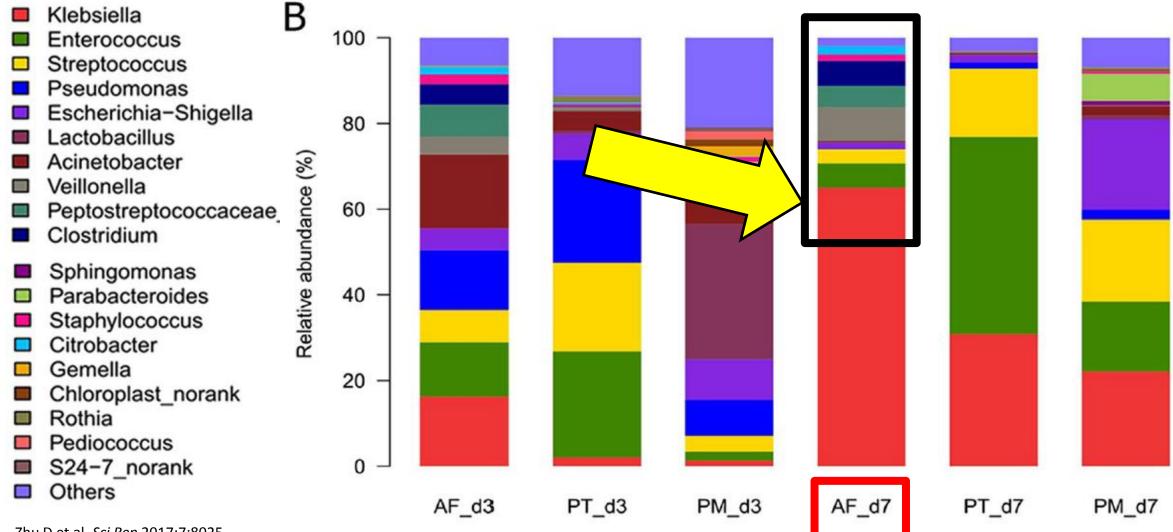
- 1. Close similarities between late prosthetic valve endocarditis and late prosthetic joint infection
- 2. Dental treatment is probable cause of large percentage of prosthetic joint infections
- 3. Animal experiments show transient bacteremia due to dental procedures can cause prosthetic joint infections in humans
- 4. Benefits of antimicrobial prophylaxis for patients with prosthetic joints outweigh the risks and costs



NORMAL FLORA DISTURBANCE SECONDARY TO ANTIBIOTICS

ATB – antibiotics BF – before treatment AF – after treatment

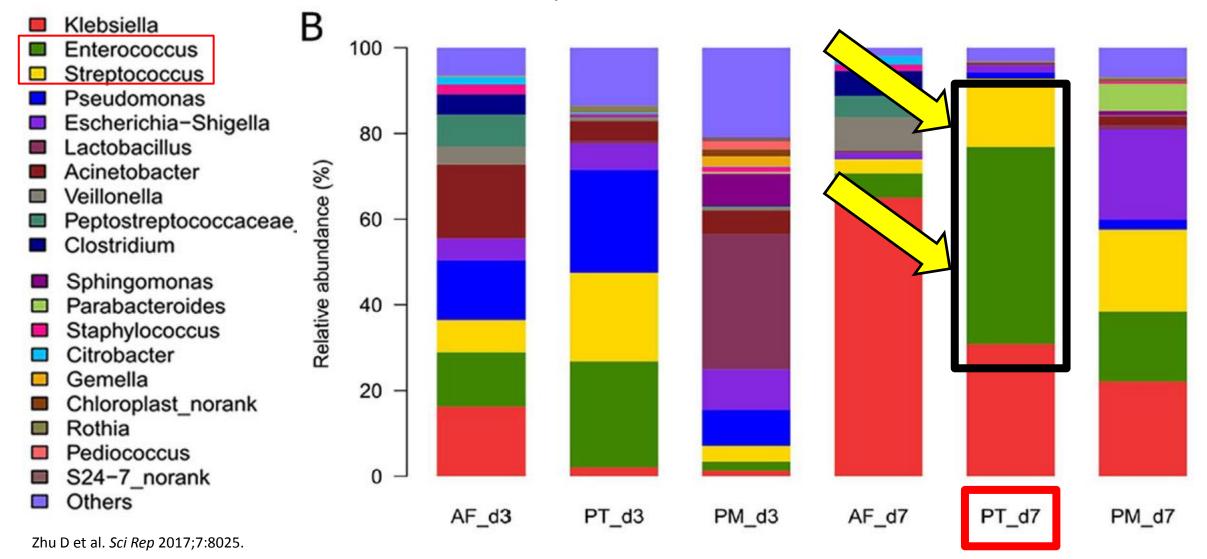
Effect of 1-week Empirical Antibiotic Therapy in Preterm Infant Microbiota



