

TMDL SUMMARY

Chamberlain Brook

WATERSHED DESCRIPTION

This **TMDL** applies to a 3.7 mile section of Chamberlain Brook, located in the Towns of Whitefield and Pittston, Maine. The impaired segment of Chamberlain Brook begins in a forested area and flows through an agricultural area. The stream then crosses Pittston Road, converges with a small tributary and continues to flow through agricultural and developed lands before meeting the Sheepscot River. The Chamberlain Brook watershed covers an area of 4.11 square miles. The majority of the watershed is located within the Town of Whitefield, while the portion in the Town of Pittston is much smaller.

- Runoff from agricultural land located in the areas of Nash Road and Pittston Road are likely the largest sources of **nonpoint source (NPS) pollution** to Chamberlain Brook. Runoff from cultivated lands, active hay lands, and pasture can transport nitrogen and phosphorus to the nearest section of the stream.
- The Chamberlain Brook watershed is predominately nondeveloped (97.5%). Forested areas (83.1%) within the watershed absorb and filter pollutants helping protect both water quality in the stream and stream channel stability. Wetlands (2%) may also help filter nutrients.
- Non-forested areas within the watershed are predominantly agricultural (12.02%) and are concentrated in the northeastern portion of the watershed along Nash Road and Pittston Road.
- Developed areas (2.5%) with impervious surfaces in close proximity to the steam may impact water quality.
- Chamberlain Brook is on Maine's 303(d) list of Impaired Streams (Maine DEP, 2013).

Definitions

- **Total Maximum Daily Load (TMDL)** represents the total amount of pollutants that a waterbody can receive and still meet water quality standards.
- **Nonpoint Source Pollution** refers to pollution that comes from many diffuse sources across the landscape, and is typically transported by rain or snowmelt runoff.

APPENDIX 6-9

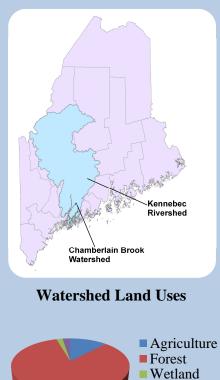
Waterbody Facts

Segment ID: ME0105000305_528R06_01

Town: Whitefield and Pittston, ME

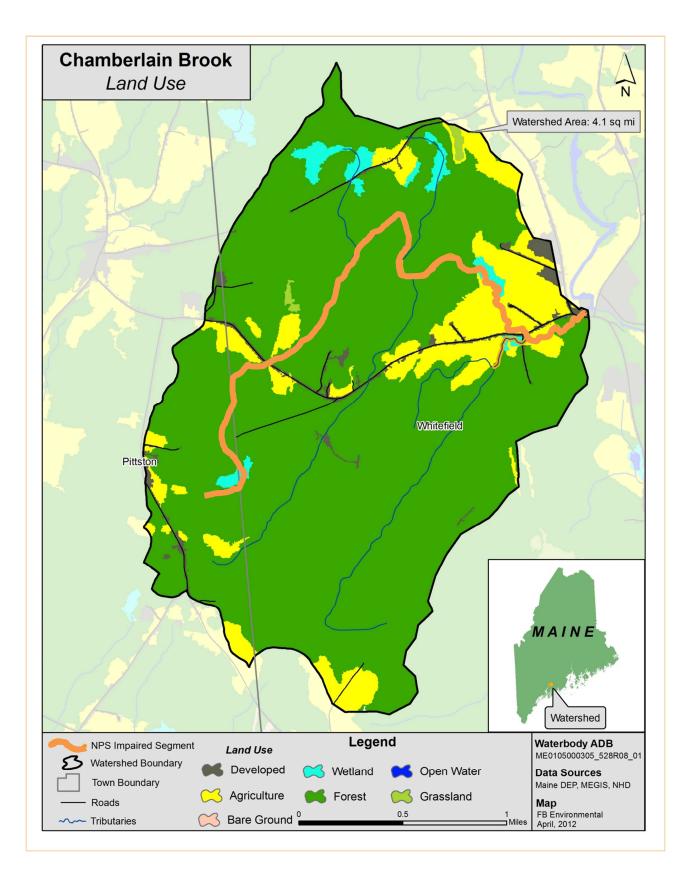
County: Lincoln

Impaired Segment Length: 3.7 miles


Classification: Class B

Direct Watershed: 4.11 mi² (2630 acres)

Impairment Listing Cause: Dissolved Oxygen


Watershed Agricultural Land Use: 12.02%

Major Drainage Basin: Kennebec River

Developed

Figure 1: Land Use in the Chamberlain Brook Watershed

WHY IS A TMDL ASSESSMENT NEEDED?

