

summitenv.com

MAINE DEP PETROLEUM VAPOR TRIAGE STUDY PHASE IIA CUMBERLAND FARMS – FACILITY 1829 5 MOUNT VERNON AVENUE AUGUSTA, MAINE

Prepared for:

MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION 17 State House Station Augusta, Maine 04330

Prepared by: SUMMIT ENVIRONMENTAL CONSULTANTS, INC. 434 Cony Road Augusta, Maine 04330

and

JBR CONSULTING HYDROGEOLOGIST

20 Dryad Woods Road Raymond, Maine 04071

> April 13, 2011 Project # 10-3240

MAIN OFFICE: LEWISTON

640 Main Street Lewiston, ME 04240 207.795.6009 voice 207.795.6128 fax AUGUSTA 434 Cony Road Augusta, ME 04330 207.621.8334 voice 207.626.9094 fax **BANGOR** 8 Harlow Street, Suite 4A Bangor, ME 04401 207.262.9040 voice 207.262.9080 fax PORTLAND

1 Industrial Way, Suite 7 Portland, ME 04103 207.221.6360 voice 207.221.6146 fax

INT	RODUCTION	. 1
1.0	OBJECTIVES	. 1
2.0	SITE BACKGROUND AND CONCEPTUAL SITE MODEL	. 1
3.0	METHODOLOGY	. 2
4.0	RESULTS	. 4
4.1	QUALITY ASSURANCE	. 4
4.2	SOURCE AREA SOIL	. 5
4.3	GROUNDWATER	. 5
4.4	SOIL VAPOR	. 5
5.0	CONCLUSIONS	. 6
5.1	HYDROGEOLOGIC INFLUENCES ON VAPOR MIGRATION	. 6
5.2	PETROLEUM DISTRIBUTION AND RELATIONSHIPS BETWEEN MEDIA	. 7
5.3	PREFERENTIAL PATHWAYS, OFFSITE MIGRATION AND RECEPTORS	. 7
5.4	CONCEPTUAL SITE MODEL CONFIRMATION AND UPDATE	. 7
5.5	DATA GAPS AND RECOMMENDATIONS	. 7

TABLES:

- Table 1: Summary of Soil Vapor Detections
- Table 2: Groundwater Vapor Intrusion Report
- Table 3: Soil Gas Vapor Intrusion Report

Figures:

Figure 1: Site Location Map Figure 2: Sample Location Map

Appendices:

Appendix A: Boring Logs and Monitoring Well Installation Log Appendix B: Field Data Sheets Appendix C: Laboratory Reports (sent electronically)

INTRODUCTION

In June 2010, Summit Environmental Consultants, Inc. and JBR Consulting Hydrogeologist (Summit) along with four other consulting firms were selected by the Maine Department of Environmental Protection (MEDEP) to provide vapor intrusion investigation and data analysis services for petroleum sites throughout Maine. Summit was assigned two sites including the Cumberland Farms Incorporated (CFI) property located at 5 Mount Vernon Avenue in Augusta (the Site) to identify the potential for petroleum vapor intrusion (PVI) into site and area buildings. In July Summit completed a Site Assessment of the property to develop information about possible sources of vapor contamination at and adjacent to the Site. In August Summit developed a Work Plan for the project following MEDEP guidance and incorporating their input including a conceptual model and description of the scope of investigations. This report provides the results of this PVI Triage Study - PHASE IIA and follows the reporting format and content provided by MEDEP.

1.0 OBJECTIVES

The objectives of the study were to:

- Sample residual soil contamination (if indicated by field observations) at potential source areas that were reasonably accessible (i.e. near USTs)
- Sample groundwater beneath and downgradient of source areas if contamination was indicated by field observations
- Characterize the horizontal and vertical attenuation of Chemicals of Potential Concern (CPOCs) in soil vapor from both soil and groundwater contamination areas
- Assess on-site soil vapor pathways to identify potential risks to on-site and off-site receptors

2.0 SITE BACKGROUND AND CONCEPTUAL SITE MODEL

Facility Use/Petroleum Storage

The 0.20 acre site is located on the east side of Mount Vernon Avenue and the north side of Bond Street (see Figures 1, 2). One concrete and mortar building (approximately 2,045 square feet) is located on the property. The Site is located in an area zoned by the City of Augusta as Commercial. The building is currently used as a gasoline station/convenience store and the site has been used for retail gasoline sales since 1983, prior to which time it was in residential use. A metal-roofed canopy with two gasoline pump islands is located west of the Site building. The pump islands are connected to three on-site underground gasoline storage tanks (USTs).

<u>Release</u>

The primary source of petroleum vapors for the site is the area around the former USTs which were in the same location as the currently operating USTs. A Maine Underground Storage Tank Removal Site Assessment dated November 1996 indicated that during the removal of three 8,000-gallon gasoline USTs, petroleum contamination was observed to be present. Soils impacted with gasoline exhibiting photoionization detector (PID) headspace readings above 1,000 parts per million (ppm) were removed from the Site, with a total of 80.6 tons of contaminated soil shipped to the Tilcon facility in Farifield, Maine for asphalt batching. According to the UST removal report, the MEDEP allowed the contractor to only remove soils necessary to accommodate installation of the new USTs. No documentation regarding soils left at the site was found in the report. Following the soil removal, three 8,000-gallon fiberglass

USTs were installed within the same excavation. The Maine UST registration number for the Site is 9078.

Based on the relatively high PID cleanup guideline, it is likely that soil vapors at the Site have been impacted by petroleum constituents (benzene, toluene, ethylbenzene, xylenes and other petroleum VOCs).

In response to a recent site visit by MEDEP (March 2010), Cumberland Farms provided MEDEP with a Statistical Inventory Analysis and updated annual inspection summary in March 2010 which indicated all three of the current USTs passed inspection.

Chemicals of Potential Concern (COPCs)

The primary chemical of potential concern is gasoline and its associated volatile petroleum constituents primarily benzene, napthalene, 1,3-butadiene and selected petroleum fractions. Chlorinated VOCs from offsite sources represent secondary chemicals of concern.

Subsurface Exposure Pathway

The paved areas of the site (elevation 40+ feet above mean sea level) are relatively flat, dropping down to Bond Brook about 75 feet east of the site (the Brook elevation is estimated at less than 10 feet msl). Bond Brook flows southeast to the Kennebec River (about 5 feet msl) about 500 feet southeast of the site. Maine Geologic Survey has mapped Stream Terrace deposits consisting of permeable sand and gravel beneath the Site which is consistent with boring information from the adjacent property to the northeast (Rockingham Electric property, a former coal tar site). Boring MW-2/SB-5 located 50 feet northeast of the Site indicated sand and gravel fill overlying fine to coarse sand and finally sand and gravel down to weathered bedrock at 45 below ground surface. The depth to groundwater was about 34 feet bgs. Based on these conditions and lack of water within a ten foot deep monitoring well at the Site, it is anticipated that 30 feet or more of unsaturated permeable soils could underlie the Site and allow vapor migration.

The former (and current) USTs and pump islands are located directly upgradient topographically from the slab on grade of the convenience store. Groundwater is expected to flow east beneath the UST and pump island source areas, beneath the store and discharge to Bond Brook.

High PID readings used for a cleanup standard during the 1996 UST removal indicates the likelihood of a source of residual contamination at the site.

Subsurface public utilities include water and sewer and enter the northeast side of building. The exact location of these utilities with respect to any residual soil contamination is not known, however the water line runs directly through the pump island area. Smaller on-site electrical conduit that runs from the store to the USTs, dispensers and any signage represent additional potential pathways.

3.0 METHODOLOGY

A one-day Geoprobe investigation was completed which included field screening of soils and soil vapor and groundwater sampling and analyses. A stepped approach was developed by MEDEP to guide the number and location of samples based on whether contamination was present at the UST source area. Because drilling activities are restricted near tanks, piping and dispensers at operating UST facilities and based on site history and hydrogeology it was decided not to shut the facility down but to include a fence of explorations directly downgradient of the

UST/pump island areas. A subslab vapor sample was included from within the building near the bathroom.

Sample locations are shown on Figure 2 and are summarized as follows:

Source Areas

Based on the 1996 UST removal report it was considered likely that there was some residual petroleum in soils below the former USTs at a depth of 12 feet or greater. No information was reported relative to the pump islands, though they were considered potential sources of at least shallow soil contamination.

Migration and Preferential Pathways - 15 feet Downgradient

To assess petroleum migration from the source areas in soil vapor and groundwater, the following explorations were completed:

- five Geoprobe borings (SB-01, SB-02, SB-03, SB-04 and SV-02) at locations 15 to 20 feet downgradient of the USTs and pump islands
- one hand auger boring (SV-01)
- one subslab soil vapor sampling location (SV-03).

<u>Soil</u>

Geoprobe borings were advanced using a four-foot sampler with dedicated disposable acetate sampling sleeves and were completed to depths ranging from 26 feet bgs at SB-04 to 48 feet bgs at SB-03/MW-1. Refusal was encountered only at SB-04 (at 26 feet).

Soil samples were collected continuously, logged for geologic classification and screened with a *MiniRae 3000*° field-portable PID equipped with a 10.6 eV probe, calibrated with 100 ppm isobutylene and recording uncorrected results. Because no significant PID or odor indications of petroleum were encountered, no soil samples were submitted for laboratory analyses. Boring logs are provided in Appendix A.

<u>Groundwater</u>

A monitoring well (MW-1) was installed in SB-03 located directly downgradient of the current and former USTs. The well was constructed of 1 inch PVC installed ten feet into the water table to allow sampling and to provide depth to groundwater data. A groundwater sample was collected using a small diameter bailer and submitted to Maine Environmental Laboratory/Analytics Environmental Laboratory for Massachussets Department of Environmental Protection (MADEP) Volatile Petroleum Hydrocarbon (VPH) analyses. A well construction log is included in Appendix A.

<u>Soil Vapor</u>

Soil vapor sampling probes were installed consistent with methods described in the current MEDEP SOPs for Collecting Soil Gas Samples.

Soil vapor probes were supplied by Geoprobe and consisted of $\frac{1}{2}$ inch x 6 inch double woven stainless steel wire screens with 0.0057 inch slots connected to $\frac{1}{4}$ inch teflon tubing. They were installed as follows:

- SV-01 set in a hand auger boring at two feet below ground surface (bgs) adjacent to the water line entrance on the northwest side of the building to assess this preferential pathway in granular backfill
- SV-02 set in Geoprobe boring SV-02 at 31 feet bgs three feet above the water table and downgradient of the USTs to assess vapor above any contaminated groundwater
- SV-03 a subslab sample collected in the bathroom by drilling a hole in the concrete floor slab and installing teflon tubing and sealing the tubing with modeling clay around the hole.
- SV-04 set in Geoprobe boring SB-01 at 31 feet bgs, three feet above the water table to assess deep vapor migration at a location cross gradient from the USTs but downgradient of the pump islands
- SV-05 set in Geoprobe boring SB-01 at 7 feet bgs above a silt zone that was present across the site from about 7 to 13 feet bgs.

Field screening of soil gas extracted with a peristaltic pump was performed with a CO2/O2/Methane meter to ensure that atmospheric concentrations of CO2 were not present and that the soil gas samples were representative of soil vapor. Soil vapor samples were collected in 30 minute Summa canisters and submitted to Alpha Analytical for analyses by the MADEP Air Petroleum Hydrocarbon (APH) method for petroleum parameters and by TO-15 for Volatile Organic Chemicals (VOCs). Canisters typically started at 27 to 30 inches (of mercury) vacuum and finished at 3 to 5 inches of vacuum. Soil vapor probe construction and sampling information is provided on Field Data Sheets in Appendix B.

A duplicate soil vapor sample was not collected (but was collected at the CFI site in Livermore Falls investigated by Summit).

Receptors

Potential receptors of petroleum vapors at the site include customers and workers at the store and house occupants on adjacent residential properties, primarily to the southeast.

4.0 RESULTS

A Summary of Soil Vapor Detections is provided in Table 1. The Groundwater Vapor Intrusion Report and Soil Gas Vapor Intrusion Report prepared from MEDEPs EGAD data base is attached as Tables 2 and 3 providing a comprehensive tabulation of analytes, results, detection limits and data qualifiers.

4.1 QUALITY ASSURANCE

A comparison of post sample field and laboratory measurements of carbon dioxide, oxygen and methane at all soil vapor probes (except SV-03) indicate the following:

- Field measurements of carbon dioxide were greater than 5% (the upper range of the instrument), while lab results ranged from 1.6 to 2.8% indicating field measurements were at least 2 to 3 times higher than lab results.
- Field measurements of oxygen ranged from 12.7 to 18.7 %, while lab results ranged from 11.7 to 16.6 % (at SV-04 and SV-01 respectively) indicating field measurements were about 1.1 times higher than lab results.
- Methane was not detected with the field meter or in the lab.

PETROLEUM VAPOR INTRUSION (PVI) TRIAGE STUDY - PHASE IIA CUMBERLAND FARMS – FACILITY 1829 5 MOUNT VERNON AVENUE AUGUSTA , MAINE A comparison of pre- and post sample carbon dioxide measurements at soil vapor probes (except SV-03) indicate field evidence of a good seal, with all pre- and post sample values greater than 5 %. A good seal was also indicated by the large difference between ambient carbon dioxide (0.49 to 0.76%) and post sample results (all greater than 5%). Based on a low post sample carbon dioxide (field and lab result) and somewhat elevated oxygen results it appears there may have been some leakage at SV-03.

Samples were delivered to MEL on September 2010. All samples were delivered within the applicable holding times and within the specified temperature range. Summit obtained sample results from MEL on September 22, 2010. Included in the sample results package was a copy of QA data. The lab did not indicate interferences or problems had occurred in the analytical stages or handling of the samples.

Summit shipped the soil gas samples to Alpha Analytical on September 10, 2010 and received confirmation of their delivery on September 14, 2010 at 10:00 am (within holding time). Summit obtained analytical results from Alpha on September 21, 2010.

4.2 SOURCE AREA SOIL

Site specific surficial geology consisted of sand with gravel fill beneath the asphalt to about 7 feet bgs which was underlain by silt to 13 feet bgs, which was underlain by fine to medium sand to the bottom of borings (between 26 and 48 feet bgs). The water table was at 34 feet bgs. It is likely that the bottom of the UST installations extended through the lower permeability silt, but that the piping and dispenser components did not.

There were no odor indications of petroleum in soil samples and no significant PID detections were obtained (all results were below 1.2 ppm, uncorrected). PID results are included on Soil Boring Logs in Appendix A. Based on these results there were no petroleum impacts to soils at the boring locations.

4.3 **GROUNDWATER**

Because there were no field indications of petroleum impacts to soil or groundwater at boring locations only one monitoring well was installed. However, the permeable soils and location of Bond Brook 75 feet directly downgradient indicate the likely groundwater flow direction was to the east. Groundwater impacts if any from releases at the USTs or pump islands would have flowed east beneath the store discharging to Bond Brook.

All MADEP VPH targets and fraction parameters were below detection limits (see Table 2).

4.4 SOIL VAPOR

Soil vapor detections are summarized in Table 1 and as follows (complete results are in Table 3):

Low to moderate levels of MADEP-APH were detected in all soil vapor probes. Based on a comparison of detected concentrations to the Maine Residential Multi-Contaminant Chronic Soil Gas Target (G-1), the following exceedances were identified:

- 1,3-butadiene (SV-01, SV-02, SV-04)
- benzene (SV-01)
- C5-C8 aliphatic hydrocarbons (SV-02)
- napthalene (SV-05)

PETROLEUM VAPOR INTRUSION (PVI) TRIAGE STUDY - PHASE IIA CUMBERLAND FARMS – FACILITY 1829

5 MOUNT VERNON AVENUE AUGUSTA , MAINE

Exceedence factors (soil vapor concentration divided by target concentration) ranged from 1.4 for benzene at SV-01 to 6.4 for 1,3-butadiene at SV-04. The subslab sample collected at SV-03 detected aliphatic hydrocarbons below target levels. Tetrachloroethylene was detected above target levels at SV-02 and SV-04 but not in the shallow probes suggesting that it is volatizing from groundwater that is flowing onto the site from an upgradient source. It was also detected at low levels in the laboratory duplicate.

SV-02 and SV-04 are both set at 31 feet bgs about three feet above the water table. SV-02 is located about 20 feet downgradient of the nearest UST and SV-04 is located about 50 feet cross gradient from the USTs and about 25 feet from the dispensers. 1,3-butadiene and C5-C8 aliphatic hydrocarbons were highest in the deep probes while benzene was highest in SV-01 (installed in the water line backfill). Results from the two deep probes indicate that impacts at SV-02 may be due to older residual petroleum that penetrated the silt layer at the site (~7 to 13 feet bgs) and impacted soils below the USTs. Impacts at SV-04 have a BTEX fingerprint that was also seen at shallow probes SV-01 and (was highest at) SV-05. These shallow impacts may be due to more recent incidental releases at the dispensers associated with normal vehicle fueling operations.

Based on a recent literature summary published in *Soil and Sediment Contamination* (Evaluation of Vapor Attenuation at Petroleum Hydrocarbon sites: Consideration for Site Screening and Investigations; 19:724-745, 2010) and provided by MEDEP, the potential for vapor intrusion impacts at this site appears to be is low. This assessment is based on the absence of petroleum in groundwater (where investigated) and the large unsaturated thickness of high permeability oxygenated sand soils which are conducive to biodegradation of petroleum in soil vapors.

5.0 CONCLUSIONS

5.1 HYDROGEOLOGIC INFLUENCES ON VAPOR MIGRATION

Soils

The permeable granular sand soils and large depth to groundwater at the site (34 feet) allow for vapor migration from two likely source areas: 1. a deep source of petroleum impacted soils beneath the current and former USTs, and 2. a shallow source in the area of the pump islands. The soils are well oxygenated as confirmed by both field and laboratory data. These conditions should also allow for rapid biodegradation of soil vapors migrating from sources. However, the low to moderate level detections in soil vapor indicate a source of petroleum remains at the site; site history and ongoing operations indicate soils beneath the USTs and pump islands as the most likely source areas.

Groundwater

There were no odor or PID indications of petroleum contamination at any of the four borings that extended into the water table and there were no MADEP VPH targets or fractions detected in groundwater at MW-1 located downgradient and closest to the USTs. It is possible that a narrow zone or stringer of groundwater contamination is flowing east through coarse sand soils directly toward Bond Brook and could serve as a source of soil vapor detections. However based on data collected for this study it is more likely that shallow (beneath pump islands) and deep residual (beneath USTs) soil contamination is the primary contributor to observed soil vapor detections.

5.2 PETROLEUM DISTRIBUTION AND RELATIONSHIPS BETWEEN MEDIA

With detections only in soil vapor, direct conclusions about the petroleum distribution between soil, soil vapor and groundwater are not possible. However, an elevated fingerprint of 1,3-butadiene and aliphatic hydrocarbons was detected at deep probes SV-02 and SV-04 near the water table, while a BTEX and napthalene finger print was detected in shallow probes near the dispensers and in the water line backfill. Benzene was highest in the water line backfill at SV-01.

5.3 PREFERENTIAL PATHWAYS, OFFSITE MIGRATION AND RECEPTORS

While the granular backfill of the water line may provide a preferential pathway for vapor migration, the permeability of the backfill did not appear to be largely different from the sand and gravel fill beneath the pavement. Offsite transport of soil vapor through the permeable soils appears likely providing adequate pressure and concentration gradients exist to drive transport. Soil borings did not identify groundwater contamination; any offsite migration in groundwater would be expected to be narrow and limited in strength.

Receptors at the site are limited to customers and workers at the store. Abutting possible receptors include residences southeast of the site. The Rockingham Electric site history as a coal tar site would make impacts from this Cumberland Farms site difficult to identify. Other structures exist south and south west of the site – no information about receptors at these properties was obtained although they are all greater than 100 feet from the Site.

5.4 CONCEPTUAL SITE MODEL CONFIRMATION AND UPDATE

Data collected for this VI investigation has allowed updating the Conceptual Model to include both shallow and deep sources of soil contamination that likely contribute to the observed soil vapor distribution. The strength (volume and concentration) of the soil sources is not known.

5.5 DATA GAPS AND RECOMMENDATIONS

While soil vapor exceedences of Maine's G-1 soil gas targets were not large (most were less than a factor of 5), confirming the presence and strength of the two suspected sources would provide a better understanding of the relationship between detected soil vapors and the two apparent sources at the site. The following recommendations are offered for consideration:

- 1. Install one angled boring beneath the USTs and one beneath the pump island to intercept and sample soil and possible groundwater contamination beneath these source areas.
- 2. Collect a subslab sample from the store during the heating season ensuring a tight seal to measure influences of the building stack effect on soil vapor pressure, migration and possible intrusion.

Tables

								Table	1						
								Immary of Soil Va							
							Α	ugusta Cumberla	nd Farms 1829						
								14-Apr-	-11						
			FIELD		PID			MADEP-APH	MADEP-APH	MADEP-APH					
			CARBON	FIELD	SOIL GAS	MADEP-APH	MADEP-APH	C5-C8 ALIPHATIC		C9-C12 ALIPHATIC	MADEP-APH	MADEP-APH	MADEP-APH	MADEP-APH	MADEP-APH
			DIOXIDE	OXYGEN	SCREEN	1,3-BUTADIENE	BENZENE	HYDROCARBONS		HYDROCARBONS		M.P-XYLENE	NAPHTHALENE	O-XYLENE	TOLUENE
Point	Sample Date	Depth	%	%	ppm	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3	UG/M3
SV-01	9/9/2010	ambient	0.76	20.9											
SV-01	9/9/2010 10:12 AM	2	5	19	0.5										
SV-01	9/9/2010 10:36 AM	2	5	18.7		5.4	22	600	41	190	5.4	8.8	3.1	3.3	44
SV-02	9/9/2010	ambient	0.49	20.8											
SV-02	9/9/2010 1:52 PM	31	5	13.5	2										
SV-02	9/9/2010 2:05 PM	31	5	13.4		22	7.9	5100		65					6.6
01/ 00	0/0/0040														
SV-03	9/9/2010 9/10/10 10:44 AM	0.5	1	20.8 19.6	0.1										
SV-03 SV-03	9/10/10 10:44 AM		0.0005	19.6	0.1			170		28					
00-00	3/10/10 11.10 AW	0.0	0.0003	13.0				170		20					
SV-04	9/9/2010	ambient	0.49	20.8											
SV-04	9/9/2010 3:19 PM	31	5	14.4	1.4										
SV-04	9/9/2010 3:38 PM	31	5	12.7		26	8	1000	99	270	13	19		7	19
SV-05	9/9/2010	ambient	0.49	20.8											
SV-05	9/9/2010 3:21 PM	7	5	19	0.7										
SV-05	9/9/2010 3:36 PM	7	5	17.3			6.5	900	300	750	40	71	17	26	67
MAINE RE	SIDENTIAL MULTI-CO	NTAMINAN	T CHRONIC S	SOIL GAS TA	RGET (G-1) =	4.1	15.5	2100	500	2100	48.5		3.6		50000
EXCEEDA	ANCE FACTOR (MAX C	ONCENTRA	TION/TARGE	T CONCENT	RATION) =	6.4	1.4	2.4	0.6	0.4	0.8		4.7		0.0
Notes:															
	ble 3 for complete Soil G		trusion Report	t, including an	alytes that we	ere not detected,	detection limits a	and data qualifiers.							
	y = parameter not detec														
 Bold er 	ntrees exceed target con	centration.													

