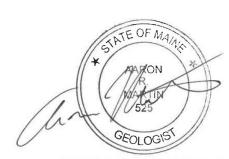
HYDROGEOLOGIC INVESTIGATION REPORT PROPOSED COMMERCIAL LAND-BASED AQUACULTURE FACILITY BELFAST WATER DISTRICT, CASSIDA BACK LOT AND MATHEWS BROTHERS WEST FIELD PROPERTIES 285 NORTHPORT AVENUE BELFAST, MAINE

Prepared for:

Nordic Aquafarms, Inc. 159 High Street Belfast, Maine

Prepared by:


Ransom Consulting, Inc. 400 Commercial Street, Suite 404 Portland, Maine (207) 772-2891

> Project 171.05027.003 April 18, 2019

Thomas B. Neilson Project Geologist

Elizabath M. Ranson

Elizabeth M. Ransom, P.G. Senior Project Manger

Aaron R. Martin, C.G. Geologist

EXECUTIVE SUMMARY

Ransom Consulting, Inc. (Ransom) has prepared this Hydrogeologic Investigation Report on behalf of Nordic Aquafarms, Inc. (NAF) for the proposed development of a commercial land-based aquaculture facility to be located off Northport Avenue in Belfast, Maine. The purpose of this report is to summarize the findings of the investigation conducted at the Site and support applications for Site Location of Development and Significant Groundwater Well permits with the Maine Department of Environmental Protection (MEDEP).

NAF has proposed construction of a land-based commercial Atlantic salmon aquaculture facility on a portion of a parcel of land currently owned by the Belfast Water District (BWD) and two additional abutting parcels owned by Samuel Cassida (also referred to as "Cassida back lot") and Goldenrod Properties, LLC (referred to as the "Mathews Brothers," "MB," and "Mathews Brothers west field" property). In addition to the primary development parcel, the proposed development will include a 40-foot wide easement, located east of US Route 1 (also called Northport Avenue), to allow pipeline access to Belfast Bay. The BWD offices, former surface water intake and pumphouse, and a maintenance garage are currently situated on the parcel, which is located north of the Little River and the Lower Reservoir near the confluence of the Little River and Belfast Bay. The proposed development will include the portion of the BWD property excluding a 250-foot wide buffer zone from the Lower Reservoir of the Little River. The Cassida property is managed as an agricultural field and abuts the Cassida property to the north and BWD property to the east. Collectively, these properties comprise the "Site." NAF intends to raise Atlantic salmon in the facility, which requires clean and consistent supplies of cold freshwater and saltwater.

The Site encompasses approximately 54 acres of gently sloping terrain incised by several steep gullies. The majority of the Site is undeveloped forest or field, with approximately three developed acres along Northport Avenue, improved with four buildings and paved surfaces used by the BWD for their offices, equipment storage, and maintenance purposes. The proposed development will occur in two "phases" and will encompass approximately 38 acres after completion. Phase I is planned to have approximately 50% fish production capacity after completion, and Phase II will expand the facility to full production. The Site is adjacent to the Lower Little River Dam (the "Lower Dam"), a 30-foot high, 126-foot long concrete and masonry dam. The Lower Dam impounds the Little River into a reservoir that is approximately 37 acres with a capacity of approximately 600 acre-feet (Wright-Pierce, 2018). The Lower Dam and reservoir (also called Belfast Reservoir 1 or the Lower Reservoir) served as the public water supply for the City of Belfast from circa 1887 to 1956, and then as a backup water supply until 1980, when the BWD completely transitioned its water supply to groundwater sourced from the Goose River Aquifer. BWD's current public water supply wells in the Goose River Esker Aquifer are located approximately 6.5 miles north of the Site in a separate and distinct surface water and groundwater system.

This investigation also included explorations at off-site portions of the BWD property, located adjacent to the Upper Little River Dam and reservoir (also called Belfast Reservoir 2 of the Upper Reservoir), approximately 3,000 feet west-northwest of the Site. These off-site portions of BWD's property are currently not included as part of the proposed development, but an exploration agreement between NAF and BWD allowed for investigation of these off-site portions of BWD's property for potential groundwater supply to support the development.

Based on the findings of this investigation, described in detail in Sections 3 through 7, Ransom estimates that the fractured bedrock aquifer at the Site is suitable for a sustained total groundwater withdrawal of

approximately 455 gallons per minute (gpm) distributed amongst a proposed bedrock wellfield consisting of three water supply production wells.

The surficial geology of the Site and surrounding area generally consists of the Presumpscot Formation, composed of glaciomarine silt, clay, and smaller components of fine sand. To the north of the Site and elsewhere in the Little River Watershed glacial till is the dominant surficial material. Soil borings advanced at the Site indicate that Presumpscot silts and clays are ubiquitous across the proposed development area and are generally underlain by a thin mantle of glacial till above the bedrock surface, which was generally encountered between 12 and 25 feet below ground surface (bgs).

The bedrock unit underlying the Site and surrounding area is mapped as the Ordovician- to Cambrian-age Penobscot Formation, which generally consists of interbedded metapelite and metasandstone. The Sennebec Pond fault runs from southwest to northeast approximately 2.8 miles northwest of the Site. Test wells drilled at the Site indicate that the bedrock is schist, composed primarily of biotite, quartz and muscovite mica. Graphitic beds were also encountered in most test borings. Metasandstone beds were generally light gray to white in color and were considerably more competent during drilling than the metapelite beds. A heavily weathered zone at the bedrock surface was present in all test borings and ranged in thickness from a few feet to greater than 20 feet. Bedrock fractures and softer areas of rock were also common in most borings and produced minor to significant quantities of water at depths greater than approximately 70 feet bgs.

Ransom conducted a test well drilling program at the Site based on interpretation of a Site-wide electrical resistivity survey aimed at identifying areas where fluid filled fractures in bedrock were likely present. The test well drilling program was conducted in late winter through early spring and fall of 2018 and included the advancement of 12 bedrock test wells, nine of which were advanced on BWD's Lower Reservoir property and the remaining three borings were advanced on BWD's off-site, Upper Reservoir property. In addition, a monitoring network was developed including six overburden piezometers in or near mapped wetlands, three staff gages to monitor surface water levels in the reservoirs and Little River near the Site, and six private water supply at residences near the Site. Results from the test well drilling program identified test wells with estimated yields of less than 10 gpm to greater than 200 gpm. Test wells drilled at the off-site Upper Reservoir property exhibited lower estimated yields than those drilled on the Lower Reservoir property, and thus subsequent investigation work was focused on the Lower Reservoir.

A total of four separate aquifer tests were conducted at the Site, with total pumping rates ranging from 100 to 600 gpm from up to six test wells simultaneously. Data collected during the aquifer tests indicate that groundwater flow at the Site is not uniform in all directions. In general, groundwater flow through the bedrock aquifer occurs along and through fractures in the bedrock.

The results of the aquifer tests were ultimately used to develop a numerical groundwater flow model for the Site, performed by McDonald Morrisey Associates, LLC (MMA), which was used to simulate the effects of various pumping scenarios from production wells across the Site. The model was calibrated using water level data collected during the first three aquifer tests and verified using data collected during the fourth aquifer test. The model results generally support a withdrawal scenario utilizing three pumping wells located in the southeastern portion of the Site with a total combined pumping rate of approximately 455 gpm.

In addition to the assessment of groundwater withdrawal at the Site, a surface water withdrawal from the Lower Reservoir is also proposed as a part of NAF's development. The proposed surface water withdrawal of 250 gpm is based on rules set forth in Maine Department of Environmental Protection

(MEDEP) Chapter 587 allowing for a withdrawal of 70 gpm plus inflows to Belfast Reservoir Number One (also known as the Lower Reservoir). In order to account for inflows into Belfast Reservoir Number One in the planning process, a rate of 250 gpm is presented as a conservative estimate of the baseflow of the Little River. A qualitative sensitivity analysis of the numerical groundwater flow model indicates that fluctuations in head of the Lower Reservoir due to the proposed surface water withdrawal is unlikely to affect the sustainability of the proposed groundwater withdrawal.

In total, the proposed development will receive fresh water from three distinct supply sources:

- 1. Groundwater withdrawn from the Site at a proposed rate of 455 gpm;
- 2. Surface water withdrawn from the Site at an estimated rate of 250 gpm; and
- 3. Public water supply delivered to the Site by the Belfast Water District at a proposed rate of up to 500 gpm.

Combined, the total projected fresh water supply rate available post development would be approximately 1,205 gpm.

1.0	INTF	RODUCTION	1
	1.1	Background	
	1.2	Purpose	
2.0		D AND WATER USE	
	2.1	Regional Land Use	
	2.2	Site Land Use	
	2.3	Regional Water Use	3
		2.3.1 Existing Wells	3
	2.4	Site Water Use	4
	2.5	Potential Source of Contamination	4
3.0	ARE	A HYDROLOGIC AND HYDROGEOLOGIC SETTING	7
••••	3.1	Precipitation	
	5.1	3.1.1 April 2018	
		3.1.2 August 2018	
		3.1.3 November 2018	
		3.1.4 January 2019	
	3.2	•	
	3.3	Topography and Surface Drainage	
		Site and Regional Surficial Geology.	
	3.4	Site and Regional Bedrock Geology	
	3.5	Water Balance and Aquifer Recharge	
		3.5.1 Surface Water and the Little River Flow Regime	
	2.6	3.5.2 Total Water Delivered to the Watershed	
	3.6	Surface Water Withdrawal	
	3.7	Belfast Water District Supply	12
4.0	EXP	LORATION AND TESTING PROGRAM	
	4.1	Resistivity Survey	
	4.2	Test Well Drilling Program	
	1.2	4.2.1 Northern Test Boring Test Wells	
		4.2.2 Goodwin Well and Water Test Wells	
		4.2.3 Drilex Environmental Test Wells	
		4.2.4 Pine State Drilling Test Wells	
		4.2.4 Fine State Drining Test Wells	
	4.3	Multi-level Wetland Piezometer Installation	
	4.4	Proposed Production Well Installation	
	4.5	Monitoring Network	
	4.6	Aquifer Testing	
		4.6.1 April 2018 Test	
		4.6.2 August 2018 Test	
		4.6.3 November 2018 Test	
		4.6.4 January 2019 Test	
	4.7	Water Quality Testing	
	4.8	Survey of Reference Data Points	24
5.0	AQU	JIFER CHARACTERIZATION AND TESTING	25
	5.1	Hydrogeologic Conditions and Groundwater Flow	
		5.1.1 Ambient Groundwater Flow Conditions	
		5.1.2 Characterization of the Bedrock Aquifer	
		5.1.3 Bedrock-Overburden Groundwater Interactions	

TABLE OF CONTENTS

		5.1.4	Bedrock Aquifer-Surface Water Interactions	26
	5.2	Numer	rical Modeling of Groundwater Flow	27
		5.2.1	Overview of Model Creation, Calibration, and Validation	27
		5.2.2	Model Simulations and Results	
		5.2.3	Model Findings	29
		5.2.4	Model Conclusions and Recommendations	29
	5.3	Propos	sed Groundwater Withdrawal and the Little River Watershed Water Balance	30
		5.3.1	Potential for Saltwater Intrusion during active pumping	31
6.0	WAT	T ER Q UA	ALITY	32
	6.1	Groun	dwater Sample Chemical Analysis Results	32
		6.1.1	Volatile Organic Compounds	
		6.1.2	Semi-Volatile Organic Compounds	32
		6.1.3	Pesticides	
		6.1.4	Elements (Total & Dissolved)	
		6.1.5	Additional Parameters	
	6.2	Groun	dwater Field Parameters	
		6.2.1	Temperature	
		6.2.2	Specific Conductivity	
		6.2.3	Additional Parameters	
	6.3	Regula	atory Status	34
	6.4	Data I	nterpretation	34
7.0	FINI	DINGS		35
8.0	CON	CLUSIO	ONS AND RECOMMENDATIONS	37
	8.1	Conclu	usions	37
	8.2	Recon	nmendations	37
9.0	REF	ERENCE	ES	40

FIGURES:

Figure 1:	Watershed Map
Figure 2:	Site Area Map
Figure 3:	Annual Little River Discharge
Figure 4:	Site Features Map
Figure 5:	Surface Water and Precipitation Over Time
Figure 6:	Ambient Groundwater Contours
Figure 7:	Groundwater, Surface Water, and Precipitation Over Time

TABLES:

Table 1:	Existing Private Water Supply Wells
Table 2:	Average Precipitation for Belfast, Maine
Table 3:	Monitoring Point Specifications
Table 4:	Monitoring Frequency
Table 5:	Basic Aquifer Test Parameters
Table 6:	Aquifer Test Details
Table 7:	Groundwater Laboratory Analytical Results
Table 8:	Field Analyses of Groundwater Quality

APPENDICES:

Appendix A:	StreamStats Report and Precipitation Data
Appendix B:	Resistivity Survey Report
Appendix C:	Boring Logs
Appendix D:	Groundwater and Surface Water Data
Appendix E:	Aquifer Test Drawdown Plots
Appendix F:	Groundwater Modeling Technical Memo
Appendix G:	Laboratory Analytical Reports
Appendix H:	Conceptual Geologic Cross Sections

1.0 INTRODUCTION

Ransom Consulting, Inc. (Ransom) has prepared this Hydrogeologic Investigation Report on behalf of Nordic Aquafarms, Inc. (NAF) to support the planning and development of a commercial land-based aquaculture facility to be located off Northport Avenue in Belfast, Maine.

1.1 Background

NAF has proposed construction of a land-based commercial Atlantic salmon aquaculture facility on a portion of a parcel of land currently owned by the Belfast Water District (BWD) and two additional abutting parcels owned by Samuel Cassida (also referred to as "Cassida back lot") and Goldenrod Properties, LLC (referred to as the "Mathews Brothers," "MB," and "Mathews Brothers west field" property). In addition to the primary development parcel, the proposed development will include a 40-foot wide easement, located east of US Route 1 (also called Northport Avenue and Atlantic Highway), to allow pipeline access to Belfast Bay. The BWD offices, former surface water intake and pumphouse, and a maintenance garage are currently situated on the parcel, which is located north of the Little River and the Lower Reservoir near the confluence of the Little River and Belfast Bay. The proposed development will include the BWD property except the 250-foot buffer from the Lower Reservoir of the Little River. The Cassida property is currently managed as a woodlot and abuts the BWD property to the north and east, while the MB property is managed as an agricultural field and abuts the Cassida property to the north and BWD property to the east. Collectively, these properties comprise the "Site" and are shown in Figure 1.