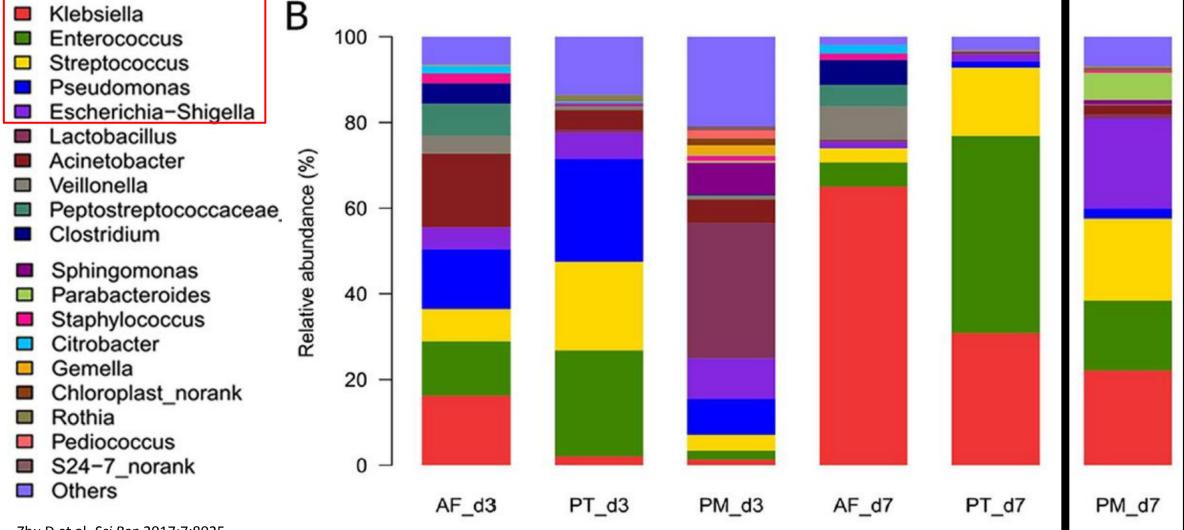
AF – antibiotic free PT – piperacillin/tazobactam PM – penicillin/moxalactam

Zhu D et al. Sci Rep 2017;7:8025.

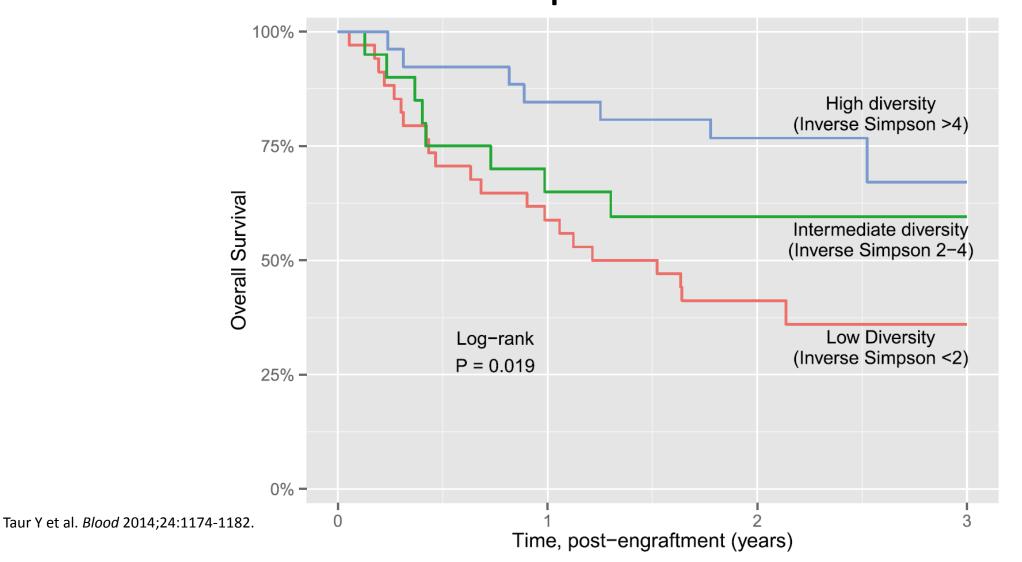
- AF antibiotic free
- PT piperacillin/tazobactam