Table 2 Augusta Cumberland Farms 1829 Groundwater Vapor Intrusion Report 14-Apr-11

Method		MADE	P-VPH			MADEP-VPH	MA	DEP-VPH			MADEP-	VPH		MADEP-VPH		MADEP-VPH			MADEP-VPH	
Parameter		BEN	ZENE		BENZE	NE, 1,4-DIBROMO-2-METHYL, FID	BENZENE, 1,4-DIE	BROMO-2-N	IETHYL, PID	C5-C8 /	ALIPHATIC HY	YDROCARBONS	C9-C10	AROMATIC HYDROCARBONS	C9-C12	2 ALIPHATIC HYDRO	CARBONS		ETHYLBENZENE	
Sample Point Sample Date Depth	Conc.	Reporting	Qualifier	Units	Conc.	Reporting Qualifier Units	Conc. Reporting	Qualifier	Units	Conc.	Reporting LQ	ualifier Units	Conc.	Reporting Qualifier Units	Conc.	Reporting Qualifier	Units	Conc.	Reporting Qualifier	Units
MW-1 9/9/2010 4:20 PM			2 U	UG/L	78	%	80		%		50 U	UG/L		10 U UG/L		50 U	UG/L		2 U	UG/L
CURRENT MAXIMUM EXPOSURE GUIDELINE	4	4		UG/L						300		UG/L	200	UG/L	700	0	UG/L	30		UG/L
MASSACHUSETTS GROUNDWATER STANDARD (GW-2)	200	0		PPB						3000		PPB	7000	PPB	5000	0	PPB	20000		PPB

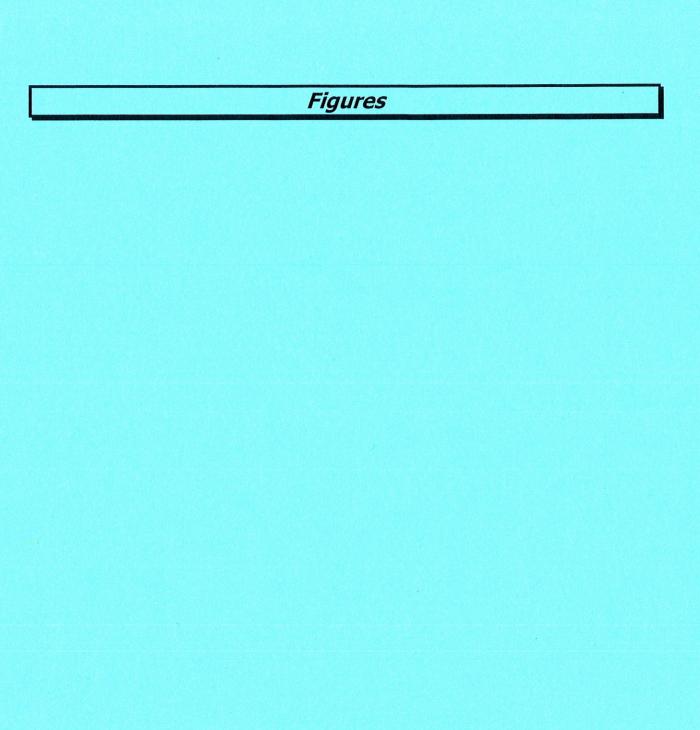
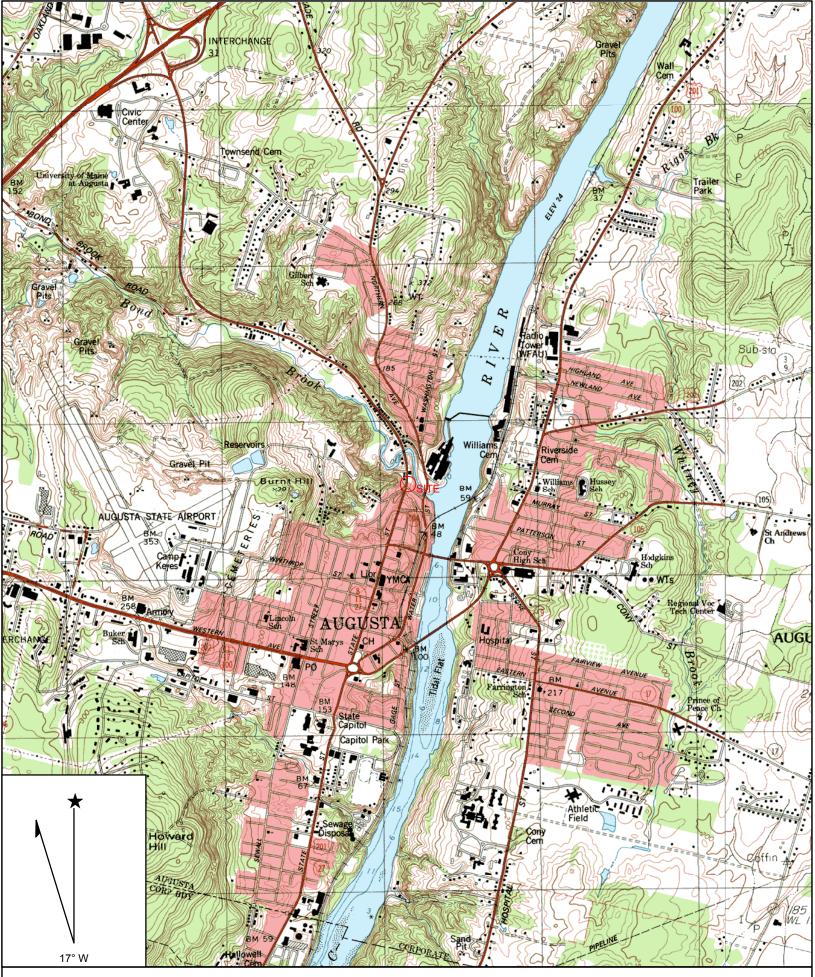

Method		MADE	EP-VPH		MA	DEP-VPH			MADEP-VPH			MADE	P-VPH			MADEP-VPH			EP-VPH			MADEF		
Parameter		M,P-X	YLENE		METHYL-TERT-	BUTYL ETH	IER (MTBE)		NAPHTHALENE			O-XY	LENE			TOLUENE		UNADJUSTED	C5-C8 ALIPH	IATICS	UNAD	DJUSTED C9-	-C12 ALIP	HATICS
Sample Point Sample Date Depth	Conc.	Reporting I	Lii Qualifier	Units	Conc. Reporting	Qualifier	Units	Conc.	Reporting Qualifier	Units	Conc.	Reporting	Qualifier	Units	Conc.	Reporting Qualifier	Units	Conc. Reporting	Qualifier	Units	Conc.	Reporting I	Qualifier	Units
MW-1 9/9/2010 4:20 PM			4 U	UG/L	2	2 U	UG/L		2 U	UG/L		2	U	UG/L		2 U	UG/L	5	0 U	UG/L		50	U	UG/L
CURRENT MAXIMUM EXPOSURE GUIDELINE					35		UG/L	10		UG/L					600		UG/L			1				
MASSACHUSETTS GROUNDWATER STANDARD (GW-2)					50000		PPB	1000)	PPB					50000		PPB							

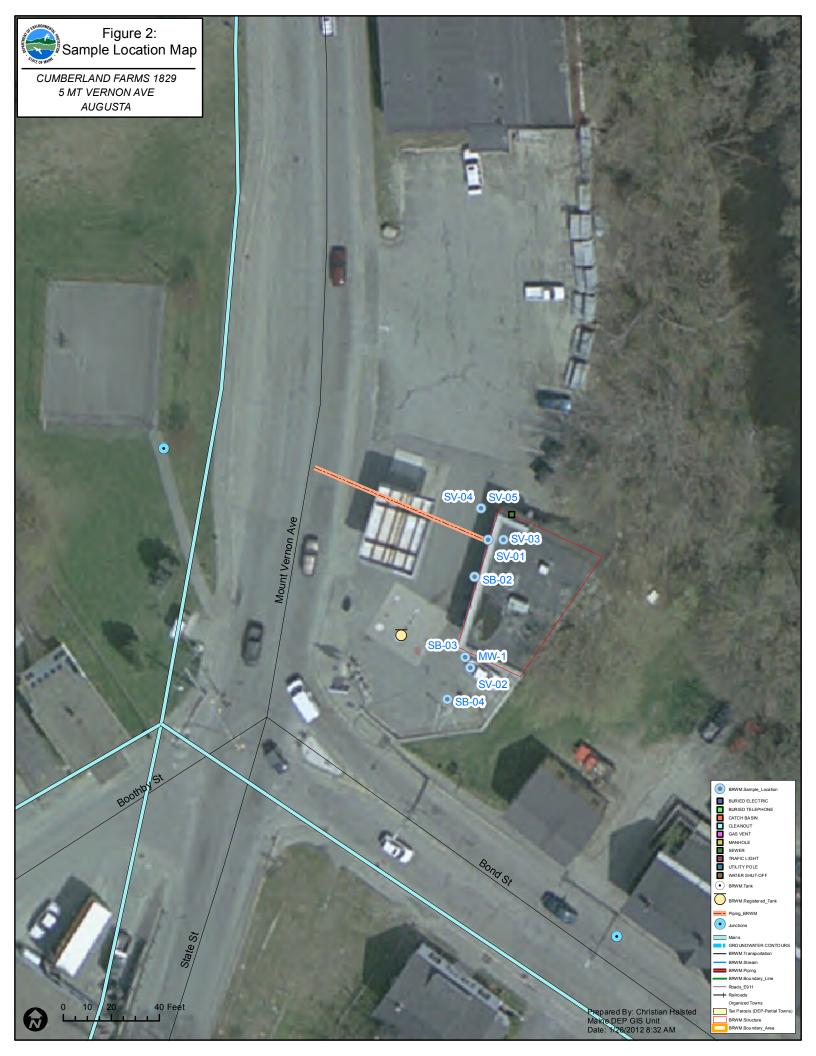
Table 3 Augusta Cumberland Farms 1829 Soil Gas Vapor Intrusion Report 14-Apr-11

Method		1	ED	A METHOD	30			EPA MET			1	EDA M	/ETHOD	30	- T		FIELI	<u> </u>	- 1	FIFI	D			FIELD		1		FIFI D		1		FIFI D		-	MAD	EP-APH			MADE	EP-APH	
Parameter				RBON DIO				METH			-		GEN GAS				ARBON D			METH			(OXYGEN GA	9			L GAS SCR	PEEN		SUBSI	JRFACE PRE	SSLIPE			TADIENE			BEN		
Tarameter			Report				Re	eporting				Reporting		<u> </u>			orting	IONIDE		 Reporting			Repo		<u> </u>		Reportir					orting	<u>500RE</u>		Reporting		1	F	Reporting	T	T
Sample Point	Sample Date Depth	Conc.	Limit		alifier Un	its Cor		mit	Qualifier	Units	Conc.	Limit	Qual	ifier Unit	ts Co			Qualifier	nits	Limit	Qualifier	Units	Conc. Limit		fier Units	Cond		Qualifi	ier Units	Conc.			fier Units	Conc.		Qualifier	Units		imit	Qualifier	
LAB DUPLICATE	9/9/2010	1.	.82	D	%			0.169	U	%	12	.1	D	%																					26 4	.4 D	UG/M3	8.2	4.4	.4 D	UG/M3
SV-01	9/9/2010															0.76		c)				20.9		%															1	1
SV-01	9/9/2010 10:12 AM 2															5		0		0.000001	U	%	19		%	0.0	0005		%												
SV-01	9/9/2010 10:36 AM 2	1.	.59	D	%			0.169	U	%	16	.6	D	%		5		c)				18.7		%										5.4	2	UG/M3	22		2	UG/M3
SV-01	10/13/2010																													0	0.005	LT	IN H20)						1	1
																																									T
SV-02	9/9/2010															0.49		0	,				20.8		%															1	1
SV-02	9/9/2010 1:52 PM 31															5		0	,	0.000001	U	%	13.5		%	0	.0002		%											1	1
SV-02	9/9/2010 2:05 PM 31	1.	.98	D	%			0.156	U	%	11.	.4	D	%		5		0	,				13.4		%										22	5 D	UG/M3	7.9	:	5 D	UG/M3
SV-02	10/13/2010																													0	0.005	LT	IN H20)							1
																																								1	1
SV-03	9/9/2010															1			,				20.8		%																1
SV-03	9/9/10 10:44 AM 0.5															5		c	,	0.000001	U	%	19.6		%	0.0	0001		%												1
SV-03	9/9/10 11:10 AM 0.5	0.	.18	D	%			0.158	U	%	17.	.9		%		0.0005		0	,				19.6		%											2 U	UG/M3			2 U	UG/M3
SV-03	10/13/2010																													0	0.005	LT	IN H20)							1
																																									1
SV-04	9/9/2010															0.49			,				20.8		%																1
SV-04	9/9/2010 3:19 PM 31															5			,	0.000001	U	%	14.4		%	0.0	0014		%												1
SV-04	9/9/2010 3:38 PM 31	2.	.85	D	%			0.216	U	%	11.	.7	D	%		5		c	,				12.7		%										26 4	.4 D	UG/M3	8	4.4	.4 D	UG/M3
SV-04	10/13/2010																													-0	0.015		IN H20)							1
1			1							1		1	1															1												1	1
SV-05	9/9/2010															0.49			,				20.8		%										_						1
SV-05	9/9/2010 3:21 PM 7									1		1				5			,	0.000001	U	%	19		%	0.0	0007		%								1				1
SV-05	9/9/2010 3:36 PM 7	2.	.81	D	%			0.245	υ	%	15	2	D	%		5			,				17.3		%										4	.8 U	UG/M3	6.5	4.8	.8 D	UG/M3
SV-05	10/13/2010	-	-	-				,			1		- F			-									12					-0	0.005		IN H20)	<u> </u>					1	1
										1		1																									1				1
MAINE RESIDENTIAL MULTI-CONTAN	MINANT CHRONIC SOIL GAS TARGET (G-1)		_							1	1	-1																						- 1	1.05		LIG/M3	15.5		+	LIG/M3


Method		Т	1		MADEP-A	PH	1		MADE	P-APH			MADEP	P-APH		1	MA	DEP-APH		1		MADEF	-APH		1	MADE	P-APH		1	MAD	EP-APH		T	MA	DEP-APH		—	MADEP-AF	Н			TO15	
Parameter			C5	5-C8 ALIF	PHATIC HYD	DROCARE	BONS	C9-C10 A	ROMATIC	HYDROCA	RBONS	C9-C12 AL	PHATIC I	HYDROC/	RBONS			LBENZEN	E			M.P-XY			METHYL	-TERT-BUT	TYL ETHER	R (MTBE)		NAPH	HALENE				XYLENE		+	TOLUEN			1.1.1-TRIC	CHLORO	ETHANE
				Repo	orting			R	eporting			Rep	orting				Reporting	3			Re	eporting			F	Reporting		l í		Reporting				Reportin	ng		-	Reporting			Reportin	ng	
Sample Point	Sample Date	Depth	Conc.	Limit	° Q	ualifier	Units 0	Conc. Li	imit	Qualifier	Units	Conc. Lim	it	Qualifier	Units	Conc.	Limit	Qualit	ier Units	Con	nc. Lir	imit	Qualifier	Units	Conc.	Limit	Qualifier	Units	Conc.	Limit	Qualifier	Units	Conc.	Limit	Qualifier	r Units	Conc.		lifier Units	Conc.	Limit	Qur	alifier Units
										1																											1						
LAB DUPLICATE	9/9/201	0	1(000	26 D		UG/M3	98	22	D	UG/M3	260	31	D	UG/M3	1	3	4.4 D	UG/N	//3	19	8.8	D	UG/M3		4.4	4 U	UG/M3		4	.4 U	UG/M3	7.	.3 4	4.4 D	UG/M3	15	4.4 D	UG/N	13	ſ	0.433 U	PPBV
SV-01	9/9/201																																										
SV-01	9/9/2010 10:12 A		2																																						_		
SV-01	9/9/2010 10:36 A	M	2 6	600	12		UG/M3	41	10		UG/M3	190	14		UG/M3	5.	.4	2	UG/N	//3	8.8	4		UG/M3		2	2 U	UG/M3	3.	1	2	UG/M3	3.	.3	2	UG/M3	4/	2	UG/N	.13		1.09 U	UG/M3
SV-01	10/13/201	0																																							_		
SV-02	9/9/201																																										
SV-02	9/9/2010 1:52 P		31																																								
SV-02	9/9/2010 2:05 P	M	31 5 ⁴	100	30 D		UG/M3		25	U	UG/M3	65	35	D	UG/M3			5 U	UG/N	//3		10	U	UG/M3		5	5 U	UG/M3			5 U	UG/M3			5 U	UG/M3	6.F	5 D	UG/N	.13		2.72 U	UG/M3
SV-02	10/13/201	0																																							_		
SV-03	9/9/201																																										
SV-03	9/9/10 10:44 A		0.5																																								
SV-03	9/9/10 11:10 A).5 [·]	170	12		UG/M3		10	U	UG/M3		28	1-	4 UG/M3			2 U	UG/N	//3		4	U	UG/M3		2	2 U	UG/M3			2 U	UG/M3			2 U	UG/M3		2 U	UG/N	13		1.09 U	UG/M3
SV-03	10/13/201	0																																									
SV-04	9/9/201																																										
SV-04	9/9/2010 3:19 P		31																																								
SV-04	9/9/2010 3:38 Pl		31 10	000	26 D	1	UG/M3	99	22	D	UG/M3	270	31	D	UG/M3	1	3	4.4 D	UG/N	//3	19	8.8	D	UG/M3		4.4	4 U	UG/M3		4	.4 U	UG/M3		7 4	4.4 D	UG/M3	15	4.4 D	UG/N	13		2.36 U	UG/M3
SV-04	10/13/201	0																																									
SV-05	9/9/201						-	-																		-																	
SV-05	9/9/2010 3:21 P		7																			-																					
SV-05	9/9/2010 3:36 Pl		7 9	900	29 D	1	UG/M3	300	24	D	UG/M3	750	34	D	UG/M3	4	10	4.8 D	UG/N	//3	71	9.6	D	UG/M3		4.8	вU	UG/M3	1	7 4	.8 D	UG/M3	2	46 4	4.8 D	UG/M3	67	4.8 D	UG/N	13		2.67 U	UG/M3
SV-05	10/13/201	0																																									
MAINE RESIDENTIAL MULTI-CONTAMI	INANT CHRONIC SOIL GAS TARGET (G-1)		2	100			UG/M3	500			UG/M3	2100			UG/M3	48.	.5		UG/N	//3					470			UG/M3	3.	6		UG/M3					50000)	UG/N	//3 50	000		UG/M3

Method					TO15			TO	015		TO15				TO15			TC	15			T015			TO	15			TO15		TO15			W	L	
Parameter				1,1-DICH	ILOROETHANE		1,1	1-DICHLOR	ROETHYLEN	NE	1,2-DIBROMOETHA	NE			1,2-DICHLOROE	THANE	C	CIS-1,2-DICHL	OROETH	IENE	1	TETRACHLOROETHYL	ENE	TR/	ANS-1,2-DICH	HLOROETHEN	E		ICHLOROETHYLEN	IE	VINYL CHLORIE	E		WATER LEV	EL DEPTH	
Sample Point	Sample Date	Depth	h Conc.	Reporting Limit) Qualifier	Units	Conc.	Reporting Limit	Qualifier	Units Cond	Reporting Limit Q	ualifier Ur	nits (Conc.	Reporting Limit Qu	alifier Units	Conc.	Reporting Limit	Qualifier	Units	Conc.	Reporting Limit Qualifier	Units	Conc.	Reporting Limit	Qualifier U	nits Co		eporting imit Qualifier	Units Conc.	Reporting Limit Qualif	er Units	Conc.	Reporting Limit	Qualifier	Units
																																		·'	└── ′	
LAB DUPLICATE	9/9			0	0.433 U	PPBV		0.433	3 U	PPBV	0.433 U	PF	PBV		0.433 U	PPBV		0.433	U	PPBV	3.8	4 0.433 D	PPBV		0.433	U PI	PBV		0.433 U	PPBV	0.433 U	PPBV		·'	 '	
SV-01	9/9																																34	·'	LT	FMP
SV-01	9/9/2010 10:1		2																															·'	 '	
SV-01	9/9/2010 10:3		2	0	0.809 U	UG/M3		0.792	2 U	UG/M3	1.54 U	UC	G/M3		0.809 U	UG/M3		0.792	U	UG/M3		1.36 U	UG/M3		0.792	U U	G/M3		1.07 U	UG/M3	0.511 U	UG/M3		·'	<u> </u>	
SV-01	10/13	3/2010																																·'	<u> </u>	
																																		·	1'	
SV-02		9/2010																															33.4	<u> </u>	LT	FMP
SV-02	9/9/2010 1:5		31																															<u> </u>	<u> </u>	
SV-02	9/9/2010 2:0	05 PM	31		2.72 U	UG/M3		1.98	3 U	UG/M3	3.84 U	UC	G/M3		2.02 U	UG/M3		1.98	U	UG/M3	48.	7 3.39 D	UG/M3		1.98	U U	G/M3		2.68 U	UG/M3	1.28 U	UG/M3		í,	1	
SV-02	10/13	3/2010																																í,	· · · ·	
																																		í,	· · · ·	
SV-03	9/9	9/2010																																		
SV-03	9/9/10 10:4	44 AM	0.5																																	
SV-03	9/9/10 11:1	10 AM	0.5	0	0.809 U	UG/M3		0.792	2 U	UG/M3	1.54 U	UC	G/M3		0.809 U	UG/M3		0.792	U	UG/M3		1.36 U	UG/M3		0.792	U U	G/M3		1.07 U	UG/M3	0.511 U	UG/M3				
SV-03	10/13	3/2010																																(;	,	
																																		(;	,	
SV-04	9/9	9/2010																															34	(;	LT	FMP
SV-04	9/9/2010 3:1		31																															(;	,	
SV-04	9/9/2010 3:3	38 PM	31		1.75 U	UG/M3		1.72	2 U	UG/M3	3.32 U	UC	G/M3		1.75 U	UG/M3		1.72	U	UG/M3	26.3	2 2.93 D	UG/M3		1.72	U U	G/M3		2.32 U	UG/M3	1.1 U	UG/M3		í – – – – – – – – – – – – – – – – – – –		
SV-04	10/13	3/2010																																(;	,	
																																		(;	,	
SV-05	9/9	/2010																								1							34		IT.	FMP
SV-05	9/9/2010 3:2		7						1		1 1						1	1		1	1			1	1	1 1									<u> </u>	
SV-05	9/9/2010 3:3		7		1.98 U	UG/M3		1.94	1 U	UG/M3	3.76 U	UC	G/M3		1.98 U	UG/M3		1.94	U	UG/M3		3.32 U	UG/M3		1.94	U U	G/M3		2.63 U	UG/M3	1.25 U	UG/M3			'	
SV-05	10/13								1								1	1			1			1	1								1			
	10/10								1		1 1						1	1		1	1			1	1	1 1							1			
MAINE RESIDENTIAL MULTI-CONTAMINANT CI	HRONIC SOIL GAS TARGET (G-1	1)		75		UG/M3	2100			UG/M3	0.205	UC	G/M3	4.7		UG/M3	65(0		UG/M3	20.5	5	UG/M3	650		U	G/M3	60		UG/M3	7.5	UG/M3	1		·	