The Site encompasses approximately 54 acres of gently sloping terrain incised by several steep gullies. The majority of the Site is undeveloped forest or field, with approximately three developed acres along Northport Avenue, comprised of four buildings and paved surfaces used by the Belfast Water District as offices, equipment storage, and maintenance space. The proposed development will encompass approximately 34 acres after completion and will be constructed in two primary phases. The Site is adjacent to the Lower Little River Dam (the "Lower Dam"), a 30-foot high, 126-foot long concrete and masonry dam. The Lower Dam impounds a reservoir that is approximately 37 acres with a capacity of approximately 600 acre-feet (Wright-Pierce, 2018). The Lower Dam and reservoir (also called Belfast Reservoir One or the Lower Reservoir) served as the public water supply for the City of Belfast circa 1887 to 1956, and then as a backup public water supply until 1980, when the BWD completely transitioned its water supply to groundwater sourced from the Goose River Aquifer. The new BWD public water supply wells are located approximately 6.5 miles north of the Site in a separate and distinct surface water and groundwater system.

This investigation also included exploration of portions of the BWD property located adjacent to the Upper Little River Dam and reservoir (also called Belfast Reservoir Two or the Upper Reservoir), approximately 3,000 feet west-northwest of the Site. This property was not included as part of the proposed development, but an exploration agreement between NAF and BWD allowed for investigation of this property for potential groundwater supply to support the development.

1.2 Purpose

This hydrogeologic investigation was conducted to evaluate the suitability and sustainability of the bedrock aquifer beneath the Site for installation of bedrock water supply wells to support the proposed aquaculture facility. The purpose of this report is to summarize the findings of the investigation and support applications for Site Location of Development and Significant Groundwater Well permits with

the Maine Department of Environmental Protection (MEDEP). The investigation efforts were focused on four primary objectives:

- 1. Assess the overall suitability of the aquifer for water quality and yield;
- 2. Assess the viability of a surface water intake from the Lower Reservoir;
- 3. Identify potential high-yield water supply production well locations at the Site or on the Upper Reservoir property;
- 4. Assess the hydraulic properties of the aquifer through aquifer tests and numerical groundwater modeling; and
- 5. Calculate the estimated sustainable yield from one or more production wells located at the Site and/or on the Upper Reservoir Property to support design of a production well or well field and permitting to allow sustainable groundwater.

2.0 LAND AND WATER USE

2.1 Regional Land Use

The region surrounding the Site is located at the southern end of the more densely developed residential and United States Route 1 (US Route 1) commercial portion of the City of Belfast. The general character of the area immediately surrounding the Site is sparse to moderately developed woodlands and farmland interspersed with large commercial operations. These include the Mathews Brothers manufacturing facility immediately to the north of the Site, a currently vacant commercial building to the northeast of the Site, and the Belfast Municipal Airport located approximately one-mile northwest of the Site. To the south and west are generally rural to suburban residential areas of the Town of Northport and City of Belfast. US Route 1, also known as Northport Avenue and Atlantic Highway, borders the eastern side of the Site and includes numerous commercial operations and several residential properties are located opposite the Site between US Route 1 and Belfast Bay.

2.2 Site Land Use

The Site is predominantly undeveloped woodland, with approximately three developed acres along Northport Avenue. The developments include the historic BWD pump house located at the Lower Dam, now used as office space for the BWD, as well as several other buildings used for storage and maintenance by the BWD and paved or gravel driveways and parking areas. The Cassida and BWD portions of the Site have periodically been logged over the past several decades, and a sparse network of woods roads is present. A recreational walking trail traverses the shoreline of the Lower Reservoir through a portion of the BWD property. The strip of shoreland (within 250 feet of the Lower Reservoir) containing the recreation trail is not included in the proposed development Site.

2.3 Regional Water Use

The BWD provides public drinking water sourced from their municipal water supply wells located in the Goose River Aquifer located in north Belfast and the Town of Swanville. BWD's service extends to most of the properties surrounding the Site. This includes all of the homes located on the northern side of the Little River and Lower Reservoir, including those homes and businesses located on US Route 1, Perkins Road, and Lower Congress Street with the exception of two homes located on Reeds Lane off of Lower Congress Street.¹ The public water supply main continues from Belfast into Northport across the US Route 1 bridge of the Little River, following US Route 1 for three quarters of a mile until turning east on Bayside Road and ending in the community of Bayside. Herrick Road (to the west of the Site) is not serviced by BWD's public water supply.

2.3.1 Existing Wells

Ransom conducted a water supply well search to locate private water supply wells within 0.5 miles of the Site boundary. A total of 36 possible private wells were identified within the search radius and are shown on Figure 2. Wells were identified through the Maine Geological Survey (MGS) Water Wells Database, Surficial Materials dataset, and Significant Sand and Gravel Aquifers Maps, the Maine Drinking Water Program Public Water Supply Wells database, and communication with the BWD and Northport Village Corporation. A total of four wells were identified in the search radius in the MGS Water Well Database, and the remaining wells were

¹ Based on communication with Keith Pooler, Superintendent of the Belfast Water District, on April 18, 2018

assumed to be present based on the presence of a home or business and absence of a public water connection. Off-site wells identified within the search radius are summarized in Table 1.

A total of eleven private well owners surrounding the Site were contacted to confirm the existence of their well and asked to participate in a voluntary monitoring program to evaluate possible interaction between Site wells and surrounding private wells. Of the eleven individuals contacted, eight consented to participate in the monitoring programs, and monitoring equipment was installed in a total of six wells. The owner of the well identified in the MGS database at 253 Northport Avenue confirmed that the structure was served by public water but did not have knowledge of the well's existence at the property. Ransom was unable to locate this well during a reconnaissance at the property on January 7, 2019.

The owner of the well located at 30 Herrick Road confirmed the existence of the well and consented to the monitoring program, however, based on an assessment of the well by a pump and well contractor it was determined that installation of monitoring equipment may adversely impact the well pump and was not advised.

The owners of the wells located at 10 Herrick Road, 24 Herrick Road, and 26 Herrick Road were contacted and either declined to participate in the monitoring program or did not respond to communication attempts beyond the initial contact.

2.4 Site Water Use

The Site is currently serviced by the BWD public water supply system and a private septic system. Ransom is not aware of any water supply or monitoring wells located on Site prior to the drilling work conducted for this investigation.

Historically, the Lower Reservoir and onsite portions of BWD's property that are proposed for NAF's development were used as a primary, and later secondary or backup, water supply for BWD's customer. Dam construction on the Little River (in generally the same location as the current lower dam) began circa 1887 to create a reservoir for use as public drinking water supply for the City of Belfast. In the fall of 1943, the original dam failed after heavy rainfall, destroying the US Route 1 bridge in the process. In 1944, the current Lower Dam was constructed. In the 1950's, the City of Belfast began development of groundwater resources in the Goose River Aquifer, retaining pumping capacity at the Lower Reservoir for backup water supply purposes only, and in 1980 transitioned completely to water supply wells in the Goose River Aquifer.²

2.5 Potential Source of Contamination

Ransom completed a Phase I Environmental Site Assessment (ESA) for the Belfast Water District Property on May 3, 2018 (Ransom, 2018a) and for the Mathews Brothers field on November 5, 2018 (Ransom, 2018b). As a part of the Phase I ESAs, a records search including relevant federal and state databases was conducted to identify known potential sources of contamination within a 0.5-mile radius of the Site. In the course of this review, two State Leaking Aboveground Storage Tank (LAST) sites and two State Registered Storage Tank Sites were identified within 0.5 miles of the Site. One approximately

² History of the Belfast Water District from the BWD website: <u>www.belfastwater.org</u>, accessed June 5, 2018

275-gallon fuel oil aboveground storage tank (AST) was observed at the Site in the garage building. No staining or evidence of spills from the tank were observed.

Both LAST sites involved spilling 5 gallons or less of fuel oil from overfilling residential ASTs. A spill in 2003 was located at 256 Northport Avenue, and a spill in 2016 was located at 22 Perkins Road (although this address is believed to be incorrect, given that 22 Perkins Road is an industrial facility, not a residential home as indicated in the report). Due to the small quantities of oil spill and the documented cleanup of spilled oil, these LAST sites are not considered to represent an environmental risk to the Site or groundwater at the Site.

The two State Registered Storage Tank sites identified in the records search abut the Site directly. Both listings refer to the Mathews Brothers Company facility located at 22 Perkins Road (shown on Figure 2). Several oil storage tanks currently or have historically been located at the Mathews Brothers facility. Currently, a 65,000-gallon #5 fuel oil AST and an approximately 4,000-gallon #2 fuel oil AST are indicated as being located at the facility by the supporting material reviewed by the Phase I ESA, however, these tanks do not appear to be listed in MEDEP databases reviewed during the Phase I. There are no records indicating spills or violations pertaining to the ASTs at the facility, and they are not considered to have had an adverse impact on the Site or groundwater at the Site. Historically, MEDEP records indicate that a 1,000 and 5,000-gallon #2 fuel oil underground storage tank (UST) and a 10,000-gallon #5 fuel oil UST were located at the Site. Available records indicate that these USTs were removed in 1988, however, no specific documentation of their removal was identified, including during an inperson file room review at the MEDEP. Given the absence of documentation of the condition of the USTs and the surrounding soil during removal, there is a potential for petroleum from the USTs to have impacted soil and shallow groundwater at the Mathews Brothers facility, and potential for petroleum constituents to have migrated onto the Site.

In addition to State identified petroleum storage sites near the proposed development, historical research of adjoining property uses indicates that the Mathews Brothers facility operated as the Truitt Brothers, Inc. show factory from 1963 through 1985, prior to being purchased by Mathews Brothers in 1989. The Truitt Brothers facility operated two wastewater lagoons that reportedly received some portion of process water from the facility, after alleged treatment. Specifics regarding effluent to the lagoons were not discovered, however, firsthand accounts from local residents recall the lagoons as being devoid of odor and hosting aquatic life such as frogs, turtles, ducks, and algae.

Additional details pertaining to the findings of the Phase I ESAs, including the Limited Subsurface Investigation conducted following the Belfast Water District Phase I ESA, are detailed in the reports.

In addition to the findings of the Phase I ESA, there is the potential for groundwater contamination from private septic systems that serve the Site and all surrounding properties, as well as the possibility of contamination from current or former agricultural use of the Site (i.e. the Mathews Brothers hay field) or the nearby Good Karma Farm located on the northern side of Perkins Road. Public sewer is not available in much of the area surrounding the Site, so all residences and businesses are assumed to be served by private sewer systems. In 2005, the Mathews Brothers facility did connect to the municipal system, retiring their leach field located to the south of their facility. The exact properties served by municipal sewer in the area surrounding the Site have not been identified.

On the whole, the identified potential sources of contamination in the vicinity of the Site are not anticipated to represent a significant threat to groundwater quality at the Site. In order to assess current conditions at the Site, laboratory analysis of groundwater samples collected at the Site was performed and

is detailed in this report. In addition, the proposed development includes a comprehensive treatment system to treat all incoming process water, which will mitigate much of the possible risk posed by potential nearby sources of contamination.

3.0 AREA HYDROLOGIC AND HYDROGEOLOGIC SETTING

3.1 Precipitation

Long term daily precipitation data for the Belfast area has been collected by the National Oceanic and Atmospheric Administration (NOAA) at the Belfast, Maine station (Station ID USC00170480) from January 1, 1893 to the present, excluding the period from November 1, 1904 to January 31, 1945 during which data was not recorded. This weather station is located approximately 2.9 miles north of the Site in the lower reaches of the Goose River watershed.

Excluding years with more than ten days of missing measurements, average annual precipitation values range from 26.83 inches in 1965³ to 71.29 inches in 1983. Over the period of record the average annual precipitation at the station is 46.73 inches. However, average annual precipitation appears to be showing a generally increasing trend over the past 30 years. These data are summarized in Table 2.

A total of four aquifer tests were conducted at the Site, and precipitation data has been obtained and summarized for each aquifer test.

3.1.1 April 2018

In the week leading up to the April 2018 aquifer test, which was conducted from 09:30 on April 2 to 09:30 on April 5, 2018, 0.31 inches of precipitation were recorded, falling on March 30 and March 31. During and after the aquifer test a total of 1.18 inches of precipitation were recorded, with 0.2 inches falling on April 4, 0.68 inches falling on April 5, and 0.3 inches on April 7. Aquifer recovery was monitored until April 9. It is also notable that the aquifer test was conducted during spring snowmelt. Daytime high temperatures during the aquifer test varied from 36° to 56° Fahrenheit, and nighttime lows varied from 20° to 24° Fahrenheit, causing diurnal snowmelt cycles which affected the Little River flow and groundwater elevations.

3.1.2 August 2018

In the week leading up to the August 2018 aquifer test, which was conducted from 09:20 on August 27 to 09:31 on August 30, 0.52 inches of precipitation were recorded, all on August 23. During the aquifer test 0.15 inches of precipitation were recorded, all on August 30, and in the week following the test 0.03 inches of precipitation were recorded on September 4. Temperatures during the test ranged from 59° to 89° Fahrenheit.

3.1.3 November 2018

In the week leading up to the November 2018 aquifer test, which was conducted from 09:00 on November 18 to 09:00 on November 21, a total of 1.56 inches of precipitation were recorded. Precipitation fell as both rain and snow, with 0.18 inches of rain falling on November 13, 1 inch of rain falling on November 14, 0.21 inches of precipitation falling as snow on November 16, and

³ 1965 has 10 days of record which do not have precipitation values recorded, all of which fall between 1/24/1965 and 2/26/1965. These missing data are not thought to represent a significant data quality issue. Measurements from the Belfast Station were compared against measurements from the Portland Jetport (Station USW00014764) and Caribou (Station USW00014607) to corroborate extreme measurements at the Belfast Station. Agreement between stations was good, indicating that the extreme values reported in Belfast are not related to poor data quality.

0.17 inches of precipitation falling as snow on November 17. During the test, 0.35 inches of precipitation fell as snow on November 21. In the week following the test, 1.27 inches of precipitation fell as a mixture of rain and snow, with 0.02 inches of precipitation were recorded on November 22, 0.3 inches recorded on November 26, 0.38 inches recorded on November 27, and 0.67 inches on November 28. Temperatures during the test ranged from 18° to 43° Fahrenheit, which, when combined with both snow and rain, resulted in some snowmelt in addition to precipitation.