Chamberlain Brook, a Class B freshwater stream, has been assessed by Maine DEP as not meeting water quality standards for the designated use of aquatic life, and placed on the 303(d) list of impaired waters under the Clean Water Act. The Clean Water Act requires that all 303(d)-listed waters undergo a TMDL assessment that describes the impairments and establishes a target to guide the measures needed to restore water quality. The goal is for all waterbodies to comply with state water quality standards.

Agriculture Chamberlain Brook watershed accounts for 12% of the total land area. This is almost five times the area of developed lands which takes up about 2.5% of total land area in the watershed. 21% of the impaired segment length passes through agricultural lands (Figure 1). Therefore,

Chamberlain Brook near the Pittston Road crossing; Photo: FB Environmental

agriculture is likely to be the largest contributor of sediment and nutrient enrichment to the stream. The close proximity of many agricultural lands to the stream further increases the likelihood that nutrients from disturbed soils, manure, and fertilizers will reach the stream. Also, one of the tributaries of Chamberlain Brook flows out of a major wetland complex and may be causing naturally low dissolved oxygen concentrations in Chamberlain Brook.

WATER QUALITY DATA ANALYSIS

Maine DEP uses a variety of data types to measure the ability of a stream to adequately support aquatic life, including; dissolved oxygen, benthic macroinvertebrates, and periphyton (algae). The aquatic life impairment in Chamberlain Brook is based on historic dissolved oxygen data. Additionally, dissolved oxygen data collected at station CHABK001-F and KSRCH01 from 2005 to 2007 corroborates the impairment.

TMDL ASSESSMENT APPROACH: NUTRIENT MODELING OF IMPAIRED AND ATTAINMENT STREAMS

NPS pollution is difficult to measure directly, because it comes from many diffuse sources spread across the landscape. For this reason, a nutrient loading model, MapShed, was used to estimate the sources of pollution based on well-established hydrological equations; detailed maps of soil, land use, and slope; many years of daily weather data; and direct observations of agriculture and other land uses within the watershed.

The nutrient loading estimates for the impaired stream were compared to similar estimates for five nonimpaired (attainment) streams of similar watershed land uses across the state. The TMDL for the impaired stream was set as the mean nutrient loading estimate of these attainment stream watersheds, and units of mass per unit watershed area per year (kg/ha/year) were used. The difference in loading estimates between the impaired and attainment watersheds represents the percent reduction in nutrient loading required under this TMDL. The attainment streams and their nutrient and sediment loading estimates and TMDL are presented below in Table 1.

Table 1: Numeric	Targets for	Pollutant	Loading	Based	on	MapShed	Model	Outputs fo	r Attainment
Streams									

Attainment Streams	Town	TP load (kg/ha/yr)	TN load (kg/ha/yr)	Sediment load (1000 kg/ha/yr)
Martin Stream	Fairfield	0.14	3.4	0.008
Footman Brook	Exeter	0.33	6.4	0.058
Upper Kenduskeag Stream	Corinth	0.29	5.6	0.047
Upper Pleasant River	Gray	0.22	4.6	0.016
Moose Brook	Houlton	0.25	5.9	0.022
Total Maximum Daily Load		0.24	5.2	0.030

RAPID WATERSHED ASSESSMENT

Habitat Assessment

A Habitat Assessment survey was conducted on both the impaired and attainment stream. The assessment approach is based on the *Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers* (Barbour et al., 1999), which integrates various parameters relating to the structure of physical habitat. The habitat assessments include a general description of the site and physical characterization and visual assessment of in-stream and riparian habitat quality.

Based on Rapid Bioassessment protocols for low gradient streams, Chamberlain Brook received a score of 153 out of a total 200 for quality of habitat. Higher scores indicate better habitat. The range of habitat assessment scores for attainment streams was 155 to 179.