PM – penicillin/moxalactam

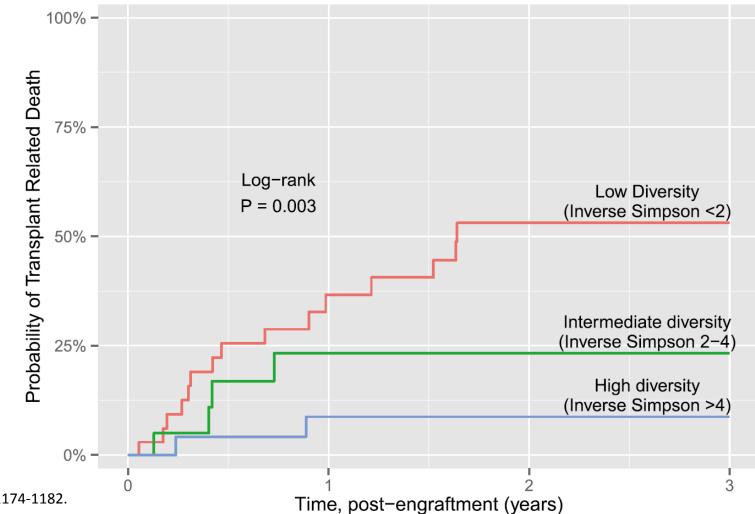
Zhu D et al. Sci Rep 2017;7:8025.


- AF antibiotic free
- PT piperacillin/tazobactam

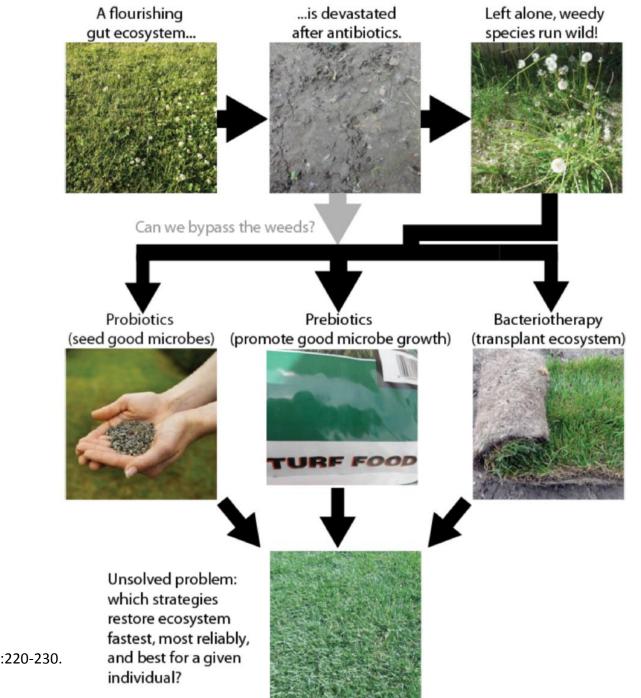
PM – penicillin/moxalactam


- AF antibiotic free
- PT piperacillin/tazobactam

PM – penicillin/moxalactam

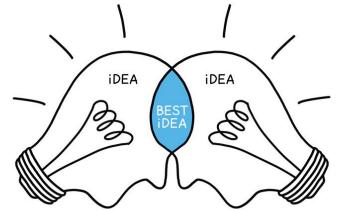


Zhu D et al. Sci Rep 2017;7:8025.


