APPENDIX 6-18

TMDL SUMMARY

Hobbs Brook

WATERSHED DESCRIPTION

This **TMDL** applies to a 1.54 mile section of Hobbs Brook, located in the Towns of Cumberland and Falmouth, Maine. The impaired segment of Hobbs Brook begins just north of Range Road and flows south, crossing Range Road, Santiago Way, Alder Way, Bruce Hill Road, and New Gray Road, through an area of mixed agricultural and residential land. Hobbs Brook meets the Piscataqua River just east of I-95. The Hobbs Brook watershed covers an area of 2.26 square miles.

- Runoff from agricultural land located throughout the western portion of watershed is likely the largest source of **nonpoint source** (NPS) pollution to Hobbs Brook. Runoff from cultivated lands, active hay lands, and grazing areas can transport nitrogen and phosphorus to the nearest section of the stream.
- The Hobbs Brook watershed is predominately nondeveloped (95.6%). Forested areas (60.3%) within the watershed absorb and filter pollutants helping protect both water quality in the stream and stream channel stability. Wetlands (0.82%) may also help filter nutrients.
- Non-forested areas within the watershed are predominantly agricultural (34.5%) and are located throughout the western half of the watershed.
- Developed areas (4.4%) with impervious surfaces in close proximity to the steam may impact water quality.
- Hobbs Brook is on Maine's 303(d) list of Impaired Streams (Maine DEP, 2013).

• **Total Maximum Daily Load (TMDL)** represents the total amount of a pollutant that a waterbody can receive and still meet water quality standards.

Definitions

• **Nonpoint Source Pollution** refers to pollution that comes from many diffuse sources across the landscape, and in typically transported by rain or snowmelt runoff.

Waterbody Facts

Segment ID: ME0106000103_607R06

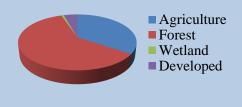
Town: Cumberland and Falmouth, ME

County: Cumberland

Impaired Segment Length: 1.54 miles

Classification: Class B

Direct Watershed: 2.26 mi² (1,446 acres)


Impairment Listing Cause: Dissolved Oxygen

Watershed Agricultural Land Use: 34.45%

Major Drainage Basin: Presumpscot River

Watershed Land Uses

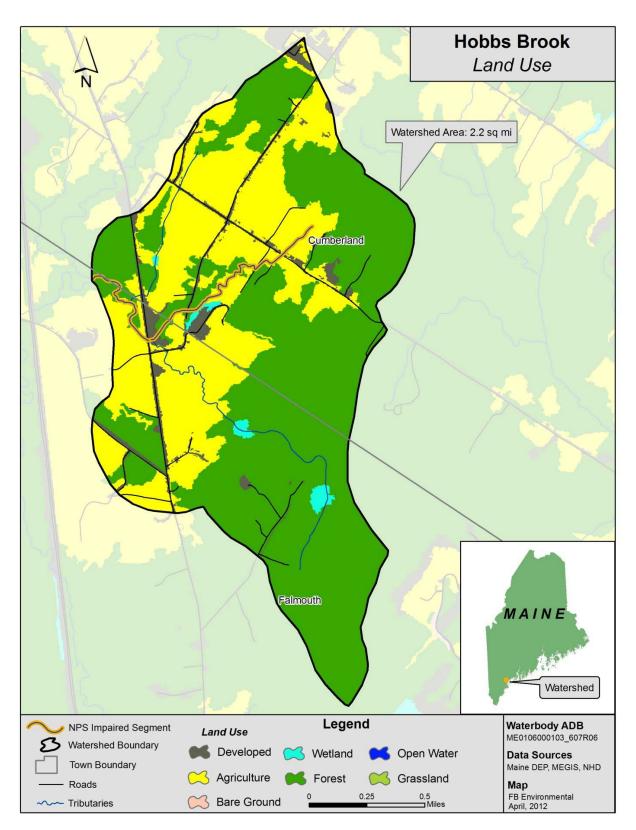


Figure 1: Land Use in the Hobbs Brook Watershed

WHY IS A TMDL ASSESSMENT NEEDED?

Hobbs Brook, a Class B freshwater stream, has been assessed by Maine DEP as not meeting water quality standards for the designated use of aquatic life, and placed on the 303(d) list of impaired waters under the Clean Water Act. The Clean Water Act requires that all 303(d)-listed waters undergo a TMDL assessment that describes the impairments and establishes a target to guide the measures needed to restore water quality. The goal is for all waterbodies to comply with state water quality standards.