Habitat assessments were conducted on a relatively short sample reach (about 100-200 meters for a typical small stream) near the most downstream Maine DEP sample station in the watershed. For both impaired and attainment streams, the assessment location was usually near a road crossing for ease of access. In the Chamberlain Brook watershed, the downstream sample station was located in a developed area. Few trees and tall shrubs dominated the riparian zone. A lawn was observed upstream within 10 feet of the stream banks. Multiple roadways intersect the stream at this point where Chamberlain Brook converges with the Sheepscot River.

Figure 2 (right) shows the range of habitat assessment scores for all attainment and impaired streams, as well as Chamberlain Brook. Though these scores show that habitat is an issue in the impairment of Chamberlain Brook, it is important to look for other potential sources within the watershed leading to impairment. Consideration should be given to major "hot spots" in the Chamberlain Brook watershed as potential sources of NPS pollution contributing to the water quality impairment.

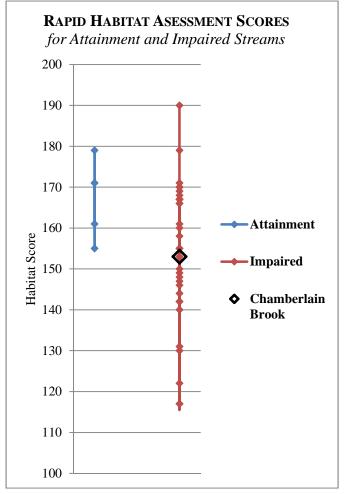
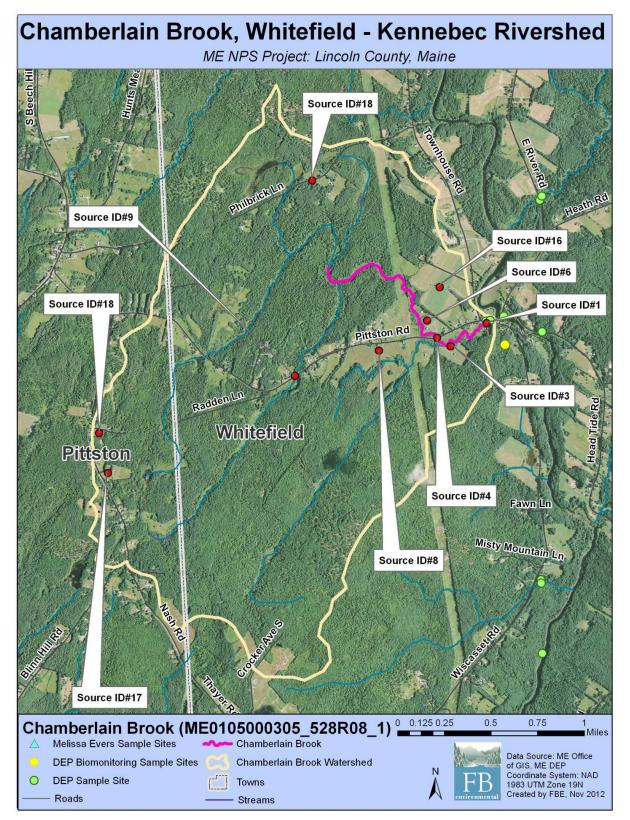


Figure 2: Habitat Assessment Scores


Pollution Source Identification

Pollution source identification assessments were conducted for both Chamberlain Brook (impaired) and the attainment streams. The source identification work is based on an abbreviated version of the Center for Watershed Protection's Unified Subwatershed and Site Reconnaissance method (Wright, et al., 2005). The abbreviated method includes both a desktop and field component. The desktop assessment consists of generating and reviewing maps of the watershed boundary, roads, land use and satellite imagery and then identifying potential NPS pollution locations, such as road crossings, agricultural fields, and large areas of bare soil. When available, multiple sources of satellite imagery were reviewed. Occasionally, the high resolution of the imagery allowed for observations of livestock, row crops, eroding stream banks, sediment laden water, junkyards, and other potential NPS concerns that could affect stream quality. As many potential pollution sources as possible were visited, assessed and documented in the field. Field visits were limited to NPS sites that were visible from roads or a short walk from a roadway. Neighborhoods were assessed for NPS pollution at the whole neighborhood level including streets and storm drains (where applicable). The assessment does not include a scoring component, but does include a detailed summary of findings and a map indicating documented NPS sites throughout the watershed.

The watershed source assessment for Chamberlain Brook was completed on July 5, 2012. In-field observations of erosion, vegetated stream buffer, extensive impervious surfaces, high-density neighborhoods and agricultural activities were documented throughout the watershed.