3.1.4 January 2019

In the week leading up to the January 2019 aquifer test, which was conducted from 12:40 on January 8 to 10:15 on January 12, a total of 1.12 inches of precipitation were recorded. Precipitation fell primarily as snow, with 0.62 inches falling on January 1, 0.04 inches falling on January 3, 0.21 inches falling on January 4, and 0.25 inches falling on January 6. During the test, 0.94 inches of precipitation fell primarily as rain, with 0.11 inches falling on January 8, 0.24 inches falling on January 9, and 0.59 inches falling on January 10. In the week following the test, 0.15 inches of precipitation fell as snow on January 19. Temperatures during the test ranged from 4° to 37° Fahrenheit, indicating that some snowmelt may have also occurred during the test period.

3.2 Topography and Surface Drainage

The Site is located on the United States Geological Survey (USGS) 7.5-minute quadrangle for Searsport, Maine. Ground surface elevation at the Site ranges from approximately 10 feet to 65 feet referenced to the North American Vertical Datum of 1988 (NAVD88). Site topography generally slopes down to the southeast or south toward the Lower Reservoir, and the landscape is bisected by several small- to moderate-sized gullies, which have incised as much as 20 to 30 feet into the land surface. An intermittent unnamed stream flows southeast through the eastern portion of the Site, originating in the fields on the northern side of Perkins Road, passing through a culvert in Perkins Road, along the eastern boundary of the proposed development, beneath US Route 1 via a culvert, and discharging directly to Belfast Bay.

Surface drainage and runoff predominantly drains overland directly to the Lower Reservoir or is collected in ephemeral or intermittent streams in the incised gullies and discharged to the Lower Reservoir. The easternmost portion of the Site discharges surface runoff to the intermittent stream or a smaller gully and ephemeral stream to the northeast, which runs directly to Belfast Bay. As discussed in Section 3.3, Site soils are generally poorly-drained glaciomarine silts and clays. Therefore, the on-site gullies and streams often contain visible water flow during rainy periods or after significant rainfall.

Mapped wetlands, ephemeral, and intermittent streams are identified in Figure 4.

3.3 Site and Regional Surficial Geology

Based on published Maine Geological Survey (MGS) maps, the surficial geology of the Site and surrounding area is identified as the Presumpscot Formation, which is described as containing glaciomarine silt, clay, and minor components of sand deposited during marine transgression after the last major glacial period. To the north of the Site, glacial till is the dominant surficial material, which consists of unsorted clay, silts, sand, cobbles, and boulders derived from glacial progression across the land surface (Thompson & Borns, 1985).

Soil borings advanced at the Site confirm MGS's surficial soil mapping that Presumpscot silts and clays are ubiquitous across the proposed development area and are generally underlain by a thin mantle of glacial till above the bedrock surface, which was generally encountered between 12 and 25 feet below ground surface (bgs).

3.4 Site and Regional Bedrock Geology

Based on published MGS maps, the bedrock unit underlying the Site and surrounding area is identified as the Ordovician-to Cambrian-age Penobscot Formation, which generally consists of interbedded metapelite and metasandstone. The protolith for the Penobscot Formation has been interpreted as sulfidic and/or carbonaceous pelite (Osberg, Hussey, and Boone, 1985). Bedding thickness is generally less than 50 centimeters (cm) and the ratio of metasandstone to metapelite has been found to be approximately 1:1 (Pollock, 2012). The Sennebec Pond fault runs from southwest to northeast approximately 2.8 miles northwest of the Site.

Test wells drilled on-Site indicate that the bedrock is schist-grade metapelite and metasandstone composed primarily of biotite, quartz and muscovite. Graphitic beds were also encountered, which resulted in a thin graphite sheen on the surface of wash water during drilling. Relatively high graphite content in the bedrock is consistent with a carbonaceous protolith. Metasandstone beds, which were generally light gray to white in color and more competent to drill through were also encountered, though perhaps not as regularly as the MGS map rock unit description suggests. A heavily weathered zone at the bedrock surface was present in all test borings and ranged in thickness from a few feet to greater than 20 feet. Bedrock fractures and softer areas of rock were also common below depths of approximately 70 feet bgs in most borings and produced minor to significant quantities of water.

Conceptual geologic cross sections and a map showing the section lines are presented in Appendix H.

3.5 Water Balance and Aquifer Recharge

Prior to evaluating the capacity of the bedrock aquifer at the Site to support sustainable groundwater withdrawal, an assessment of the water flux through the watershed was conducted. The flux of water through the watershed, or water balance, provides context for the overall assessment of safe yield from any proposed wells. To evaluate the proposed withdrawal in the context of the water balance for the watershed, several approaches and analyses are presented below.

3.5.1 Surface Water and the Little River Flow Regime

There are four primary surface water features included in the investigation area: 1) Belfast Bay, 2) the Lower Reservoir, 3) the Upper Reservoir, and 4) the free-flowing reach of the Little River that begins in the tailrace of the Upper Dam and flows into the Lower Reservoir. Monitoring locations have been established in the Upper Reservoir (SG-3), the Little River (SG-4), and the Lower Reservoir (SG-2; see Figure 2 for gage locations). However, these monitoring locations record the natural fluctuations of the watershed overprinted by the influence of the Upper and Lower Dams. Figures 5A through 5C show surface water elevations over time and precipitation, and Figure 5D shows discharge of the Little River over a similar time period.

Stream gaging was conducted in the Little River prior to the November 2018 aquifer test in three locations (SG-Up, SG-Mid, SG-Down) and during the November 2018 aquifer test in two locations (SG-Mid and SG-Down) due to higher discharge preventing gaging at SG-Up. Average

(the average of the measurements from each location in a day) stream discharge measurements ranged from a low of 7.67 cubic feet per second (cfs) (3,442 gpm) on October 12, 2018 to a high of 31.35 cfs (14,070 gpm) on November 18, 2018, however, this range does not capture baseflow conditions or high flow conditions. Stream discharge measurements are summarized in Figure 5D and Appendix D.

The Upper Dam is currently (and has been for the duration of the investigation) operated as a runof-river structure, with all bypass valves left open. The valve intakes are well below the crest of the spillway (approximate spillway elevation is 60 feet NAVD88), which allows the Upper Reservoir elevation to fluctuate more than it would if the spillway were the only structure passing water. Fluctuations of approximately 4 feet at SG-3, located in the Upper Reservoir, can be seen in Figure 5A. Due to the constraints imposed by the bypass valves and pipes on water passing through the dam, fluctuations in water elevation at SG-3 are not directly translated into changes in discharge to the Little River below the dam until the Upper Reservoir begins to spill over the dam crest. The Lower Dam also acts as a run-of-river dam, however, the only outlet structure in use is the spillway, which maintains the Lower Reservoir elevation at approximately 22 feet NAVD88 during baseflow conditions.

As part of the assessment present below, an estimate of flow from the Little River was required. The Little River is not currently gauged (other than with a staff gage installed during this investigation), and no historic gauges are known to have existed in the watershed. In lieu of empirical data, modeled data from StreamStats were used for this investigation. StreamStats is a web-based application developed by the USGS that computes flow statistics through regression equations developed specifically for ungaged rural rivers and streams in Maine. The StreamStats report generated for the Little River at the proposed development Site is included in Appendix A.

3.5.2 Total Water Delivered to the Watershed

The watershed area of the Little River is approximately 16.7 square miles. Because the Site is at the very lower (downstream) limit of- the watershed, this watershed area is effectively representative of the Site watershed. The amount of water delivered to the Little River upstream of the Site for 1-inch of precipitation, the total volume of water delivered in the driest and wettest years on record, and the total volume of water delivered in an average precipitation year all provide a means to assess the volume of water delivered to the watershed. These calculations are summarized below.

Watershed area converted to feet:

 $16.7 \ mi^2 = 465.6 \ million \ ft^2$

Gallons of water per inch of rain:

465.6 million $ft^2 \times 0.083 ft(1 in) = 38.6 million ft^3 = 289.1 \frac{million gallons}{inch of precipitation}$

Gallons of water delivered in the driest year on record (1965):

465.6 million $ft^2 \times 2.24 ft (26.83 in) = 1.04 billion ft^3 = 7.79 billion gallons per year (BGPY)$

Gallons of water delivered in the wettest year on record (1983):

465.6 million $ft^2 \times 5.94 ft (71.29 in) = 2.77 billion ft^3 = 20.69 BGPY$

Gallons of water delivered in an average precipitation year (full record):

465.6 million $ft^2 \times 3.88 ft (46.73 in) = 1.81 billion ft^3 = 13.51 BGPY$

A basic water balance can be created using the average annual precipitation at the Site of 46.73 inches and assuming some basic parameters for evapotranspiration (ET), infiltration, and surface water runoff. According to Caswell (1987), approximately 50% of precipitation in the State of Maine runs off through streams, 30 to 40% is delivered back to the atmosphere through ET, and 10 to 20% of precipitation infiltrates into the soil and rock as groundwater recharge.

Site specific geology from both maps and drilling logs indicate that overburden permeability is low (Site overburden consists of Presumpscot Formation and glacial till, which is similar to the watershed as a whole), indicating that infiltration in the Little River watershed likely falls on the lower end of the ranges for Maine. Therefore, we use the lower estimate of 10% of precipitation ultimately becomes groundwater recharge. Similarly, the low permeability of the dominant surficial geologic formations in the watershed indicate that runoff to surface water features may be slightly higher than typical for the State. Given this, we estimate that approximately 55% of precipitation in the watershed becomes runoff. This leaves 35% of total precipitation as ET. We can use these Site-specific estimates to calculate a water budget for the Little River Watershed:

Mean Annual Precipitation:	46.73 inches (13.51 BGPY)
Mean Annual Infiltration:	$46.73 \text{ inches } x \ 0.10 = 4.67 \text{ inches } (1.35 \text{ BGPY})$
Mean Annual ET:	46.73 inches x 0.35 = 16.36 inches (4.73 BGPY)
Mean Annual Runoff:	46.73 inches x 0.55 = 25.70 inches (7.43 BGPY)

The StreamStats regression provides useful comparison for the water budget for the Little River watershed presented above (StreamStats Report is included in Appendix A). StreamStats estimate the mean annual precipitation to be 47.6 inches, slightly above the average for the 85-year period of record at the Belfast weather station of 46.73 inches, and through a series of regressions estimate the discharge statistics for the Little River watershed. The mean annual precipitation of 47.6 inches used by StreamStats is equivalent to 13.8 bgpy. The StreamStats regression estimates mean annual discharge for the Little River is 34.7 cfs, which is equivalent to 15,574 gpm or 8.19 bgpy. The mean annual discharge of the Little River accounts for approximately 59% of the mean annual precipitation, leaving 41% of the mean annual precipitation as infiltration and ET combined.

The StreamStats regression agrees closely with the water balance presented above using estimated values for the State of Maine, indicating that the estimated water balance is likely within the range of the true water balance for the watershed.

The recharge (i.e. infiltration) from precipitation used in the numerical groundwater model (discussed in Section 5.2 and presented in detail in Appendix F) also agrees well with the water

balance presented above. In the numerical model, infiltration values are assigned based on the mapped surficial geology. Areas mapped as glacial till are assigned an annual recharge rate of 5.25 inches and areas mapped as glaciomarine deposits (i.e. Presumpscot Formation) are assigned an annual recharge rate of 1.2 inches. This approach takes a more conservative approach to estimating recharge to the aquifer from precipitation in the numerical model than above, however, it ultimately is similar to estimates of recharge for the watershed derived from the water balance and StreamStats.

3.6 Surface Water Withdrawal

As discussed in Section 2.0, the BWD has historically operated a surface water intake at the Lower Dam on the Little River as a public water supply. Following the development of a groundwater supply in the Goose River Aquifer, BWD moved away from using the surface water intake, and eventually discontinued its use entirely. In order to supplement groundwater withdrawal from the bedrock aquifer at the Site, NAF also proposes including a surface water intake at the Lower Reservoir in their development plans.

Based on the water balance conducted above in Section 3.5, a total annual flux of approximately 7.08 to 8.19 bgpy of water moves through the Lower Reservoir. Due to the unique position of the Lower Reservoir at the downstream terminus of the Little River (the Lower Dam discharges directly into a tidal inlet of Belfast Bay), minimum instream flows are not considered applicable to the Little River below the Lower Dam. The rules set forth in MEDEP Chapter 587 provide for a maximum allowable withdrawal from a surface water body such as the Lower Reservoir, even in the absence of inflow, of up to 1.0 acrefeet of water per acre of the waterbody at normal high water between April 1 and July 31, and up to 2.0 acrefeet of water per acre of the waterbody at normal high water from August 1 to March 31 during any given year. The Chapter 587 rules also allow for any surplus water demonstrated to have been delivered to the Lower Reservoir beyond the maximum acrefoot withdrawals to be included in the overall withdrawal.

Given the acreage of the Lower Reservoir (37 acres, Wright-Pierce, 2018), the allowable withdrawal is approximately 69 gpm on a constant basis during both periods defined by the MEDEP, plus additional inflows as they occur during any given period. The Little River is a moderately-sized drainage and, based on the StreamStats regression, maintains significant flow through to channel year-round. We propose using the 5% duration flow, estimated at 0.55 cfs, or approximately 250 gpm, as a conservative estimate of baseflow of the Little River. Because MEDEP's Chapter 587 rules allow for surplus water to be included in the overall withdrawal and the Little River can reasonably be expected to discharge some amount water to the Lower Reservoir year-round, the proposed surface water withdrawal would effectively be in excess of 69 gpm under normal conditions. Given this, we propose a permitted minimum withdrawal rate of 70 gpm for the proposed surface water intake at the NAF facility, with additional allowable withdrawal that is equivalent to the discharge of the Little River into the Lower Reservoir as provided in Chapter 587 6-A(3). In order to account for inflows into the Lower Reservoir in the planning process, an estimated surface water withdrawal rate of 250 gpm is used, which is equivalent to the conservative estimate of baseflow of the Little River discussed above.

3.7 Belfast Water District Supply

BWD currently relies on two water supply production wells located in the Goose River Esker Aquifer (a.k.a Goose River Aquifer) in Belfast and Swanville. Currently, BWD relies on the Jackson Pit Well and the Smart Road Well to provide water for their ratepayers. A third well, the Talbot Well, was installed in

2005, however, this well has not been connected to the BWD system. BWD had a capacity evaluation performed by A.E. Hodsdon Engineers of Waterville, Maine (AEH) in February 2018 (AEH, 2018) to assess the viability of providing NAF with up to 500 gpm of water from the Goose River Aquifer. AEH performed their assessment by reviewing the previous investigations conducted on behalf of the BWD to assess the water supply, including drilling logs, performance tests, aquifer tests, numerical groundwater modeling, and usage data. AEH used safe yield estimates for the Smart Road Well, derived from a previously conducted modeling effort, and the Jackson Pit Well, based on historic continuous pumping rates when the BWD delivered water to poultry processors, to assess the total capacity of the BWD system as currently operated.