Agriculture in the Hobbs Brook watershed makes up 34.5% of total land area, while developed land is a much smaller proportion at 4.4% (Figure 1). Most of the impaired segment length (96%) passes through agricultural land. Agriculture, especially along Schuster

Hobbs Brook near the Gray Road crossing- Station RPSHB05 Photo: FB Environmental

Road and Gray Road, is therefore likely to be the largest contributor of sediment and nutrient enrichment to the stream. The close proximity of many agricultural lands to the stream further increases the likelihood that nutrients from disturbed soils, manure, and fertilizers will reach the stream.

WATER QUALITY DATA ANALYSIS

Maine DEP uses a variety of data types to measure the ability of a stream to adequately support aquatic life, including; dissolved oxygen, benthic macroinvertebrates, and periphyton (algae). The aquatic life impairment in Hobbs Brook is based on historic data. Additionally, dissolved oxygen data collected at station RPSHB05 in 2007 corroborates the impairment.

TMDL ASSESSMENT APPROACH: NUTRIENT MODELING OF IMPAIRED AND ATTAINMENT STREAMS

NPS pollution is difficult to measure directly, because it comes from many diffuse sources spread across the landscape. For this reason, a nutrient loading model, MapShed, was used to estimate the sources of pollution based on well-established hydrological equations; detailed maps of soil, land use, and slope; many years of daily weather data; and direct observations of agriculture and other land uses within the watershed.

The nutrient loading estimates for the impaired stream were compared to similar estimates for five nonimpaired (attainment) streams of similar watershed land uses across the state. The TMDL for the impaired stream was set as the mean nutrient loading estimate of these attainment stream watersheds, and units of mass per unit watershed area per year (kg/ha/year) were used. The difference in loading estimates between the impaired and attainment watersheds represents the percent reduction in nutrient loading required under this TMDL. The attainment streams and their nutrient and sediment loading estimates and TMDL are presented below in Table 1.

Attainment Streams	Town	TP load (kg/ha/yr)	TN load (kg/ha/yr)	Sediment load (1000 kg/ha/yr)
Martin Stream	Fairfield	0.14	3.4	0.008
Footman Brook	Exeter	0.33	6.4	0.058
Upper Kenduskeag Stream	Corinth	0.29	5.6	0.047
Upper Pleasant River	Gray	0.22	4.6	0.016
Moose Brook	Houlton	0.25	5.9	0.022
Total Maximum Daily Load		0.24	5.2	0.030

 Table 1: Numeric Targets for Pollutant Loading Based on MapShed Model Outputs for Attainment

 Streams

RAPID WATERSHED ASSESSMENT

Habitat Assessment

A Habitat Assessment survey was conducted on both the impaired and attainment streams. The assessment approach is based on the *Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers* (Barbour et al., 1999), which integrates various parameters relating to the structure of physical habitat. The habitat assessments include a general description of the site and physical characterization and visual assessment of in-stream and riparian habitat quality.

Based on Rapid Bioassessment protocols for low gradient streams, Hobbs Brook received a score of 131 out of a total 200 for quality of habitat. Higher scores indicate better habitat. The range in of habitat assessment scores for attainment streams was 155 to 179.

Habitat assessments were conducted on a relatively short sample reach (about 100-200 meters for a typical small stream) near the most downstream Maine DEP sample station in the watershed. For both impaired and attainment streams, the assessment location was usually near a road crossing for ease of access. In the Hobbs Brook watershed, the downstream sample station was located upstream of the Gray Boad stream

was located upstream of the Gray Road stream crossing at DEP sample station RPSHB05. The sample

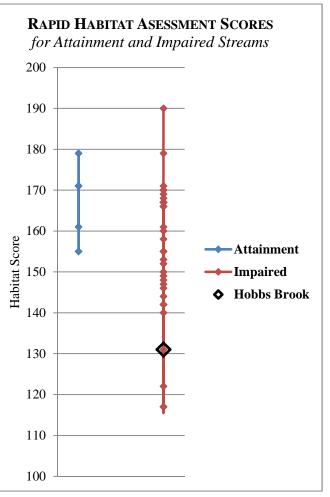


Figure 2: Habitat Assessment Scores

reach was located in a fallow field with few trees. Dominant riparian vegetation consisted of cattails,

alders and small maple trees. Water in the sample reach was turbid and opaque. Water velocity was very slow and documented as "dead water". Downstream of the sample reach, across the Gray Road crossing, stream alterations were observed and an impoundment of Hobbs Brook was documented with active hayfields in close proximity (See source ID #4, below).