Potential Source		irce	Notes
ID#	Location	Туре	INDIES
1	Pittston Road	Road Crossing	DEP Sample Site; Sample Reach Location.Landscaped lawns adjacent to stream with minimal buffer.
3	Pittston Road	Residential	• Lawn in close proximity to stream with minimal buffer.
4	Pittston Road	Road Crossing	• Lawn/fields in close proximity to stream.
6	Chamberlain Lane	Residential	• Lawn close to stream with minimal buffer intact.
8	Pittston Road	Residential	Homes with large landscaped yards.Hayfields.
9	Pittston Road	Road Crossing	No evidence of erosion.Undersized culvert.
13	Philbrick Lane	Road Crossings/ wetlands/ Forestry	 Inactive hayfields and large lawns. Wetland complex to the north. Possible skid trail on the north leading to logging area.
16	Pine Crest Lane	Agriculture	• Active hay fields off Pine Crest Lane.
17 & 18	Nash Road	Agriculture	Horses and chickens observed along Nash Road.Active hay fields and fallow fields documented in this area.

Table 2: Pollution Source ID Assessment for the Chamberlain Brook Watershed

Figure 3: Aerial Photo of Source ID Locations in the Chamberlain Brook Watershed. Note that due to a mapping error only about half of the impaired stream segment is shown. See Figures 1 and 4 for full extent.

APPENDIX 6-9

NUTRIENT LOADING - MAPSHED ANALYSIS

The MapShed model was used to estimate stream loading of sediment, total nitrogen and total phosphorus in Chamberlain Brook (impaired) plus five attainment watersheds throughout the state. The model computed daily nutrient loads for a 15-year period (1990-2004), determined by the available weather data provided within MapShed. This extended time period captures a wide range of hydrologic conditions to account for variations in nutrient and sediment loading over time.

Many quality assured and regionally-calibrated input parameters are provided with MapShed. Additional input parameters were manually entered into the model based on desktop research and field observations, as described in the sections on Habitat Assessment and Pollution Source Identification. These manually adjusted parameters included estimates of livestock animal units, and agricultural stream miles with intact vegetative buffer.

Livestock Estimates

Livestock waste contains nutrients which can cause water quality impairment. The nutrient loading model considers numbers and types of animals. Table 3 (right) provides estimates of livestock (numbers of animals) in the watershed, based on direct observations made in the watershed, plus other publicly available data.

The Chamberlain Brook watershed is predominantly forested (83%). Agricultural activity occurs along Pittston Road, Nash Road, and the west side of Townhouse Road. Agriculture is dominated by active and inactive hayfields. Livestock was only observed on Nash Road, and farm size was that of a hobby farm. A residence was documented with a chicken coop of laying hens. Two horses were seen in their stalls at another residence. One beef cow was also observed grazing in this area.

Vegetated Stream Buffer in Agricultural Areas

Vegetated stream buffers are areas of trees, shrubs, and/or grasses adjacent to streams, lakes, ponds or wetlands which provide nutrient loading attenuation (Evans & Corradini, 2012). MapShed considers natural vegetated stream buffers within agricultural areas as providing nutrient load attenuation. The width of buffer strips is not defined within the MapShed manual, and was considered to be 75 feet for this analysis. Geographic Information System (GIS) analysis of recent aerial photos along with field reconnaissance observations were used to estimate the number of agricultural stream miles with and without

Table 3: Livestock Estimates
in Chamberlain Brook
Watershed

Туре	Chamberlain Brook
Dairy Cows	
Beef Cows	1
Broilers	
Layers	10
Hogs/Swine	
Sheep	
Horses	2
Turkeys	
Other	
Total	13

Table 4: Summary of Vegetated Buffersin Agricultural Areas

Chamberlain Brook

- 9.9 stream miles in watershed (includes ephemeral streams)
- 0.77 stream miles in agricultural areas
- 79% of agricultural stream miles have a vegetated buffer

vegetative buffers, and these estimates were directly entered into the model.

Chamberlain Brook is a 3.7 mile-long impaired segment as listed by Maine DEP. As modeled, the total stream miles (including tributaries) within the watershed was calculated as 9.9 miles. Of this total, 0.77 stream miles are located within agricultural areas; of this length, 0.61 miles (79%) show a 75-foot or greater vegetated buffer (Table 4, Fig. 4). By contrast, agricultural stream miles (as modeled) with a 75-foot vegetated buffer in the attainment stream watersheds ranged from 34% to 92%, with an average of 61%.