AEH found that, including current usage, BWD's contractual obligation to the Northport Village Corporation, and the proposed obligation to NAF, that BWD had an operating capacity reserve of 221.5 mgpy, which is equal to twice the BWD current average daily demand. AEH also found that should the Smart Road Well need to be taken out-of-service temporarily, the Jackson Pit Well could not support the entire daily demand (the Smart Road Well was found to be able to meet the entire daily demand if the Jackson Pit Well were to be taken out-of-service). Therefore, AEH recommended that BWD connect the Talbot Well to their system prior to the start of service to NAF. With the Talbot Well on-line, enough backup capacity would be in place to meet daily demands should any one of the three wells be taken temporarily out-of-service.

Based on the results of the capacity evaluation performed by AEH and the Maine Public Utilities Commission approval of the water withdrawal agreement, Ransom agrees that the BWD should bring the Talbot well on-line prior to completion of the proposed development.

4.0 EXPLORATION AND TESTING PROGRAM

Exploration and testing of the aquifer underlying the Site was conducted over the course of eleven months from February 2018 through January 2019 and included geophysical surveys, a test well drilling program, four aquifer tests, and various water quality analyses.

4.1 Resistivity Survey

Ransom contracted with Northeast Geophysical Services of Bangor, Maine (NGS) to conduct electrical resistivity surveys of the BWD property, specifically on the northern side of the Lower Reservoir and the northern side of the Upper Reservoir. The purpose of these resistivity surveys were to identify areas of the subsurface with lower resistivity values, which are often representative of fluid filled fractures in bedrock, to better target the test well drilling program.

Resistivity surveys were conducted in two separate events, the first from February 6 to 16, 2018, and the second from September 27 to October 1, 2018. The second survey was conducted to evaluate the MB property after a purchase and sale agreement was reached to include the parcel in the proposed development.

Nine survey lines were completed, totaling 16,780 feet, with seven lines located adjacent to the Lower Reservoir (lines 1-5 and 8-9) and two lines located adjacent to the Upper Reservoir (lines 6-7). Survey line placement and orientations were based on a lineament assessment of the regional geology, Site layout, and access.

Resistivity survey results were interpreted and modeled to create two-dimensional interpretive profiles depicting resistivity for the material located beneath the survey line. The depth the resistivity survey can image to is dependent on the spacing between the electrodes through which a current is induced. NGS was able to model resistivity to depths of approximately 250 to 500 feet bgs in the middle of the lines at the BWD property. However, by the nature of this type of modeling, the ends of the survey lines are not able to image as deeply as the middle of lines, resulting in "tapered" interpretive profiles for each line.

The interpretive resistivity profiles were then evaluated for the presence of low-resistivity anomalies that may be associated with water-bearing, fractured bedrock. Once the most promising anomalies were identified, the test well drilling program was designed to target these areas.

The survey methods, results, line locations, and two-dimensional models are included in Appendix B.

4.2 Test Well Drilling Program

Test well drilling was conducted in several mobilizations by various contractors and using a variety of drilling methods. The initial test well drilling program was conducted between February 19 and March 29, 2018 and included the advancement of nice bedrock test wells, six of which were advanced on BWD's Lower Reservoir property and the remaining three borings were advanced on BWD's off-site, Upper Reservoir property. Ransom contracted with Northern Test Boring, Inc. (NTB) of Gorham, Maine; Goodwin Well and Water, Inc. (Goodwin) of Turner, Maine; and Drilex Environmental (Drilex) of Auburn, Massachusetts to drill test wells using air rotary and mud rotary drilling techniques. Additional test wells located on the Site were drilled by Drilex on November 5 and 6, 2018 and by Pine State Drilling of Athens, Maine (Pine State) on November 11, 2018.

Drilling locations were pre-selected based on the results of the electrical resistivity survey, and the drilling method was determined based on accessibility of the drilling location and the equipment available. The specifications, drilling method, and estimated yield upon completion of each test well are summarized in Table 3. The locations of each test well are shown on Figure 2.

Boring logs completed for each test well are included as Appendix C.

4.2.1 Northern Test Boring Test Wells

NTB completed a total of four test wells, identified as NTB-101 through NTB-104, two of which are located at the Lower Reservoir property and two at the off-site Upper Reservoir property. Each of NTB's wells were 4 inches in diameter and were advanced with a track-mounted Dietrich D-50 drill rig using drive and wash methods to the top of bedrock, and a variation of mud rotary (instead of engineered mud, clean water was utilized) to advance through bedrock. At each test well location, steel casing was advanced through the unconsolidated material and set a minimum of 1-foot into the top of competent bedrock.

Cuttings from drilling were consistent with MGS' descriptions of the metapelite and metasandstone that comprise the Penobscot Formation, which is mapped by MGS as the underlying bedrock throughout the Site. Water bearing fractures in bedrock were noted during drilling from the loss of water being recirculated through the borehole. The total depth of drilling at each location was governed by the correlation between observed conditions and resistivity profiles, rate of water loss, and time constraints. To minimize time lost due to shuttling recirculation water from the reservoir to the drilling location in higher yield test wells, explorations were often halted after a significant fracture zone was encountered (e.g. NTB-102 was completed at 217 feet due to excessive loss of drilling fluid).

After drilling NTB-101, NTB-102, and NTB-103, a 3-inch submersible pump was set in each well at a depth of 100 feet and pumped for at least 7.5 hours at a constant rate of between 5 and 10 gpm. The depth to water in the test well was periodically monitored with a manual water level meter over the course of the test pumping to obtain a preliminary estimate of well yield. The short-term low pumping rate did not allow the wells to be heavily stressed or for drawdown to fully stabilize. Therefore, interpretations of preliminary yield are based on extrapolation of the drawdown curves and the available head above the pump.

NTB-104 was advanced in a location with deep overburden, and bedrock was exceptionally weathered for the upper 40 to 50 feet. Below the most heavily weathered bedrock, minimal water loss was observed during drilling and the casing seal was repeatedly undermined during drilling. On completion, the steel well casing was removed and the well abandoned.

4.2.2 Goodwin Well and Water Test Wells

Drilling work conducted by Goodwin was restricted to areas accessible by large truck-mounted equipment. Goodwin completed a total of three test wells, identified as GWW-101 through GWW-103, two of which are located at the Lower Reservoir property and one at the off-site Upper Reservoir property. Each of Goodwin's test wells were 6 inches in diameter and were advanced using a truck-mounted air rotary drill rig. Mud rotary methods were used in unconsolidated materials and into the top of bedrock, and casing was driven at least 8-feet into the top of bedrock.

As with NTB's test wells, bedrock cuttings observed from Goodwin's test wells were consistent with MGS' descriptions of the metapelite and metasandstone of the Penobscot Formation. Water bearing fractures in bedrock were noted during drilling from increases in water discharged from the borehole via air circulation. The total depth of test well GWW-102, located at the Upper Reservoir property, was determined based on the modest yield for the depth of the well and the resistivity profile of Line 7. The total depth of test wells GWW-101 and GWW-103 were limited based on the depth at which the air compressor used to evacuate cuttings from the borehole was no longer able to consistently evacuate water and cuttings from the borehole due to the high water yields (200 to 250 gpm) in these test wells. Attempts were made to continue advancing the boreholes beyond the depth where the air hammer was flooded using a roller bit and air to evacuate cuttings. However, this approach was not particularly effective as the compressor airflow was not sufficient to clear cuttings effectively under high water yield conditions.

After drilling, the test wells well yield was estimated with air lift methods for approximately of 1hour. A final yield estimate was obtained by the driller estimating the water discharge from the borehole at the end of the air lift test.

4.2.3 Drilex Environmental Test Wells

Drilex completed a total of three test wells, identified as DRX-101, DRX-102, and DRX-103 all located at the Lower Reservoir property. The test wells installed by Drilex were 4 inches in diameter and were advanced with a CME-55 track-mounted rig using air rotary methods. Drive and wash and air rotary methods were used to advance casing through overburden material and seat casing at least 5 feet into bedrock, and air rotary was used to advance the borehole into bedrock.

As with prior test wells, bedrock cuttings observed from Drilex's test wells were consistent with MGS' descriptions of the metapelite and metasandstone of the Penobscot Formation. Water bearing fractures in bedrock were noted during drilling from increases in water discharged from the borehole via air circulation. The total depths of test wells DRX-101 and DRX-102 were determined based on the depth at which the air compressors used to lift cuttings from the borehole were no longer able to consistently evacuate water from the borehole due to yield encountered in the fractures (approximately 60 gpm), preventing drilling from continuing deeper at these test wells. The total depth of DRX-103 was pre-determined and intended to provide a monitoring point to the west of wells PSD-101 and PSD-102, as noted in Section 4.2.4. An attempt was made to continue advancing test well DRX-101 beyond the depth where the air hammer was flooded using a roller bit and water to evacuate cuttings. However, this approach was ineffective as the circulation pump on the rig could not circulate water at a high enough rate to keep up with losses to the formation.

After drilling, the test wells well yield was estimated with air lift methods for approximately of 40 minutes. A final yield estimate was obtained by the driller estimating the water discharge from the borehole at the end of the air lift test.

4.2.4 Pine State Drilling Test Wells

Pine State completed two test wells, identified as PSD-101 and PSD-102 on the MB property adjacent to the Lower Reservoir. Both test wells were completed as 6-inch diameter wells with 40 feet of steel casing using a truck-mounted VersaDrill V2000 and air-rotary. Steel casing was

advanced through overburden using a casing hammer and under-reamer to a minimum of 10 feet below the top of bedrock and the final depth of each test well was 400 feet bgs.

As with prior test wells, bedrock cuttings observed from Pine State's test wells were consistent with MGS' descriptions of the metapelite and metasandstone of the Penobscot Formation. Water bearing fractures in bedrock were noted during drilling from increases in water discharged from the borehole via air circulation.

After drilling, the test wells well yield was estimated with air lift methods for approximately of 40 minutes. A final yield estimate was obtained by the driller estimating the water discharge from the borehole at the end of the air lift test.

4.2.5 Results from the Test Well Program

Results from the initial test well drilling program included three test wells with estimated yields of 10 gpm or less (NTB-101, NTB-103, and NTB-104), one test well with an estimated yield of approximately 60 gpm (GWW-102), three test wells with estimated yields greater than 60 gpm (NTB-102, DRX-101, and DRX-102), and two test wells with estimated yields of 200 gpm or greater (GWW-101 and GWW-103). Subsequent test well drilling efforts had similar results, with PSD-101 having an estimated yield of 30 gpm or less and PSD-102 having an estimated yield of approximately 140 gpm. DRX-103 was drilled with the intent of increasing the monitoring well network, not as a potential water supply production well location, however, estimated yield ranged from approximately 35 to 40 gpm. The estimated yield from each test well is presented in Table 3.

As discussed in Sections 4.2.1 through 4.2.4, the drilling methods employed by each drilling contractor had certain associated benefits and limitations which are important when interpreting the results of the test drilling and initial water yield evaluation. Most notably, all drilling methods employed were depth limited based on the quantity of water produced by the test wells. For NTB that limitation took the form of time constraints in transporting large quantities of water from the reservoir to the drilling location, and for Goodwin, Drilex, and Pine State the maximum achievable depth occurred when the formation yield was high enough to flood the air hammer (~200 gpm for Goodwin and Pine State and ~60 gpm for Drilex).

The test wells installed on the off-site, Upper Reservoir property did not yield as much water as those on the Lower Reservoir property, which, when considered in combination with the increased distance from the Upper Reservoir property to the proposed facility area, led NAF and Ransom to discontinue active exploration and testing work at the off-site, Upper Reservoir property.

Based on the preliminary yield assessments, test wells NTB-102, DRX-101, DRX-102, GWW-101, GWW-103, and PSD-102 were all considered to be potential candidate sites for further testing and potential water supply production well locations. Based on this initial assessment, a series of aquifer tests were conducted to better understand the hydrogeologic conditions at the Site.

4.3 Multi-level Wetland Piezometer Installation

In order to assess potential connections between shallow overburden groundwater and the bedrock aquifer during the aquifer tests, six piezometers were installed in areas mapped as wetlands. The piezometers were installed using direct-push drilling on October 1 and 2, 2018. Four piezometers were installed as multi-level pairs (PZ-1S, PZ-1D, PZ-4S, PZ-4D), with one deep piezometer screened above the overburden-bedrock interface and one shallow piezometer screened near the top of the water table per pair. PZ-2 and PZ-3 were installed at the bedrock interface, however, at the time of installation the piezometric surface of the water table was deeper than the overburden-bedrock interface. The locations of the wetland piezometers are shown on Figures 2 and 4.

Boring logs for the wetland piezometers are present in Appendix C.

4.4 Proposed Production Well Installation

After an initial aquifer test (discussed in detail in Section 4.6), an 8-inch diameter proposed water supply production well, PW-1, was drilled adjacent to GWW-101. This well was installed to evaluate the potential to increase well yield by increasing the well depth and to allow for future pumping tests to be conducted with pumping rates similar to final production rates. In addition, the well was constructed to allow it to be easily converted to a final water supply production well after permitting.

The PW-1 well was installed by Goodwin from July 23 to 26, 2018 using air rotary methods, and an auxiliary compressor was used to enable drilling to the full depth of 615 feet bgs. The final driller's airlift yield estimates for PW-1 was 330 gpm, with the majority of water assumed to be entering the well through a fracture(s) located at approximately 130 feet bgs. The depth of the highest yield fracture was identified during drilling by the sudden increase in well yield and the direct connection to GWW-101, which is located approximately 15 feet away from PW-1. When the bit reached a depth of approximately 130 feet bgs, water was diverted from being blown out of the PW-1 borehole to blowing out of GWW-101 until the bit moved down to approximately 138 feet bgs. Some additional fractures were encountered between 130 to 615 feet bgs, however, the relative water yield of those fractures was significantly less. Throughout the drilling process large pieces of fractured bedrock (approximately fist-sized) were ejected from the borehole, presumably from the fracture identified at 130 feet. Lithology of the rocks was consistent with the mapped lithology and observed lithology in other wells drilled on Site. However, the formation rock was heavily fractured and very thick secondary mineralization rinds (up to 4 mm) were observed surrounding the formation rock. The secondary mineralization consisted of primarily of pyrite, however interior (interpreted as void space) portions of the mineral rind appeared to be covered in a dark graphitic mineral coating.