Figure 1


Site Location Map

Name: AUGUSTA Date: 7/16/2010 Scale: 1 inch equals 2000 feet Location: 044° 19' 15.5" N 069° 46' 31.1" W Caption: Figure 1: Site Location Augusta Cumberland Farms Augusta, Maine

Figure 2

Sample Location Map

Appendices

Appendix A

Boring Logs and Monitoring Well Installation Log

		SUM	ИІТ		so	DIL BORIN	G LOG	Boring #:	B1
F	NVIRON	MENTAL CO		S. INC.	Project:	VI Investigatio		Project #:	10-3240
		640 Main		o, mo.	Location:	Cumberland Fa		Sheet:	1 of 2
	I	ewiston, Ma			Location.	Augusta, Main		Chkd by:	JKC
Drilling (EPI			Boring Locatio	0	-	5 bj.	3.00
Personn		Dave & Todd	1		Borning Education				
Summit		JBR			Date started:	9/9/2010	Date Completed:	9/9/2010	
DR	RILLING N		SA	MPLER		ESTIM	ATED GROUND WA	TER DEPTH	
Vehicle:		Geoprobe	Туре:	Dual Tube	Date	Depth	Reference	St	abilization
Model:		DT66	Hammer:	NA					
Method:	:	Direct Push	Fall:	NA					
Depth						SAMPLE			Field
(ft.)	No.	Pen/Rec (in)	Depth (ft)	Blows/6 in.		DESCRIPTI	-	Stratum	Screening (ppmv)
	S1	48/9	0-4		Brown silt, fin	e sand and grav	/el, dry (Fill)		1.1
_									
					_				
2_					_				
	<u> </u>				4				
-					4				
					4				
4_	S2	48/18	4-8			and cilt dry			0.6
	32	40/1ŏ	4-8		Olive-brown s	anu, siit, ury			0.0
-					-				
6					1				
0_					_				
					-				
	1				Brick at botto	m, dry (Fill)			
8						,			
	S3	48/36	8-12		Olive silt, moi	st			1.2
_									
10									
					1				
					1				
12									
	S4	48/36	12-16		Same as S3, r	noist			1.0
_									
					4				
14_									
					Brown silt, fin	e SAND with gr	avel		
	 				4				
14	<u> </u>				-				
16_	S5	48/27			Brown silt, fin	o SAND dry			0.9
	- 55	40/27			Thin 1" silt lay				0.7
	<u> </u>					0.5			
18					1				
				1	1				
		1			1				
				1	1				
20									
Granul	lar Soils	Cohesiv	ve Soils	% Composition	NOTES:				
Blows/ft.	Density	Blows/ft.	Consistency						
0-4	V. Loose	<2	V. soft						
4-10	Loose	2-4	Soft	1-10 trace			arts per million by v		
10-30	M.Dense	4-8	M. Soft	10-20 little	2. All samples	screened with	a MiniRae 3000 field	d portable PID	
30-50	Dense	8-15	Stiff	20-35 some					
>50	V. Dense	15-30	V. Stiff	>35 and					
		>30	Hard						

		SUM	ИІТ		so	DIL BORIN	G LOG	Boring #:	B1
E	NVIRON	IMENTAL CO	ONSULTANT	S, INC.	Project:	VI Investigation		Project #:	10-3240
		640 Main		,	Location:	Cumberland F		Sheet:	2 of 2
	I	Lewiston, Ma				Augusta, Main		Chkd by:	JKC
Drilling (EPI			Boring Locatio	0	-		
Personne		Dave & Todd			Doning Looutic	<u>.</u>			
Summit		JBR			Date started:	9/9/2010	Date Completed:	9/9/2010	
	ILLING		SA	MPLER			ATED GROUND WA		
Vehicle:		Geoprobe	Туре:	Dual Tube	Date	Depth	Reference		abilization
Model:		DT66	Hammer:	NA					
Method:		Direct Push	Fall:	NA					
Depth						SAMPLE	1		Field
(ft.)	No.	Pen/Rec (in)	Depth (ft)	Blows/6 in.		DESCRIPTI		Stratum	Screening (ppmv)
	S6	48/26	20-24		Brown silt, fin	e SAND with gr			0.5
	00	10/20	2021		(Fill-like)	o on the man give	avol, alg		0.0
- +					(**********				
22									
		1			1				
†					1				
24					1				
+	S7	48/26	24-28		Same as S6				0.9
+		1			1				
26		1		1	1				
28									
	S3	36/20	28-31		Same as S6				0.9
30]				
					Bottom of bor	ing @31'			
32									
					Two SV probe				
					SV-04 (7') and	d SV-05 (31')			
_									
34		-			4				
		-			4				
∣⊣		ļ			4				
					4				
36					4				
					4				
-					4				
		+			-				
38					-				
					-1				
-		1			-				
40					1				
	ar Soils	Cohesiv	ie Soile	% Composition	NOTES				I
			Consistency	76 Composition	NUTES:				
Blows/ft. 0-4	Density	Blows/ft.	,		4				
0-4 4-10	V. Loose	<2 2-4	V. soft Soft	1 10 +	1 Field serves	ning rosults in n	arts nor million buy	olumo (nomu)
	Loose M Dense		M. Soft	1-10 trace 10-20 little			arts per million by v a MiniRae 3000 field		
	M.Dense		M. Soft Stiff		2. All samples	su eeneu wiin		a portable PID	
30-50	Dense	8-15							
>50	V. Dense		V. Stiff	>35 and					
<u> </u>		>30	Hard						

		SUM	ИІТ		SC	DIL BORIN	G LOG	Boring #:	B2
F	NVIRON	IMENTAL CO	ONSULTANT	S. INC.	Project:	VI Investigatio		Project #:	10-3240
		640 Main		c, mo.	Location:	Cumberland Fa		Sheet:	1 of 2
	I	ewiston, Ma			20001011.	Augusta, Main		Chkd by:	JKC
Drilling (EPI			Boring Location	ě.	~	Stinka by.	31.0
Personn		Dave & Todd	1		BUTING LOCALIC	<u>.</u>			
Summit		JBR			Date started:	9/9/2010	Date Completed:	9/9/2010	
	RILLING N	-	541	MPLER	Date started.		ATED GROUND WA		
Vehicle:		Geoprobe	Туре:	Dual Tube	Date	Depth	Reference	1	abilization
Model:		DT66	Hammer:	NA	Date	Deptil	Reference	510	
Method:		Direct Push	Fall:	NA					
Depth		Direct i usii	r un.	10/1		SAMPLE			Field
(ft.)	No.	Pen/Rec (in)	Depth (ft)	Blows/6 in.		DESCRIPTI	ON	Stratum	Screening (ppmv)
(11.)	S1	48/24	0-4	Diows/o in.	Brown silt SA	ND, little gravel		Strutum	0.4
	- 51	40/24	0-4		DIOWIT SIIL, SP	ind, intic graver	, ary (rin)		0.4
-					-				
2					-				
					with silt and f	ine SAND @ bot	tom		
-						Inc JAND @ DU	tom		
4					1				
4-	S2	48/16	4-8		Light olive silt	dry			0.5
	52	40/10	U		Light onve sin	, ury			0.5
-					1				
6					Silt SAND tr	ace gravel, dry v	with dark		
°-					brown/black S				
					DIOWINDIACK S				
-					1				
8					1				
°-	S3	48/2	8-12		Olive brown S	IIT dry			1.1
	- 55	40/2	0-12		Onve brown s	iner, ary			1.1
_									
10									
10_					-				
					-				
_					1				
12					1				
'	S4	48/1	12-16		Olive silt fine	SAND			NS
	54	40/1	12 10		Onve sitt fille	5/110			113
-									
14				1	1				
		1			1				
		1			1				
_					1				
16					1				
	S5	48/24			Brown fine-m	edium SAND, dr	v		0.7
					1		,		
-				1	1				
18					1				
	1				1				
					1				
-					1				
20					1				
	lar Soils	Cohesiv	e Soils	% Composition	NOTES:				
Blows/ft.		Blows/ft.	Consistency						
0-4	V. Loose	<2	V. soft		1				
4-10	Loose	2-4	Soft	1-10 trace	1. Field scree	ning results in n	arts per million by v	volume (ppmv)).
10-30	M.Dense	4-8	M. Soft	10-20 little			a MiniRae 3000 field		
30-50	Dense	8-15	Stiff	20-35 some	samples			1	
	V. Dense		V. Stiff	>35 and					
>50									

		SUM	TIN		SC	DIL BORIN	G LOG	Boring #:	B2
E	NVIRON	IMENTAL CO	ONSULTANT	S, INC.	Project:	VI Investigatio	on	Project #:	10-3240
		640 Main		,	Location:	Cumberland F		Sheet:	2 of 2
	I	_ewiston, Ma				Augusta, Main		Chkd by:	JKC
Drilling (EPI			Boring Location	<u> </u>		·	
Personn		Dave & Todd							
Summit		JBR			Date started:	9/9/2010	Date Completed:	9/9/2010	
	RILLING	NETHOD	SA	MPLER			ATED GROUND WA		
Vehicle:		Geoprobe	Туре:	Dual Tube	Date	Depth	Reference	St	abilization
Model:		DT66	Hammer:	NA					
Method:	:	Direct Push	Fall:	NA					
Depth						SAMPLE			Field
(ft.)	No.	Pen/Rec (in)	Depth (ft)	Blows/6 in.		DESCRIPTI	ON	Stratum	Screening (ppmv)
	S6	48/24	20-24		Brown fine-m	edium SAND, tr	ace silt and		0.8
					gravel, moist				
22									
24									
	S7	48/27	24-28		Same as abov	/e			0.8
					_				
					4				
26					_				
_									
					4				
28					4				
	S8	48/27	28-32		Same as abov	/e, dry			0.5
_					4				
					iron stains				
30_					_				
					_				
-					_				
22					_				
32_					Pottom of ha	ring @ 22'			
					Bottom of bor	probe or well			
-					backnilleu, no	hone of well			
34					-				
54		<u> </u>			-				
		<u> </u>			-				
					1				
36					1				
	1	1			1				
					1				
					1				
38					1				
					1				
40									
Granul	lar Soils	Cohesiv	ve Soils	% Composition	NOTES:				
Blows/ft.	Density	Blows/ft.	Consistency						
0-4	V. Loose	<2	V. soft						
4-10	Loose	2-4	Soft	1-10 trace	1. Field scree	ning results in p	oarts per million by v	volume (ppmv).
10-30	M.Dense	4-8	M. Soft	10-20 little	2. All samples	screened with	a MiniRae 3000 field	d portable PID	l.
30-50	Dense	8-15	Stiff	20-35 some					
>50	V. Dense	15-30	V. Stiff	>35 and					
		>30	Hard						

		SUM	TIN		S	OIL BORIN	G LOG	Boring #:	B3/MW-1
E	NVIRON	IMENTAL CO	ONSULTAN	S, INC.	Project:	VI Investigation	n	Project #:	10-3240
		640 Main			Location:	Cumberland F		Sheet:	1 of 3
	L	_ewiston, Ma	ine 04240			Augusta, Main		Chkd by:	JKC
Drilling (Co:	EPI			Boring Location	on:			
Personn		Dave & Todd			Ű				
Summit	Staff:	JBR			Date started:	9/9/2010	Date Completed:	9/9/2010	
DR	RILLING N	METHOD	SA	MPLER		ESTIM	ATED GROUND WA	TER DEPTH	
Vehicle:		Geoprobe	Туре:	Dual Tube	Date	Depth	Reference	St	abilization
Model:		DT66	Hammer:	NA					
Method:	:	Direct Push	Fall:	NA					
Depth						SAMPLE			Field
(ft.)	No.	Pen/Rec (in)	Depth (ft)	Blows/6 in.		DESCRIPTI		Stratum	Screening (ppmv)
	S1	48/18	0-4		Gray silty SAN	ND with gravel d	ry (Fill)		0.3
_									
2									
					4				
	ļ				4				
					4				
4					4				
	S2	48/30	4-8			AND with gravel			0.6
					Black silt @ 5	' (Fill)			
,	ļ						le a tit a second		
6_	 	<u> </u>			-	ilt Fine SAND @	bottom dry		
					no odor				
-	<u> </u>				4				
					4				
8_	62	40/20	0.10			CAND			0.0
	S3	48/30	8-12		Olive silt Fine	SAND, moist			0.3
-					_				
10						/moist			
10_					Olive SILT dr	y/moist			
					Light brown F				
-						ITE SAND			
12					-				
	S4	48/30	12-16		light brown s	silt Fine-Very Fin	e SAND drv		0.4
		10/00	12 10		Light brown a		o on the, dry		0.1
_									
14	<u> </u>				1				
· · · -	1				1				
					1				
					1				
16									
	S5	48/10	16-20		Light brown F	ine SAND, dry			0.6
						-			
18					Same as S5 v	vith gravel			
					4				
					4				
20									
	lar Soils	Cohesiv		% Composition	NOTES:				
Blows/ft.	,	Blows/ft.	Consistency		4				
0-4	V. Loose		V. soft						
4-10	Loose	2-4	Soft	1-10 trace			arts per million by v		
10-30	M.Dense		M. Soft	10-20 little	2. All samples	s screened with	a MiniRae 3000 field	d portable PID).
30-50	Dense	8-15	Stiff	20-35 some	1				
>50	V. Dense		V. Stiff	>35 and	1				
		>30	Hard						

SUMMIT					SOIL BORING LOG		Boring #:	B3/MW-1	
E	ENVIRONMENTAL CONSULTANTS, INC. 640 Main Street			Project:	VI Investigation	n	Project #:	10-3240	
				Location:	Cumberland F		Sheet:	2 of 3	
	L	ewiston, Ma				Augusta, Main		Chkd by:	JKC
Drilling		EPI			Boring Locati	<u> </u>			
Personn		Dave & Todd	1		Doning 2004				
Summit		JBR	-		Date started:	9/9/2010	Date Completed:	9/9/2010	
	RILLING		SA	MPLER			ATED GROUND WA		
Vehicle:		Geoprobe	Туре:	Dual Tube	Date	Depth	Reference		abilization
Model:		DT66	Hammer:	NA					
Method:	:	Direct Push	Fall:	NA					
Depth	1					SAMPLE			Field
(ft.)	No.	Pen/Rec (in)	Depth (ft)	Blows/6 in.		DESCRIPTI		Stratum	Screening (ppmv)
(11.)	S6	48/9	20-24	Diows, o ini.	Light brown	SAND with grave		otratam	0.3
		10/7	20 24			with grave	i, trace sitt, dry		0.5
					_				
22					-				
~~_					-				
		-			1				
-					-				
24	┝───				4				
24	67	40./0	24.00		Sama as S/	with large group	@ hottom d=:		0.4
	S7	48/9	24-28		Same as S6 V	vith large gravel	e bollom, ary		0.6
-					4				
	-				-				
26		-							
		-							
_									
					Dark brown s	ilt @ 27' (~1")			
28					-				
	S8	48/9	28-32		Same as S7				0.5
_					Medium brow	n iron staining			
30									
_									
32									
	S9	48/9	32-36		Brown silty S	AND with gravel	, iron stains, dry		0.9
]				
34					1				
]				
-]				
]				
36]				
	S10	48/0	36-40		No recovery				No sample
]				
_]				
38]				
]				
_					1				
]				
40									
Granu	ılar Soils	Cohesiv	ve Soils	% Composition	NOTES:				
Blows/ft.	Density	Blows/ft.	Consistency						
0-4	V. Loose	<2	V. soft]				
4-10	Loose	2-4	Soft	1-10 trace	1. Field scree	ning results in p	arts per million by v	volume (ppmv)).
10-30	M.Dense	4-8	M. Soft	10-20 little			a MiniRae 3000 field		
30-50	Dense	8-15	Stiff	20-35 some					
>50	V. Dense		V. Stiff	>35 and					
				1	•				

SUMMIT					so		G LOG	Boring #:	B3/MW-1
E	ENVIRONMENTAL CONSULTANTS, INC. 640 Main Street			Project:	VI Investigatio		Project #:	10-3240	
				Location:	Cumberland Fa		Sheet:	3 of 3	
	Lewiston, Maine 04240			Augusta, Maine		Chkd by:	JKC		
Drilling		EPI			Boring Locatio	ě.			•
Personn		Dave & Todd	1						
Summit		JBR			Date started:	9/9/2010	Date Completed:	9/9/2010	
DF	RILLING N	METHOD	SA	MPLER		ESTIM	ATED GROUND WAT	FER DEPTH	
Vehicle:		Geoprobe	Туре:	Dual Tube	Date	Depth	Reference	Sta	abilization
Model:		DT66	Hammer:	NA					
Method:	:	Direct Push	Fall:	NA					
Depth			-	-		SAMPLE			Field
(ft.)	No.	Pen/Rec (in)		Blows/6 in.		DESCRIPTI	ON	Stratum	Screening (ppmv)
	S11	48/0	40-44		No recovery				No sample
42									
					4				
_									
					4				
44					4				
	S12	48/0	44-48		No recovery				No sample
_			ļ		4				
					_				
46					_				
					_				
_					_				
	-				-				
48					D-# 61	in			
					Bottom of bor		+- 44.01		
_					Well set @ 44	.9', screen 29.9	to 44.9		
го					-				
50					-				
					-				
-					-				
52					-				
52					-				
					-				
_					-				
54		1			1				
· · · -		1			1				
		1	t	1	1				
					1				
56									
58									
					_				
_					4				
					4				
60									
	Granular Soils Cohesive Soils % Composition		NOTES:						
Blows/ft.	,	Blows/ft.	Consistency		4				
0-4	V. Loose	<2	V. soft						
4-10	Loose	2-4	Soft	1-10 trace			arts per million by v		
10-30	M.Dense	4-8	M. Soft	10-20 little	2. All samples	screened with a	a MiniRae 3000 field	I portable PID	
30-50	Dense	8-15	Stiff	20-35 some					
>50	V. Dense		V. Stiff	>35 and					
		>30	Hard		<u> </u>				

SUMMIT					SOIL BORING LOG			Boring #:	ring #: B4	
F	ENVIRONMENTAL CONSULTANTS, INC.				Project:	VI Investigatio		Project #:	10-3240	
		640 Main		10, INC.	Location:	Cumberland F		Sheet:	1 of 2	
	ı	ewiston, Ma				Augusta, Main		Chkd by:	JKC	
Drilling (EPI	111E 04240		Boring Locatio	0		CHIKU DY.	JVC	
Personne		Dave & Todo	4		Boring Locatio	<u>n:</u>				
Summit		JBR	1		Date started:	9/9/2010	Data Completed	9/9/2010		
			C AI		Date starteu:		Date Completed:			
Vehicle:	RILLING		Туре:	MPLER Dual Tube	Dete	1	ATED GROUND WA	1	hilization	
Model:		Geoprobe DT66	Hammer:	NA	Date	Depth	Reference	56	abilization	
Method:		Direct Push	Fall:	NA						
Depth		Direct Fush	1 dll.	NA		SAMPLE			Field	
(ft.)	No.	Pen/Rec (in)	Depth (ft)	Blows/6 in.	_	DESCRIPT		Stratum	Screening (ppmv)	
(11.)	S1	48/16	0-4	DIOWS/0 III.	Brown grov E	ine SAND and c		Stratum	1.0	
	31	40/10	0-4		BIOWII, YIAY F	THE SAND and g	graver, ury (Fill)		1.0	
-					-				-	
2										
² -										
					-					
-			-		-					
4			-		-					
-	S2	48/36	4-8	+	Light brown si	ilty Fine SAND		1	1.0	
		10,00						1		
-					Dark brown	silty SAND				
6						AND, silt, moist				
Ŭ										
-					-					
8					-					
Ŭ	S3	48/36	8-12		Olive brown F	ine sandy SILT.	moist (perched)		0.8	
		10/00	0.12			ino sanaj sizi,	molet (perenea)		010	
_										
10										
					_					
									-	
					Lense of Fine-	medium SAND	@ bottom (2")			
12										
	S4	48/36	12-16		Olive SILT, sa	turated @ top			0.8	
						·				
1				T	1					
14					Light brown F	ine-medium SA	ND, dry			
1										
16										
i T	S5	48/27			Brown Fine SA	AND and GRAVE	EL, dry trace silt		0.8	
i _								1		
]					_			1		
18				ļ	4			1		
				 	4			1		
_		ļ		l	_					
					4					
20								1		
	Granular Soils Cohesive Soils % Composition		NOTES:							
Blows/ft.	,	Blows/ft.	Consistency		4					
0-4	V. Loose	<2	V. soft							
4-10	Loose	2-4	Soft	1-10 trace			arts per million by v			
10-30	M.Dense		M. Soft	10-20 little	2. All samples	screened with	a MiniRae 3000 field	I portable PID.		
30-50	Dense	8-15	Stiff	20-35 some						
>50	V. Dense		V. Stiff	>35 and						
		>30	Hard							