Figure 2 (right) shows the range of habitat assessment scores for all attainment and impaired streams, as well as for Hobbs Brook. Although these scores show that habitat is clearly an issue in the impairment of Hobbs Brook, it is important to look for other potential sources within the watershed lending to impairment. Consideration should be given to major "hot spots" in the Hobbs Brook watershed as potential sources of NPS pollution contributing to the water quality impairment.

Pollution Source Identification

Pollution source identification assessments were conducted for both Hobbs Brook (impaired) and the attainment streams. The source identification work is based on an abbreviated version of the Center for Watershed Protection's Unified Subwatershed and Site Reconnaissance method (Wright, et al., 2005). The abbreviated method includes both a desktop and field component. The desktop assessment consists of generating and reviewing maps of the watershed boundary, roads, land use and satellite imagery; and then identifying potential NPS pollution locations, such as road crossings, agricultural fields, and large areas of bare soil. When available, multiple sources of satellite imagery were reviewed. Occasionally, the high resolution of the imagery allowed for observations of livestock, row crops, eroding stream banks, sediment laden water, junkyards, and other potential NPS concerns that could affect stream quality. As many potential pollution sources as possible were visited, assessed, and documented in the field. Field visits were limited to NPS sites that were visible from roads or a short walk from a roadway. Neighborhoods were assessed for NPS pollution at the whole neighborhood level including streets and storm drains (where applicable). The assessment does not include a scoring component, but does include a detailed summary of findings and a map indicating documented NPS sites throughout the watershed.

The watershed source assessment for Hobbs Brook was completed on July 12, 2012. In-field observations of erosion, lack of vegetated stream buffer, extensive impervious surfaces, high-density neighborhoods and agricultural activities were documented throughout the watershed (Table 2, Figure 3).

	Potential So	ource	Notos		
ID#	Location	Туре	Notes		
1	Gray Road/ Shaw Road	Agriculture	 Large hay fields or pasture with 10 horses observed. Southern tributary of Hobbs Brook runs through these fields. 		
2	Schuster Road	Vet Clinic	 Blackstrap Hill Veterinary Clinic. Open fields with horse paddocks and animal stalls. No animals observed; number of animals present here may vary. Outdoor animal equipment used for larger animals or livestock. 		
3	Schuster Road	Tributary Crossing	 Low dissolved oxygen. Minimal buffer and shading. Southern tributary of Hobbs Brook runs through fields in location #1. 		
4	Gray Road	Road Crossing	 Downstream side of crossing has evidence of channelization. The stream here is impounded due to significant sediment build-up. Stream continues downstream adjacent and down slope to a large active hayfield; part of the Wilshore Farms property on Hurricane Road. Pooled area is open to full sun resulting in temperature increases and slower flows. DEP sample station RPSHB05. 		
6	Between Gray Road & Hurricane Road	Agriculture	 Wilshore Farms. Possible dairy farms, but no animals observed. Large active hay fields surrounding the property. 		
10	Range Road	Agriculture	Horses observed grazing (about 10).Tributary runs on perimeter of field near woodland boarder.		
11	Alder Way	Road Crossing	Stream channel alteration – impoundment.Exposed soil.		
12	Santiago Way	Road Crossing	 Santiago Way is a dirt road that runs adjacent to and over Hobbs Brook. Erosion is present with minimal buffers. 		
13	Shaw Farm Road	Agriculture	• Large hay fields observed.		
14	Range Road	Road Crossing	• Wetland area with sedimentation around culvert on the upstream side.		