4.5 Monitoring Network

A comprehensive network of monitoring locations was developed to assess the hydraulic properties of the aquifer and neighboring surface water bodies. Monitoring points included test wells drilled during the exploration program on the Upper and Lower Reservoir properties, residential water supply wells near the proposed development site, staff gages installed in surface water bodies, and stream flow gaging in the Little River. The monitoring network was adapted following each aquifer test. Supplemental drilling work and additional access agreements for private water supply wells increased the total number of groundwater (both overburden and bedrock) monitoring points available for water monitoring over time, and additional surface water monitoring locations were incorporated as aquifer tests expanded in scope and scale.

Water monitoring was conducted using a combination of manual measurements using electronic water level meters and pressure transducers to measure and record groundwater elevation, groundwater temperature, and in specific locations (i.e. near Belfast Bay), groundwater conductivity. Transducers were deployed in the majority of groundwater monitoring points and in surface water locations when ice conditions were favorable. Pressure records from transducers were corrected for variations in barometric pressure with the use of a barometric pressure logger.⁴ Streamflow gaging was conducted using velocity meters and wading staff at several locations along the free-flowing reach of the Little River between the Upper and Lower Reservoirs. A map of monitoring points included in this investigation is presented in Figure 2.

Monitoring frequency was dictated by the data collection needs of each aquifer test; however, a subset of transducers was left in monitoring wells at the Site for extended periods of time to record natural fluctuations in groundwater under non-pumping conditions. Streamflow gaging was conducted prior to and during the November 2018 aquifer test. The monitoring network, type of monitoring, and monitoring frequency for each monitoring point during each aquifer test and the intervening time is presented in Table 4.

The pressure transducer, manual water level, and streamflow measurements are provided in Appendix D.

4.6 Aquifer Testing

A series of four aquifer tests were conducted between April 2018 and January 2019. Each test is referred to by the month it was conducted in, and the basic parameters of each test are detailed below.

Test Name	General Design	Duration (hours)	Total Number of Pumping Wells	Pumping Well IDs: Pump Rate	Combined Nominal Pumping Rate
April 2018	Constant Rate, Simultaneously Pumped	72	2	GWW-101: 100 gpm GWW-103: 100 gpm	200 gpm
August 2018	Constant Rate, Single Well	72	1	PW-1: 250 gpm	250 gpm
November 2018	Constant Rate, Simultaneously Pumped	72	6	PW-1: 250 gpm DRX-101: 30 gpm DRX-102: 30 gpm GWW-103: 175 gpm PSD-101: 15 gpm PSD-102: 100 gpm	600 gpm

 Table 5: Basic Aquifer Test Parameters

⁴ The sitewide barometric pressure logger and a conductivity, temperature, and pressure (CTD) transducer were both lost down well GWW-103 during installation of the pump prior to the November 2018 pumping test. As such, the period from 10/27/2018 15:19:06 DST to 11/18/2018 8:00:00 DST does not have barometrically corrected elevation data.

Test Name	General Design	Duration (hours)	Total Number of Pumping Wells	Pumping Well IDs: Pump Rate	Combined Nominal Pumping Rate
January 2019	Semi-Constant Rate, Staggered Start Times	93	4	GWW-103: 175 gpm DRX-102: 30 gpm PW-1: 145 to 250 gpm PSD-102: 100 gpm	555 gpm ⁵

The tests were conducted as a part of the phased approach to the investigation. After each test was conducted, the results were assessed, and subsequent exploration and aquifer tests were designed to help better understand the aquifer system. The goal of the aquifer testing program was to generate sufficient data about the aquifer to calibrate and validate a numerical groundwater model for the Site and surrounding aquifer(s) that could be used to refine total sustainable groundwater yield estimates from the Site and minimize offsite effects of groundwater withdrawal.

4.6.1 April 2018 Test

The April 2018 test was conducted after primary exploratory work was completed as an initial assessment of aquifer performance under pumping conditions. Test wells GWW-101 and GWW-103 were both outfitted with pumps capable of producing approximately 100 gpm each, and a variable rate step test was performed prior to setting the rate for the long-term test. A long-term rate of 100 gpm (the maximum possible with the available pumps) was set for each well based on the results of the step test. Water pumped from GWW-101 was discharged directly to the Lower Reservoir upstream of the Lower Dam, and water pumped from GWW-103 was discharged via a filter bag to diffuse flow to the intermittent stream adjacent the well, upstream of the culvert beneath US Route 1/Northport Avenue. The details of pump setup, start and stop times, total duration, and drawdown in pumping wells during the test are provided in Table 6.

Results of the April 2018 test were used to plan additional aquifer tests and to calibrate the initial numerical groundwater model created for the Site.

4.6.2 August 2018 Test

The August 2018 test was conducted after drilling PW-1. Prior to the installation of PW-1, test wells were either 4-inch diameter (NTB-101, NTB-102, DRX-101, DRX-102) or 6-inch diameter (GWW-101, GWW-102). The 4-inch diameter test wells were limited to pumps smaller than 4 inches with maximum pumping rates of about 30 gpm, and the 6-inch diameter test wells were limited to pumps smaller than 6 inches with maximum pumping rates of less than 200 gpm. PW-1 was constructed as an 8-inch diameter well specifically to allow for aquifer tests at rates greater than 200 gpm to be conducted, with the intention of constructing the well as water supply production well should the testing and analysis indicate the location was suitable and after permitting was complete.

⁵ The pumping rate of 555 gpm is the maximum pumping rate for the test. The pumping rate in PW-1 was increased from 145 to 250 gpm after 24 hours, and additional wells were brought online during the test.

Because pump rates were limited by the size of the pumps that could be installed in the 6-inch diameter wells tested during the April 2018 test, the August 2018 test was also designed to pump from PW-1 at the estimated maximum rate possible. To achieve these goals, a large capacity pump was installed in PW-1 on August 23, 2018, and a step test was conducted on August 24, 2018. Steps of 150 gpm, 250 gpm, and 300 gpm were used and drawdown was observed approximately 1.5 to 2.75 hours per step. Based on the results of the step test, a long-term pumping rate of 250 gpm was set for the constant rate test, which began on August 27, 2018.

In addition to the existing monitoring well network included in the April 2018 test, private water supply well owners adjacent to the Site were contacted and asked to participate in voluntary monitoring of their water supply well to assess potential influence of pumping from the proposed Site development on existing water users in the area. As a result of this effort, the WSW-6 residence and Little River Veterinary Hospital (WSW-4) were included in the monitoring network. A well owner on Herrick Road was also contacted, however, when efforts were made to install a transducer in their well, the water well contractor advised against installing the monitoring equipment due to the fragile nature of the well pump system.

After consultation with MEDEP, water from the test was discharged directly to the intermittent stream adjacent to PW-1. Discharge water was diffused into the stream bed using several tarps to prevent localized scouring where water was released to the channel. The details of pump setup, start and stop times, total duration, and drawdown in pumping wells during the test are provided in Table 6.

Results of the August 2018 test were used to plan additional aquifer tests and to calibrate the numerical groundwater model created for the Site.

4.6.3 November 2018 Test

The goal of the November 2018 test was to maximize the total combined pumping rate for the Site by pumping six wells at the highest rate possible given well yield limitations, or pump capacity limitations for the diameter of the wells installed at the Site. After successful demonstration of the ability of the aquifer to sustain a pumping rate of 250 gpm from PW-1 for 72 hours during the August 2018 test, the November 2018 test was designed with an expanded monitoring well network, including installation of one additional monitoring well on-Site (DRX-103), two additional prospective 6-inch diameter production wells on-Site (PSD-101 and PSD-102), and expanded monitoring of private water supply wells to include properties located off Herrick Road (WSW-3, WSW-5, and WSW-1).

Prior to beginning the test, a series of basic short-term tests were conducted on wells that previously had not been included as pumping wells (DRX-101, DRX-102, PSD-101, and PSD-102). These short-term tests were completed to evaluate whether these wells could sustain the planned pumping rate for the duration of the long-term aquifer test. For DRX-101, DRX-102, and PSD-102, this evaluation consisted of running the pumps at their maximum rate (30 gpm for both DRX wells and 100 gpm for PSD-102) for several hours and monitoring drawdown, while PSD-102 was tested at several lower steps for a similar period. Based on this evaluation, test wells DRX-101, DRX-102, and PSD-102, exhibited short-term yields that were capable of supporting the maximum rates possible with the pumps installed. However, test well PSD-101 was limited by the production capacity of the well, and not the pump. Therefore, a preliminary pumping rate of 30 gpm was set for PSD-101, but due to excessive drawdown and troublesome

valving, this rate was reduced several hours into the test to 15 gpm.⁶ Pumping rates set for the remaining two pumping wells included in the test were based on previous aquifer tests and/or step tests. Water generated during the aquifer test was discharged to nearby intermittent streams or drainage gullies adjacent to the pumping wells. Water pumped from DRX-102, GWW-103 and PW-1 was discharged to the intermittent stream along the eastern boundary of the Site, which drains to Belfast Bay, and water pumped from DRX-101, PSD-101, and PSD-102 was discharged to drainage gullies that flow into the Lower Reservoir. All discharge points were constructed to prevent erosion and scour of the stream or gully bed or bank using tarps or other diffusion methods.

A total combined nominal pumping rate of 600 gpm was achieved through a total of six pumping wells (details are presented in Table 6). All wells were started simultaneously and run for the entire duration of the test (72 hours), with the exception of DRX-102, which was started several hours after the other wells due to an issue with the ground-fault circuit interrupter (GFCI) in the generator powering the pump.

The results of the November 2018 test were used to plan additional aquifer tests and calibrate the numerical groundwater model created for the Site.

4.6.4 January 2019 Test

During the November 2018 aquifer test, a similar drawdown response to what was observed in the Site pumping wells was observed in three nearby private water supply wells located off Herrick Road to the west of the Little River (additional details of this response are included in Section 5). Due to the anisotropic response to pumping stress observed during the three prior aquifer tests, an evaluation of the potential connectivity between bedrock fracture "groups" was recommended. The evaluation would assess if water-bearing fractures in these private wells also intercepted similar fracture groups as the Site test wells, and if the water drawdown response observed in the nearby, private water supply wells was the result of pumping from specific wells at the Site or whether the response was independent of which wells were being pumped.

In order to refine our understanding of the connectivity between fracture groups and assess if the private well response was dependent on pumping stress from specific wells or the Site as a whole, additional aquifer testing was recommended. After a review of the November 2018 aquifer test data and preliminary numerical modeling of the aquifer system another aquifer test was designed with staggered starts from four pumping wells at the Site. The test began by pumping from DRX-102 and GWW-103 (both wells that appeared to be semi-isolated from pumping stresses from other Site wells) at the maximum rates the pumps could produce (30 and 175 gpm, respectively). After approximately 24 hours of pumping, PW-1 began pumping at a moderate rate of 145 gpm and was increased to 250 gpm after 24 hours. Approximately 72 hours into the test, PSD-102 began pumping at 100 gpm and was operated for approximately 24 hours. During the test, the WSW-3 private well (the most responsive to pumping from the November 2018 test)

⁶ As noted in Table 6, the discharge from PSD-101 was set to 15 gpm, however, upon shutdown the flow meter appeared to be stuck at 15 gpm, indicating that the actual pumping rate from PSD-101 may have differed (likely less) from 15 gpm during the test. This is not considered to be a significant issue in the aquifer test data, as the pumping rate is relatively low compared the overall pumping rate, and PSD-101 is not a favorable location for developing a final production well.

was monitored daily for evidence of response to inform the timing of each pump start time. All four pumps were turned off at the same time⁷ approximately 93 hours after the first pump was turned on. Water pumped from DRX-102, GWW-103 and PW-1 was discharged to the intermittent stream along the eastern boundary of the Site and water pumped from PSD-102 was discharged to a drainage gully that extends to the Lower Reservoir. All discharge points were constructed to prevent erosion and scour of the stream or gully bed or bank using tarps or other diffusion methods.

Due to cold weather conditions during the test, pump start and stop times varied slightly from the planned times due to ice blockages in discharge lines and other cold-related issues. These minor deviations from the plan were not considered to significantly affect the quality of data collected during the aquifer test. Details of actual pump start and stop times, as well as comments regarding any irregularities during the test, are presented in Table 6.

Results of the January 2019 aquifer test were used to validate the numerical groundwater model created for the Site.

4.7 Water Quality Testing

Groundwater samples were collected from various bedrock test wells during drilling activities, at the conclusion of drilling, during aquifer tests, and at the end of the April 2018, the August 2018, and the November 2018 tests. Sampled wells included DRX-101, DRX-102, GWW-101, GWW-103, NTB-101, NTB-102, PSD-101, PSD-102, and PW-1. Groundwater samples were collected for field analysis of basic water chemistry, and samples collected from DRX-102, GWW-101, GWW-103, PSD-101, PSD-102, and PW-1 at the end of aquifer tests were submitted for laboratory analysis of water quality parameters that are beneficial to future aquaculture use and to evaluate potential impacts from possible off-Site contaminant sources.

The samples submitted for laboratory analysis were collected directly into laboratory-prepared glassware, preserved in the field in accordance with applicable protocols, and delivered on ice under chain-ofcustody protocol for laboratory analysis. Dissolved metal/element samples were field-filtered using a 0.45 micrometer disposable filter. The groundwater samples were submitted to Alpha Analytical, Inc. (Alpha) of Westborough, Massachusetts and analyzed for one or more of the following parameters:

- 1. Volatile Organic Compounds (VOCs) by United States Environmental Protection Agency (U.S. EPA) Method 8260C;
- 2. Semi-Volatile Organic Compounds (SVOCs) by U.S. EPA Method 8270;
- 3. Pesticides by U.S. EPA Method 3510C;
- 4. Dissolved and Total Elements by U.S. EPA Methods 6010C, 6020A, 7471A, and Standard Method 4500P-E;

⁷ PSD-102 appeared to have a mechanical or electrical issue, resulting in an early shutdown approximately 5 hours prior to the planned shutdown. This is not considered to be a significant issue to aquifer test analysis.

- 5. Hardness, Alkalinity, Ultraviolet (UV) Absorbance and Total Suspended Solids (TSS) by U.S. EPA Method 6010C and Standard Methods 2320B, 5910B and 2540D, respectively; and
- 6. Dissolved Carbon Dioxide, Total Carbon Dioxide, True Color, Apparent Color and Turbidity by U.S. EPA RSKSOP-175 Guidance and Standard Methods 4500CO2-D, 2120B, 2120B and 2130B, respectively.