Impact of Diversity in Stem-Cell Transplant Recipients

Less Diverse? More Complications?

Taur Y et al. Blood 2014;24:1174-1182.



Lozupone CA et al. Nature 2012;489:220-230.

IMPLEMENTING STEWARDSHIP INTO YOUR PRACTICE

Step 1: Identify the "Low Hanging Fruit"

- Determine the needs and goals within your practice or practice site
- Variable from site-to-site
 - Regional challenges
 - Institutional considerations
 - Patient demographics

- Multi-disciplinary approach leads to high level involvement
- "What makes sense for me and/or my site?"

Step 2: Perform Assessment of Current Practice

- Is it worth time/effort to tackle an area of stewardship that is already performing at a high level?
- Baseline assessment allows for measured or calculated expectations post-intervention implementation
- Data collection & analysis can be daunting!
 - Work as a team
 - Consult experts

Step 3: Formulate Intervention

- A well thought out approach leads to:
 - Successful adoption by individuals involved
 - Sustained "response"
- Multi-disciplinary
 - Include key stakeholders with "skin in the game"
 - Discussion of varying viewpoints
 - Physician/provider champion

Step 4: Implementation

- Understand metrics to review post-implementation
 - How would you define a successful implementation?
 - Are expectations realistic?
- Promote the "WHY"
 - Present data to front-line staff
 - Financials are great for C-suite, bedside clinicians want to see patient impact!
- Change mentality from "have to do it" to "want to do it"

Common low hanging fruit stewardship initiative..

IV TO PO

ASP Activity	Reference	Setting	Description of ASP Intervention	Cost Savings/Avoidance
Intravenous-to-oral conversion	Davis et al 2005 [10]	Detroit Receiving Hospital and University Health Center	Prospective pharmacy intervention involving sequential intravenous/ oral therapy for patients with pneumonia	Drug acquisition cost savings of \$110/patient
	Kuti et al 2002 [11]	Hartford Hospital	A pharmacist-managed proactive program that used predetermined clinical criteria for converting levofloxacin therapy from intravenous to oral	Length of stay and costs were significantly less for the intravenous-to-oral converted patients (6 vs 9.5 d [<i>P</i> = .031]) and (\$13 931 vs \$17 198)
	Paladino et al 1991 [1 <mark>2</mark>]	Millard Fillmore Suburban Hospital	After conventional intravenous antibiotics were administered for 3 days, patients were randomly assigned to either continue intravenous antibiotics or switch to oral ciprofloxacin	Ciprofloxacin was associated with an average cost savings of \$293 per patient
	Hendrickson and North 1995 [13]	Denver Veterans Affairs Medical Center	Patients converted from intravenous ceftriaxone to oral cefpodoxime	A drug cost savings of \$46.05 per patient; patients receiving step-down therapy averaged 1 less day of hospitalization
	Lau et al 2011 [18]	Johns Hopkins Hospital	Evaluated budget impact of voriconazole, pantoprazole, chorothiazide, levetiracetam in patients eligible for oral medication	Potential annual cost reduction of \$1 166 759.70
	Jones et al 2012 [19]	VA hospitals throughout United States	Evaluated budget impact of fluoroquinolones in patients eligible for oral medication	Estimated cost savings over 4 years in the range of \$4 million
	2010	The Ohio State University Wexner Medical Center	ASP targeted linezolid, moxifloxacin, and fluconazole	Annualized cost avoidance savings for these 3 antimicrobials were \$242 713

Table 1. Low-Hanging Fruit Antimicrobial Stewardship Initiatives

Goff DA et al. Clin Infect Dis 2012;55:587-92.

Juice Worth The Squeeze

Setting & Year	Cost Savings/Avoidance
Detroit Receiving Hospital and University Health Center, 2005	Drug acquisition cost savings of \$110/patient
Hartford Hospital, 2002	Length of stay and costs were significantly less for IV to PO converted (6 vs. 9.5 d, <i>p</i> = 0.31) and (\$13,931 vs. \$17,198)
Millard Fillmore Suburban Hospital, 1991	Ciprofloxacin was associated with an average cost savings of \$293 per patient
Denver VA Medical Center, 1995	Drug cost savings of \$46.05 per patient Converted patients averaged 1 less day of hospitalization
Johns Hopkins Hospital, 2011	Potential annual cost reduction of \$1,166,759.70
VA hospitals throughout U.S., 2012	Est cost savings over 4 years of \$4 million
The Ohio State University – Wexner Medical Center, 2010	Annual cost avoidance for 3 antimicrobials (linezolid, moxifloxacin, fluconazole) \$242,713

RESTRICTIONS

To Restrict, Or No To Restrict?