Table 2: Pollution Source ID Assessment for the Hobbs Brook Watershed

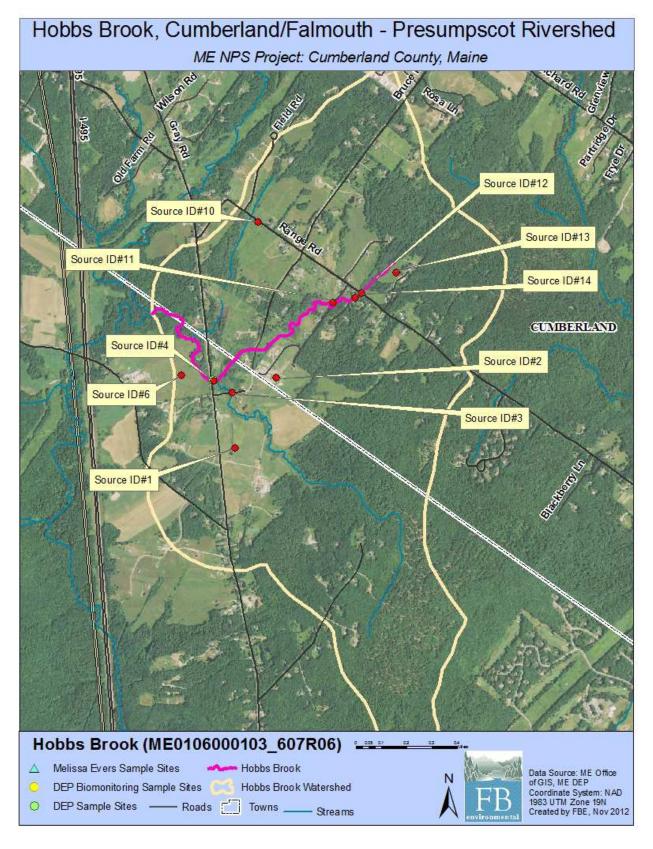


Figure 3: Aerial Photo of Source ID Locations in the Hobbs Brook Watershed

NUTRIENT LOADING - MAPSHED ANALYSIS

The MapShed model was used to estimate stream loading of sediment, total nitrogen and total phosphorus in Hobbs Brook (impaired) plus five attainment watersheds throughout the state. The model estimated nutrient loads over a 15-year period (1990-2004), which was determined by the available weather data provided within MapShed. This extended period captures a wide range of hydrologic conditions to account for variations in nutrient and sediment loading over time.

Many quality assured and regionally calibrated input parameters are provided with MapShed. Additional input parameters were manually entered into the model based on desktop research and field observations, as described in the sections on Habitat Assessment and Pollution Source Identification. These manually adjusted parameters included estimates of livestock animal units, agricultural stream miles with intact vegetative buffer, Best Management Practices (BMPs), and estimated wetland retention and/or drainage areas.

Livestock Estimates

Livestock waste contains nutrients which can cause water quality impairment. The nutrient loading model considers numbers and types of animals. Table 3 (right) provides estimates of livestock (numbers of animals) in the watershed, based on direct observations made in the watershed, plus other publicly available data.

The Hobbs Brook watershed is predominantly forested, with substantial mixed agricultural land uses as well. Large areas of hay fields and pastures were documented throughout the watershed, as well as horses and a dairy farm located on Hurricane Road in Falmouth. Fifty cows were estimated on this property, which lies in close proximity to Hobbs Brook (source ID #4).

Vegetated Stream Buffer in Agricultural Areas

Vegetated stream buffers are areas of trees, shrubs, and/or grasses adjacent to streams, lakes, ponds or ands which provide nutrient loading attenuation (Evans & Corradini, 2012). MapShed considers natural vegetated stream buffers within agricultural areas as providing nutrient load attenuation. The width of buffer strips is not defined within the MapShed manual, and was considered to be 75 feet for this analysis. Geographic Information System (GIS) analysis of recent aerial photos along with field reconnaissance observations were used to estimate the number of agricultural stream miles with and without vegetative buffers, and these estimates were directly entered into the model.

Hobbs Brook is a 1.5 mile-long impaired segment as listed by Maine DEP. As modeled, the total stream miles (including tributaries) within the watershed was calculated as 3.12 miles. Of this total, 1.5 stream miles are located within agricultural areas; of this length 0.5 miles (33%) show a 75-foot or greater vegetated buffer (Table 4, Fig.4). By contrast, agricultural stream miles (as modeled) with a 75-foot vegetated buffer in the attainment stream watersheds ranged from 34% to 92%, with an average of 61%.

Table 3: Livestock Estimates inthe Hobbs Brook Watershed

Туре	Hobbs Brook
Dairy Cows	50
Beef Cows	
Broilers	
Layers	
Hogs/Swine	
Sheep	
Horses	27
Turkeys	
Other	
Total	77

Table 4: Summary of VegetatedBuffers in Agricultural Areas.