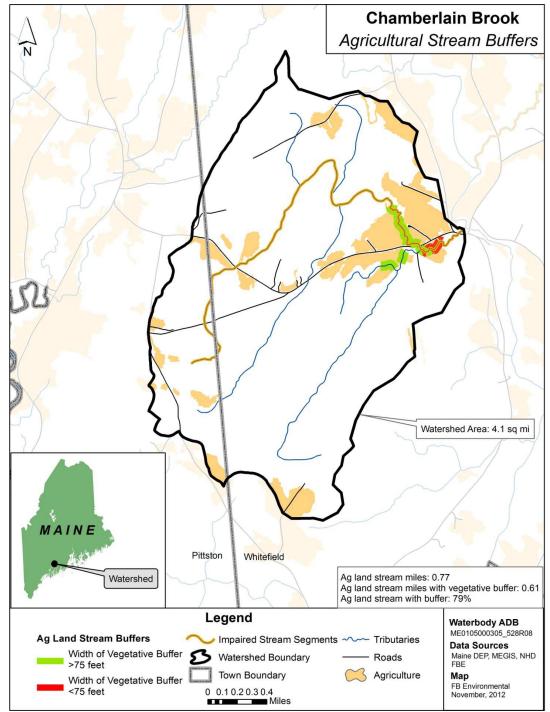


Figure 4: Agricultural Stream Buffer in the Chamberlain Brook Watershed

Best Management Practices (BMPs)

For this modeling effort, four commonly used BMPs were entered based on literature values. These estimates were applied equally to impaired and attainment stream watersheds. More localized data on agricultural practices would improve this component of the model.

- *Cover Crops:* Cover crops are the use of annual or perennial crops to protect soil from erosion during time periods between harvesting and planting of the primary crop. The percent of agricultural acres cover crops used within the model is estimated at 4%. This figure is based on information from the 2007 USDA Census stating that 4.1% of cropland acres is left idle or used for cover crops or soil improvement activity, and not pastured or grazed (USDA, 2007b).
- *Conservation Tillage:* Conservation tillage is any kind of system that leaves at least 30% of the soil surface covered with crop residue after planting. This reduces soil erosion and runoff and is one of the most commonly used BMPs. This BMP was assumed to occur in 42% of agricultural land. This figure is based on a number given by the Conservation Tillage Information Center's 2008 Crop Residue Management Survey stating that 41.5% of U.S. acres are currently in conservation tillage (CTIC, 2000).
- *Strip Cropping / Contour Farming:* This BMP involves tilling, planting and harvesting perpendicular to the gradient of a hill or slope using high levels of plant residue to reduce soil erosion from runoff. This BMP was assumed to occur in 38% of agricultural lands, based on a study done at the University of Maryland (Lichtenberg, 1996).
- *Grazing Land Management:* This BMP consists of ensuring adequate vegetation cover on grazed lands to prevent soil erosion from overgrazing or other forms of over-use. This usually employs a rotational grazing system where hays or legumes are planted for feed and livestock is rotated through several fenced pastures. In this TMDL, a figure of 75% of hay and pasture land is assumed to utilize grazing land management. This figure is based on a study by Farm Environmental Management Systems of farming operations in Canada (Rothwell, 2005).

Pollutant Load Attenuation by Lakes, Ponds and Wetlands

Depositional environments such as ponds and wetlands can attenuate watershed sediment loading. This information is entered into the nutrient loading model by a simple percentage of watershed area draining to a pond or a wetland. The Chamberlain Brook watershed is 2% wetland, and overall 5% of the watershed drains to wetlands. Percent of watershed draining to a wetland in the attainment stream watersheds ranged from 15% to 60%, with an average of 35%.

NUTRIENT MODELING RESULTS

The MapShed model simulates surface runoff using daily weather inputs of rainfall and temperature. Erosion and sediment yields are estimated using monthly erosion calculations and land use/soil composition values for each source area. Below, selected results from the watershed loading model are presented. The TMDL itself is expressed in units of kilograms per hectare per year. The additional results shown below assist in better understanding the likely sources of pollution. The model results for Chamberlain Brook indicate no sediment or phosphorus reductions are needed, and only minor reductions of nitrogen, to improve water quality. Below, loading for sediment, nitrogen and phosphorus are discussed individually.