Formulary restriction	White et al 1997 [<mark>22</mark>]	Ben Taub General Hospital Houston	Prior ID authorization required for restricted antimicrobials	Total intravenous antimicrobial expenditures decreased by 32% (\$863 100)
				Antibiotic cost per patient-day decreased from \$18.00 to \$12.90
	Po et al 2012 [3]	Banner Estrella Medical Center	Implemented computer physician order entry ASP restrictive template for linezolid	Linezolid use fell from 28 defined daily doses/1000 patient-days to 7 defined daily doses/1000 patient-days over 25 months; cost data not reported
	2010	The Ohio State University Wexner Medical Center	Doripenem added to formulary as a restricted antibiotic, required prior authorization by ASP	Annual antipseudomonal carbapenem cost savings of \$61 000

MICRO ROUNDS (IMPACT OF MICROBIOLOGY INVOLVEMENT)

Open Forum Infectious Diseases

BRIEF REPORT

The Role of Antimicrobial Stewardship in the Clinical Microbiology Laboratory: Stepping Up to the Plate

Shawn H. MacVane,^{1,2} John M. Hurst,⁴ and Lisa L. Steed³

¹Department of Pharmacy Services, ²Division of Infectious Diseases, College of Medicine; and ³Department of Pathology and Laboratory Medicine, Medical University of South Carolina; Charleston; ⁴Department of Pharmacy, Saint Anthony Hospital, Oklahoma City

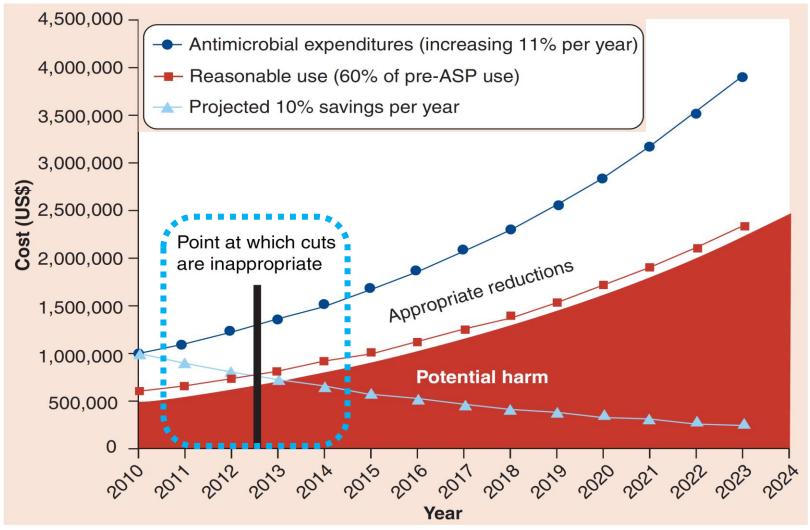
Clinical Microbiologist Expertise Crucial

Table 2. Examples of Common ASP Interventions Resulting From Interdisciplinary Microbiology Plate Rounds and Their Potential Clinical Impact