Hobbs Brook

- 3.12 stream miles in watershed (includes ephemeral streams)
- 1.5 stream miles in agricultural areas
- 33% of agricultural stream miles have a vegetated buffer

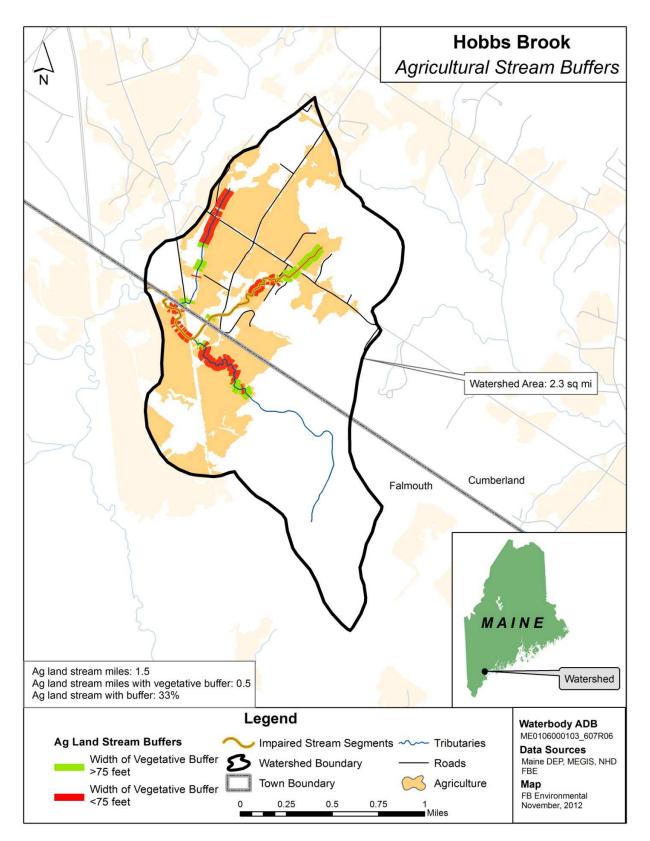


Figure 4: Buffered Agricultural Stream Miles in the Hobbs Brook Watershed

Best Management Practices (BMPs)

For this modeling effort, four commonly used BMPs were entered based on literature values. These estimates were applied equally to impaired and attainment stream watersheds. More localized data on agricultural practices would improve this component of the model.

- *Cover Crops:* Cover crops are the use of annual or perennial crops to protect soil from erosion during time periods between harvesting and planting of the primary crop. The percent of agricultural acres cover crops used within the model is estimated at 4%. This figure is based on information from the 2007 USDA Census stating that 4.1% of cropland acres is left idle or used for cover crops or soil improvement activity, and not pastured or grazed (USDA, 2007b).
- *Conservation Tillage:* Conservation tillage is any kind of system that leaves at least 30% of the soil surface covered with crop residue after planting. This reduces soil erosion and runoff and is one of the most commonly used BMPs. This BMP was assumed to occur in 42% of agricultural land. This figure is based on a number given by the Conservation Tillage Information Center's 2008 Crop Residue Management Survey stating that 41.5% of U.S. acres are currently in conservation tillage (CTIC, 2000).
- *Strip Cropping / Contour Farming:* This BMP involves tilling, planting and harvesting perpendicular to the gradient of a hill or slope using high levels of plant residue to reduce soil erosion from runoff. This BMP was assumed to occur in 38% of agricultural lands, based on a study done at the University of Maryland (Lichtenberg, 1996).
- *Grazing Land Management:* This BMP consists of ensuring adequate vegetation cover on grazed lands to prevent soil erosion from overgrazing or other forms of over-use. This usually employs a rotational grazing system where hays or legumes are planted for feed and livestock is rotated through several fenced pastures. In this TMDL, a figure of 75% of hay and pasture land is assumed to utilize grazing land management. This figure is based on a study by Farm Environmental Management Systems of farming operations in Canada (Rothwell, 2005).

Pollutant Load Attenuation by Lakes, Ponds and Wetlands

Depositional environments such as ponds and wetlands can attenuate watershed sediment loading. This information is entered into the nutrient loading model by a simple percentage of watershed area draining to a pond or a wetland. There are no major wetlands within the Hobbs Brook watershed, therefore zero percent of the watershed drains to wetlands. Percent of watershed draining to a wetland in the attainment watersheds ranged from 15% to 60%, with an average of 35%.