SUMMIT					so	DIL BORIN	G LOG	Boring #:	B4
E	ENVIRONMENTAL CONSULTANTS, INC. 640 Main Street			Project:	VI Investigatio		Project #:	10-3240	
-				Location:	Cumberland Fa		Sheet:	2 of 2	
	Lewiston, Maine 04240			Augusta, Maine		Chkd by:	JKC		
Drilling		EPI			Boring Locatio				
Personn		Dave & Todd	1		Location				
Summit		JBR			Date started:	9/9/2010	Date Completed:	9/9/2010	
DF	RILLING	METHOD	SA	MPLER			ATED GROUND WAT	FER DEPTH	
Vehicle:		Geoprobe	Туре:	Dual Tube	Date	Depth	Reference	Sta	abilization
Model:		DT66	Hammer:	NA					
Method:	:	Direct Push	Fall:	NA					
Depth						SAMPLE			Field
(ft.)	No.	Pen/Rec (in)	Depth (ft)	Blows/6 in.		DESCRIPTI	ON	Stratum	Screening (ppmv)
	S6	48/27	20-24		Brown SAND a	and GRAVEL, tra	ice silt, dry		0.5
22									
24					1				
	S7	24/10	24-26		Same as S6				0.5
_					1				
26	ļ	<u> </u>	ļ						
					Refusal @ 26'				
_					_				
					_				
28									
	S3	36/20	28-31		Same as S6				0.9
					_				
					_				
30_					_				
					_				
-					Bottom of bor	ing @21'			
32					Bottom of bot	ing @31			
52 -					Two SV probe	s installad:			
					SV-04 (7') and				
-									
34	<u> </u>	1			1				
l - · -	1	1	1		1				
					1				
					1				
36]				
I									
					1				
38					1				
		ļ	ļ		4				
					4				
					4				
40			L		NOTEC				
	Granular Soils Cohesive Soils % Composition		NOTES:						
Blows/ft.	,	Blows/ft.	Consistency		4				
0-4	V. Loose		V. soft		1 5-11				`
4-10	Loose	2-4	Soft	1-10 trace			arts per million by v		
10-30	M.Dense		M. Soft	10-20 little	2. All samples	screened with a	a MiniRae 3000 field	i portable PID).
30-50	Dense	8-15	Stiff	20-35 some					
>50	V. Dense		V. Stiff	>35 and					
		>30	Hard						

ENVIRONMENTAL CONSULTANTS, INC. 640 Main Street lewiston, Maine 04240 Project: Curberband Farms Augusta, Maine Project: Curberband Farms Augusta, Maine Project: Curberband Farms Chick by: JCC 1 of 1 Augusta, Maine Drilling Co: Summit Staff: JBR Date started: Protective Readbox 9/9/2010 Date Completed: Protective Surveyor: NA 9/9/2010 Flush-mounted Readbox Stratum from soil boring log Date started: Protective Casing: Top of Iner casing: Top of Iner casing: Cound Surface: Top of Iner casing: Top of I		SUMMIT		WELL C	OMPLETION	I LOG	Well #:	MW-1
640 Main Street lewiston, Maine 04240 Location: Cumberland Farms Augusta, Maine Dates started: 5 heet: Augusta, Maine Dome 1 of 1 Summit Staff: Dome Dome Date started: 9/9/2010 Date Completed: 9/9/2010 Summit Staff: JBR Date started: 9/9/2010 Date Completed: 9/9/2010 34' BGS Depth (ft) Flush-mounted Roadbox Stratum from soil boring log Reference (MSL or TBM): Or op of Inner casing: Ground Surface: 9/9/2010 34' BGS 3 Image: Stratum from soil boring log Silty-SAND WELL CONSTRUCTION DETAILS 4 Silty SAND WELL CONSTRUCTION DETAILS Diameter (m.): 6' Concrete Seal (gal): 1.5 12 Image: Stratum from soil filter Sand SaND WELL CASING AND SCREEN Concrete Seal (gal): 1.5 18 Beintonitie SAND SAND WELL CASING AND SCREEN Concrete Seal (gal): 1.5 Stratum filter Sand 24 Image: Sand SaND with Gravel Stratum filter Sand Stratum filter Sand Stratum filter Sand 34 Bettom of boring @ 48' SAND with Gravel Stratum filter Sand Stratum filter Sand	ENVIRO		ANTS, INC.					10-3240
Junital Staff: Junital Staff								
Drilling Co: EV Foreman: Dianne Summit Staff: JBR Dets started: 9/9/2010 Date started: 9/9/2010 Reference (MSL or TBM); 9/9/2010 3 Ground Surface; 3 Cround Surface; 15 Sitty SAND 16 Sitty SAND 17 Filter Sand 18 Filter Sand 21 Filter Sand 21 Filter Sand 23 Filter Sand 34 Ground Surface; 24 SAND 25 SAND 26 SAND 27 Sand 30 Ground Surface; 31 Filter Sand 24 Sand 24 Sand 24 Sand 25 Sand 34 Ground Surface; 35 Sand 36 Sand 37 Ground Surface; 38 Ground Surface; 39 Ground Surface;								
Foreman: Dione Summit Staff: JBR Date started: 9/9/2010 Date Completed: 9/9/2010 Restriction Stratum REFERENCE LLEVATIONS GW ELEVATIONS Depth Flush-mounted Stratum Reference (MSL or TBM): 9/9/2010 34' BGS 0 Silty-SAND WELL CONSTRUCTION DETAILS 9/9/2010 34' BGS 10 Filter Sand Silty-SAND PROTECTIVE CASING Type (Standpice or roadbox: roadbox: coadbox) 12 Filter Sand Silty SAND PROTECTIVE CASING Use of the same same same same same same same sam	Drilling Co:	EPI		Well Location:	-			
Flush-mounted Roadbox Stratum from soil boring log Reference (MSL or TBM): Top of Protective Casing: Ground Surface: GW ELEVATIONS Date GW ELEVATIONS Elevations 3 (ft) Bentonitie Sitratum from soil Top of Protective Casing: Ground Surface: 9/9/2010 34' BGS 9 12 12 15 15 18 24 24 24 33 34 35 24 34 35 34 35 35 35 36 35 36 35 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 36 35 36 36 36 36 36 36 36 36 36 37 38 37 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38	Foreman:	Dionne						
Flush-mounted Roadbox Stratum from soil boring log Surveyor: NA Date Elevation Reference (MSL or TBM): 9/9/2010 34' BGS 10 Bentonitie Silly-SAND WELL CONSTRUCTION DETAILS 3 Bentonitie Silly-SAND WELL CONSTRUCTION DETAILS 9 Filter Sand WELL CASING AND SCREN 12 Filter Sand Silly SAND 13 Bentonite SAND 14 Bentonite SAND 15 Filter Sand WELL CASING AND SCREN 16 Filter Sand Well CASING AND SCREN 17 Filter Sand SAND 18 Bentonite SAND 34 Bottom of boring @ 48' SAND with Gravel 42 GROUT Type (filter sand. betonite, etc.): bentonite 35 SAND with Gravel GROUT GROUT 44 Graud betow ground surface (fi.): 0.1 1.2 45 Soltom of boring @ 48' Volume of water (qa): 1.34 56 Soltom of boring @ 48' Volume of water quarked: 1.5 galons 57 Gold Well DEVELOPMENT DETAILS Method of development:	Summit Staff:	JBR		Date started:	9/9/2010	Date Comp	pleted:	9/9/2010
Roadbox Stratum from soil boring log Reference (MSL or TBM): Top of Protective Casing: Ground Surface: 9/9/2010 34' BGS 3 4 5 9 9 9 12 12 12 12 12 12 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14								
Top of Protective Casing: Top of Protective Casing: Top of Inner casing: Top of Inn				5				
Depth boring log Top of inner casing: Ground Surface: Image: Concrete Seal (ga): 3 Silty-SAND WELL CONSTRUCTION DETAILS 4 Silty-SAND PROTECTIVE CASING 9 Filter Sand Silty SAND 12 Silty SAND PROTECTIVE CASING 12 Silty SAND UP (Standpipe or roadbox): roadbox 12 Silty SAND Diameter (n.): 6* 13 Bentonitie SAND 14 Bentonitie SAND 15 Sand Sity Sand 16 Sand Sand 17 Filter Sand Sand 18 Bentonitie SAND 19 Sand Sand 21 Filter Sand Sand 22 Sand Sand 33 Sand Sand 34 Native Cave-In Sand 35 Sand Sand 36 Sand Sand 37 Sand Sand 42 Sand Sand 43 Sand Sand		Roadbox			. ,		9/9/2010	34' BGS
(ft) Ground Surface: 3 Bentanite Silty-SAND 4 Silty-SAND PROTECTIVE CASING 7 Silty SAND PROTECTIVE CASING 9 Filter Sand Silty SAND 12 Silty SAND WELL CONSTRUCTION DETAILS 13 Bentanite Silty SAND 14 Filter Sand Silty SAND 15 Silty SAND WELL CASING AND SCREEN 16 Filter Sand SAND 17 Filter Sand SAND 18 Bentanite SAND 19 Filter Sand SAND 10 Interval below ground surface (tt): 0.29.9 24 Filter Sand SAND with Gravel 33 Native Cave-In SAND with Gravel 34 Native Cave-In SAND with Gravel 35 GROUT Type: 39 GROUT Type (filter sand, bentonite et.): bentonite 33 GROUT Type (filter sand, bentonite et.): bentonite 34 Dual Total feet of wate: 10.90 54 Sottom of boring @ 48'								
3 Bentonite Silty-SAND WELL CONSTRUCTION DETAILS 6 with gravel (Fill) PROTECTIVE CASING 9 Silty SAND Diameter (n.): Concrete Seal (gal): 1.5 12 Silty SAND WELL CONSTRUCTION DETAILS Diameter (n.): Concrete Seal (gal): 1.5 12 Silty SAND Silty SAND WELL CASING AND SCREEN Schedule: 40 40 40 15 Bentonite SAND Schedule: 40			boring log					
3 Silty-SAND with gravel (Fill) PROTECTIVE CASING 9 Filter Sand Silty SAND 12 Silty SAND Diameter (n.): 13 Bentonite SAND 14 Filter Sand WELL CASING AND SCREEN 15 Materiai: PVC 16 SAND Well CASING AND SCREEN 17 Filter Sand Well Casing And Casing Concrete Seal (gai): 18 Bentonite SAND 24 Filter Sand SAND 27 Sand With Gravel Filter And Seal 38 Native Cave-In SAND with Gravel 39 GOUT Sand bentonite 39 Sand bentonite (gai): Sand bentonite 48 Sand bentonite (gai): Sand bentonite 48 Sature Gave-In Sand bentonite 51 Bottom of boring @ 48' Sand bentonite 54 Sature Gave-In Sand bentonite 54 Sature Gave-In Sature Gave-In 60 Well Development Water (gai): Sature Gave-In	(ft.)							
6 9	2	Bentonite			WELL CONST	RUCTION	DETAILS	
6 9 Type (Standpipe or roadbox): roadbox): for the construction of the constrend of the constrend of the	3				DDOTE			
9 Image: Silty SAND Silty SAND Diameter (in.): 6* Ength (in.): 8* 12 Filter Sand SAND WELL CASING AND SCREEN 18 Bentonite SAND Well CASING AND SCREEN 18 Filter Sand SAND Schedule: 40 40 21 Filter Sand Interval below ground surface (ft): 0.29.9 15.0 24 Filter Sand SAND Solve (in.): 1" 1" 24 Filter Sand SAND Solve (in.): 0.1 1" 24 Filter Sand SAND Solve (in.): 0.1 1" 1" 24 Filter Sand SAND Solve (in.): 0.1 1" 1" 1" 26 Native Cave-In SAND with Gravel Filter Sand behonite Solve (in.): 0.1 1.1 33 Native Cave-In SAND with Gravel GROUT Type: sand behonite Solve (in.): 1.2 1.1 42 Solve (in.): 0.2 Solve (in.): 0.2 Solve (in.): 1.2 1.2 1.2 44 Solve (in.): 0.2 Solve (in.): 0.2 Solve (in.): 0.2 1.2 1.2 51	4		with graver (Fill)	т.				
9 Silty SAND 12 Filter Sand 15 SaND 16 Bentonite 17 SaND 18 Bentonite 21 Filter Sand 21 Filter Sand 21 Filter Sand 22 Filter Sand 24 Filter Sand 27 Sand 30 Sand with Gravet 33 Native Cave-In 34 Native Cave-In 35 GROUT 39 GROUT 42 GROUT 43 Type (filter sand, bentonite, etc.): bentonite 51 GROUT 36 GROUT 37 Type (filter sand, bentonite, etc.): bentonite 51 GROUT 51 Grad there was uning point (ft): 34 51 Depth of well from measuring point (ft): 34 51 Depth of water evacuated: 1.5 gallons 52 Method of development: Waterra	°-							
12 Filter Sand Image: Concrete Seal (gal): Image: Concocrete Seal (gal): Image: Concocrete Seal (gal): Image:	9		Silty SAND			• • •		
12	7	Filter Sand						
WELL CASING AND SCREEN 15 18 18 21 21 24 24 24 24 24 24 30 33 34 35 36 37 36 37 38 39 42 42 43 Bottom of boring @ 48' 51 54 57 60	12				CONCIDENCE	, Joan (yai).	1.0	
15 Riser Screen 18 Bentonite SAND Materiai: PVC PVC 21 Filter Sand 1" 1" 1" 1" 1" 1" 24 Filter Sand Interval below ground surface (ft): 0-29.9 29.9.44.9 30 Native Cave-In SAND with Gravel Filter And below ground surface (ft): 0.29.9 29.9.44.9 33 Native Cave-In SAND with Gravel Filter Sand bentonite Site size (in.): 0.1 36 GROUT GROUT GROUT 1b 1b 39 GROUT Type (filter sand, bentonite, etc.): bentonite 1b 44 Bottom of boring @ 48' Volume of water (gal): 1.2 1b 51 Gold Total feet of water: 1.99 Volume of water (gal): 1.394 57 Gold Salons Method of development: Waterra					WELL CASI	NG AND SI	CRFFN	
Material: PVC PVC Schedule: 40 40 21 Filter Sand Diameter (in.): 1" 24 Filter Sand Interval below ground surface (ft): 0-29.9 29.9-44.9 30 Interval below ground surface (ft): 0-29.9 29.9-44.9 30 SAND with Gravel Filter AND SEAL MATERIALS Filter Seal 31 Native Cave-In SAND with Gravel GROUT Type: sand bentonite 32 Native Cave-In SAND with Gravel GROUT Type (filter sand, bentonite, etc.): bentonite 33 Bottom of boring @ 48' Water level from measuring point (ft): 34 Depth of well from measuring point (ft): 34 48 Bottom of boring @ 48' Total feet of water: 10.90 Volume of water (ga): 1.394 54 GROUT Total feet of water: 1.5 gallons Method of development: Waterra	15		- <u></u>					Screen
18 Bentonite SAND 21 Filter Sand 1" 24 Filter Sand 1" 27 Interval below ground surface (ft): 0.29.9 30 SAND with Gravel Filter AND SEAL MATERIALS 33 Native Cave-In Filter Sand Filter Seal 34 Native Cave-In SAND with Gravel GROUT 39 GROUT 1.1° 1.1° 42 GROUT 1.1° 1.1° 42 GROUT 1.1° 1.1° 44 Depth of boring @ 48' 1.1° 1.1° 51 Filter Sand 1.1° 1.1° 54 GROUT 1.1° 1.1° 54 Galaa 1.1° 1.1° 54 Galaa 1.394 1.394 57 Galaa 1.5 gallons Method of development: Waterra 60 Galaa 1.5 gallons 1.5 gallons						Material:		
21 Diameter (in.): 1" 1" 24 Filter Sand Length (ft): 29.9 15.0 27 Slot size (in.): 0.1 0.29.9 29.9.44.9 30 Slot size (in.): 0.1 Filter Seal 30 Native Cave-In SAND with Gravel Filter and bentonite Size: Size: 36 Interval below ground surface (ft): 0.17, 17-25 17-20 36 GROUT Type: Interval below ground surface (ft): 0.17, 17-25 39 GROUT GROUT Type (filter sand, bentonite, etc.): bentonite 42 Uniterval below ground surface (ft): 1.1 1 43 Bottom of boring @ 48' Water level from measuring point (ft): 34 51 Depth of well from measuring point (ft): 1.394 Volume of water evacuated: 1.5 gailons 46 Method of development: Waterra	18	Bentonite	SAND					
21 Filter Sand					Dia			
24 Filter Sand Interval below ground surface (ft): 0-29.9 29.9-44.9 27 Slot size (in.): 0.1 30 FILTER AND SEAL MATERIALS Filter Seal 33 Ouantity (bs.): Interval below ground surface (ft): 0-11 36 Ouantity (bs.): Interval below ground surface (ft): 0-11 36 Ouantity (bs.): Interval below ground surface (ft): 0-17, 17-25 36 Ouantity (gal. or lbs.): Interval below ground surface (ft): 1-2 42 Ouantity (gal. or lbs.): 1 lb Interval below ground surface (ft): 1-2 45 Water level from measuring point (ft): 34 Depth of well from measuring point (ft): 34 48 Bottom of boring @ 48' Volume of water evacuated: 1.5 gallons 54 Method of development: Waterra 60 Water level promeasuring point (ft): 34 60 Water and the evaluated in the provide of	21	n anarananan anaranan ang kanananan ang kanananan ang kanananan ang kanananan ang kanananan ang kanananan ang k						15.0
24 Slot size (in.): 0.1 27 Slot size (in.): 0.1 30 Filter Seal 30 SAND with Gravel Filter Seal 33 Native Cave-In SAND with Gravel GROUT GROUT 36 GROUT Interval below ground surface (ft): 0-17, 17-25 17-20 36 GROUT Type (filter sand, bentonite, etc.): bentonite Ouantity (gal. or lbs.): 1 lb 42 Interval below ground surface (ft.): 1-2 12 10-17, 17-25 17-20 45 Sand Bottom of boring @ 48' Value of water (gal): 1.10 1.12 48 Satter level from measuring point (ft): 34 34 1.12 1.2 48 Satter level from measuring point (ft): 34 1.394 1.394 1.394 54 Volume of water evacuated: 1.5 gallons Method of development: Waterra 60 Satter and the start and the sta		Filter Sand		Interva				
27	24							
30								
30 Type: sand bentonite 33 Native Cave-In SAND with Gravel GROUT 36 GROUT Interval below ground surface (ft): 0.17, 17-25 17-20 36 GROUT Type (filter sand, bentonite, etc.): bentonite 42 Interval below ground surface (ft.): 1-2' 45 Well Development Details 1-2' 48 Bottom of boring @ 48' Water level from measuring point (ft): 34 51 Depth of well from measuring point (ft): 1.394 54 Nethod of development: Waterra 57 Method of development: Waterra	27				FILTER AND	SEAL MAT	ERIALS	
33 Native Cave-In SAND with Gravel Size:							Filter	
33 Quantity (lbs.):	30							bentonite
36 GROUT 39 GROUT 42 GROUT 45 Unterval below ground surface (ft): 0-17, 17-25 17-20 GROUT GROUT Type (filter sand, bentonite, etc.): bentonite Ouantity (gal. or lbs.): 1 lb Unterval below ground surface (ft.): 1-2' Interval below ground surface (ft.): 1-2' WELL DEVELOPMENT DETAILS Water level from measuring point (ft): 34 Depth of well from measuring point (ft): 44.9 Interval feet of water: 10.90 Volume of water (gal): 1.394 Volume of water (gal): 1.394 Volume of water evacuated: 1.5 gallons Method of development: Waterra 60 Method of development: Waterra			SAND with Gravel					
36 GROUT 39 Type (filter sand, bentonite, etc.): bentonite 42 Quantity (gal. or lbs.): 1 lb 42 Interval below ground surface (ft.): 1-2' 45 Well Development Detrails 48 Water level from measuring point (ft): 34 48 Depth of well from measuring point (ft): 44.9 51 Total feet of water: 10.90 51 Volume of water (gal): 1.394 54 Method of development: Waterra	33	Native Cave-In						
39 GROUT 42 Type (filter sand, bentonite, etc.): bentonite 42 Quantity (gal. or lbs.): 1 lb 45 Interval below ground surface (ft.): 1-2' 45 WELL DEVELOPMENT DETAILS 48 Water level from measuring point (ft): 34 48 Depth of well from measuring point (ft): 44.9 51 Total feet of water: 10.90 51 Volume of water (gal): 1.394 54 Method of development: Waterra				Interva	I below ground s	surface (ft):	0-17, 17-25	17-20
39 Type (filter sand, bentonite, etc.): bentonite 42 Quantity (gal. or lbs.): 1 lb 45 Interval below ground surface (ft.): 1-2' 45 WELL DEVELOPMENT DETAILS 48 Water level from measuring point (ft): 34 Bottom of boring @ 48' Total feet of water: 10.90 51 Volume of water evacuated: 1.5 gallons 54 Method of development: Waterra 60 Method of development: Waterra	36							
42 Image: Constraint of the state of								
42 Interval below ground surface (ft.): 1-2' 45 WELL DEVELOPMENT DETAILS 48 Water level from measuring point (ft): 34 48 Depth of well from measuring point (ft): 44.9 51 Total feet of water: 10.90 51 Volume of water (gal): 1.394 54 Water level prometation of development: Waterra 60 Method of development: Waterra	39			Туре (
45 45 48 Bottom of boring @ 48' 51 54 57 60 WELL DEVELOPMENT DETAILS Water level from measuring point (ft): <u>34</u> Depth of well from measuring point (ft): <u>44.9</u> Total feet of water: <u>10.90</u> Volume of water (gal): <u>1.394</u> Volume of water evacuated: <u>1.5 gallons</u> Method of development: <u>Waterra</u>					5.0			
48 Water level from measuring point (ft): 34 48 Depth of well from measuring point (ft): 44.9 51 Total feet of water: 10.90 51 Volume of water (gal): 1.394 54 Volume of water evacuated: 1.5 gallons 57 Method of development: Waterra	42			Interval	below ground s	urtace (ft.):	1-2'	
48 Water level from measuring point (ft): 34 48 Depth of well from measuring point (ft): 44.9 51 Total feet of water: 10.90 51 Volume of water (gal): 1.394 54 Volume of water evacuated: 1.5 gallons 57 Method of development: Waterra								
48 Depth of well from measuring point (ft): 44.9 Bottom of boring @ 48' Total feet of water: 10.90 51 Volume of water (gal): 1.394 54 Volume of water evacuated: 1.5 gallons 57 60 60	45			Mictor Louis				
Bottom of boring @ 48' Total feet of water: 10.90 51 Volume of water (gal): 1.394 Volume of water evacuated: 1.5 gallons 54 Method of development: Waterra 57 60	40							
51 Volume of water (gal): 1.394 54 Volume of water evacuated: 1.5 gallons 57 Method of development: Waterra				Depth of We				
54 Volume of water evacuated: 1.5 gallons 57 Method of development: Waterra 60 60								
54 Method of development: Waterra 57 60			,		-			
57 60	54	54					ŭ	
60					method of de	veropriierit.	wateria	
60	57		·					
	3'-							
	60							
NOTES:	20							
	NOTES:		•	•				

Appendix B

Field Data Sheets

Soil Gas Sampling Field Sheet Maine DEP

Site Name:	Cumberland Farms	Sample Location Sketch	
Town:	Augusta		
Date:	9/9/10		
Sample I.D.:	SV-01		
Sampling Purpose	(Source)(Utility)(Migration) (Receptor) (Other)	170nd Street	
Sampling Personnel:	TTS/JC		
Project Manager	Eremita		
Collection Device:	(Summa Can) (Tedlar Bag)		
Sample Penetration Location:	(Ashphalt) (Concrete) (Soil)	2 SV-01 - W	
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)	SV-01	
Sample Depth:	2'		
Depth to Water:	34		
Suspected COCs:	(Petroleum) (Solvents)		
Cannister I.D.:	402		
Flow Control I.D.:)44		•
Flow control rate:	95		
O ₂ Ambient	20.9%		
CO ₂ Ambient	0.76%		
subsurface pressure/vacuum	(+/- inches of water column)		
Pre-Sample: O ₂	19%		
Pre-Sample CO ₂ :	5%		
Pre-Sample PID:	0,5ppm		
Pre-Sample CH ₄ :	0 % Volume, %LEL, PPM)		
Sample Initiation Time;	10:12		
Initial Vacuum:	-29"Hg		
Sample End Time:	10:36		
Final Vaccum:	-2		
Post Sample O ₂ :	18.779,00/0		
Post Sample CO ₂ :	5.00%		
Notes:	SV-01 is in San That runs	ndt gravel Backfill for Waterli. Under dispensers	, 1е

Soil Gas	Sampling	Field Sheet
	Maine DE	P

Site Name:	Cumberland Forms	Sample Location Sketch
Town:	Avausta	
Date:	9/9/10	Bondstreet
Sample I.D.:	SV-02	
Sampling Purpose	(Source)(Utility) (Migration) (Receptor) (Other)	<u></u> <u></u> <u></u> <u></u>
Sampling Personnel:	TS/JC Eremita	
Project Manager	Eremita	SB 3 M S S
Collection Device:	(Summa Can) (Tedlar Bag)	
Sample Penetration Location:	Ashphalt) (Concrete) (Soil)	
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)	The Difference of the second s
Sample Depth:	31'	
Depth to Water:	33,41	
Suspected COCs:	(Petroleum) (Solvents)	
Cannister I.D.:	455	
Flow Control I.D.:	158	
Flow control rate:	-NA	
O ₂ Ambient	20,8 %	
CO ₂ Ambient	0.49%	
subsurface pressure/vacuum	(+/- inches of water column)	
Pre-Sample: O ₂	13.5%	
Pre-Sample CO ₂ :	5,00	
Pre-Sample PID:	2, DAPM	
Pre-Sample CH ₄ :	(% Volume, %LEL, PPM)	
Sample Initiation Time:	1:52	
Initial Vacuum:	-30+"Hg	
Sample End Time:	2:05	
Final Vaccum:	-5 " Ha	
Post Sample O ₂ :	13.4%	
Post Sample CO ₂ :	5.00 %	
Notes:	:CO=28ppm	

Indoor Air/Subslab Sampling Field Sheet Maine DEP

ì

.