Category	Intervention or Examples	Potential Clinical Impact
Antibiotic allergy	 Identification of penicillin allergic patients prompts earlier in vitro susceptibility testing of alternative agents 	 Faster <i>in vitro</i> susceptibility data Avoid delay in time to appropriate therapy
Antimicrobial resistance markers	 Methicillin-resistant vs methicillin sensitive <i>Staphylococcus aureus</i> (PCR, PBP_{2a}, chromogenic agar) Vancomycin-resistance in <i>Enterococcus</i> spp (PCR) KPC-producing organisms (in facilities where these are uncommon) 	 Shorter time to effective and/or optimal therapy Cost savings (supplement to anti-MRSA pneumonia therapy duration of treatment limits)
Bug-drug mismatch from emergency department or outpatient clinics	 Alert provider to untreated pathogens (yeast, <i>S aureus</i>, GNR) from critical sterile sites (blood, CSF, etc) Alert provider to discordant result Suggest alternative agents 	 Decrease time to appropriate therapy Prevent unnecessary hospitalization Avoid IV/IM administration or PICC insertion (eg, fosfomycin for MDR cystitis)
Clarification of improper specimen/culture ordering	 Endotracheal specimen ordered as a BAL or vice versa Abdominal abscess ordered as abdominal fluid CF culture in non-CF patient 	 Decrease unnecessary/excessive microbiology workup
Clinical liaison services	 Reporting organism in mixed urine culture of patients with bacteremic urosepsis Review prior patient history, cultures from OSH 	 Established source of bacteremia allows for conversion to oral therapy in some situations Modification of therapy and/or microbiologic workup based on previous culture and susceptibility results

MacVane SH et al. Open Forum Infect Dis 2016:3:ofw201.

Clinical Microbiologist Expertise Crucial


Table 2. Examples of Common ASP Interventions Resulting From Interdisciplinary Microbiology Plate Rounds and Their Potential Clinical Impact

Category Intervention or Examples		Potential Clinical Impact
Antibiotic allergy	 Identification of penicillin allergic patients prompts earlier in vitro susceptibility testing of alternative agents 	 Faster <i>in vitro</i> susceptibility data Avoid delay in time to appropriate therapy
Antimicrobial resistance markers	 Methicillin-resistant vs methicillin sensitive <i>Staphylococcus aureus</i> (PCR, PBP_{2a}, chromogenic agar) Vancomycin-resistance in <i>Enterococcus</i> spp (PCR) KPC-producing organisms (in facilities where these are uncommon) 	 Shorter time to effective and/or optimal therapy Cost savings (supplement to anti-MRSA pneumonia therapy duration of treatment limits)
Bug-drug mismatch from emergency department or outpatient clinics	 Alert provider to untreated pathogens (yeast, <i>S aureus</i>, GNR) from critical sterile sites (blood, CSF, etc) Alert provider to discordant result Suggest alternative agents 	 Decrease time to appropriate therapy Prevent unnecessary hospitalization Avoid IV/IM administration or PICC insertion (eg, fosfomycin for MDR cystitis)
Clarification of improper specimen/culture ordering	 Endotracheal specimen ordered as a BAL or vice versa Abdominal abscess ordered as abdominal fluid CF culture in non-CF patient 	 Decrease unnecessary/excessive microbiology workup
Clinical liaison services	 Reporting organism in mixed urine culture of patients with bacteremic urosepsis Review prior patient history, cultures from OSH 	 Established source of bacteremia allows for conversion to oral therapy in some situations Modification of therapy and/or microbiologic workup based on previous culture and susceptibility results

Better Patient Care!

Infection vs colonization	 Assist with assessment of clinical presentation and clinical cor- relation for lower respiratory cultures and urine cultures, etc 	 Avoid unnecessary antimicrobial utilization Decrease unnecessary/excessive microbiology workup
MDR organisms	 Earlier <i>in vitro</i> susceptibility testing of alternative/salvage antimicrobials (tigecycline, polymyxins) Earlier involvement of infectious diseases consultant 	 Decrease delay in time to approriate therapy Improve patient outcomes
Mixed cultures	 Predominance vs polymicrobial Liaison service between provider and microbiologists to determine extent of work up of mixed cultures in a more timely fashion Requirements for <i>in vitro</i> susceptibility testing for all isolates vs selective isolates 	 May prevent unnecessary escalation of antibiotic treatment and may decrease time to appropriate therapy Avoid unnecessary/excessive microbiology workup Streamlining of antimicrobial regimen for polymicrobial infection
Optimal dose selection	 Actual MIC for a given antimicrobial agent 	 Optimize the therapeutic regimen based on pharmaco- kinetic and pharmacodynamic principles
Rapid diagnostics (PCR, MALDI-TOF)*	 Create clinical pathways to increase utilization of results 	 Shorter time to effective and/or optimal therapy Decrease broad-spectrum antimicrobial utilization
Reporting*	 Avoid inappropriate/suboptimal <i>in vitro</i> susceptibility results for site specific cultures (early-generation cephalosporins for inducible AmpC beta-lactamase-producing Gram-negative bacilli in blood cultures) 	 Decrease inappropriate prescribing, therapeutic failures, and metastatic infections Increase appropriate antimicrobial selection

Striking a Balance

STEWARDSHIP EFFORTS ASIDE FROM DIRECT PATIENT ANTIBIOTIC INTERVENTIONS

Agricultural, farms, etc.