NUTRIENT MODELING RESULTS

The MapShed model simulates surface runoff using daily weather inputs of rainfall and temperature. Erosion and sediment yields are estimated using monthly erosion calculations and land use/soil composition values for each source area. Below, selected results from the watershed loading model are presented. The TMDL itself is expressed in units of kilograms per hectare per year. The additional results shown below assist in better understanding the likely sources of pollution. The model results for Hobbs Brook indicate that significant reductions of sediment and nutrients are needed to improve water quality. Below, loading for sediment, nitrogen and phosphorus are discussed individually.

Sediment

Sediment loading in the Hobbs Brook watershed is mainly derived from hay/pasture which contributes 71% of the total sediment load. Combined agricultural sources account for 75% of the sediment load in Hobbs Brook. Forested lands also contribute a significant amount of the sediment load at 14%. Table 5 and Figure 5 (below) display all sources and pathways which contribute to sediment loading in Hobbs Brook. Total loads by mass cannot be directly compared between watersheds due to differences in watershed area. See section TMDL: Target Nutrient Levels for Hobbs Brook (below) for loading estimates that have been normalized by watershed area.

Table 5: Total Sediment Loads by Source

Table 5: Total Sediment Loads by Source				
Hobbs Brook	Sediment	Sediment		
HODDS BIOOK	(1000kg/year)	(%)		
Source Load				
Hay/Pasture	19.38	71%		
Crop land	1.22	4%		
Forest	3.73	14%		
Wetland	0.03	0%		
Disturbed Land	0	0%		
Low Density Mixed	0.19	1%		
Medium Density Mixed	0	0%		
High Density Mixed	2.78	10%		
Low Density Residential	0	0%		
Medium Density Residential	0	0%		
High Density Residential	0	0%		
Farm Animals	0	0%		
Septic Systems	0	0%		
Source Load Total:	27.33	100%		
Pathway Load				
Stream Banks	2.39	-		
Subsurface / Groundwater	0	-		
Total Watershed Mass Load:	29.72			

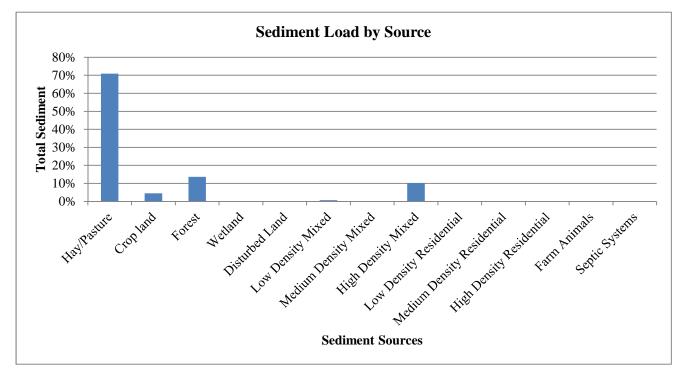


Figure 5: Total Sediment Loads by Source in the Hobbs Brook Watershed

Total Nitrogen

Nitrogen loading is largely attributed to farm animals with combined agricultural sources accounting for 66% of the total sediment load in Hobbs Brook. Forested lands also contribute a significant portion of the load at 14%. Table 6 and Figure 6 (below) show estimated total nitrogen load in terms of mass and percent of total by source, in the Hobbs Brook watershed. Total loads by mass cannot be directly compared between watersheds due to differences in watershed area. See section *TMDL: Target Nutrient Levels for Hobbs Brook* (below) for loading estimates that have been normalized by watershed area.

Table 6: Total Nitrog	en Loads by So	ource
	Total N	Total N

Hobbs Brook	Total N	Total N		
HODDS BLOOK	(kg/year)	(%)		
Source Load				
Hay/Pasture	333.4	21%		
Crop land	46.1	3%		
Forest	228.6	14%		
Wetland	5.8	0%		
Disturbed Land	0	0%		
Low Density Mixed	4.9	0%		
Medium Density Mixed	0	0%		
High Density Mixed	107.6	7%		
Low Density Residential	0	0%		
Medium Density Residential	0	0%		
High Density Residential	0	0%		
Farm Animals	673.4	42%		
Septic Systems	200.7	13%		
Source Load Total:	1600.4	100%		
Pathway Load				
Stream Banks	1.0	-		
Subsurface / Groundwater	4525.9	-		
Total Watershed Mass Load:	6127.3			