Sediment loading in the Chamberlain Brook watershed is mainly derived from forested lands and hay/pasture, both contributing 29% (Table 5 and Figure 5). Crop land is also a large source of sediment to the stream and accounts for 22% of the total sediment load. Note that total loads by mass cannot be directly compared between watersheds due to differences in watershed area. See section TMDL: Target Nutrient Levels for Chamberlain Brook below for loading estimates that have been normalized by watershed area.

	Sediment	Sediment
Chamberlain Brook	(1000kg/year)	(%)
Source Load		
Hay/Pasture	3.69	29%
Crop land	2.84	22%
Forest	3.75	29%
Wetland	0.02	0%
Disturbed Land	0	0%
Low Density Mixed	0.25	2%
Medium Density Mixed	0	0%
High Density Mixed	2.22	17%
Low Density Residential	0	0%
Medium Density Residential	0	0%
High Density Residential	0	0%
Farm Animals	0	0%
Septic Systems	0	0%
Source Load Total:	12.77	100%
Pathway Load		
Stream Banks	3.36	-
Subsurface / Groundwater	0	-
Total Watershed Mass Load:	16.13	

Table 5. Total Sediment Loads by Source

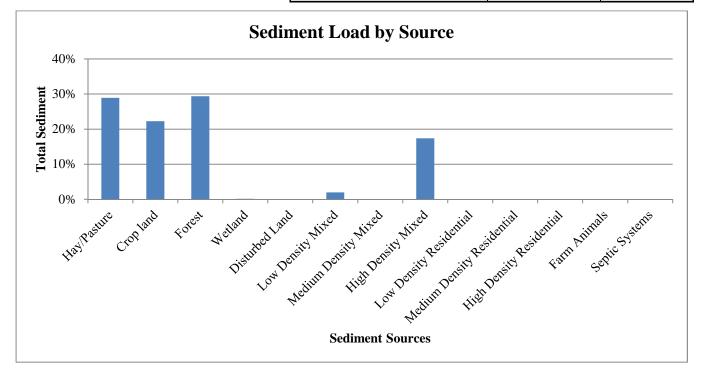


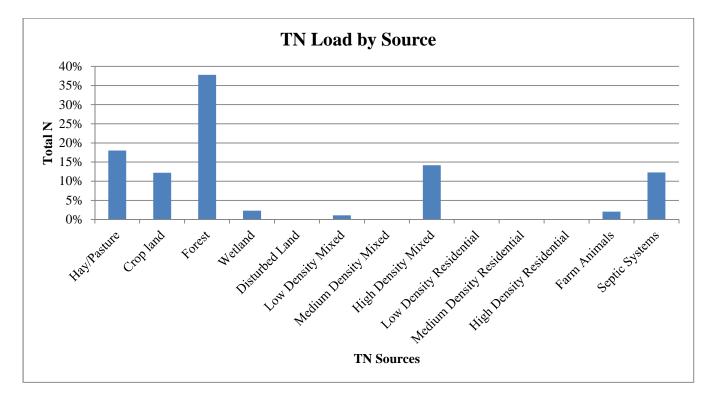
Figure 5: Total Sediment Loads by Source in the Chamberlain Brook Watershed

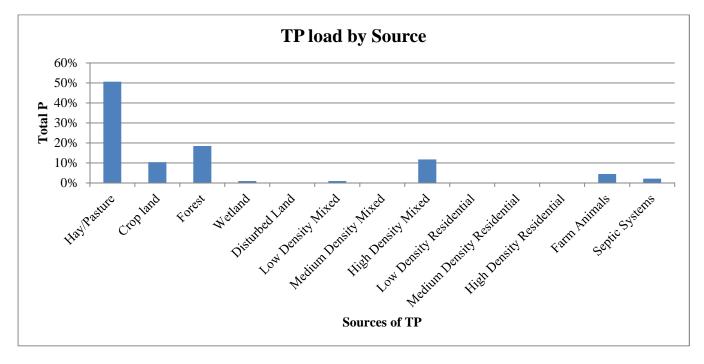
Total Nitrogen

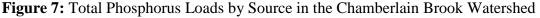
Nitrogen loading in the Chamberlain Brook watershed is primarily attributed to forested lands. Table 6 and Figure 6 show estimated total nitrogen load in terms of mass and percent of total, and by source. Other major contributors to nitrogen include hay/pasture and high density mixed development which contribute 18% and 14%, respectively, of the total nitrogen load. Cropland and septic systems each contribute 12%. Note that total loads by mass cannot be directly compared between watersheds due to differences in watershed area. See section TMDL: Target Nutrient Levels for Chamberlain Brook below for loading estimates that have been normalized by watershed area.