Covering All Bases in Antimicrobial Stewardship

Antibiotic Armamentarium

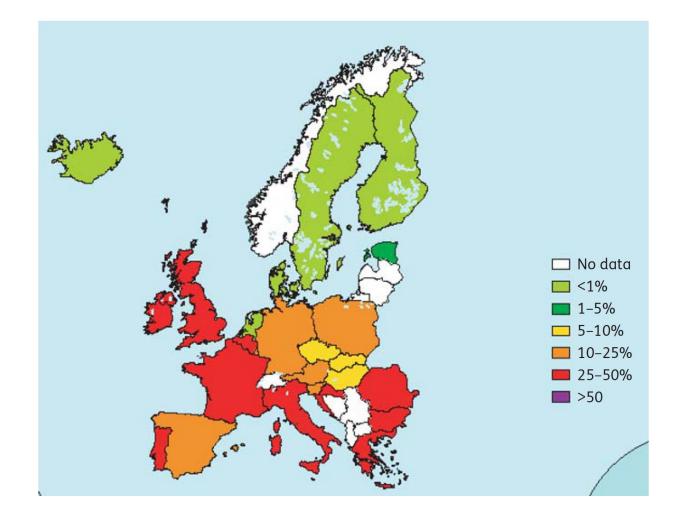
- Infrastructure to promote drug development
 - Qualified infectious disease product (QIDP)
- Antimicrobial utilization
 - Guideline-based, evidence-based use of antimicrobials
 - Protocols, order-sets
 - ? Restrictions
 - Not limited to acute care settings!
- Policy change advocacy
 - Limit use in agriculture & farming
 - Third-party payers

Combating Resistance

- Responsible antimicrobial utilization
- Optimize infection control practices

Covering All Bases in Antimicrobial Stewardship

Antibiotic Armamentarium


- Infrastructure to promote drug development
 - Qualified infectious disease product (QIDP)
- Antimicrobial utilization
 - Guideline-based, evidence-based use of antimicrobials
 - Protocols, order-sets
 - ? Restrictions
 - Not limited to acute care settings!
- Policy change advocacy
 - Limit use in agriculture & farming
 - Third-party payers