Field measurements of groundwater parameters, including temperature, pH, oxidation-reduction potential (ORP), total dissolved solids (TDS), conductivity, and dissolved oxygen (DO) were collected at various times during drilling and aquifer testing. The results of analytical testing and field parameters are presented in Section 6.

4.8 Survey of Reference Data Points

Good Deeds, Inc. (Good Deeds), of Belfast, Maine conducted elevation surveys at the Site to reference all test wells and monitoring points to the Maine Coordinate System of 1983 East Zone horizontal datum and the NAVD88 vertical datum. Due to complicating factors involving ice moving in the Lower Reservoir, staff gage SG-1 was not surveyed.

5.0 AQUIFER CHARACTERIZATION AND TESTING

5.1 Hydrogeologic Conditions and Groundwater Flow

Evaluation of the fractured bedrock aquifer as it pertains to NAF's proposed development, utilized information provided by the electrical resistivity survey, geologic data from test wells, and groundwater elevation data collected under test well pumping and ambient (non-pumping) conditions. In order to accurately evaluate the hydrogeologic setting of the proposed development Site, the scope of the study area and associated numerical model included the Site and surrounding areas including the Upper Reservoir and private water supply wells adjacent to the Site.

5.1.1 Ambient Groundwater Flow Conditions

Ambient groundwater flow at the Site and the surrounding area was assessed by interpolating the groundwater surface from bedrock, deep piezometer, and surface water monitoring points, presented in Figure 7. Groundwater flow through the bedrock aquifer is anisotropic, and generally occurs through discrete bedrock fractures and fracture sets. Due to this phenomenon, groundwater flow does not always occur perpendicular to iso-contour lines that describe the potentiometric surface, however, the contours presented in Figure 6 provide some insight into ambient groundwater dynamics at the Site.

There is generally a strong gradient moving from northwest to southeast across the study area, with the groundwater flow adjacent to each reservoir generally appearing to discharge into the reservoirs, although both the Upper and Lower Reservoirs appear to lose water to the bedrock aquifer near their dams. Adjacent to Belfast Bay, groundwater flow is toward the Bay, with a strong tidal signal observed in GWW-103, which is the closes test well to the Bay.

5.1.2 Characterization of the Bedrock Aquifer

Aquifer test data indicates that there is significant anisotropy in the bedrock aquifer(s) at the Site and surrounding area, and the bedrock aquifer is best characterized as a series of productive fracture systems or groups that are separated by leaky intervals of more competent rock. Drilling observations and rapid propagation of pumping stress indicate that groundwater flow is fracturedominated, and storage is either minimal or heterogeneous across the investigation area. For example, during the January 2019 aquifer test, water level drawdown in private well WSW-3 responded almost immediately to pumping stress from test well PSD-102, which is located approximately 2,000 feet east of the WSW-3 well on the opposite side of the Little River (see Appendix E for figures depicting groundwater elevation over time during pumping tests). Similarly, test well DRX-101 responded nearly instantaneously to pumping stress from GWW-101/PW-1, which are approximately 1,160 feet east. This can be contrasted to the extremely muted response of DRX-102 to pumping stress from PW-1, which is located approximately 430 feet southeast of DRX-102, during the August 2018 test. While a muted response to pumping from PW-1 was observed in DRX-102 during the August 2018 test, no discernable response to pumping stress was observed in PSD-102 (which is located in a highly productive fracture set) during the first 72 hours of the January 2019 test, although test wells DRX-102 (~900 feet southeast), PW-1 (~1,250 feet southeast), and GWW-103 (~1,800 feet southeast) were pumping at 30, 145 to 250, and 175 gpm, respectively.

In the case of PW-1 and GWW-103, each well clearly responds to pumping stress from the other well. However, PW-1 is more strongly connected to NTB-101 and DRX-101 than GWW-103.

Pumping stress, and by inference the bedrock fracture systems, are predominantly oriented eastwest, however, observations collected at DRX-102 and PSD-102 during pumping from wells located to the southeast indicates that there is likely some degree of leakage that occurs between productive fracture groups. Modeling results suggest the horizontal anisotropy coefficient of the bedrock is on the order of 0.01, meaning that the hydraulic conductivity in the north-south direction is estimated to be approximately one hundred times lower than in the east-west direction (see Section 5.2 and Appendix F for additional information regarding the numerical groundwater flow model). Additionally, the relatively close spacing in the north-south direction and similar final completion depths between highly productive wells (e.g. GWW-103, PW-1, DRX-102, PSD-102) that are mostly isolated from each other indicates that the fracture systems are likely steeply dipping to vertical.

5.1.3 Bedrock-Overburden Groundwater Interactions

Obvious responses to pumping stress were also evident in the multi-level wetland piezometers installed on Site. The response observed in piezometers appeared to be the result of pumping from local wells. For example, PZ-1D does not appear to respond to pumping from PW-1, but it does respond to pumping from PSD-102, and PZ-3 appears to respond to pumping from both DRX-102 and PW-1 during the January 2019 test. Notably, hydraulic response to pumping was obvious in the "deep" piezometers (PZ-1D, PZ-2, and PZ-3), which are screened in glacial till at the top of bedrock, while the shallow piezometers (PZ-1S and PZ-4S), which are screened in the clayey silt of the Presumpscot Formation, do not appear to respond to pumping. The piezometers did not respond as quickly to pumping from the bedrock aquifer as bedrock monitoring points. In PZ-2, the groundwater elevation decreased to below the depth of the piezometer during the middle of the January 2019 test. PZ-4D was not observed with measurable water in it during the period of record (October through January). The differential response of the shallow and deep piezometers is likely caused by the difference in hydraulic conductivities between the clayey silt of the Presumpscot formation and relatively more permeable glacial till.

5.1.4 Bedrock Aquifer-Surface Water Interactions

As discussed in Section 3.5, there are four significant surface water bodies in the vicinity of the Site, which include Belfast Bay, the Lower Reservoir impoundment, the Upper Reservoir impoundment, and the free-flowing reach of the Little River that begins downstream of the Upper Dam and flows into the Lower River. Due to the current operational mode of the Upper Dam, the hydrographs for the free-flowing Little River reach and the Lower Reservoir record the signature of the discharge from the Upper Dam, rather than directly recording the watershed response to precipitation events.

Figures 7A and 7B compare the surface water elevations in the Upper Reservoir (Figure 7A) as well as the Lower Reservoir, which includes the Little River (SG-4; Figure 7B) to precipitation and groundwater elevations of wells adjacent to each of these surface water bodies. From this comparison, it appears that the groundwater elevations measured adjacent to the Upper Reservoir in GWW-102 lags behind the surface water elevation. Based on the relative elevations of the groundwater in GWW-102 and the Upper Reservoir, it appears that the reservoir is losing water

to the bedrock aquifer in the vicinity of GWW-102 for at least portions of the year. In contrast, the groundwater elevation in wells NTB-102 and GWW-101 respond to precipitation, however, it is asynchronous from surface water elevations in the Little River or Lower Reservoir. This phenomenon is best illustrated during the precipitation event that occurred from November 26 to 28, which coincided with the recovery period of the November 2018 aquifer test. The hydrographs show an abrupt but delayed response in the surface water elevations of NTB-102 and GWW-101. Most notably, the peak in groundwater elevations associated with the precipitation event appears to occur slightly before the peak in the surface water elevation, indicating that the groundwater recharge for these fracture systems is predominantly depending on recharge from the Little River or the Lower Reservoir.

While the groundwater elevation at NTB-102 and GWW-101 appears to be primarily controlled by hydrologic processes occurring on land and/or in freshwater bodies, the dominant signal observed in the hydrograph of GWW-103 is tidal. Tidal fluctuations of up to two feet are evident in the hydrograph, and when the overall trend in groundwater elevation at GWW-103 is compared to GWW-101, it appears that GWW-103 is dependent on different hydrologic controls than GWW-101. An example of this is the time period from the end of August 2018 to the end of October 2018, where, following recovery from the August 2018 aquifer test, GWW-101 (and GWW-102) showed an increasing trend in groundwater elevation, while GWW-103 showed a subtle decreasing trend in groundwater elevation.

5.2 Numerical Modeling of Groundwater Flow

The rationale, methods, results, and findings of the numerical groundwater flow model created for the Site are detailed in the technical memorandum *Summary of Groundwater Modeling to Support Significant Groundwater Well Permit Application, Proposed Nordic Aquafarms Facility, Belfast, Maine* prepared by McDonald Morrissey Associates, LLC (MMA), March 2019 and provided in Appendix F of this report. The following sections summarize key elements and findings from the numerical modeling effort completed by MMA but does not address all of the components for the model and is not intended as a substitute for the information provided in the technical memorandum detailing the model.

5.2.1 Overview of Model Creation, Calibration, and Validation

The numerical model was created using the MODFLOW-USG (Un-Structured-Grid) code package, developed by the USGS to allow for greater flexibility in model grid creation. Various additional code packages were utilized to allow for various head and flow boundaries to be incorporated into the model. The model grid was created to approximate the extent of the Little River watershed with some additional area adjacent to the coast.

The model was created using publicly available elevation, well, tidal, hydrologic, and hydrogeologic data and studies, in addition to data collected throughout the course of the investigation by Ransom (detailed and presented in this report) and input and output files from preliminary numerical groundwater flow modeling developed by Ransom.

The model consisted of three discrete vertical units, designed to represent surficial geologic materials, consisting of Presumpscot Formation and glacial till, the heavily weathered bedrock surface, and competent bedrock. Depths of each vertical unit were assigned based on available

elevation data, and information on the boundaries between units from available well logs and borings completed during this investigation. The total depth of the bedrock was determined based on the elevation of the bottom of well PW-1.

The model was calibrated using data collected during the April 2018, August 2018, and November 2018 aquifer tests and validated using data collected during the January 2019 aquifer test. After iterative calibration, including adjusting vertical and horizontal hydraulic conductivity values and anisotropy, the residual mean statistics, which represent differences between measured and modeled head in the monitoring points available during the test, had mean values of between -0.5 and 2.4 feet for each of the three calibration datasets (i.e. the April, August, and November 2018 aquifer tests). This indicates that the water levels predicted by the model for each pumping test at all monitoring locations was, on average, between 2.4 feet deeper and 0.5 feet shallower than the actual measured water level at any given monitoring point. Following calibration, the January 2019 aquifer test data was used as a validation dataset. The residual mean statistics for the validation dataset had a mean value of 0.9 feet, indicates that the model, on average across all monitoring points, predicted water levels that were 0.9 feet deeper than the measured value at any given monitoring point.

In addition to calibration and validation, a sensitivity analysis of the model was conducted. The sensitivity analysis indicates that the model is most sensitive to changes in hydraulic conductivity (horizontal and vertical), anisotropy (horizontal and vertical), and the recharge rate of precipitation to the aquifer. The model was relatively insensitive to changes in the conductivity between the head-dependent boundaries and groundwater system.

An additional qualitative sensitivity analysis was performed using the model to provide a general assessment of the sensitivity of the groundwater system to a prolonged (steady-state) 2-foot reduction of head in the Lower Reservoir. This conservative assessment indicated that limited changes to the water elevation in the fractured bedrock aquifer would likely occur, however, changes of more than a several feet were generally limited to the Site itself.

5.2.2 Model Simulations and Results

After the successful calibration and validation of the model, a series of pumping simulations were performed to assess the response of the bedrock aquifer to sustained pumping from proposed wells at the Site. The model simulations were designed to estimate the maximum drawdown that may develop during long-term pumping in average conditions and to estimate the amount of time required for groundwater flow to stabilize for a given pumping scenario. Simulations were run until steady-state was reached in the model, which generally took years to a decade to occur. Steady-state is the condition at which average groundwater elevation is no longer changing due to continuous pumping from a well or wells and allows the model to estimate the effects of continuous pumping from the aquifer over decades.

Three pumping scenarios were assessed using the model:

1. A total pumping rate of 455 gpm, with pumping from PW-1 (250 gpm), GWW-103 (175 gpm), DRX-102 (30 gpm);

- 2. A total pumping rate of 515 gpm, with pumping from PW-1 (250 gpm), GWW-103 (175 gpm), DRX-102 (30 gpm), PSD-102 (30 gpm), and DRX-101 (30 gpm); and
- 3. A total pumping rate of 227.5 gpm, with pumping from PW-1 (125 gpm), GWW-103 (87.5 gpm), DRX-103 (15 gpm). This scenario represents one-half the pumping rates of scenario 1.

In all scenarios, steady-state flow conditions are not reached for several years to a decade.

In scenario one, steady-state drawdown at PW-1 is estimated to be approximately 200 feet, and drawdown at the WSW-4 private water supply well is predicted to be up to 15 feet. In scenario two, drawdown at PW-1 increases to 220 feet and drawdown at WSW-4 increases to up to 18 feet. Drawdown in scenario three is estimated to be 85 feet at PW-1 and up to 5 feet at WSW-4. Estimated drawdown for shallow piezometer monitoring locations is slightly greater than 5 feet in all pumping scenarios.

5.2.3 Model Findings

During pumping, the model results indicate that the bulk of the water withdrawn from the fractured bedrock aquifer is recharge from precipitation, with lessor contributions from reservoir leakage and salt water from Belfast Bay. At least a portion of the recharge withdrawn from the wells appears to be groundwater intercepted before being discharged to surface water features.

During transient pumping (i.e. as groundwater flow is adjusting to pumping and moving toward steady-state), the response to pumping is propagated slightly faster to the west-northwest of the Site (e.g. toward WSW-1, WSW-3, and WSW-5 wells), and more slowly toward the west and south toward the WSW-2 and WSW-4 wells. As noted above, steady-state conditions are not estimated to be reached for years to a decade.

5.2.4 Model Conclusions and Recommendations

Based on the findings from their modeling effort, MMA indicates that the model generally supports a groundwater withdrawal plan similar to pumping scenario one. Given the projected changes due to pumping under average conditions and the potential variations that may result from deviations from average conditions in the watershed (e.g. drought conditions), MMA recommends the following:

- 1. Further assessment of private water supply wells to understand normal usage and physical characteristics such as normal water level fluctuations, total well depth, pump depth, etc., to better understand the limiting factors, if any, constituted by the estimated drawdown from pumping;
- 2. Develop a monitoring plan to assess drawdown in bedrock supply wells located on and off Site, drawdown of the water table near surface water features near the Site, and monitor water quality, including total dissolved solids (TDS), in specific locations to monitor changes in the system during pumping, and;

- 3. Develop contingencies to address possible cases where current use changes, such as reduced well yield, can be attributed to effects caused by Site-related pumping in order to have an appropriate response plan in place should unanticipated changes to the system occur.
- 5.3 Proposed Groundwater Withdrawal and the Little River Watershed Water Balance

Based on the findings of this report and the associated modeling effort completed by MMA, including the hydrology and hydrogeology of the Site and the Little River watershed and reservoir system, NAF proposes to withdraw approximately 455 gpm from proposed production wells at the Site. Well PW-1 is proposed to be converted for use as a production well with GWW-101 becoming the observation well, while new production wells are proposed to be drilled adjacent to test wells GWW-103 and DRX-102, leaving the test wells in place to serve as observation wells. Proposed pumping rates are 250 gpm for PW-1, 175 gpm for the proposed production well adjacent to GWW-103 (called PW-2), and 30 GPM for the proposed production well adjacent to DRX-102 (called PW-3). This proposed withdrawal is equivalent to approximately 655,200 gallons per day (gpd).