Table 6: Total Nitrogen	Loads	by	Source
-------------------------	-------	----	--------

Table 0. Total N Total N Total N					
Chamberlain Brook	(kg/year)	(%)			
Source Load	(Kg/year)	(70)			
Hay/Pasture	109.8	18%			
Crop land	74.4	12%			
Forest	230.2	38%			
Wetland	14.1	2%			
Disturbed Land	0	0%			
Low Density Mixed	6.7	1%			
Medium Density Mixed	0	0%			
High Density Mixed	86.4	14%			
Low Density Residential	0	0%			
Medium Density Residential	0	0%			
High Density Residential	0	0%			
Farm Animals	12.6	2%			
Septic Systems	74.9	12%			
Source Load Total:	609.2	100%			
Pathway Load					
Stream Banks	2.0	-			
Subsurface / Groundwater	5462.9	-			
		<u> </u>			
Total Watershed Mass Load:	6074.1				




Figure 6: Total Sediment Loads by Source in the Chamberlain Brook Watershed


Total Phosphorus

Phosphorus loading within the Chamberlain Brook watershed is attributed primarily to hay/pasture (51%), with 18% attributed to forested lands. High density mixed development and cropland contribute 12% and 10%, respectively. Phosphorus loads are presented in Table 7 and Figure 7. Note that total loads by mass cannot be directly compared between watersheds due to differences in watershed area. See section TMDL: Target Nutrient Levels for Chamberlain Brook below for loading estimates that have been normalized by watershed area.

Table 7: Total Phosphorus Loads by Source				
Chamberlain Brook	Total P (kg/year)	Total P (%)		
Source Load				
Hay/Pasture	39.0	51%		
Crop land	8.1	10%		
Forest	14.2	18%		

39.0	J1 /0
8.1	10%
14.2	18%
0.8	1%
0	0%
0.8	1%
0	0%
9.1	12%
0	0%
0	0%
0	0%
3.5	5%
1.7	2%
77.0	100%
1.0	-
147.5	-
225.4	
	8.1 14.2 0.8 0 0.8 0 9.1 0 0.3.5 1.7 77.0

TMDL: TARGET NUTRIENT LEVELS FOR CHAMBERLAIN BROOK

The existing loads for sediments and nutrients in the impaired segment of Chamberlain Brook are listed in Table 8, along with the TMDL numeric target which was calculated from the average loading estimates of five attainment watersheds throughout the state. Table 9 presents a more detailed view of the modeling results and calculations used in Table 8 to define TMDL reductions, and compares the existing nutrient and sediment loads in Chamberlain Brook to TMDL endpoints derived from the attainment waterbodies. An annual time frame provides a mechanism to address the daily and seasonal variability associated with nonpoint source loads.

TMDL POLLUTANT LOADS Annual Loads per Unit Area	Estimated Loads Chamberlain Brook	Total Maximum Daily Load Numeric Target	TMDL % REDUCTIONS Chamberlain Brook
Sediment Load (1000 kg/ha/year)	0.015	0.030	No Reduction Needed
Nitrogen Load (kg/ha/year)	5.70	5.2	9%
Phosphorus Load (kg/ha/year)	0.21	0.24	No Reduction Needed

Table 8: TMDL Targets Compared to Chamberlain Brook Pollutant Loading

Future Loading

The prescribed reduction in pollutants discussed in this TMDL reflects reduction from estimated existing conditions. Expansion of agricultural and development activities have the potential to increase runoff and associated pollutant loads to Chamberlain Brook. To ensure that the TMDL targets are attained, future agriculture or development activities in the watershed will need to meet the TMDL targets. Future growth from population increases is a moderate threat in the Chamberlain Brook watershed because Lincoln County has increasing population trends, with a 3% increase between 2000 and 2008 (USM MSAC, 2009). The growth in agricultural lands is also increasing, with a 24% increase in the total number of farms in Lincoln County between 2002 and 2007. However, a decrease has occurred in both the land (acres) in farms (2%) and average farm size (21%) between 2002 and 2007 (USDA, 2007a). Future activities and BMPs that achieve TMDL reductions are addressed below.