***** #

Site Name:	Cumberland Farms		-		Sa	amp	le L	.00	atio	n S	sketc	h					
Town:	Augusta																
Date:	9/9/10						į					ļ					
Sample I.D.:	SV-03						·	1	20	7	12		กม	00	p		
Project Manager:	Eremita							- [-			19	(<u> </u>	<u>ک</u>			
Sampling Personnel:	JC/75			-													
Collection Device:	(Summa Can) (Tedlar Bag)							<u></u>				≱⊢	╞	<u> </u>	_		
Sample Type:	(Subslab) (Indoor Air)												200			-	
Sampling Location:	Utility Room												22425				
Foundation Floor Type:	(Dirt) (Concrete)				1.4 million (1.4 m				~		 	ľ	3			5	
Foundation Wall Type:	(Concrete) (Block) (Stone) (Brick) (Slab on Grade)															15ers	2
Sump Hole:	(Yes) 🚺							••••••					Y			A	Æ
Penetrations in Floor:	(Sewer) (Water) (Gas) (Cracks) (Drains)						anter Jugar						3	·		Dis ren	~
Penetrations in Wall:	(Sewer) (Water) (Gas) (Electric) (Cracks)	grane ay of he	*	· · · · · · · · · · · · · · · · · · ·					- The second sec	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			Side			Р	Verne
Suspected COCs:	(Petroleum) (Solvents)				_								-)		Ve
Cannister I.D.:	235		<u></u>				-		 			-		00	•	-	4
Flow Control I.D.:	270	_					_		<u>\</u>			$\frac{1}{1}$	J ,.				NNr2,20
Flow control rate:	100				<u>_</u>				50-05		•		5				S
O ₂ Ambient	20.8%				-63	<u> </u>		•		<u>p</u>		+		}		· · · · ·	6
CO ₂ Ambient	1.00%				¢				_		<u>5</u>						
Pre-Sample: O ₂	19.6 %								(67						
Pre-Sample CO ₂ :	5.0 %					<u> </u>											
Pre-Sample PID:	OIPPM									·			-		_		
Pre-Sample CH ₄ :	0 40																
Sample Initiation Time:	10:44												Ļ				
Initial Vacuum:	-30 "45								6	20	\mathcal{X}		a v maa de veletieren a				
Sample End Time:	Ino '	—									_	1_					
Final Vaccum:	-2"14				,				2		1						
Post Sample O ₂ :	191090					and the second											
Post Sample CO ₂ :	5.00 %				<u> </u>			(<u> </u>	-	<u>. </u>		<u> </u>	
Notes/Observati	ons:																
	10/2" Cement Floo	r thi	kc Ki	nes	5												
L							•									-	

Soil Gas Sampling Field Sheet Maine DEP

Site Name:	(unhadau) Eaus		me					mla		ti	<u>.</u>	<u> </u>							
Town:	Cumberland Farms	I	r	1	1	5	am	pie i	LOC		on -	JKE I	etch	1	1	4	. 1	i	· 1
Date:	Augusta 9/9/10		. 		_ _		<u> </u>												
Sample I.D.:]											
Sample I.D Sampling	SV-05 (Source) (Utility) (Migration)					\mathbf{S}	P	e		5	5	1-	-6	Ð	4-				
Purpose	(Receptor) (Other)				×		······								_ ` _`				
Sampling Personnel:	MZ/JC								-										
Project Manager	MZ/JC Eremita							-	 										
Collection Device:	(Summa Can) (Tedlar Bag)									ļ									
Sample Penetration Location:	Ashphalt) (Concrete) (Soil)						1000 1 CALIMAN A 111 CAMPAN, 100-1												
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)						** ***********************************		 .								· · · · · · · · · · · · · · · · · · ·	 • ·	
Sample Depth:	' ' '										<u> </u>					<u> </u>			
Depth to Water:	34']				· · · · ·				v		1	happene						
Suspected COCs:	(Petroleum) (Solvents)					_											i		
Cannister I.D.:	887							1											
Flow Control I.D.:	0182								-										
Flow control rate:	100 m1/min								-			<u> </u>							
O ₂ Ambient	20.3%					·				ĺ						ļ			
CO ₂ Ambient	0.49%		47									<u> </u>					1		
subsurface pressure/vacuum	(+/- inches of water column)									-									
Pre-Sample: O ₂	197.			· · · · · · ·			Ţ				_					-			
Pre-Sample CO ₂ :	57,							. <u> </u>	<u> </u>										
Pre-Sample PID:	U. Zppm								<u> </u>										
Pre-Sample CH ₄ :	(% Volume, %LEL, PPM)								-		ļ								
Sample Initiation Time:	(M2) 3: 19 pm 3:21 pm																		
Initial Vacuum:	(m2) 30 TA Ha - 29 in	ły				Ļ	<u> </u>												
Sample End Time:	3=36pm							-	-										
Final Vaccum:	-4 in Ha		i.							-le -	12 mm=1 .	i		.			·		·
Post Sample O ₂ :	17.3%																		
Post Sample CO ₂ :	5%																		
pre si	mple co = 7ppm	*		15	ÌŅ	5	ha	, 5 i	vir	٤	fie	-	on	Н	-			-	
Notes:				1.	ט ~~~			ا مر ا	5-2-		فر ا	`	Start	•					
	ple CO = 15ppm			12	_) f`	(5		•			(2						
post som	ple CHy=0			_															

ź

Soil Gas Sampling Field Sheet Maine DEP

Site Name:	Cumberland Farms	Sample Location Sketch					
Town:	Augusta	- Z - J - Strept					
Date:	9/9/10	Bond Street					
Sample I.D.:	SV-04						
Sampling Purpose	(Source) (Utility) (Migration) (Receptor) (Other)						
Sampling Personnel:	MZ/JC						
Project Manager	Eremita						
Collection Device:	(Summa Can) (Tedlar Bag)						
Sample Penetration Location:	(Ashphalt) (Concrete) (Soil)	MGUNT Werner Briggensers Sidewalt					
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)	Cortino -					
Sample Depth:	31'						
Depth to Water:	34'						
Suspected COCs:	(Petroleum) (Solvents)						
Cannister I.D.:	1054	<u> </u>					
Flow Control I.D.:	0412						
Flow control rate:	100 million						
O ₂ Ambient	20.87,						
CO ₂ Ambient	0.49%						
subsurface pressure/vacuum	(+/- inches of water column)						
Pre-Sample: O ₂	14.4						
Pre-Sample CO ₂ :							
Pre-Sample PID:	1.4 ppm						
Pre-Sample CH ₄ :	O (% Volume, %LEL, PPM)						
Sample Initiation Time:	3:19pm						
Initial Vacuum:	-30in Hg						
Sample End Time	3=30pm						
Final Vaccum:							
Post Sample O ₂ :							
Post Sample CO ₂ :							
Notes:	-CO-26ppm ole CO-25ppm ole CHy=0	Short trading					

Appendix C

Laboratory Reports

ANALYTICAL REPORT

Lab Number:	L1014293
Client:	Summit Environmental 434 Cony Road Augusta, ME 04330
ATTN: Phone: Project Name: Project Number: Report Date:	John Cressey (207) 621-8334 AUGUSTA CUMBERLAND FARMS Not Specified 09/21/10

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:	AUGUSTA CUMBERLAND FARMS
Project Number:	Not Specified

 Lab Number:
 L1014293

 Report Date:
 09/21/10

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1014293-01	SV-04	AUGUSTA, ME	09/09/10 15:38
L1014293-02	SV-05	AUGUSTA, ME	09/09/10 15:36
L1014293-03	SV-02	AUGUSTA, ME	09/09/10 14:05
L1014293-04	SV-03	AUGUSTA, ME	09/09/10 11:10
L1014293-05	SV-01	AUGUSTA, ME	09/09/10 10:36

Project Name:	AUGUSTA CUMBERLAND FARMS
Project Number:	Not Specified

Lab Number: L1014293 **Report Date:** 09/21/10

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	YES
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES

Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES L

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:AUGUSTA CUMBERLAND FARMSProject Number:Not Specified

 Lab Number:
 L1014293

 Report Date:
 09/21/10

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

MCP Related Narratives

Canisters were released from the laboratory on August 23, 25, and 27, 2010. The canister certification data is provided as an addendum. The internal standards were within method criteria.

Volatile Organics in Air (Low Level)

L1014293-01, -02 and WG432800-5 Duplicate: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

L1014293-03 has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

Project Name: AUGUSTA CUMBERLAND FARMS Project Number: Not Specified

Lab Number: L1014293 **Report Date:** 09/21/10

Case Narrative (continued)

Petroleum Hydrocarbons in Air

L1014293-01, -02, and WG432801-5 Duplicate: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

L1014293-03 has elevated detection limits due to the dilution required by the elevated concentrations of nontarget compounds in the sample.

Fixed Gas

L1014293-01 through -05: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen in order to facilitate the transfer of sample to the Gas Chromatograph. The addition of Nitrogen resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

While M. im Kathleen O'Brien

Title: Technical Director/Representative

Date: 09/21/10

AIR

L1014293

09/21/10

Lab Number:

Report Date:

RY

Project Number: Not Specified

Analyst:

SAMPLE RESULTS

Lab ID: L1014293-01 D Date Collected: 09/09/10 15:38 Client ID: SV-04 Date Received: 09/14/10 Sample Location: Field Prep: AUGUSTA, ME Not Specified Matrix: Soil_Vapor 48,TO-15 Anaytical Method: Analytical Date: 09/16/10 21:47

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield Lat)						
Vinyl chloride	ND	0.433		ND	1.10			2.165
1,1-Dichloroethene	ND	0.433		ND	1.72			2.165
trans-1,2-Dichloroethene	ND	0.433		ND	1.72			2.165
1,1-Dichloroethane	ND	0.433		ND	1.75			2.165
cis-1,2-Dichloroethene	ND	0.433		ND	1.72			2.165
1,2-Dichloroethane	ND	0.433		ND	1.75			2.165
1,1,1-Trichloroethane	ND	0.433		ND	2.36			2.165
Trichloroethene	ND	0.433		ND	2.32			2.165
1,2-Dibromoethane	ND	0.433		ND	3.32			2.165
Tetrachloroethene	3.87	0.433		26.2	2.93			2.165

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	99		60-140
Bromochloromethane	99		60-140
chlorobenzene-d5	101		60-140

09/21/10

Lab Number:

Report Date:

Project Name: AUGUSTA CUMBERLAND FARMS

Project Number: Not Specified

Lab ID:	L1014293-02 D	Date Collected:	09/09/10 15:36
Client ID:	SV-05	Date Received:	09/14/10
Sample Location:	AUGUSTA, ME	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15		
Analytical Date:	09/16/10 22:58		
Analyst:	RY		

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	vel) - Mansfield Lab)						
Vinyl chloride	ND	0.490		ND	1.25			2.451
1,1-Dichloroethene	ND	0.490		ND	1.94			2.451
trans-1,2-Dichloroethene	ND	0.490		ND	1.94			2.451
1,1-Dichloroethane	ND	0.490		ND	1.98			2.451
cis-1,2-Dichloroethene	ND	0.490		ND	1.94			2.451
1,2-Dichloroethane	ND	0.490		ND	1.98			2.451
1,1,1-Trichloroethane	ND	0.490		ND	2.67			2.451
Trichloroethene	ND	0.490		ND	2.63			2.451
1,2-Dibromoethane	ND	0.490		ND	3.76			2.451
Tetrachloroethene	ND	0.490		ND	3.32			2.451

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	86		60-140
Bromochloromethane	91		60-140
chlorobenzene-d5	89		60-140

09/21/10

Lab Number:

Report Date:

Project Name: AUGUSTA CUMBERLAND FARMS

Project Number: Not Specified

Lab ID:	L1014293-03 D	Date Collected:	09/09/10 14:05
Client ID:	SV-02	Date Received:	09/14/10
Sample Location:	AUGUSTA, ME	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15		
Analytical Date:	09/16/10 23:32		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield Lat)						
Vinyl chloride	ND	0.500		ND	1.28			2.5
1,1-Dichloroethene	ND	0.500		ND	1.98			2.5
trans-1,2-Dichloroethene	ND	0.500		ND	1.98			2.5
1,1-Dichloroethane	ND	0.500		ND	2.02			2.5
cis-1,2-Dichloroethene	ND	0.500		ND	1.98			2.5
1,2-Dichloroethane	ND	0.500		ND	2.02			2.5
1,1,1-Trichloroethane	ND	0.500		ND	2.72			2.5
Trichloroethene	ND	0.500		ND	2.68			2.5
1,2-Dibromoethane	ND	0.500		ND	3.84			2.5
Tetrachloroethene	7.19	0.500		48.7	3.39			2.5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	92		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	97		60-140

09/21/10

Lab Number:

Report Date:

Project Name: AUGUSTA CUMBERLAND FARMS

Project Number: Not Specified

Lab ID:	L1014293-04	Date Collected:	09/09/10 11:10
Client ID:	SV-03	Date Received:	09/14/10
Sample Location:	AUGUSTA, ME	Field Prep:	Not Specified
Matrix:	Soil_Vapor		
Anaytical Method:	48,TO-15		
Analytical Date:	09/17/10 00:08		
Analyst:	RY		

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield Lab)						
Vinyl chloride	ND	0.200		ND	0.511			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Trichloroethene	ND	0.200		ND	1.07			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	99		60-140
chlorobenzene-d5	94		60-140

L1014293

09/21/10

Lab Number:

Report Date:

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L1014293-05 Date Collected: 09/09/10 10:36 Client ID: Date Received: SV-01 09/14/10 Sample Location: Field Prep: AUGUSTA, ME Not Specified Matrix: Soil_Vapor 48,TO-15 Anaytical Method: Analytical Date: 09/17/10 00:42 Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield Lab)						
Vinyl chloride	ND	0.200		ND	0.511			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Trichloroethene	ND	0.200		ND	1.07			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	110		60-140

Project Name: AUGUSTA CUMBERLAND FARMS

Project Number: Not Specified

 Lab Number:
 L1014293

 Report Date:
 09/21/10

Method Blank Analysis Batch Quality Control

Analytical Method:48,TO-15Analytical Date:09/16/10 17:06

	ppbV						Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level)	- Mansfield L	ab for sar	mple(s):	01-05 Batch:	WG43	2800-4		
Vinyl chloride	ND	0.200		ND	0.511			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.792			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Trichloroethene	ND	0.200		ND	1.07			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1014293 Report Date: 09/21/10

Project Name: AUGUSTA CUMBERLAND FARMS

Parameter	LCS %Recovery	Qual	LCSD %Recove	ery Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air (Low Level) - Mansfie	eld Lab Associat	ed sample(s): 01-05	Batch: WG4	432800-3			
Vinyl chloride	97		-		70-130	-		
1,1-Dichloroethene	98		-		70-130	-		
trans-1,2-Dichloroethene	89		-		70-130	-		
1,1-Dichloroethane	90		-		70-130	-		
cis-1,2-Dichloroethene	94		-		70-130	-		
1,2-Dichloroethane	97		-		70-130	-		
1,1,1-Trichloroethane	94		-		70-130	-		
Trichloroethene	96		-		70-130	-		
1,2-Dibromoethane	94		-		70-130	-		
Tetrachloroethene	96		-		70-130	-		

Project Name: AUGUSTA CUMBERLAND FARMS

 Lab Number:
 L1014293

 Report Date:
 09/21/10

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
olatile Organics in Air (Low Level) - Mansfield Lab	Associated sample(s): 01-05	QC Batch ID: WG43	32800-5 QC S	Sample: L10	14293-01	Client ID: SV-04
Vinyl chloride	ND	ND	ppbV	NC		25
1,1-Dichloroethene	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1-Dichloroethane	ND	ND	ppbV	NC		25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,2-Dichloroethane	ND	ND	ppbV	NC		25
1,1,1-Trichloroethane	ND	ND	ppbV	NC		25
Trichloroethene	ND	ND	ppbV	NC		25
1,2-Dibromoethane	ND	ND	ppbV	NC		25
Tetrachloroethene	3.87	3.84	ppbV	1		25

Serial_No:	09211014:08
Lab Number:	L1014293
Report Date:	09/21/10

Project Name: AUGUSTA CUMBERLAN	AUGUSTA CUMBERLAND FARMS
---------------------------------	--------------------------

Project Number: Not Specified

Lab ID:	L1014293-01	D	Date Collected:	09/09/10 15:38
Client ID:	SV-04		Date Received:	09/14/10
Sample Location:	AUGUSTA, ME		Field Prep:	Not Specified
Matrix:	Soil_Vapor		Extraction Method:	
Analytical Method:	51,3C			
Analytical Date:	09/17/10 17:15			
Analyst:	RY			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	11.7		%	2.16		2.165
Methane	ND		%	0.216		2.165
Carbon Dioxide	2.85		%	0.216		2.165

Serial_No:	09211014:08
Lab Number:	L1014293

09/21/10

Report Date:

Project Name:	AUGUSTA CUMBERLAND FARMS
---------------	--------------------------

Project Number: Not Specified

Lab ID:	L1014293-02	D	Date Collected:	09/09/10 15:36
Client ID:	SV-05		Date Received:	09/14/10
Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	AUGUSTA, ME Soil_Vapor 51,3C 09/17/10 17:56 RY		Field Prep: Extraction Method:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	15.2		%	2.45		2.452
Methane	ND		%	0.245		2.452
Carbon Dioxide	2.81		%	0.245		2.452

			Serial_No:	09211014:08
Project Name:	AUGUSTA CUMBERI	LAND FARMS	Lab Number:	L1014293
Project Number:	Not Specified		Report Date:	09/21/10
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1014293-03 SV-02 AUGUSTA, ME Soil_Vapor 51,3C 09/17/10 18:37 RY	D	Date Collected: Date Received: Field Prep: Extraction Method:	09/09/10 14:05 09/14/10 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	11.4		%	1.56		1.557
Methane	ND		%	0.156		1.557
Carbon Dioxide	1.98		%	0.156		1.557

		Serial_No:09211014:08
Project Name:	AUGUSTA CUMBERLAND FARMS	Lab Number: L1014293
Project Number:	Not Specified	Report Date: 09/21/10
	SAMPLE RESULTS	
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1014293-04 D SV-03 AUGUSTA, ME Soil_Vapor 51,3C 09/17/10 19:18 RY	Date Collected:09/09/10 11:10Date Received:09/14/10Field Prep:Not SpecifiedExtraction Method:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	17.9		%	1.58		1.581
Methane	ND		%	0.158		1.581
Carbon Dioxide	0.180		%	0.158		1.581

			Serial_No:	09211014:08
Project Name:	AUGUSTA CUMBERL	AND FARMS	Lab Number:	L1014293
Project Number:	Not Specified		Report Date:	09/21/10
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1014293-05 SV-01 AUGUSTA, ME Soil_Vapor 51,3C 09/17/10 20:00 RY	D	Date Collected: Date Received: Field Prep: Extraction Method:	09/09/10 10:36 09/14/10 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Fixed Gases by GC - Mansfield Lab						
Oxygen	16.6		%	1.69		1.687
Methane	ND		%	0.169		1.687
Carbon Dioxide	1.59		%	0.169		1.687

Project Name:	AUGUSTA CUMBERLAND FARMS
Project Number:	Not Specified

 Lab Number:
 L1014293

 Report Date:
 09/21/10

Method Blank Analysis Batch Quality Control

Analytical Method:51,3CAnalytical Date:09/17/10 16:19Analyst:RY

Parameter	Result	Qualifier	Units	s RL	MDL
Fixed Gases by GC - Mansfield Lab	for sample(s	s): 01-05	Batch:	WG432998-2	
Oxygen	ND		%	1.00	
Methane	ND		%	0.100	
Carbon Dioxide	ND		%	0.100	

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1014293 Report Date: 09/21/10

Project Name: AUGUSTA CUMBERLAND FARMS

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Fixed Gases by GC - Mansfield Lab	Associated sample(s):	01-05 Ba	atch: WG432998-7	l				
Oxygen	93		-		80-120	-		
Methane	95		-		80-120	-		
Carbon Dioxide	106		-		80-120	-		