The proposed withdrawal was determined based on an assessment of the capacity of the test wells drilled on Site, the hydraulic and hydrogeologic properties of the bedrock aquifer, and the apparent sources of recharge and total water available to the well network. Section 3.5 discusses the estimated water balance for the Little River watershed and estimates that approximately 1.35 bgpy of water infiltrate into the overburden and bedrock materials of the watershed, approximately 7.43 bgpy of water runs off as surface water, and the balance of the mean annual precipitation is accounted for through evapotranspiration (4.73 bgpy).

As presented in MMA's technical memorandum detailing the numerical groundwater flow model developed for the Site and watershed, the proposed production wells appear to receive water from that is primarily delivered via infiltration of precipitation with lessor contributions from nearby surface water features, namely, the Lower Reservoir and Belfast Bay. The proposed annual withdrawal of 239 mgpy is approximately 18% of the total estimated recharge to the bedrock aquifer for the watershed. However, the numerical model estimates that while the majority of the withdrawal comes from groundwater recharge, a portion of the total withdrawal is also accounted for through leakage from the Lower Reservoir and Belfast Bay. This reduces the total proportion of the proposed withdrawal to the total watershed recharge to substantially less than 18%. Given this, adverse impacts to the watershed are not expected.

Given the ambiguity associated with defining "drought conditions," MMA estimated the long-term steady-state conditions that would be associated with a 50% reduction in recharge to the groundwater system. This approach is generally more conservative than one where recharge is reduced in the model for only a limited period of time, as it essentially estimates the result of an extreme and permanent shift in climate rather than just a transitory period of anomalously low precipitation. The results of this assessment indicate that, given available information and data, the proposed withdrawal is still viable without anticipated adverse impacts even under extreme changes in groundwater recharge.

In order to assess possible interaction between the proposed surface water withdrawal from the Lower Reservoir and the groundwater system, MMA performed a qualitative sensitivity analysis of a prolonged (i.e. indefinite) reduction in head of the Lower Reservoir of 2 feet. Based on the relative insensitivity of the groundwater system to a prolonged changed in head of the Lower Reservoir, transient changes to reservoir head as may occur from the proposed surface water withdrawal scenario are not likely to impact

the overall sustainability of the proposed groundwater withdrawal, nor have a discernable impact on groundwater elevations elsewhere in the fractured bedrock aquifer surrounding the Site.

5.3.1 Potential for Saltwater Intrusion during active pumping

The southeastern portion of the Site may experience some saltwater intrusion into the fractured bedrock aquifer during the proposed groundwater withdrawal scenario. The numerical groundwater flow model as well as groundwater data collected at the Site, including specific conductance (discussed further in Section 6.2.2) and tidal cycles observed in groundwater elevation, all indicate that some portion of the total groundwater withdrawal will be supplied by leakage into the bedrock aquifer from Belfast Bay.

Given the complexity of predicating the potential salinity of groundwater in coastal areas adjacent to the Site and the years to decades it is estimated it would take for saltwater intrusion to occur, the proposed approach for addressing the risk of saltwater intrusion is regular monitoring and the development of contingencies to address saltwater intrusion in wells, should it occur. The proposed Water Resource Monitoring Plan (Ransom, 2019), accounts for this monitoring effort.

6.0 WATER QUALITY

6.1 Groundwater Sample Chemical Analysis Results

Laboratory analytical results for the groundwater samples collected as part of this investigation are described in the following paragraphs and summarized in Table 7, with a comparison of results to recommended limits for salmonid culture. Copies of the laboratory reports are included in Appendix G.

Samples were collected from sampling spigots installed in the discharge pipe at the wellhead directly into pre-labeled laboratory containers. Pump rates were not altered prior to sampling, so sample water may have been exposed to some amount of turbulence, pressure alteration, and/or aeration from the pump or sampling spigot.

6.1.1 Volatile Organic Compounds

Toluene was detected in sample PSD-101 collected on November 21, 2018, at a concentration of 1.9 micrograms per liter (μ g/L), slightly above the laboratory detection limit of 0.75 μ g/L; no other VOCs were detected in this sample and VOCs were not detected in the remaining samples at concentrations above laboratory reporting limits.

6.1.2 Semi-Volatile Organic Compounds

2-Methylnaphthalene was detected in sample GWW-101 collected on April 5, 2018, at a concentration of 0.13 μ g/L, slightly above the laboratory detection limit of 0.10 μ g/L; no other SVOCs were detected in this sample and SVOCs were not detected in the remaining samples at concentrations above laboratory reporting limits.

6.1.3 Pesticides

No pesticides were detected at concentrations above their respective laboratory reporting limits in the groundwater sample collected from GWW-101 48 hours into the pump test.

6.1.4 Elements (Total & Dissolved)

Groundwater samples were analyzed for up to 30 elements, of which the following 15 were detected at concentrations above their respective laboratory reporting limits: aluminum, arsenic, barium, boron, calcium, iron, magnesium, manganese, phosphorus, potassium, silicon, sodium, strontium, sulfur and titanium. All detected elements are believed to be naturally occurring in the Site groundwater and are not indicative of a contamination source. Barium, boron, potassium and titanium were only detected in samples collected from GWW-103. Aluminum and titanium were not detected above laboratory reporting limits in dissolved form. With the exception of iron, all detected concentrations were below recommended limits for salmonid culture.

6.1.5 Additional Parameters

Total suspended solids were not detected above laboratory reporting limits in samples collected at the end of aquifer tests and turbidity and UV absorbance from these samples were low. Among all samples analyzed, alkalinity ranged from 54.9 to 143 milligrams calcium carbonate per liter (mg CaCO3/L) and hardness ranged from 37 to 146 milligrams per liter (mg/L). Groundwater

samples collected from PW-1 at the end of the August 2018 aquifer test were additionally analyzed for true color [7 Apparent Platinum Cobalt Units (A.P.C.U.)], apparent color (1 A.P.C.U.), dissolved carbon dioxide (17.7 mg/L) and total carbon dioxide (980 mg/L).

6.2 Groundwater Field Parameters

Groundwater parameters measured in the field are described in the following paragraphs and summarized in Table 8.

6.2.1 Temperature

Field readings and transducers were used to measure groundwater temperature at various monitoring points. Groundwater temperatures generally ranged from approximately 6° C to 10° C over the course of monitoring, which is within range of expected groundwater temperature values in Maine of 5° C to 10° C (Caswell, 1987). Continuous pumping also showed a minor influence on groundwater temperature, with modestly colder measurements recorded towards the end of aquifer tests. During recovery, a minor increase in temperature was common in some wells before leveling off to a similar temperature to the pre-pumping temperature.

The numerical flow model indicates that some of the proposed withdrawal demand would be accommodating by surface water flowing into the bedrock aquifer. Given this, groundwater temperature of water being withdrawn from the proposed water supply production wells may vary slightly from what was measured during the aquifer tests.

Complete records of groundwater temperature field readings can be found in Table 8 and transducer measurements can be found in Appendix D.

6.2.2 Specific Conductivity

Measurements of groundwater specific conductivity ranged from 0.14 to 1.38 milli-Siemens per centimeter (mS/cm) among samples collected from site monitoring wells. Notably, the highest measurements were recorded from GWW-103, located closest to the Bay, with conductivity readings measured during drilling increasing incrementally with depth. During aquifer testing, groundwater samples from GWW-103 exhibited conductivity readings approximately five times higher than samples collected from GWW-101. CTD transducers were deployed in GWW-101 and GWW-103 for most of the aquifer tests. Transducer conductivity readings ranged from 0.12 to 0.208 mS/cm in GWW-101 and 0.252 to 0.74 mS/cm in GWW-103. The largest change in conductivity over time occurred in test well GWW-103 during the August 2018 aquifer test, where conductivity increased from approximately 0.3 to 0.7 mS/cm over the course of the test.

During the April 2018⁸ and August 2018 tests, conductivity trends under pumping conditions at GWW-103 were generally increasing with time. After pumping ended in the August 2018 test conductivity decreased relatively rapidly during recovery. During the November 2018 and January 2019 tests, conductivity remain relatively stable from the pre-test period through the test and into the post-test period. Small fluctuations in conductivity in GWW-103, which appear to coincide with tidal fluctuations in groundwater elevation, are evident during portions of the

⁸ During the April 2018 test the CTD transducer became entangled partway through the test, limiting data recording for the latter portion of the test.

record as well. Conductivity in GWW-101 generally increased slightly at the start of pumping and then decreased slightly over time during pumping, followed by an abrupt (thought small in magnitude) increase in conductivity that coincided with pumps being turned off. Conductivity records from the CTD transducers are shown on the plots for GWW-101 and GWW-103 in Appendix E.

Complete records of groundwater conductivity field readings can be found in Table 8 and transducer measurements can be found in Appendix D.

6.2.3 Additional Parameters

Field measurements of pH ranged from 6.13 to 8.3 when measured at the conclusion of the aquifer tests; ORP ranged from -101 to 79 millivolts (mV); and TDS ranged from 0.07 to 0.69 parts per thousand (ppt).

6.3 Regulatory Status

Based on a comparison of the analytical results to current MEDEP guidance documents, there are no existing conditions pertaining to groundwater quality at the Site that would require reporting to MEDEP.

6.4 Data Interpretation

Chemical and physical measurements document a notable difference in groundwater collected from GWW-103 and GWW-101/PW-1. Laboratory analytical results for GWW-103 samples indicate a seawater chemical signature, with four major cations found in seawater (sodium, magnesium, calcium and potassium), all appearing at elevated concentrations in groundwater samples from GWW-103 compared to the more inland GWW-101/PW-1. Though conductivity readings do not currently indicate brackish or saltwater (seawater has a conductivity of approximately 55 mS/cm), an increase in conductivity with depth in GWW-103 indicates some limited degree of mixing between the freshwater/seawater systems under natural conditions at the completed depth of the monitoring well at 340 feet bgs.

7.0 FINDINGS

This hydrogeologic investigation was conducted to evaluate the suitability and sustainability of the bedrock aquifer beneath the Site for groundwater and surface water withdrawal to support the proposed land-based Atlantic salmon aquaculture facility. The investigation efforts considered five primary objectives:

- 1. Assess the overall suitability of the aquifer for water quality and yield;
- 2. Assess the viability of a surface water intake from the Lower Reservoir;
- 3. Identify potential high-yield production well locations at the Site;
- 4. Assess the hydraulic properties of the aquifer through aquifer tests to support the development of a numerical groundwater model; and
- 5. Calculate the estimated sustainable yield from one or more production wells located at the Site to support design of a production well field and permitting to allow groundwater extraction.

The fresh water supply for the proposed development is expected to come from three primary sources:

- 1. Groundwater withdrawn from production wells at the Site;
- 2. Surface water withdrawn from the Lower Reservoir adjacent to the Site; and
- 3. Municipal water delivered to the Site from the Belfast Water District.

The fractured bedrock aquifer exhibits complex flow behavior, with significant anisotropy in hydraulic conductivity. Aquifer tests indicate that bedrock fracture systems likely dip steeply and trend approximately east-west across the Site. Test wells were installed in several adjacent fracture systems that behave independently over short-term pumping, but leakage between fracture systems is expected to result in drawdown occurring between fracture systems over the course of long-term pumping.

MMA found that the numerical groundwater flow model generally supports a proposed withdrawal scenario of 455 gpm from three wells (PW-1 at 250 gpm, GWW-103 and 175 gpm, and DRX-102 at 30 gpm). Under this scenario, drawdown is expected to be approximately 200 feet at PW-1, and up to 15 feet at a nearby private water supply well (WSW-4) once steady-state groundwater flow conditions are reached. Steady-state conditions are expected to develop over a period of years to a decade. In addition to predicted drawdown, steady-state pumping is expected to result in some amount of saltwater intrusion in the southeastern portion of the Site and surrounding area. Drawdown of the overburden aquifer at the Site due to the proposed withdrawal is estimated to be approximately 5 feet during stead-state flow conditions.

The proposed surface water withdrawal rate of 70 gpm plus inflows (discussed in Section 3.6) is presented based on the 1- or 2- acre-feet per acre permissible to extract from the impoundment, depending on season, plus any additional inflows into the Lower Reservoir, in as provided for in MEDEP Chapter 587 rules. In order to account for inflows into the Lower Reservoir in the planning process, an estimated surface water withdrawal rate of 250 gpm is used, which represents a conservative estimate of baseflow

of the Little River. This rate is derived from the estimated 5% duration flow of the Little River. Given the estimated baseflow, it is reasonable to assume that over the course of an average year, 250 gpm or more of inflow into the Lower Reservoir can reasonably be expected for the majority of year, and the inflow rate can be withdrawn in addition to the proposed 70 gpm minimum withdrawal. A qualitative sensitivity analysis of the numerical groundwater flow model indicates that the groundwater system is relatively insensitive to variation in head of the Lower Reservoir.

Chemical analysis of groundwater samples collected from several of the proposed water supply production well locations indicate that the water quality at the Site is acceptable and will be suitable for use in the proposed aquaculture facility with limited pre-treatment prior to introducing it to the fish. Measurement of specific conductance during pumping tests and results from modeling indicate that some amount of saltwater intrusion into the fractured bedrock aquifer adjacent to Belfast Bay is likely. There are several private water supply wells located southeast of the Site in Northport that may be located within an area where saltwater intrusion could occur over the course of years to a decade or more. The Water Resource Monitoring Plan (Ransom, 2019) accounts for the potential, though unlikely, risk of saltwater intrusion through comprehensive monitoring and contingencies should unanticipated changes occur.