Next Steps

The use of agricultural and developed area BMPs can reduce sources of polluted runoff in Chamberlain Brook. It is recommended that municipal officials, landowners, and conservation stakeholders in Whitefield and Pittston work together to develop a watershed management plan to:

- Encourage greater citizen involvement through the development of a watershed coalition to ensure the long term protection of Chamberlain Brook;
- Address <u>existing</u> nonpoint source problems in the Chamberlain Brook watershed by instituting BMPs where necessary; and
- Prevent <u>future</u> degradation of Chamberlain Brook through the development and/or strengthening of local a Nutrient Management Ordinance.

Chamberlain Brook						
	Area	Sediment	TN	ТР		
	ha	1000kg/yr	kg/yr	kg/yr		
Land Uses						
Hay/Pasture	116	3.7	109.8	39.0		
Crop land	15	2.8	74.4	8.1		
Forest	886	3.8	230.2	14.2		
Wetland	22	0.0	14.1	0.8		
Disturbed Land	0	0.0	0.0	0.0		
Low Density Mixed	8	0.3	6.7	0.8		
High Density Mixed	18	2.2	86.4	9.1		
Other Sources						
Farm Animals			12.6	3.5		
Septic Systems			74.9	1.7		
Pathway Loads						
Stream Banks		3.4	2.0	1.0		
Groundwater			5462.9	147.5		
Total Annual Load		16 x 1000 kg	6074 kg	225 kg		
Total Area	1065 ha					
Total Maximum Daily		0.015	5.70	0.21		
Load		1000kg/ha/year	kg/ha/year	kg/ha/year		

Table 7: Modeling Results Calculations for Derived Numeric Targets and Reduction Loads for

 Chamberlain Brook

REFERENCES

- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- Conservation Tillage Information Center (CTIC). 2000. Crop Residue Management Survey. National Association of Conservation Districts. Retrieved from: <u>http://www.ctic.purdue.edu</u>.
- Davies, S. P., and L. Tsomides. 2002. Methods for Biological Sampling of Maine's Rivers and Streams. DEP LW0387-B2002, Maine Department of Environmental Protection, Augusta, ME.
- Evans, B.M., & K.J. Corradini. 2012. MapShed Version 1.0 Users Guide. Penn State Institute of Energy and the Environment. Retrieved from: http://www.mapshed.psu.edu/Downloads/MapShedManual.pdf
- Lichtenberg, E. 1996. Using Soil and Water Conservation Practices to Reduce Bay Nutrients: How has Agriculture Done? Economic Viewpoints. Maryland Cooperative Extension Service, University of Maryland at College Park and University of Maryland Eastern Shore, Department of Agricultural and Resource Economics, 1(2).
- Maine Department of Environmental Protection (Maine DEP). 2013. Draft 2012 Integrated Water Quality Monitoring and Assessment Report. Bureau of Land and Water Quality, Augusta, ME.
- Rothwell, N. 2005. Grazing Management in Canada. Farm Environmental Management in Canada. http://publications.gc.ca/Collection/Statcan/21-021-M/21-021-MIE2005001.pdf.
- University of Southern Maine Muskie School of Public Service, Maine Statistical Analysis Center (USM MSAC). December, 2009. Retrieved from: <u>http://muskie.usm.maine.edu/justiceresearch/Publications/County/Lincoln.pdf</u>
- United States Department of Agriculture (USDA). 2007a. 2007 Census of Agriculture: Lincoln County, Maine. Retrieved from: <u>http://www.agcensus.usda.gov/Publications/2007/Online_Highlights/County_Profiles/Maine/cp2</u> <u>3015.pdf</u>
- United States Department of Agriculture (USDA). 2007b. 2007 Census of Agriculture: State and County Reports. National Agricultural Statistics Service. Retrieved from: <u>http://www.agcensus.usda.gov/Publications/2007/Full_Report/Volume_1,_Chapter_1_State_Lev</u> el/Maine/st23_1_008_008.pdf
- Wright, T., C. Swann, K. Cappiella, and T. Schueler. 2005. Unified Subwatershed and Site Reconnaissance: A User's Manual. Center for Watershed Protection. Ellicott City, MD.