Project Name: AUGUSTA CUMBERLAND FARMS

 Lab Number:
 L1014293

 Report Date:
 09/21/10

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual RPD Limits
Fixed Gases by GC - Mansfield Lab Associate	ed sample(s): 01-05 QC Batch IE): WG432998-10	QC Sample: L1014	295-03 Client	t ID: DUP Sample
Oxygen	8.98	8.85	%	1	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	7.01	7.01	%	0	5
Fixed Gases by GC - Mansfield Lab Associate	ed sample(s): 01-05 QC Batch IE): WG432998-11	QC Sample: L1014	295-04 Client	t ID: DUP Sample
Oxygen	15.9	15.5	%	3	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	1.77	1.77	%	0	5
Fixed Gases by GC - Mansfield Lab Associate	ed sample(s): 01-05 QC Batch IE): WG432998-12	QC Sample: L1014	295-05 Client	t ID: DUP Sample
Oxygen	11.6	12.1	%	4	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	4.40	4.40	%	0	5
Fixed Gases by GC - Mansfield Lab Associate	ed sample(s): 01-05 QC Batch IE): WG432998-13	QC Sample: L1014	295-06 Client	t ID: DUP Sample
Oxygen	16.5	16.7	%	1	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	0.418	0.416	%	0	5

Project Name: AUGUSTA CUMBERLAND FARMS

 Lab Number:
 L1014293

 Report Date:
 09/21/10

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	RPD Limits
Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-05 QC Batch ID	: WG432998-3	QC Sample: L101429	93-01 Client	ID: SV-04
Oxygen	11.7	11.6	%	1	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	2.85	2.91	%	2	5
Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-05 QC Batch ID	: WG432998-4	QC Sample: L101429	93-02 Client	ID: SV-05
Oxygen	15.2	14.7	%	3	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	2.81	2.82	%	0	5
Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-05 QC Batch ID	: WG432998-5	QC Sample: L101429	93-03 Client	ID: SV-02
Oxygen	11.4	11.6	%	2	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	1.98	1.98	%	0	5
Fixed Gases by GC - Mansfield Lab Associated sample(s): 01-05 QC Batch ID	: WG432998-6	QC Sample: L101429	93-04 Client	ID: SV-03
Oxygen	17.9	17.4	%	3	5
Methane	ND	ND	%	NC	5
Carbon Dioxide	0.180	0.182	%	1	5

Project Name: AUGUSTA CUMBERLAND FARMS

 Lab Number:
 L1014293

 Report Date:
 09/21/10

Parameter	Native Sa	ample	Duplicate Sar	nple Units	RPD	RPD Limits
ixed Gases by GC - Mansfield Lab As	sociated sample(s): 01-05	QC Batch ID:	WG432998-7	QC Sample: L10142	293-05 Client	ID: SV-01
Oxygen	16.6		16.8	%	1	5
Methane	ND		ND	%	NC	5
Carbon Dioxide	1.59		1.59	%	0	5
ixed Gases by GC - Mansfield Lab As	sociated sample(s): 01-05	QC Batch ID:	WG432998-8	QC Sample: L10142	295-01 Client	ID: DUP Sample
Oxygen	15.8		16.2	%	2	5
Methane	ND		ND	%	NC	5
Carbon Dioxide	2.42		2.41	%	0	5
ixed Gases by GC - Mansfield Lab As	sociated sample(s): 01-05	QC Batch ID:	WG432998-9	QC Sample: L10142	295-02 Client	ID: DUP Sample
Oxygen	15.8		16.0	%	1	5
Methane	ND		ND	%	NC	5
Carbon Dioxide	1.82		1.82	%	0	5

Project Name:	AUGUSTA CUMBERLAND FARMS				Lab Numb		L1014293		
Project Number:	Not Specified				Report Da	ite:	09/21/10		
SAMPLE RESULTS									
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1014293-01 SV-04 AUGUSTA, ME Soil_Vapor 96,APH 09/16/10 21:47 RY	D			Date Collect Date Receiv Field Prep:		09/09/10 15:38 09/14/10 Not Specified		
		Quality Contro	ol Informatio	on					
Sample Type: Sample Container Type: Sampling Flow Controller: Sampling Zone: Sampling Flow Meter RPD of pre & post-sampling calibration check: Were all QA/QC procedures REQUIRED by the method followed? Were all performance/acceptance standards for the required procedures achieved? Were significant modifications made to the method as specified in Sect 11.1.2?						00 ml/min Co anister - 1 Lit lechanical nknown =20% es es es o			
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Petroleum Hydroc	arbons in Air - Ma	ansfield Lab							
1,3-Butadiene		26		ug/m3	4.4		2.2		
Methyl tert butyl ether		ND		ug/m3	4.4		2.2		
Benzene		8.0		ug/m3	4.4		2.2		
Toluene		19		ug/m3	4.4		2.2		
C5-C8 Aliphatics, Adjust	ed	1000		ug/m3	26		2.2		
Ethylbenzene		13		ug/m3	4.4		2.2		
p/m-Xylene		19		ug/m3	8.8		2.2		

C9-C10 Aromatics Total		99	ug/m3	22
Internal Standa	ard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenz	zene	92		50-200
Bromochlorome	thane	95		50-200
Chlorobenzene-	d5	96		50-200

7.0

ND

270

ug/m3

ug/m3

ug/m3

4.4

4.4

31

--

--

--

--

2.2

2.2

2.2

2.2

Serial_No:09211014:08

o-Xylene

Naphthalene

C9-C12 Aliphatics, Adjusted

Project Name: Project Number: Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	Not Specified L1014293-02 SV-05 AUGUSTA, ME Soil_Vapor	BERLAND FARMS	RESULTS		Lab Numl Report Da Date Collec Date Receiv Field Prep:	a te: ted:	L1014293 09/21/10 09/09/10 15:36 09/14/10 Not Specified
	r: PD of pre & post-sampli ures REQUIRED by the cceptance standards for		chieved?	on	C M U Y Y	00 ml/min Co Canister - 1 Lit Iechanical Jnknown =20% Yes Yes Io	•
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydroca	arbons in Air - Ma	insfield Lab					
1,3-Butadiene		ND		ug/m3	4.8		2.4
Methyl tert butyl ether		ND		ug/m3	4.8		2.4
Benzene		6.5		ug/m3	4.8		2.4
Toluene		67		ug/m3	4.8		2.4
C5-C8 Aliphatics, Adjust	ed	900		ug/m3	29		2.4
Ethylbenzene		40		ug/m3	4.8		2.4

C9-C10 Aromatics Total	300	ug/m3	24
Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	79		50-200
Bromochloromethane	84		50-200
Chlorobenzene-d5	85		50-200

71

26

17

750

ug/m3

ug/m3

ug/m3

ug/m3

9.6

4.8

4.8

34

--

--

--

--

--

2.4

2.4

2.4

2.4

2.4

Serial_No:09211014:08

p/m-Xylene

Naphthalene

C9-C12 Aliphatics, Adjusted

o-Xylene

					•••			
Project Name:	AUGUSTA CUM	BERLAND FARMS			Lab Num	ber:	L1014293	
Project Number:	Not Specified				Report Da	ate:	09/21/10	
		SAMPLE	RESULTS					
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1014293-03 SV-02 AUGUSTA, ME Soil_Vapor 96,APH 09/16/10 23:32 RY	D			Date Collec Date Receiv Field Prep:		09/09/10 14:05 09/14/10 Not Specified	
		Quality Cont	rol Informatio	on				
Sample Type:					2	200 ml/min Co	omposite	
Sample Container Type:						Canister - 2.7	Liter	
Sampling Flow Controller	r:					<i>N</i> echanical		
Sampling Zone:					-	Jnknown		
Sampling Flow Meter RP		-			<=20%			
Were all QA/QC procedu		r the required procedures	achieved?			′es ′es		
	•	hod as specified in Sect 1				lo		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Facto	
Petroleum Hydroca	arbons in Air - Ma	ansfield Lab						
1,3-Butadiene		22		ug/m3	5.0		2.5	
Methyl tert butyl ether		ND		ug/m3	5.0		2.5	
Benzene		7.9		ug/m3	5.0		2.5	
Taluana		6.6			F 0		2.5	

Benzene	7.9	ug/m3	5.0	 2.5
Toluene	6.6	ug/m3	5.0	 2.5
C5-C8 Aliphatics, Adjusted	5100	ug/m3	30	 2.5
Ethylbenzene	ND	ug/m3	5.0	 2.5
p/m-Xylene	ND	ug/m3	10	 2.5
o-Xylene	ND	ug/m3	5.0	 2.5
Naphthalene	ND	ug/m3	5.0	 2.5
C9-C12 Aliphatics, Adjusted	65	ug/m3	35	 2.5
C9-C10 Aromatics Total	ND	ug/m3	25	 2.5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	85		50-200
Bromochloromethane	90		50-200
Chlorobenzene-d5	92		50-200

Project Name: Project Number:	AUGUSTA CUMBERLA		RESULTS		Lab Numl Report Da		L1014293 09/21/10	
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1014293-04 SV-03 AUGUSTA, ME Soil_Vapor 96,APH 09/17/10 00:08 RY				Date Collec Date Receiv Field Prep:		09/09/10 11:10 09/14/10 Not Specified	
	C	Quality Contr	ol Informatio	on				
Sample Type:					1	00 ml/min Co	omposite	
Sample Container Type:					Canister - 2.7 Liter			
Sampling Flow Controlle	r:				Mechanical			
Sampling Zone:					-	Jnknown		
	PD of pre & post-sampling calibra					:=20%		
	ires REQUIRED by the method		- ahiaya dQ		Yes Yes			
	ceptance standards for the requ					es lo		
were significant modifica	ations made to the method as sp	echied in Sect 11	1.1.2?		I	10		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
			Quaimer	Units	RL	WDL	Dilution Factor	
Petroleum Hydroca	arbons in Air - Mansfield	Lab						
1,3-Butadiene		ND		ug/m3	2.0		1	
Methyl tert butyl ether		ND		ug/m3	2.0		1	
Benzene		ND		ug/m3	2.0		1	
Toluene		ND		ug/m3	2.0		1	
C5-C8 Aliphatics, Adjust	ed	170		ug/m3	12		1	

Ethylbenzene	ND	ug/m3	2.0	 1
p/m-Xylene	ND	ug/m3	4.0	 1
o-Xylene	ND	ug/m3	2.0	 1
Naphthalene	ND	ug/m3	2.0	 1
C9-C12 Aliphatics, Adjusted	28	ug/m3	14	 1
C9-C10 Aromatics Total	ND	ug/m3	10	 1
			_	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	88		50-200
Bromochloromethane	96		50-200
Chlorobenzene-d5	89		50-200

Project Name:	AUGUSTA CUMBER	LAND FARMS			Lab Numb	ber:	L1014293
Project Number:	Not Specified				Report Da	ite:	09/21/10
		SAMPLE	E RESULTS				
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1014293-05 SV-01 AUGUSTA, ME Soil_Vapor 96,APH 09/17/10 00:42 RY				Date Collect Date Receiv Field Prep:		09/09/10 10:36 09/14/10 Not Specified
		Quality Cont	rol Informati	on			
Sample Type:						00 ml/min Co	
Sample Container Type:						anister - 2.7	Liter
Sampling Flow Controller	:					lechanical	
Sampling Zone: Sampling Flow Meter RP	D of pre & post-sampling ca	libration check:			-	nknown =20%	
	res REQUIRED by the meth					es	
	ceptance standards for the r		achieved?			es	
Were significant modifica	tions made to the method as	s specified in Sect 1	1.1.2?		Ν	0	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Facto
Petroleum Hydroca	rbons in Air - Mansfi	eld Lab					
1,3-Butadiene		5.4		ug/m3	2.0		1
Methyl tert butyl ether		ND		ug/m3	2.0		1
-							

Methyl tert butyl ether	ND	ug/m3	2.0	 1
Benzene	22	ug/m3	2.0	 1
Toluene	44	ug/m3	2.0	 1
C5-C8 Aliphatics, Adjusted	600	ug/m3	12	 1
Ethylbenzene	5.4	ug/m3	2.0	 1
p/m-Xylene	8.8	ug/m3	4.0	 1
o-Xylene	3.3	ug/m3	2.0	 1
Naphthalene	3.1	ug/m3	2.0	 1
C9-C12 Aliphatics, Adjusted	190	ug/m3	14	 1
C9-C10 Aromatics Total	41	ug/m3	10	 1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	83		50-200
Bromochloromethane	87		50-200
Chlorobenzene-d5	105		50-200

09/21/10

Lab Number:

Report Date:

Project Name: AUGUSTA CUMBERLAND FARMS

Project Number: Not Specified

STA COMBERLAND FARM

Method Blank Analysis Batch Quality Control

Analytical Method:96,APHAnalytical Date:09/16/10 17:06Analyst:RY

Parameter	Result	Qualifier	Units	RL	MDL
Petroleum Hydrocarbons in Air - M	lansfield Lab	o for sample(s):	01-05	Batch: WG432	801-4
1,3-Butadiene	ND		ug/m3	2.0	
Methyl tert butyl ether	ND		ug/m3	2.0	
Benzene	ND		ug/m3	2.0	
Toluene	ND		ug/m3	2.0	
C5-C8 Aliphatics, Adjusted	ND		ug/m3	12	
Ethylbenzene	ND		ug/m3	2.0	
p/m-Xylene	ND		ug/m3	4.0	
o-Xylene	ND		ug/m3	2.0	
Naphthalene	ND		ug/m3	2.0	
C9-C12 Aliphatics, Adjusted	ND		ug/m3	14	
C9-C10 Aromatics Total	ND		ug/m3	10	

Lab Control Sample Analysis

Batch Quality Control

Project Name: AUGUSTA CUMBERLAND FARMS

Project Number: Not Specified

 Lab Number:
 L1014293

 Report Date:
 09/21/10

LCSD LCS %Recovery %Recovery %Recovery Limits Parameter Qual Qual RPD Qual **RPD** Limits Petroleum Hydrocarbons in Air - Mansfield Lab Associated sample(s): 01-05 Batch: WG432801-3 1,3-Butadiene 86 70-130 --70-130 Methyl tert butyl ether 93 --Benzene 90 70-130 --Toluene 99 70-130 --C5-C8 Aliphatics, Adjusted 96 70-130 --Ethylbenzene 102 70-130 -p/m-Xylene 70-130 102 -o-Xylene 104 70-130 --Naphthalene 118 50-150 --C9-C12 Aliphatics, Adjusted 123 70-130 --C9-C10 Aromatics Total 92 70-130 --

Project Name: AUGUSTA CUMBERLAND FARMS

Lab Number:

 Lab Number:
 L1014293

 Report Date:
 09/21/10

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
etroleum Hydrocarbons in Air - Mansfield Lab Asso	ociated sample(s): 01-05	QC Batch ID: WG432801-5	QC Sample	: L101429	93-01 Cli	ent ID: SV-04
1,3-Butadiene	26	26	ug/m3	0		30
Methyl tert butyl ether	ND	ND	ug/m3	NC		30
Benzene	8.0	8.2	ug/m3	2		30
Toluene	19	19	ug/m3	0		30
C5-C8 Aliphatics, Adjusted	1000	1000	ug/m3	0		30
Ethylbenzene	13	13	ug/m3	0		30
p/m-Xylene	19	19	ug/m3	0		30
o-Xylene	7.0	7.3	ug/m3	4		30
Naphthalene	ND	ND	ug/m3	NC		30
C9-C12 Aliphatics, Adjusted	270	260	ug/m3	4		30
C9-C10 Aromatics Total	99	98	ug/m3	1		30

Project Name: AUGUSTA CUMBERLAND FARMS

Project Number:

Report Date: 09/21/10

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Out mL/min	Flow In mL/min	% RSD
L1014293-01	SV-04	0412	#90 SV		-	-	100	100	0
L1014293-01	SV-04	1054	1.0L Can	L1013135	-28.3	-0.6	-	-	-
L1014293-02	SV-05	0182	#90 SV		-	-	100	104	4
L1014293-02	SV-05	887	1.0L Can	L1013135	-29.4	-3.9	-	-	-
L1014293-03	SV-02	0158	#90 SV		-	-	200	203	1
L1014293-03	SV-02	455	2.7L Can	L1012544	-29.5	-1.2	-	-	-
L1014293-04	SV-03	0270	#90 SV		-	-	100	103	3
L1014293-04	SV-03	235	2.7L Can	L1012801	-29.4	-0.1	-	-	-
L1014293-05	SV-01	0144	#90 SV		-	-	95	100	5
L1014293-05	SV-01	402	2.7L Can	L1012801	-29.3	-1.4	-	-	-

Air Volatiles Can Certification

L1012544 09/21/10

Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:
Project Number:	CANISTER QC BAT	Report Date:

Lab ID:	L1012544-01	Date Collected:	08/13/10 00:00
Client ID:	CAN 487 SHELF 1	Date Received:	08/13/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	08/19/10 18:20		
Analyst:	RY		

		ррьV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Leve	el) - Mansfield Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.200		ND	0.344			1
Propane	ND	0.200		ND	0.606			1
Dichlorodifluoromethane	ND	0.200		ND	0.988			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.776			1
Chloroethane	ND	0.200		ND	0.527			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.841			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.14			1
Acetone	ND	1.00		ND	2.37			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.200		ND	0.434			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
I,1-Dichloroethene	ND	0.200		ND	0.792			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012544

 Report Date:
 09/21/10

Parameter Volatile Organics in A			ppbV			Field I ug/m3	TCp.		Not Specified
-		Results	RL	MDL	Results	RL	MDL	Qualifier	_
	Air (Low Level) - M	ansfield Lab)						
Methylene chloride		ND	1.00		ND	3.47			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.622			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	9	ND	0.200		ND	0.792			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.720			1
Vinyl acetate		ND	0.200		ND	0.704			1
2-Butanone		ND	0.200		ND	0.589			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.792			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.976			1
Tetrahydrofuran		ND	0.200		ND	0.589			1
2,2-Dichloropropane		ND	0.200		ND	0.923			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.704			1
Diisopropyl ether		ND	0.200		ND	0.835			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.835			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.907			1
Benzene		ND	0.200		ND	0.638			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.835			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.720			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012544

 Report Date:
 09/21/10

Lab ID:L1012544-0Client ID:CAN 487 SHSample Location:						Date Collected: Date Received: Field Prep: ug/m3			08/13/10 00:00 08/13/10 Not Specified	
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor	
Volatile Organics in A	ir (Low Level) - Ma									
Trichloroethene		ND	0.200		ND	1.07			1	
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1	
Heptane		ND	0.200		ND	0.819			1	
2,4,4-trimethyl-1-pentene		ND	0.500		ND	2.29			1	
cis-1,3-Dichloropropene		ND	0.200		ND	0.907			1	
4-Methyl-2-pentanone		ND	0.200		ND	0.819			1	
2,4,4-trimethyl-2-pentene		ND	0.500		ND	2.29			1	
trans-1,3-Dichloropropene	Э	ND	0.200		ND	0.907			1	
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1	
Toluene		ND	0.200		ND	0.753			1	
1,3-Dichloropropane		ND	0.200		ND	0.923			1	
2-Hexanone		ND	0.200		ND	0.819			1	
Dibromochloromethane		ND	0.200		ND	1.70			1	
1,2-Dibromoethane		ND	0.200		ND	1.54			1	
Butyl acetate		ND	0.500		ND	2.37			1	
Octane		ND	0.200		ND	0.934			1	
Tetrachloroethene		ND	0.200		ND	1.36			1	
1,1,1,2-Tetrachloroethane	9	ND	0.200		ND	1.37			1	
Chlorobenzene		ND	0.200		ND	0.920			1	
Ethylbenzene		ND	0.200		ND	0.868			1	
p/m-Xylene		ND	0.400		ND	1.74			1	
Bromoform		ND	0.200		ND	2.06			1	
Styrene		ND	0.200		ND	0.851			1	
1,1,2,2-Tetrachloroethane	9	ND	0.200		ND	1.37			1	
o-Xylene		ND	0.200		ND	0.868			1	
1,2,3-Trichloropropane		ND	0.200		ND	1.20			1	
Nonane		ND	0.200		ND	1.05			1	
Isopropylbenzene		ND	0.200		ND	0.982			1	

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012544

 Report Date:
 09/21/10

Lab ID: Client ID: Sample Location:	L1012544-01 CAN 487 SHELI	F 1			Date Collected Date Received Field Prep:			08/13/10 00:00 08/13/10 Not Specified	
_			ppbV			ug/m3		• •••	Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r
Volatile Organics in	All (LOW Level) - M)						
Bromobenzene		ND	0.200		ND	1.28			1
2-Chlorotoluene		ND	0.200		ND	1.03			1
n-Propylbenzene		ND	0.200		ND	0.982			1
4-Chlorotoluene		ND	0.200		ND	1.03			1
4-Ethyltoluene		ND	0.200		ND	0.982			1
1,3,5-Trimethybenzene		ND	0.200		ND	0.982			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene)	ND	0.200		ND	0.982			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.03			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropr	opane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

							Serial_	_No:092	11014:08
Project Name:	BATCH CANISTE	R CERTIFI	CATION			Lab N	lumber	: I	_1012544
Project Number:	CANISTER QC B	АT				Repo	rt Date:	. (09/21/10
		Air Ca	anister C	ertificatio	n Results				
Lab ID:	L1012544-01					Date (Collected	d:	08/13/10 00:00
Client ID:	CAN 487 SHELF	1				Date F	Received	d:	08/13/10
Sample Location:						Field F	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in	Air (Low Level) - Ma	ansfield Lab							

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	104		60-140
chlorobenzene-d5	101		60-140

L1012544

09/21/10

Lab Number:

Report Date:

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Lab ID:	L1012544-01	Date Collected:	08/13/10 00:00
Client ID:	CAN 487 SHELF 1	Date Received:	08/13/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	08/19/10 18:20		
Analyst:	RY		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.050		ND	0.247			1
Chloromethane	ND	0.500		ND	1.03			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	2.00		ND	4.75			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.08			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	1.00		ND	3.47			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.403			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012544

 Report Date:
 09/21/10

Lab ID: Client ID: Sample Location:	L1012544-01 CAN 487 SHELF	1	ppbV				Collecte Receive Prep:		08/13/10 00:00 08/13/10 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	F
Volatile Organics in A	ir by SIM - Mansfie	eld Lab							
Bromodichloromethane		ND	0.020		ND	0.134			1
Trichloroethene		ND	0.020		ND	0.107			1
1,4-Dioxane		ND	0.100		ND	0.360			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	e	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.020		ND	0.075			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	e	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.206			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	e	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.500		ND	2.46			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.500		ND	2.74			1
p-Isopropyltoluene		ND	0.500		ND	2.74			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1
n-Butylbenzene		ND	0.500		ND	2.74			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012544

 Report Date:
 09/21/10

Lab ID: Client ID: Sample Location:	L1012544-01 CAN 487 SHELF	- 1				Date Field I	Collecte Receive Prep:		08/13/10 00:00 08/13/10 Not Specified
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifie	Dilution r Factor
	Air by SIM - Mansfi		0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	•	ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