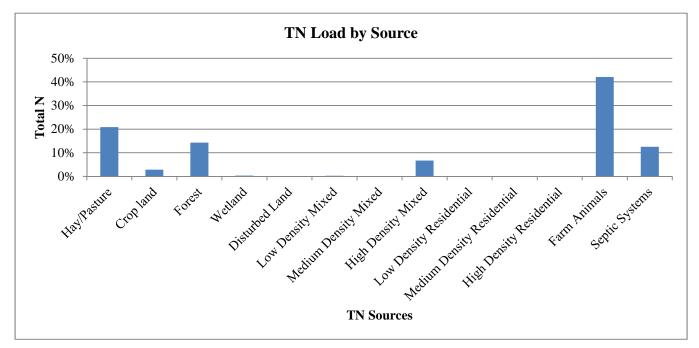


Figure 6: Total Nitrogen Loads by Source in the Hobbs Brook Watershed

Total Phosphorus

Phosphorus loading in the Hobbs Brook watershed is attributed primarily to farm animals and hay/pasture land uses. Combined agricultural sources account for 90% of the total phosphorus load. Phosphorus loads are presented in Table 7 and Figure 7 (below). Total loads by mass cannot be directly compared between watersheds due to differences in watershed area. See TMDL: section Target Nutrient Levels for Hobbs Brook (below) for loading estimates that have been normalized by watershed area.

 Table 7: Total Phosphorus Loads by Source

Habba Break	Total P	Total P	
Hobbs Brook	(kg/year)	(%)	
Source Load			
Hay/Pasture	135.9	44%	
Crop land	5.3	2%	
Forest	14.7	5%	
Wetland	0.3	0%	
Disturbed Land	0	0%	
Low Density Mixed	0.6	0%	
Medium Density Mixed	0	0%	
High Density Mixed	11.3	4%	
Low Density Residential	0	0%	
Medium Density Residential	0	0%	
High Density Residential	0	0%	
Farm Animals	135.8	44%	
Septic Systems	7.6	2%	
Source Load Total:	311.4	100%	
Pathway Load			
Stream Banks	0	-	
Subsurface / Groundwater	86.3	-	
Total Watershed Mass Load:	397.7		

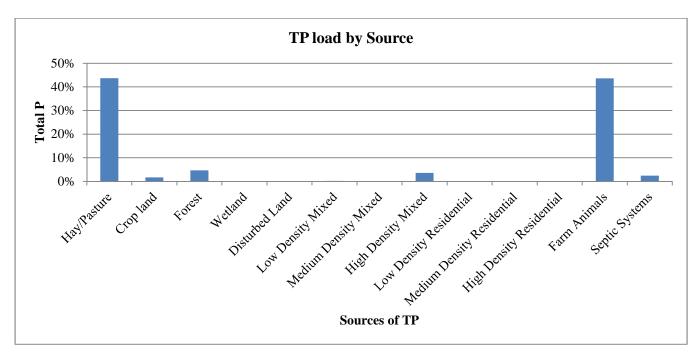


Figure 7: Total Phosphorus Loads by Source in the Hobbs Brook Watershed

TMDL: TARGET NUTRIENT LEVELS FOR HOBBS BROOK

The existing sediment and nutrient loads for the impaired segment of Hobbs Brook are listed in Table 8, along with the TMDL numeric target which was calculated from the average loading estimates of five attainment watersheds throughout the state. Table 9 presents a more detailed view of the modeling results and calculations used in Table 8 to define TMDL reductions, and compares the existing sediment and nutrient loads in Hobbs Brook to TMDL endpoints derived from the attainment waterbodies. An annual time frame provides a mechanism to address the daily and seasonal variability associated with nonpoint source loads.

TMDL POLLUTANT LOADS Annual Loads per Unit Area	Estimated Loads Hobbs Brook	Total Maximum Daily Loads Numeric Target	TMDL % REDUCTIONS Hobbs Brook
Sediment Load (1000 kg/ha/year)	0.051	0.030	41%
Nitrogen Load (kg/ha/year)	10.46	5.2	50%
Phosphorus Load (kg/ha/year)	0.68	0.24	64%

Table 8: TMDL Targets Compared to Hobbs Brook Pollutant Loading

Future Loading

The prescribed reduction in pollutants discussed in this TMDL reflects reduction from estimated existing conditions. Expansion of agricultural and development activities have the potential to increase runoff and associated pollutant loads to the Hobbs Brook. To ensure that the TMDL targets are attained, future agriculture or development activities in the watershed will need to meet the TMDL targets. Future growth from population increases is a moderate threat in the Hobbs Brook watershed because Cumberland County has increasing population trends, with a 3.9% increase between 2000 and 2008 (USM MSAC, 2009). The growth in agricultural lands is also increasing, with a 6% increase in the total number of farms in Cumberland County between 2002 and 2007. However, a decrease of 5% was seen in the land (acres) in farms between 2002 and 2008, and a 10% decrease occurred in the average farm size in this time period as well (USDA, 2007a). Future activities and BMPs that achieve TMDL reductions are addressed below.