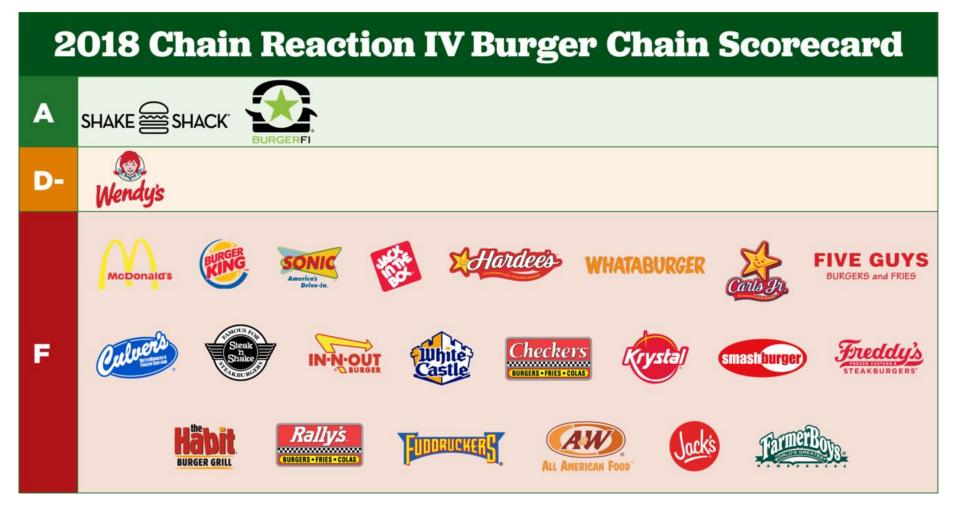
Combating Resistance

- Responsible antimicrobial utilization
- Optimize infection control practices

Proportion of Methicillin-resistance in S.aureus

Covering All Bases in Antimicrobial Stewardship

Antibiotic Armamentarium


- Infrastructure to promote drug development
 - Qualified infectious disease product (QIDP)
- Antimicrobial utilization
 - Guideline-based, evidence-based use of antimicrobials
 - Protocols, order-sets
 - ? Restrictions
 - Not limited to acute care settings!
- Policy change advocacy
 - Limit use in agriculture & farming
 - Third-party payers

Combating Resistance

- Responsible antimicrobial utilization
- Optimize infection control practices

Irresponsible Practices Among Fast Food Chains

Available at: https://www.nrdc.org/sites/default/files/restaurantsantibiotics-use-es-2018.pdf. Accessed October 30, 2018.

Company	Beef Policy	Implementation	Transparency	Total Points	Total Possible Points	%-age Total	Grade*
	40	32	23	95	100	95	A
BURGERFI	40	32	19	91	100	91	A
Wendys	4.2	4.8	28	37	100	37	D-
McDonald's	0	Ο	6	6	100	6	F
SONIC America's Brive-In.	0	Ο	6	6	100	6	F
	0	Ο	6	6	100	6	F
Tuhite	0	Ο	6	6	100	6	F

Available at: https://www.nrdc.org/sites/default/files/restaurantsantibiotics-use-es-2018.pdf. Accessed October 30, 2018.

Company	Beef Policy	Implementation	Transparency	Total Points	Total Possible Points	%-age Total	Grade*
Contraction Schlardeeps							
WHATABURGER							
FIVE GUYS BURGERS and FRIES							
Sint IN-N-OUT							
	0	Ο	0	0	100	0	F
smashburger Fredelijk Steakburgers							
Häbit. BURGER GRILL							
ADDURDERER ?							
ALL AMERICAN FOOD							
Jacks American							

Available at: https://www.nrdc.org/sites/default/files/restaurantsantibiotics-use-es-2018.pdf. Accessed October 30, 2018.

Covering All Bases in Antimicrobial Stewardship

Antibiotic Armamentarium

- Infrastructure to promote drug development
 - Qualified infectious disease product (QIDP)
- Antimicrobial utilization
 - Guideline-based, evidence-based use of antimicrobials
 - Protocols, order-sets
 - ? Restrictions
 - Not limited to acute care settings!
- Policy change advocacy
 - Limit use in agriculture & farming
 - Third-party payers

Combating Resistance

- Responsible antimicrobial utilization
- Optimize infection control practices

In Closing..

The time may come when penicillin can be bought by anyone in the shops. Then, there is the danger that the ignorant man may easily under-dose himself, and by exposing his microbes to nonlethal quantities of the drug, make them resistant.

Here is a hypothetical illustration...

In Closing..

Mr. X has a sore throat. He buys some penicillin and gives himself, not enough to kill the streptococci, but enough to educate them to resist penicillin.

He then infects his wife. Mrs. X gets pneumonia and is treated with penicillin. As the streptococci are not resistant to penicillin, the treatment fails. Mrs. X dies. Who is primarily responsible for Mrs. X's death?

In Closing..

Why..Mr. X, whose negligent use of penicillin changed the nature of the microbe.

Alexander Fleming, -Nobel Peace Prize Lecture, 1945

Antibiotic Stewardship, Simplified

- Get excited about stewardship
- Identify areas of opportunity
- Stewardship is not about "cutting", "discontinuing", "restricting", it should be about optimizing
- Work together as a team

Antibiotic Stewardship: *Peeling Back the Layers*

Minkey Wungwattana, PharmD, BCPS-AQ ID

Clinical Pharmacy Specialist, Infectious Diseases Director, Antimicrobial Stewardship Program Director, PGY-2 Infectious Diseases Pharmacy Residency Program Maine Medical Center