No:09211014:08	Serial_N						
L1012544	Lab Number:			ICATION	R CERTIF	BATCH CANISTE	Project Name:
09/21/10	Report Date:				AT	CANISTER QC BA	Project Number:
		on Results	ertificatio	Canister C	Air C		
08/13/10 00:00	Date Collected:					L1012544-01	Lab ID:
08/13/10	Date Received:				- 1	CAN 487 SHELF	Client ID:
Not Specified	Field Prep:						Sample Location:
Dilution	ug/m3			ppbV			
Qualifier Factor	RL MDL (Results	MDL	RL	Results		Parameter
QU		Results	MDL	RL		Air by SIM - Mansfie	Volatile Organics in A

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	101		60-140
chlorobenzene-d5	99		60-140

Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1012801
Project Number:	CANISTER QC BAT	Report Date:	09/21/10

Lab ID:	L1012801-01	Date Collected:	08/18/10 00:00
Client ID:	CAN 178 SHELF 3	Date Received:	08/18/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	08/19/10 20:51		
Analyst:	RY		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	vel) - Mansfield Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.200		ND	0.344			1
Propane	ND	0.200		ND	0.606			1
Dichlorodifluoromethane	ND	0.200		ND	0.988			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.776			1
Chloroethane	ND	0.200		ND	0.527			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.841			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.14			1
Acetone	ND	1.00		ND	2.37			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.200		ND	0.434			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.792			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012801

 Report Date:
 09/21/10

Lab ID: Client ID: Sample Location:	L1012801-01 CAN 178 SHELF	- 3				Date F Field I	Collecte Receive Prep:		08/18/10 00:0 08/18/10 Not Specified
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor
Volatile Organics in A	ir (Low Level) - M								
Methylene chloride		ND	1.00		ND	3.47			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.622			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene		ND	0.200		ND	0.792			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.720			1
Vinyl acetate		ND	0.200		ND	0.704			1
2-Butanone		ND	0.200		ND	0.589			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.792			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.976			1
Tetrahydrofuran		ND	0.200		ND	0.589			1
2,2-Dichloropropane		ND	0.200		ND	0.923			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.704			1
Diisopropyl ether		ND	0.200		ND	0.835			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.835			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.907			1
Benzene		ND	0.200		ND	0.638			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.835			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.720			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012801

 Report Date:
 09/21/10

Lab ID:L1012801-01Client ID:CAN 178 SHESample Location:		F 3					Collecte Receive Prep:		08/18/10 00:0 08/18/10 Not Specified
_			ppbV			ug/m3		0	Dilution Factor
Parameter	Air (Low Lovel)	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in	Air (Low Level) - Iv	iansileid Lac)						
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	9	ND	0.200		ND	0.934			1
Heptane		ND	0.200		ND	0.819			1
2,4,4-trimethyl-1-pente	ne	ND	0.500		ND	2.29			1
cis-1,3-Dichloropropen	e	ND	0.200		ND	0.907			1
4-Methyl-2-pentanone		ND	0.200		ND	0.819			1
2,4,4-trimethyl-2-pente	ne	ND	0.500		ND	2.29			1
trans-1,3-Dichloroprop	ene	ND	0.200		ND	0.907			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.753			1
1,3-Dichloropropane		ND	0.200		ND	0.923			1
2-Hexanone		ND	0.200		ND	0.819			1
Dibromochloromethan	e	ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.37			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroetha	ane	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.920			1
Ethylbenzene		ND	0.200		ND	0.868			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.06			1
Styrene		ND	0.200		ND	0.851			1
1,1,2,2-Tetrachloroetha	ane	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.868			1
1,2,3-Trichloropropane		ND	0.200		ND	1.20			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.982			1
		ND	0.200		UNI	0.902			I

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012801

 Report Date:
 09/21/10

Lab ID: Client ID: Sample Location:	L1012801-01 CAN 178 SHELF	= 3					Collecte Receive Prep:		08/18/10 00:00 08/18/10 Not Specified
Demonster			ppbV		Deculto	ug/m3		Qualifia	Dilution Factor
Parameter Volatile Organics in	Air (Low Level) - M	Results	RL	MDL	Results	RL	MDL	Qualifie	
-									
Bromobenzene		ND	0.200		ND	1.28			1
2-Chlorotoluene		ND	0.200		ND	1.03			1
n-Propylbenzene		ND	0.200		ND	0.982			1
4-Chlorotoluene		ND	0.200		ND	1.03			1
4-Ethyltoluene		ND	0.200		ND	0.982			1
1,3,5-Trimethybenzene		ND	0.200		ND	0.982			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.982			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.03			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropr	opane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1

							Serial_	_No:092′	11014:08
Project Name:	BATCH CANISTE	R CERTIFIC	CATION			Lab N	lumber	: L	1012801
Project Number:	CANISTER QC B	AT				Repo	rt Date:	· (9/21/10
		Air Ca	anister Co	ertificatio	n Results				
Lab ID:	L1012801-01					Date (Collected	J:	08/18/10 00:00
Client ID:	CAN 178 SHELF	3				Date F	Received	d:	08/18/10
Sample Location:						Field I	Prep:		Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in	Air (Low Level) - Ma	ansfield Lab							

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	104		60-140
Bromochloromethane	113		60-140
chlorobenzene-d5	106		60-140

L1012801

09/21/10

Lab Number:

Report Date:

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Lab ID:	L1012801-01	Date Collected:	08/18/10 00:00
Client ID:	CAN 178 SHELF 3	Date Received:	08/18/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	08/19/10 20:51		
Analyst:	RY		

		ppbV						Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.050		ND	0.247			1
Chloromethane	ND	0.500		ND	1.03			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	2.00		ND	4.75			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.08			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	1.00		ND	3.47			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.403			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012801

 Report Date:
 09/21/10

Lab ID: Client ID: Sample Location:	L1012801-01 CAN 178 SHELI	= 3	ppbV			Date Collected: Date Received: Field Prep: ug/m3			08/18/10 00:00 08/18/10 Not Specified Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie		
Volatile Organics in	Air by SIM - Mansfi	eld Lab								
Bromodichloromethane		ND	0.020		ND	0.134			1	
Trichloroethene		ND	0.020		ND	0.107			1	
1,4-Dioxane		ND	0.100		ND	0.360			1	
cis-1,3-Dichloropropene	9	ND	0.020		ND	0.091			1	
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1	
trans-1,3-Dichloroprope	ene	ND	0.020		ND	0.091			1	
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1	
Toluene		ND	0.020		ND	0.075			1	
Dibromochloromethane		ND	0.020		ND	0.170			1	
1,2-Dibromoethane		ND	0.020		ND	0.154			1	
Tetrachloroethene		ND	0.020		ND	0.136			1	
1,1,1,2-Tetrachloroetha	ne	ND	0.020		ND	0.137			1	
Chlorobenzene		ND	0.020		ND	0.092			1	
Ethylbenzene		ND	0.020		ND	0.087			1	
p/m-Xylene		ND	0.040		ND	0.174			1	
Bromoform		ND	0.020		ND	0.206			1	
Styrene		ND	0.020		ND	0.085			1	
1,1,2,2-Tetrachloroetha	ne	ND	0.020		ND	0.137			1	
o-Xylene		ND	0.020		ND	0.087			1	
Isopropylbenzene		ND	0.500		ND	2.46			1	
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1	
1,2,4-Trimethylbenzene)	ND	0.020		ND	0.098			1	
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1	
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1	
sec-Butylbenzene		ND	0.500		ND	2.74			1	
p-Isopropyltoluene		ND	0.500		ND	2.74			1	
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1	
n-Butylbenzene		ND	0.500		ND	2.74			1	

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1012801

 Report Date:
 09/21/10

Lab ID: Client ID: Sample Location:	L1012801-01 CAN 178 SHELF	3			Date Collecte Date Receive Field Prep:				08/18/10 00:00 08/18/10 Not Specified
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	Factor
Volatile Organics in	Air by SIM - Mansfi	eld Lab							
1,2,4-Trichlorobenzene)	ND	0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene)	ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

		Air C	anister C	ertificatio	on Results					
Lab ID:	L1012801-01					Date	Collecte	4.	08/18/10 00:00	
Client ID:	CAN 178 SHELF	3					Receive		08/18/10	
Sample Location:						Field	Prep:		Not Specified	
			ppbV			ug/m3			Dilution	
Parameter		Results	RL	MDL	Results	RL	RL MDL		Factor	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	101		60-140
bromochloromethane	110		60-140
chlorobenzene-d5	104		60-140

Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1013135
Project Number:	CANISTER QC BAT	Report Date:	09/21/10

Lab ID:	L1013135-01	Date Collected:	08/25/10 00:00
Client ID:	CAN 713 SHELF 13	Date Received:	08/25/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15		
Analytical Date:	08/26/10 12:06		
Analyst:	AJ		

		ppbV						Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Lev	vel) - Mansfield Lab	ı.						
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.200		ND	0.344			1
Propane	ND	0.200		ND	0.606			1
Dichlorodifluoromethane	ND	0.200		ND	0.988			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.776			1
Chloroethane	ND	0.200		ND	0.527			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.841			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.14			1
Acetone	ND	1.00		ND	2.37			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.200		ND	0.434			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
I,1-Dichloroethene	ND	0.200		ND	0.792			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013135

 Report Date:
 09/21/10

Lab ID: Client ID: Sample Location:	L1013135-01 CAN 713 SHEL	F 13 ppbV			Date Col Date Re Field Pre ug/m3				08/25/10 00:00 08/25/10 Not Specified
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in A	Air (Low Level) - M								
Methylene chloride		ND	1.00		ND	3.47			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.622			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene)	ND	0.200		ND	0.792			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.720			1
Vinyl acetate		ND	0.200		ND	0.704			1
2-Butanone		ND	0.200		ND	0.589			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.792			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.976			1
Tetrahydrofuran		ND	0.200		ND	0.589			1
2,2-Dichloropropane		ND	0.200		ND	0.923			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.704			1
Diisopropyl ether		ND	0.200		ND	0.835			1
tert-Butyl Ethyl Ether		ND	0.200		ND	0.835			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,1-Dichloropropene		ND	0.200		ND	0.907			1
Benzene		ND	0.200		ND	0.638			1
Carbon tetrachloride		ND	0.200		ND	1.26			1
Cyclohexane		ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether		ND	0.200		ND	0.835			1
Dibromomethane		ND	0.200		ND	1.42			1
1,2-Dichloropropane		ND	0.200		ND	0.924			1
Bromodichloromethane		ND	0.200		ND	1.34			1
1,4-Dioxane		ND	0.200		ND	0.720			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013135

 Report Date:
 09/21/10

Lab ID: Client ID: Sample Location:	L1013135-01 CAN 713 SHEL	-F 13	ррьV			Date Collected: Date Received: Field Prep: ug/m3			08/25/10 00:00 08/25/10 Not Specified
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in A	Air (Low Level) - N								
Trichloroethene		ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane		ND	0.200		ND	0.934			1
Heptane		ND	0.200		ND	0.819			1
2,4,4-trimethyl-1-pentene	e	ND	0.500		ND	2.29			1
cis-1,3-Dichloropropene		ND	0.200		ND	0.907			1
4-Methyl-2-pentanone		ND	0.200		ND	0.819			1
2,4,4-trimethyl-2-pentene	e	ND	0.500		ND	2.29			1
trans-1,3-Dichloroproper	ie	ND	0.200		ND	0.907			1
1,1,2-Trichloroethane		ND	0.200		ND	1.09			1
Toluene		ND	0.200		ND	0.753			1
1,3-Dichloropropane		ND	0.200		ND	0.923			1
2-Hexanone		ND	0.200		ND	0.819			1
Dibromochloromethane		ND	0.200		ND	1.70			1
1,2-Dibromoethane		ND	0.200		ND	1.54			1
Butyl acetate		ND	0.500		ND	2.37			1
Octane		ND	0.200		ND	0.934			1
Tetrachloroethene		ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethan	e	ND	0.200		ND	1.37			1
Chlorobenzene		ND	0.200		ND	0.920			1
Ethylbenzene		ND	0.200		ND	0.868			1
p/m-Xylene		ND	0.400		ND	1.74			1
Bromoform		ND	0.200		ND	2.06			1
Styrene		ND	0.200		ND	0.851			1
1,1,2,2-Tetrachloroethan	e	ND	0.200		ND	1.37			1
o-Xylene		ND	0.200		ND	0.868			1
1,2,3-Trichloropropane		ND	0.200		ND	1.20			1
Nonane		ND	0.200		ND	1.05			1
Isopropylbenzene		ND	0.200		ND	0.982			1

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013135

 Report Date:
 09/21/10

Lab ID: Client ID: Sample Location:	L1013135-01 CAN 713 SHEL	F 13				Date I	Date Collecter Date Receiver Field Prep:		08/25/10 00:00 08/25/10 Not Specified
			ppbV			ug/m3			Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	
Volatile Organics in	Air (Low Level) - IV	ianstield Lab							
Bromobenzene		ND	0.200		ND	1.28			1
2-Chlorotoluene		ND	0.200		ND	1.03			1
n-Propylbenzene		ND	0.200		ND	0.982			1
4-Chlorotoluene		ND	0.200		ND	1.03			1
4-Ethyltoluene		ND	0.200		ND	0.982			1
1,3,5-Trimethybenzene		ND	0.200		ND	0.982			1
tert-Butylbenzene		ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene		ND	0.200		ND	0.982			1
Decane		ND	0.200		ND	1.16			1
Benzyl chloride		ND	0.200		ND	1.03			1
1,3-Dichlorobenzene		ND	0.200		ND	1.20			1
1,4-Dichlorobenzene		ND	0.200		ND	1.20			1
sec-Butylbenzene		ND	0.200		ND	1.10			1
p-Isopropyltoluene		ND	0.200		ND	1.10			1
1,2-Dichlorobenzene		ND	0.200		ND	1.20			1
n-Butylbenzene		ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropr	opane	ND	0.200		ND	1.93			1
Undecane		ND	0.200		ND	1.28			1
Dodecane		ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene		ND	0.200		ND	1.48			1
Naphthalene		ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene		ND	0.200		ND	1.48			1
Hexachlorobutadiene		ND	0.200		ND	2.13			1
			0.200						•

L1013135 09/21/10

Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:
Project Number:	CANISTER QC BAT	Report Date:

Lab ID:	L1013135-01	Date Collected:	08/25/10 00:00
Client ID:	CAN 713 SHELF 13	Date Received:	08/25/10
Sample Location:		Field Prep:	Not Specified
Matrix:	Air		
Anaytical Method:	48,TO-15-SIM		
Analytical Date:	08/26/10 12:06		
Analyst:	AJ		

		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM - Mansfield Lab									
Dichlorodifluoromethane	ND	0.050		ND	0.247			1	
Chloromethane	ND	0.500		ND	1.03			1	
Freon-114	ND	0.050		ND	0.349			1	
Vinyl chloride	ND	0.020		ND	0.051			1	
1,3-Butadiene	ND	0.020		ND	0.044			1	
Bromomethane	ND	0.020		ND	0.078			1	
Chloroethane	ND	0.020		ND	0.053			1	
Acetone	ND	2.00		ND	4.75			1	
Trichlorofluoromethane	ND	0.050		ND	0.281			1	
Acrylonitrile	ND	0.500		ND	1.08			1	
1,1-Dichloroethene	ND	0.020		ND	0.079			1	
Methylene chloride	ND	1.00		ND	3.47			1	
Freon-113	ND	0.050		ND	0.383			1	
Halothane	ND	0.050		ND	0.403			1	
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
1,1-Dichloroethane	ND	0.020		ND	0.081			1	
Methyl tert butyl ether	ND	0.020		ND	0.072			1	
2-Butanone	ND	0.500		ND	1.47			1	
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
Chloroform	ND	0.020		ND	0.098			1	
1,2-Dichloroethane	ND	0.020		ND	0.081			1	
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1	
Benzene	ND	0.100		ND	0.319			1	
Carbon tetrachloride	ND	0.020		ND	0.126			1	
1,2-Dichloropropane	ND	0.020		ND	0.092			1	

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013135

 Report Date:
 09/21/10

Lab ID:L1013135-01Client ID:CAN 713 SHESample Location:Sample Location:		- 13	ppbV			Date Collected: Date Received: Field Prep: ug/m3			08/25/10 00:00 08/25/10 Not Specified Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	F 4
Volatile Organics in A	ir by SIM - Mansfi	eld Lab							
Bromodichloromethane		ND	0.020		ND	0.134			1
Trichloroethene		ND	0.020		ND	0.107			1
1,4-Dioxane		ND	0.100		ND	0.360			1
cis-1,3-Dichloropropene		ND	0.020		ND	0.091			1
4-Methyl-2-pentanone		ND	0.500		ND	2.05			1
trans-1,3-Dichloropropen	e	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane		ND	0.020		ND	0.109			1
Toluene		ND	0.020		ND	0.075			1
Dibromochloromethane		ND	0.020		ND	0.170			1
1,2-Dibromoethane		ND	0.020		ND	0.154			1
Tetrachloroethene		ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1
Chlorobenzene		ND	0.020		ND	0.092			1
Ethylbenzene		ND	0.020		ND	0.087			1
p/m-Xylene		ND	0.040		ND	0.174			1
Bromoform		ND	0.020		ND	0.206			1
Styrene		ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethan	e	ND	0.020		ND	0.137			1
o-Xylene		ND	0.020		ND	0.087			1
Isopropylbenzene		ND	0.500		ND	2.46			1
1,3,5-Trimethybenzene		ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene		ND	0.020		ND	0.098			1
1,3-Dichlorobenzene		ND	0.020		ND	0.120			1
1,4-Dichlorobenzene		ND	0.020		ND	0.120			1
sec-Butylbenzene		ND	0.500		ND	2.74			1
p-Isopropyltoluene		ND	0.500		ND	2.74			1
1,2-Dichlorobenzene		ND	0.020		ND	0.120			1
					ND	2.74			

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

 Lab Number:
 L1013135

 Report Date:
 09/21/10

Lab ID: Client ID: Sample Location:	L1013135-01 CAN 713 SHELF	- 13					Collecte Receive Prep:		08/25/10 00:00 08/25/10 Not Specified
			ppbV	ug/m3				Dilution	
Parameter	Results		RL	MDL	Results	RL	MDL	Qualifie	Factor
Volatile Organics in	Air by SIM - Mansfi	eld Lab							
1,2,4-Trichlorobenzene		ND	0.050		ND	0.371			1
Naphthalene		ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene		ND	0.050		ND	0.371			1
Hexachlorobutadiene		ND	0.050		ND	0.533			1

AIR Petro Can Certification

			Serial_No:0	9211014:08
Project Name:	BATCH CANISTER CERTIFIC	CATION	Lab Number:	L1012544
Project Number:	CANISTER QC BAT		Report Date:	09/21/10
	AIR CA	N CERTIFICATION RESULTS		
Lab ID:	L1012544-01		Date Collected:	08/13/10 00:00
Client ID:	CAN 487 SHELF 1		Date Received:	08/13/10
Sample Location:	Not Specified		Field Prep:	Not Specified
Matrix:	Air			
Analytical Method:	96,APH			
Analytical Date:	08/19/10 18:20			
Analyst:	RY			

Result	Qualifier	Units	RL	MDL	Dilution Factor				
Petroleum Hydrocarbons in Air - Mansfield Lab									
ND		ug/m3	2.0		1				
ND		ug/m3	2.0		1				
ND		ug/m3	2.0		1				
ND		ug/m3	2.0		1				
ND		ug/m3	12		1				
ND		ug/m3	2.0		1				
ND		ug/m3	4.0		1				
ND		ug/m3	2.0		1				
ND		ug/m3	2.0		1				
ND		ug/m3	14		1				
ND		ug/m3	10		1				
	field Lab ND ND ND ND ND ND ND ND ND ND	field Lab ND	field Lab ND ug/m3 ND ug/m3	ND ug/m3 2.0 ND ug/m3 12 ND ug/m3 2.0 ND ug/m3 14	ND ug/m3 2.0 ND ug/m3 12 ND ug/m3 2.0 ND ug/m3 14				

		Serial_No:09	211014:08
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1012801
Project Number:	CANISTER QC BAT	Report Date:	09/21/10
	AIR CAN CERTIFICATION RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1012801-01 CAN 178 SHELF 3 Not Specified Air 96,APH 08/19/10 20:51 RY	Date Collected: Date Received: Field Prep:	08/18/10 00:00 08/18/10 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Petroleum Hydrocarbons in Air - Mansfield Lab								
1,3-Butadiene	ND		ug/m3	2.0		1		
Methyl tert butyl ether	ND		ug/m3	2.0		1		
Benzene	ND		ug/m3	2.0		1		
Toluene	ND		ug/m3	2.0		1		
C5-C8 Aliphatics, Adjusted	ND	I	ug/m3	12		1		
Ethylbenzene	ND		ug/m3	2.0		1		
p/m-Xylene	ND		ug/m3	4.0		1		
o-Xylene	ND		ug/m3	2.0		1		
Naphthalene	ND		ug/m3	2.0		1		
C9-C12 Aliphatics, Adjusted	ND		ug/m3	14		1		
C9-C10 Aromatics Total	ND		ug/m3	10		1		

		Serial_No:09	211014:08
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1013135
Project Number:	CANISTER QC BAT	Report Date:	09/21/10
	AIR CAN CERTIFICATION RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst:	L1013135-01 CAN 713 SHELF 13 Not Specified Air 96,APH 08/27/10 17:22 AR	Date Collected: Date Received: Field Prep:	08/25/10 00:00 08/25/10 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Petroleum Hydrocarbons in Air - Mansfield Lab									
1,3-Butadiene	ND		ug/m3	2.0		1			
Methyl tert butyl ether	ND		ug/m3	2.0		1			
Benzene	ND		ug/m3	2.0		1			
Toluene	ND		ug/m3	2.0		1			
C5-C8 Aliphatics, Adjusted	ND		ug/m3	12		1			
Ethylbenzene	ND		ug/m3	2.0		1			
p/m-Xylene	ND		ug/m3	4.0		1			
o-Xylene	ND		ug/m3	2.0		1			
Naphthalene	ND		ug/m3	2.0		1			
C9-C12 Aliphatics, Adjusted	ND		ug/m3	14		1			
C9-C10 Aromatics Total	ND		ug/m3	10		1			

 Project Name:
 AUGUSTA CUMBERLAND FARMS

 Project Number:
 Not Specified

Lab Number: L1014293 Report Date: 09/21/10

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

N/A Present/Intact

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg Ċ	Pres	Seal	Analysis(*)
L1014293-01A	Canister - 1 Liter	N/A	N/A		NA	Present/Intact	APH-10(30),FIXGAS(30),TO15- LL(30)
L1014293-02A	Canister - 1 Liter	N/A	N/A		NA	Present/Intact	APH-10(30),FIXGAS(30),TO15- LL(30)
L1014293-03A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	APH-10(30),FIXGAS(30),TO15- LL(30)
L1014293-04A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	APH-10(30),FIXGAS(30),TO15- LL(30)
L1014293-05A	Canister - 2.7 Liter	N/A	N/A		NA	Present/Intact	APH-10(30),FIXGAS(30),TO15- LL(30)

Project Name: AUGUSTA CUMBERLAND FARMS

Project Number: Not Specified

Lab Number: L1014293

Report Date: 09/21/10

GLOSSARY

Acronyms

- EPA · Environmental Protection Agency.
- LCS · Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD · Laboratory Control Sample Duplicate: Refer to LCS.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD · Matrix Spike Sample Duplicate: Refer to MS.
- NA · Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI · Not Ignitable.
- RL · Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **H** The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.