Next Steps

The use of agricultural and developed area BMPs can reduce sources of polluted runoff in Hobbs Brook. It is recommended that municipal officials, landowners, and conservation stakeholders in Cumberland and Falmouth work together to develop a watershed management plan to:

- Encourage greater citizen involvement through the development of a watershed coalition to ensure the long term protection of Hobbs Brook;
- Address <u>existing</u> nonpoint source problems in the Hobbs Brook watershed by instituting BMPs where necessary; and
- Prevent <u>future</u> degradation of Hobbs Brook through the development and/or strengthening of a local Nutrient Management Ordinance.

Hobbs Brook					
	Area ha	Sediment 1000kg/yr	TN kg/yr	TP kg/yr	
Land Uses		0.			
Hay/Pasture	199	19.4	333.4	135.9	
Crop land	5	1.2	46.1	5.3	
Forest	351	3.7	228.6	14.7	
Wetland	5	0.0	5.8	0.3	
Disturbed Land	0	0.0	0.0	0.0	
Low Density Mixed	5	0.2	4.9	0.6	
High Density Mixed	21	2.8	107.6	11.3	
Other Sources					
Farm Animals			673.4	135.8	
Septic Systems			200.7	7.6	
Pathway Loads					
Stream Banks		2.4	1.0	0.0	
Groundwater			4525.9	86.3	
Total Annual Load		30 x 1000 kg	6127 kg	398 kg	
Total Area	586 ha				
Total Maximum Daily		0.051	10.46	0.68	
Load		1000kg/ha/year	kg/ha/year	kg/ha/year	

Table 9: Modeling Results Calculations for Derived Numeric Targets and Reduction Loads for Hobbs

 Brook

REFERENCES

- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- Conservation Tillage Information Center (CTIC). 2000. Crop Residue Management Survey. National Association of Conservation Districts. Retrieved from: <u>http://www.ctic.purdue.edu</u>.
- Davies, S. P., and L. Tsomides. 2002. Methods for Biological Sampling of Maine's Rivers and Streams. DEP LW0387-B2002, Maine Department of Environmental Protection, Augusta, ME.
- Evans, B.M., & K.J. Corradini. 2012. MapShed Version 1.0 Users Guide. Penn State Institute of Energy and the Environment. Retrieved from: http://www.mapshed.psu.edu/Downloads/MapShedManual.pdf
- Lichtenberg, E. 1996. Using Soil and Water Conservation Practices to Reduce Bay Nutrients: How has Agriculture Done? Economic Viewpoints. Maryland Cooperative Extension Service, University of Maryland at College Park and University of Maryland Eastern Shore, Department of Agricultural and Resource Economics, 1(2).
- Maine Department of Environmental Protection (Maine DEP). 2013. Draft 2012 Integrated Water Quality Monitoring and Assessment Report. Bureau of Land and Water Quality, Augusta, ME.
- Rothwell, N. 2005. Grazing Management in Canada. Farm Environmental Management in Canada. http://publications.gc.ca/Collection/Statcan/21-021-M/21-021-MIE2005001.pdf.
- University of Southern Maine Muskie School of Public Service, Maine Statistical Analysis Center (USM MSAC). December, 2009. Retrieved from: <u>http://muskie.usm.maine.edu/justiceresearch/Publications/County/Cumberland.pdf</u>
- United States Department of Agriculture (USDA). 2007a. 2007 Census of Agriculture: Cumberland County, Maine. Retrieved from: <u>http://www.agcensus.usda.gov/Publications/2007/Online_Highlights/County_Profiles/Maine/cp2</u> <u>3005.pdf</u>
- United States Department of Agriculture (USDA). 2007b. 2007 Census of Agriculture: State and County Reports. National Agricultural Statistics Service. Retrieved from: <u>http://www.agcensus.usda.gov/Publications/2007/Full_Report/Volume_1,_Chapter_1_State_Lev</u> el/Maine/st23_1_008_008.pdf
- Wright, T., C. Swann, K. Cappiella, and T. Schueler. 2005. Unified Subwatershed and Site Reconnaissance: A User's Manual. Center for Watershed Protection. Ellicott City, MD.