Report Format: Data Usability Report

Project Name:AUGUSTA CUMBERLAND FARMSLab Number:L1014293Project Number:Not SpecifiedReport Date:09/21/10

Data Qualifiers

- **RE** Analytical results are from sample re-extraction.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Lab Number:
 L1014293

 Report Date:
 09/21/10

REFERENCES

- 48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.
- 51 Determination of Carbon Dioxide, Methane, Nitrogen and Oxygen from Stationary Sources. Method 3C. Appendix A, Part 60, 40 CFR (Code of Federal Regulations). June 20, 1996.
- 96 Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH), MassDEP, December 2009, Revision 1 with QC Requirements & Performance Standards for the Analysis of APH by GC/MS under the Massachusetts Contingency Plan, WSC-CAM-IXA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised July 19, 2010 – Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

Wastewater/Non-Potable Water (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable), Total Cyanide. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Organic Carbon, Total Cyanide, Corrosivity, TCLP 1311. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, EPA 120.1, SM2510B, EPA 245.1, EPA 150.1, EPA 160.2, SM2540D, EPA 335.2, SM2540G, EPA 180.1. <u>Organic Parameters</u>: EPA 625, 608.)

Solid & Chemical Materials (Inorganic Parameters: 6020, 7470, 7471, 9045, 9014. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 120.1, 150.1, 160.2, 180.1, 200.8, 245.1, 310.1, 335.2, 608, 625, 1631, 3010, 3015, 3020, 6020, 9010, 9014, 9040, SM2320B, 2510B, 2540D, 2540G, 4500CN-E, 4500H-B, <u>Organic Parameters</u>: EPA 3510, 3580, 3630, 3640, 3660, 3665, 5030, 8015 (mod), 3570, 8081, 8082, 8260, 8270,)

Solid & Chemical Materials (Inorganic Parameters: 6020, 7196, 7470, 7471, 7474, 9010, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015 (mod), EPA 3570, 1311, 3050, 3051, 3060, 3580, 3630, 3640, 3660, 3665, 5035, 8081, 8082, 8260, 8270.)

Biological Tissue (Inorganic Parameters: EPA 6020. Organic Parameters: EPA 3570, 3510, 3610, 3630, 3640, 8270.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA030.

Non-Potable Water (Inorganic Parameters: SM4500H+B. Organic Parameters: EPA 624.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 200.8, 245.1, 1631E, 120.1, 150.1, 180.1, 310.1, 335.2, 160.2, SM2540D, 2540G, 4500CN-E, 4500H+B, 2320B, 2510B. <u>Organic Parameters</u>: EPA 625, 608.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: SW-846 1312, 3010, 3020A, 3015, 6020, SM2320B, EPA 200.8, SM2540C, 2540D, 2540G, EPA 120.1, SM2510B, EPA 180.1, 245.1, 1631E, SW-846 9040B, 6020, 9010B, 9014 <u>Organic Parameters</u>: EPA 608, 625, SW-846 3510C, 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082 8260B, 8270C)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6020, 9010B, 9014, 1311, 1312, 3050B, 3051, 3060A, 7196A, 7470A, 7471A, 9045C, 9060. <u>Organic Parameters</u>: SW-846 3580A, 5030B, 3035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082, 8260B, 8270C, 3570, 8015B.)

Atmospheric Organic Parameters (EPA TO-15)

Biological Tissue (Inorganic Parameters: SW-846 6020 Organic Parameters: SW-846 8270C, 3510C, 3570, 3610B, 3630C, 3640A)

New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 310.1, SM2320B, EPA 365.2, 160.1, EPA 160.2, SM2540D, EPA 200.8, 6020, 1631E, 245.1, 335.2, 9014, 150.1, 9040B, 120.1, SM2510B, EPA 376.2, 180.1, 9010B. <u>Organic Parameters</u>: EPA 624, 8260B, 8270C, 608, 8081A, 625, 8082, 3510C, 3511, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, SW-846 Ch7 Sec 7.3, EPA 6020, 7196A, 7471A, 7474, 9014, 9040B, 9045C, 9010B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, DRO 8015B, 8082, 1311, 3050B, 3580, 3050B, 3035, 3570, 3051, 5035, 5030B.)

Air & Emissions (EPA TO-15.)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via LA-DEQ.

Refer to MA-DEP Certificate for Non-Potable Water.

Refer to LA-DEQ Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

Solid & Chemical Materials (<u>Inorganic Parameters</u>: EPA 6020, 7470, 7471, 1311, 7196, 9014, 9040, 9045, 9060. <u>Organic Parameters</u>: EPA 8015, 8270, 8260, 8081, 8082.)

Air (Organic Parameters: EPA TO-15)

U.S. Army Corps of Engineers

Department of Defense Certificate/Lab ID: L2217.01.

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312,3051, 6020, 747A, 7474, 9045C,9060, SM 2540G, ASTM D422-63. <u>Organic Parameters</u>: EPA 3580, 3570, 3540C, 5035, 8260B, 8270C, 8270 Alk-PAH, 8082, 8081A, 8015 (SHC), 8015 (DRO).

Air & Emissions (EPA TO-15.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: 8270C: Biphenyl.

							1967/45-rt							0	 []]		,	_Nc	·		014:		ω.	
Form No: 101-02 (19-Jun-09)		*SAMPLE			4	Å	چا	2	4293.1	ALPHA LabilD (Lab Use Only)			Other Project Sp		Email: troy t s	Fax: (207) 8	Phone: (207)	PORTIANS	Address: 312 CA	Client: MAINE	Client Information	EL: 508-822-9300	320 Forbes Blvd Mansfield MA 02048	
3)		*SAMPLE MATRIX CODES			SV-01	SV-03	SV-02	50-05	SV-04	Sample ID			Other Project Specific Requirements/Comments	These samples have been previously analyzed by Alpha	troy t swith a main and	812-	0	PORTIAND , MAINE 04103	312 CANCO RUAD	DEP		TEL: 508-822-9300 FAX: 508-822-3288	Stield MA 02048	AIR
	Relinquished By:	AAA= Amblent Air (Indoor)Onidoor) SV = Soil Vapor/Landfill (Gas/SVE Other = Please Speethy			9/9/10 10:12	9/9/10:44	9/9/10 1:52	9/9/10 3:21	9/9/10 3:19	Date Start Time	All Columns B		Comments:	Alpha Date Due:	A standard	-	Turn-Around Time	ALPHA Quote #:	Project Manager: 7	Project #: VT	Project Location:	Project Name: Au	Project Information	AIR ANALYSIS
	Date/Time 4-13-10	(Onndoon) Tas/SVE			10-36 -29 -2	11:10 -30 -2	2:05 -30 -5	3-36 -29 -4		Collection: Initial Final Start Time End Time Vacuum Vacuum	w Must			Time:			le		PETER EREMITA	SUDY	AUGUSTA, ME	AUGUSTA CUMBRILIND FALM	n Sna Sna Sna Sna Sna Sna Sna Sna Sna Sn	PAGE OF
	Received By:	Cont			- SV JKC 1	SV JKC	SV TTS 1	I JAC NS	SV JKC	Sample Sampler's Matrix* Initials	Be Filled Out			-	2	il olivity in the	Report to: (It different than Project Manager)	Additional Deliverables:	EMAIL (standard pdf report)	(Default based on)	Criteria Checker: MEDER		Report Informatio	Date:ReCd in Lab:
s	-9	Container Type			L 402 0144	14 235 0270	1- 455 0158	1- 887 0182	1054 0412	Can I D I D - Flow						((esser @ Summitenvicom	Project Manager)	abies:	pdf report)	(Default based on Regulatory Criteria Indicated)	m MEDER EDD		nformation - Data Deliverables	0 Allallo
2171 CINID	$\frac{\text{Date/Time:}}{13 - 10 / 9:00}$				× ×	\star	*	*	×	APH / FIXED / 13 / 4		BO	M.		ANALYSIS		MAINE EDU		Regulatory Requ		ATTN: PETER	Same as Client info		ALLEHA Job #:
e revene side	closy withdous territion lany ambies - guined and source subjection with a source stoom index account of the source of the sou	ease brint clearly legibly and mpletely, Samples can not be legal to sing unparotrodutines			Ł				ADD (02+02+ CH4	/ Sample Comments (i.e. PID)								tram Criteria	Regulatory Requirements/Report Limits		E EREMITA	o PO#:	pn	GBCMEQN1 # 400 FHATTA

Page 70 of 70

`

195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107 Report Number: 67790 Revision: Rev. 0

Re: DEP 2497-10

Enclosed are the results of the analyses on your sample(s). Samples were received on 15 September 2010 and analyzed for the tests listed. Samples were received in acceptable condition, with the exceptions noted below or on the chain of custody. These results pertain to samples as received by the laboratory and for the analytical tests requested on the chain of custody. The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. Please see individual reports for specific methodologies and references.

Lab Number	Sample Date	Station Location	Analysis Comments
67790-1	09/09/10	MW-1	Volatile Petroleum Hydrocarbons
67790-2	09/09/10	Trip Blank	Electronic Data Deliverable
	09/09/10	Trip Blank	Volatile Petroleum Hydrocarbons

Sample Receipt Exceptions: None

Analytics Environmental Laboratory is certified by the states of New Hampshire, Maine, Massachusetts, Connecticut, Rhode Island, Virginia, Maryland, and is accredited by the Department of Defense (DOD) ELAP program. A list of actual certified parameters is available upon request.

If you have any questions on these results, please do not hesitate to contact us.

Date

Authorized signature

Stephen L. Knollmeyer Lab. Director 9/22/2010

This report shall not be reproduced, except in full, without the written consent of Analytics Environmental Laboratory, LLC.

DEP 2497-10

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: MW-1 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

September 21, 2010

SAN	IPLE DATA
Lab Sample ID:	67790-1
Matrix:	Aqueous
Percent Solid:	N/A
Dilution Factor:	1
Collection Date:	09/09/10
Lab Receipt Date:	09/15/10
Analysis Date:	09/16/10

RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result	
Unadjusted C5-C8 Aliphatics	N/A	50	μg/L	U	
Unadjusted C9-C12 Aliphatics	N/A	50	μg/L	U	
Benzene	C5-C8	2	μg/L	U	
Ethylbenzene	<u>C9-C12</u>	2	μg/L	<u>U</u>	
Methyl-tert-butyl ether	<u>C5-C8</u>	2	μg/L	U	
Naphthalene	N/A	2	μg/L	U	
Toluene	C5-C8	2	μg/L	<u>U</u> .	
m- & p-Xylenes	<u>C9-C12</u>	4	μg/L_	U	
o-Xylene	<u>C9-C12</u>	2	μg/L	<u>U</u>	
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	50	μg/L	U	
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	$\mu g/L$	<u>U</u>	
C9-C10 Aromatic Hydrocarbons ¹	N/A	10	μg/L	<u> </u>	
Surrogate % Recovery (2.5-Dibron				80	
Surrogate % Recovery (2.5-Dibron	notoluene) FID			78	
Surrogate Acceptance Range				70-130%	

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. ²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

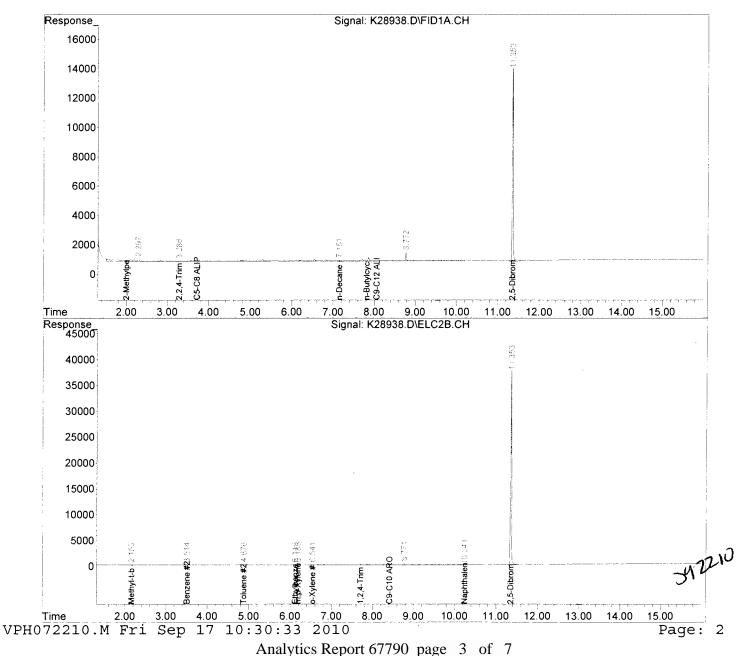
³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank

METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.


Authorized signature: Mull

Analytics Report 67790 page 2 of 7

Data Path : C:\msdchem\1\DATA\091610-K\ Data File : K28938.D Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH Acq On : 16 Sep 2010 5:07 pm : JJL Operator Sample : 67790-1 Misc : 5000 ALS Vial : 13 Sample Multiplier: 1 Integration File signal 1: autoint1.e ge alulio Integration File signal 2: autoint2.e Quant Time: Sep 17 10:30:14 2010 Quant Method : C:\msdchem\1\METHODS\VPH072210.M Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004 QLast Update : Fri Jul 23 15:04:23 2010 Response via : Initial Calibration 6890 Scale Mode: Small noise peaks clipped Integrator: ChemStation Volume Inj. : Signal #1 Phase :

Signal #1 Info :

Signal #2 Phase: Signal #2 Info :

DEP 2497-10

Mr. Herb Kodis Maine Environmental Laboratory, Inc. PO Box 1107 Yarmouth, ME 04096-1107

CLIENT SAMPLE ID

Project Name:

Project Number: Client Sample ID: Trip Blank 195 Commerce Way Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906

September 21, 2010

SAM	IPLE DATA
Lab Sample ID:	67790-2
Matrix:	Aqueous
Percent Solid:	N/A
Dilution Factor:	1
Collection Date:	09/09/10
Lab Receipt Date:	09/15/10
Analysis Date:	09/17/10

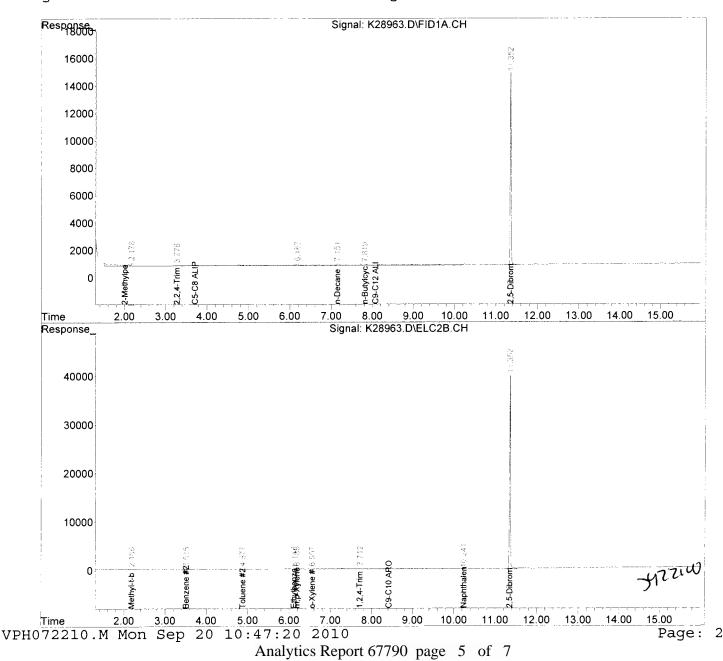
RANGE/TARGET ANALYTE	Elution Range	RL	Units	Result	
Unadjusted C5-C8 Aliphatics	N/A	50	μg/L	U	
Unadjusted C9-C12 Aliphatics	N/A	50	μg/L	U	
Benzene	C5-C8	2	μg/L	<u>U</u>	
Ethylbenzene	C9-C12	2	μg/L	<u>U</u>	
Methyl-tert-butyl ether	C5-C8	2	μg/L	<u>U</u>	
Naphthalene	N/A	2	μg/L	<u>U</u>	
Toluene	C5-C8	2	μg/L	<u> </u>	
m- & p-Xylenes	C9-C12	4	μg/L	<u> </u>	
o-Xylene	C9-C12	2	μg/L	U	
C5-C8 Aliphatics Hydrocarbons ^{1,2}	N/A	50	μg/L	<u> </u>	
C9-C12 Aliphatic Hydrocarbons ^{1,3}	N/A	50	μg/L	<u>U</u>	
C9-C10 Aromatic Hydrocarbons ¹	N/A	10	μg/L	<u> </u>	
Surrogate % Recovery (2,5-Dibron	notoluene) PID				
Surrogate % Recovery (2.5-Dibron	notoluene) FID	, , , , , , , , , , , , , , , , , , , 		79	
Surrogate Acceptance Range				70-130%	

¹Hydrocarbon Range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. ²C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

³C9-C12 Aliphatic Hydrocarbons exclude conc. of Target Analytes eluting in that range and conc. of C9-C10 Aromatic Hydrocarbons.

RL = Report Limit

U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in Blank


METHODOLOGY: MADEP Volatile Petroleum Hydrocarbons (VPH), ORS Division of Environmental Analysis, Revision 1.1 May 2004.

COMMENTS: Samples were received in accordance with method criteria unless noted on the sample receipt checklist.

Authorized signature: Muchull

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\DATA\091710-K\ Data File : K28963.D Signal(s) : Signal #1: FID1A.CH Signal #2: ELC2B.CH Acq On : 17 Sep 2010 4:15 pm Operator : JJL Sample : 67790-2 Misc : 5000 Sample Multiplier: 1 ALS Vial : 10 2 9/20/10 Integration File signal 1: autoint1.e Integration File signal 2: autoint2.e Quant Time: Sep 20 10:46:58 2010 Quant Method : C:\msdchem\1\METHODS\VPH072210.M Quant Title : Volatile Petroleum Hydrocarbons (VPH) MA DEP 2004 QLast Update : Fri Jul 23 15:04:23 2010 Response via : Initial Calibration 6890 Scale Mode: Small noise peaks clipped Integrator: ChemStation Volume Inj. : Signal #2 Phase: Signal #1 Phase : Signal #2 Info : Signal #1 Info :

MAINE ENVIRONN		ANALYSES	LABORATORY REPORT #
One Main Street Yarmouth, Maine 04096-6716	uth, Maine 04096-6716 (207) 846-6569 fax: (207) 846-9066		
	e-mail: melab@maine.rr.com		Delivered by
PROJECT MANAGER H. Kodis	TELEPHONE FAX # / E-MAIL		
COMPANY	PURCHASE ORDER # / BILL TO		
			TURNAROUND REQUEST
AUDRESS			▲ Standard 9/23 ★*
PROJECT NAME DEP 2497-10	SAMPLER NAME J. Rond		MELS/20101-35
			Quote #
* CONTRINCTION IDENTIFICATION August	SAMPLE R METHOD MATRIX G O PRESERVED		LABORATORY IDENTIFICATION/ SUBCONTRACTOR
1-0	3 VOA X H2O X HOL/E6:C 9/9/10 4:20 X		1 - 9 pttg
Bark Blank	I WER X V X V X V X		2-
port 6			
5779			
0 pa			
age	Co atolio		
6			
of			
7			
Received within hold time	Kes D no D N/A Custody seal present D yes D no	COMMENTS	
Received in good condition Temp. Blank °C 3 C /Frozen ice packs		ME DEP EDD (Augusta Cumberland Farms	berland farms)
Samples received preserved	Kyes In INA Labels 1 by CP gliblic		
HELINQUISHED BY SAMPLER:			
	DATE JANE OF TAME	REDENTED BY: TOWN AND AND AND AND AND AND AND AND AND AN	
COC-04 / 1-2			

AEL

ANALYTICS SAMPLE RECEIPT CHECKLIST

znałytk						
AEL LAB#:	67790		COOLER	NUMBER:	69	
CLIENT:	MEL		NUMBER ()F COOLERS:	1	
PROJECT:	0222497.10		DATE R	ECEIVED:	9/15/10	
A: PRELIMI	NARY EXAMINATION:		DATE COOLE	ER OPENED:	9/15/10	
1. Cooler recei	ved by(initials):		Date R	leceived:	9/15/10	
2. Circle one:	Hand deliv	1	Shipped		->	
3. Did cooler c	ome with a shipping slip?	3)		Y	N/A)	
	3a. Enter carrier name and airbill number	er here:	_			
4. Were custody How many & v	y seals on the outside of cooler?	Seal Date: ·		Y Seal Name:	<u> </u>	
5. Did the custo	ody seals arrive unbroken and intact upon a	arrival?		Y	$\overline{N/A}$	
6. COC#:	N/A				÷	
7. Were Custod	y papers filled out properly (ink,signed, etc	c)?		$\left(\widetilde{Y} \right)$	N	
8. Were custody	y papers sealed in a plastic bag?			(Y)	N	
9. Did you sign	the COC in the appropriate place?			Ý	N	
10. Was the pro	ject identifiable from the COC papers?			Ŷ	N	
11. Was enoug	h ice used to chill the cooler?	Т N	Temp. of cooler		<u> </u>	
B. Log-In: D	Date samples were logged in:	oglicelio	By:	R		
12. Type of pac	king in cooler (oubble wrap, popcorn)			Ð	Ν	
13. Were all bot	tles sealed in separate plastic bags?			Ŵ	Ν	
14. Did all bottl	es arrive unbroken and were labels in good	d condition?		\heartsuit	Ν	
15. Were all bot	tle labels complete(ID,Date,time.etc.)			Ì	N	
16. Did all bottl	e labels agree with custody papers?				Ν	
17. Were the co	prrect containers used for the tests indicated	1:		X	N	
18. Were sample	es received at the correct pH?			Y	N/A	
19. Was sufficie	nt amount of sample sent for the tests indic	cated?		X	N	
20. Were bubble	s absent in VOA samples?			Y	\bigotimes	
	If NO, List Sample ID's and Lab #s:	67790.1.C 67790.2.A	CONTRINI	ed Bubbl Ned B u k	e smaller Ble the g	than pea size give of a pe
21. Laboratory I	abeling verified by (initials):	Ce		Date: _	9/16/10	

Analytics Report 67790 page 7 of 7