BWD had a capacity evaluation performed by A.E. Hodsdon Engineers (AEH) prior to engaging with NAF. This capacity assessment found that adequate supply is available from the existing BWD wells to supply a proposed maximum rate of 500 gpm to the NAF facility under its current well configuration. AEH also found that additional resiliency could be gained in BWD's water supply system by connecting the Talbot Well to the water distribution system.

8.0 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

Based on the findings summarized in this hydrogeologic investigation, the bedrock aquifer at the Site is inferred to be capable of supporting a sustainable long-term yield of 455 gpm across a network of three water production wells without adverse impacts. This conclusion is based on a detailed assessment of the hydrogeology of the fractured bedrock aquifer, the hydrology of the Site and the Little River watershed, chemical analysis of groundwater, and numerical groundwater flow modeling of the Little River watershed and proposed development Site.

In addition, surface water withdrawal from the Lower Reservoir at a rate of approximately 70 gpm plus any additional inflows into the Lower Reservoir is proposed. In order to account for inflows into the Lower Reservoir in the planning process, an estimated surface water withdrawal rate of 250 gpm is used, which represents a conservative estimate of baseflow of the Little River. The proposed surface water withdrawal is not expected to have an impact on the sustainability of the proposed groundwater withdrawal and is estimated to account for allowable withdrawals under MEDEP Chapter 587 rules without adversely impacting the Lower Reservoir impoundment.

The fresh water supply for the proposed development is expected to have a total capacity of approximately 1,025 gpm plus inflows to the Lower Reservoir, composed of groundwater extracted from the Site (455 gpm), surface water extracted from the Lower Reservoir (70 gpm plus inflows), and municipal water delivered by the BWD (500 gpm). Once the reasonably anticipated additional streamflow from the Little River is accounted for (base flow is estimated by StreamStats at 250 gpm and mean annual discharge is estimated at approximately 15,500 gpm), the total proposed freshwater capacity for the development is anticipated to exceed 1,025 gpm. In order to account for inflows into the Lower Reservoir in the planning process, an estimated surface water withdrawal rate of 250 gpm is used, which represents a conservative estimate of baseflow of the Little River. After incorporating this rate into the freshwater capacity estimate, the effective total freshwater capacity is approximately 1,205 gpm.

An assessment of potential nearby sources of contamination indicates that there are several existing and historic USTs and/or ASTs containing fuel oil at Mathews Brothers facility to the north of the Site, and most residential and commercial properties in the Site vicinity have private sewer systems (i.e. septic fields). Based on the findings of the Phase I ESA and information collected during this investigation, these potential sources of contamination are not considered to represent an undue risk to the bedrock aquifer at the Site.

8.2 Recommendations

Despite the conservative approach taken in this investigation to predict the response of the bedrock aquifer and surrounding hydrologic system, some uncertainty in these predictions is inevitable. To address this, Ransom recommends that NAF undertake the following as part of the proposed development:

1. Follow up with private water supply owners to determine total depths and pump depths of each private water supply well included in the Water Resource Monitoring Plan (Ransom, 2019);

- 2. Develop contingencies should unexpected drawdown responses occur in nearby private water supply wells that can be attributed to the proposed development;
- 3. The Water Resource Monitoring Plan (Ransom, 2019) should include provisions to monitor water quality and quantity in nearby private water supply wells, particularly those predicted by modeling to have the greatest estimated drawdowns, as well as water chemistry, including for typical drinking water quality parameters and total dissolved solids, particularly for water supply wells nearest Belfast Bay;
- 4. Construct the proposed development in such a way that adequate reserve freshwater capacity is maintained should portions of the fresh water supply network need to be taken off-line for maintenance or repairs;
- 5. The total steady-state drawdown in PW-1 predicted by the numerical groundwater flow model is approximately 200 feet. Based on drilling logs for PW-1, it is believed that one of the primary contributing bedrock fractures to PW-1 is located approximately 135 feet below grade. It is estimated to take years for total drawdown in PW-1 to reach 200 feet, however, the behavior of PW-1 after the drawdown exceeds the depth of the fracture at 135 feet below grade is not known. Given this, close monitoring of the response of PW-1 during sustained pumping and development of a contingency plan should the well response change as drawdown increases are recommended. Similar monitoring and development of contingencies are also recommended for the other proposed water supply production wells, although bedrock fractures supplying those wells are believed to be more evenly distributed throughout the wells;
- 6. A stream gage should be established in the free-flowing reach of the Little River upstream of the Lower Reservoir to monitor discharge from the Little River into the Lower Reservoir. This will allow discharge from the Little River into the Lower Reservoir to be accounted for and added to the proposed withdrawal rate of 70 gpm as per MEDEP's Chapter 587 rules;
- 7. Wetlands at the Site after the proposed development is completed should be monitored for potential influence from the proposed groundwater withdrawal;
- 8. Groundwater and surface water quality may fluctuate over time due to natural processes and due to sustained withdrawal. As such, water chemistry from the withdrawal points should be monitored to allow for proper treatment of the water to maintain necessary water quality for raising salmonids;
- 9. Proposed water supply production well locations GWW-103 and DRX-102 should be improved with wells of appropriate diameter and depth to accommodate their proposed withdrawal rates and existing test wells at these locations should remain as observation wells. Proposed water supply production well PW-1 is already constructed in a manner that will accommodate the proposed withdrawal rate and GWW-101 should be utilized as an observation well;
- 10. Based on the results of the capacity evaluation performed by AEH and the Maine Public Utilities Commission approval of the water withdrawal agreement, Ransom agrees that

the BWD should bring the Talbot well on-line prior to completion of the proposed development; and

11. As additional information becomes available, the conceptual model and/or numerical model of the Site should be updated as appropriate.

9.0 **REFERENCES**

- 1. A. E. Hodsdon Engineers, 2018, Capacity Evaluation for the Belfast Water District, Belfast Maine. Available at <u>http://www.belfastwater.org/2018%20CAPACITY%20EVALUVATION%20BY%20AE</u> <u>%20HODSDON%20FOR%20BWD.pdf</u>.
- 2. Caswell, W. Bradford, 1987, <u>Ground water handbook for the State of Maine</u>: Maine Geological Survey, Bulletin 39, 2nd edition, 135 p., 78 figs., 5 tables.
- 3. Gerber, Robert G., and Hebson, Charles S., 1996, Ground water recharge rates for Maine soils and bedrock: in Loiselle, Marc, Weddle, Thomas K., and White, Carol (editors), Selected papers on the hydrogeology of Maine: Geological Society of Maine, Bulletin 4, p. 23-51.
- 4. McDonald, Michael G., and Harbaugh, Arlen W., 1988, A modular three-dimensional finite-difference ground-water flow model: in Techniques of Water-Resources Investigations, USGS, 06-A1.
- 5. Osberg, Philip H., Hussey, Arthur M., II, and Boone, Gary M. (editors), 1985, Bedrock geologic map of Maine: Maine Geological Survey, 1 plate, correlation chart, tectonic inset map, metamorphic inset map, color geologic map, cross sections, scale 1:500,000.
- 6. Pollock, Stephen G., 2012, Bedrock geology of the Belfast quadrangle, Maine: Maine Geological Survey, Open-File Map 12-37, color map, scale 1:24,000.
- 7. Ransom Consulting, Inc., 2018a, ASTM Phase I Environmental Site Assessment and Limited Subsurface Investigation, Lower Reservoir & Cassida Back Lot Properties, 285 Northport Avenue, Belfast, Maine.
- 8. Ransom Consulting, Inc., 2018b, ASTM Phase I Environmental Site Assessment, Vacant Mathews Brothers Property 22 Perkins Road, Belfast, Maine.
- 9. Ransom Consulting, Inc., 2019, Water Resource Monitoring Plan, Proposed Commercial Land-Based Aquaculture Facility, Belfast Water District, Cassida Back Lot and Mathews Brothers West Field Properties, 285 Northport Avenue, Belfast, Maine.
- 10. Thompson, Woodrow B., and Borns, Harold W., Jr. (editors), 1985, Surficial geologic map of Maine: Maine Geological Survey, 42" x 52" color map, scale 1:500,000. *Maine Geological Survey Maps*. 15. <u>http://digitalmaine.com/mgs_maps/15</u>.
- 11. Wright-Pierce, 2018, Upper and Lower Little River Dams Dam Assessment Report, prepared for Ransom Consulting, Inc.

TABLE 1. EXISTING PRIVATE WATER SUPPLY WELLS Belfast Water District, Cassida, and Matthews Brothers Properties 285 Northport Avenue Belfast, Maine

Map/Lot	Address	Town	Data Source*
	North	of the Site	
29-42	253 Northport Ave	Belfast	MGS, BWD
4-68A	7 Reeds Ln	Belfast	BWD
4-68B	15 Reeds Ln	Belfast	MGS, BWD
	West of the Site,	across the Little R	liver
4-23	10 Herrick Rd	Belfast	BWD
4-23D	14 Herrick Rd	Belfast	BWD
4-23B	16 Herrick Rd	Belfast	BWD
4-23A	20 Herrick Rd	Belfast	BWD
4-26	24 Herrick Rd	Belfast	BWD
4-27	26 Herrick Rd	Belfast	BWD
4-28	30 Herrick Rd	Belfast	BWD
4-25D	31 Herrick Rd	Belfast	BWD
4-30	46 Herrick Rd	Belfast	BWD
4-29	49 Herrick Rd	Belfast	BWD
4-32	117 Woods Rd	Belfast	BWD
4-24B	122 Woods Rd	Belfast	BWD
4-25	135 Woods Rd	Belfast	BWD
4-25A	135 Woods Rd	Belfast	BWD
4-25C	141 Woods Rd	Belfast	BWD
4-31A	1 Woodsville Ln	Belfast	BWD
4-31B	2 Woodsville Ln	Belfast	BWD
4-31C	3 Woodsville Ln	Belfast	BWD
4-31D	4 Woodsville Ln	Belfast	BWD
	South of the Site	, across the Little F	River
U2-04	1395 Atlantic Hwy	Northport	NVC
U2-05	1401 Atlantic Hwy	Northport	NVC, MGS
U2-06	1405 Atlantic Hwy	Northport	NVC
U2-08	1406 Atlantic Hwy	Northport	NVC, MGS
U1-13A	1422 Atlantic Hwy	Northport	NVC
U1-13	1426 Atlantic Hwy	Northport	NVC
U1-09	1442 Atlantic Hwy	Northport	NVC
U1-02	1447 Atlantic Hwy	Northport	NVC
U2-14	3 Crest St	Northport	NVC
U2-16	7 Crest St	Northport	NVC
R1-23A	10 Horse Jockey Ln	Northport	NVC
U2-10	15 Summit Ave	Northport	NVC
U2-41	40 Summit Ave	Northport	NVC
U1-12	22 Windward Ln	Northport	NVC

Notes:

1. *Data sources include Maine Geological Survey (MGS), Belfast Water District (BWD) and Northport Village Corporation (NVC).

2. Unless mapped by MGS data or confirmed by owners, private wells are anticipated based on building presence and lack of listing on muncipical water supply billing records.

TABLE 2. AVERAGE PRECIPITATION FOR BELFAST, MAINEBelfast Water District, Cassida, and Matthews Brothers Properties285 Northport AvenueBelfast, Maine

Time	Full Period of								
Period	Record (86 years)	Past 30 Years	Past 20 Years	Past 10 Years					
		Average Precipitation (inches)							
Full Year	46.73	48.41	49.39	51.79					
January	3.79	3.73	3.58	3.93					
February	3.35	3.15	3.31	3.65					
March	4.02	3.76	3.89	3.89					
April	3.98	4.04	4.36	4.45					
May	3.97	3.95	4.09	3.63					
June	3.61	4.34	4.47	5.04					
July	3.16	3.15	3.12	3.49					
August	3.02	3.05	3.16	3.68					
September	3.64	4.16	4.04	4.04					
October	4.43	5.31	5.95	5.94					
November	5.03	4.78	4.77	4.72					
December	4.53	4.33	4.67	5.33					

Notes:

1. Data from Belfast, ME, NOAA Station ID USC00170480.

2. Years with more than 10 missing data entries were not included in this analysis.

3. Precipitation data from 2019 was omitted due to incomplete record.

4. Dates with no valid precipitation values (i.e. no value was

reported) were omitted from this analysis.

TABLE 3. MONITORING POINT SPECIFICATIONS

Belfast Water District, Cassida, and Matthews Brothers Properties 285 Northport Avenue

Belfast, Maine

	Easting	Northing	Easting	Northing	Elevation	Total Depth	Estimated Yield	Diameter	Depth to Rock	• ·	Drilling	Rating
Well ID	(MSP East Ft)	(MSP East Ft)	(m UTM 19N)	(m UTM 19N)	(ft NAVD88)	(ft bgs)	(gpm)	(in)	(ft bgs)	(ft bgs)	Method	Method
DDV 101	954024.4	266450.0	E00446.0	4045922 7		ring Points	> 60	4	10	22.4	Air Deter	A:= 1:#
DRX-101	854934.4	266159.9	500416.0	4915833.7	58.90	210	>60	4	13	32.4	Air Rotary	Air Lift
DRX-102	855748.9	266550.1	500663.4	4915954.1	58.10	211	>60	4	19	27	Air Rotary	Air Lift
DRX-103	854087.0	266649.5	500157.3	4915981.4	72.49	150	>40	4	24	25	Air Rotary	Air Lift
GWW-101	856102.0	266268.2	500767.7	4915866.5	43.40	320	200	6	15	27	Air Rotary	Air Lift
GWW-102	852404.2	267517.1	499642.9	4916242.6	74.70	420	63	6	32	41	Air Rotary	Air Lift
GWW-103	856483.3	265962.8	500888.3	4915776.5	31.80	340	250	6	16	30	Air Rotary	Air Lift
NTB-101	856399.3	266374.0	500861.9	4915901.6	39.90	192	~10	4	15.6	16.5	Rotary Wash	
NTB-102	854317.0	266102.7	500228.0	4915815.1	62.20	217	>50	4	25	27	Rotary Wash	Submersible
NTB-103	851535.8	268146.5	499377.1	4916432.8	80.86	267	~10	4	23.1	24.1	Rotary Wash	Submersible
PSD-101	855162.3	266725.3	500484.7	4916006.5	64.33	400	30	6	20	37.5	Air Rotary	Air Lift
PSD-102	854866.1	266672.8	500394.6	4915989.9	66.16	400	140	6	28	38	Air Rotary	Air Lift
PW-1	856081.9	266267.5	500765.8	4915868.7	43.52	615	330	8	15	41	Air Rotary	Air Lift
PZ-1D	854135.1	266531.9	500172.1	4915945.6	70.14	24	NA	1	24	NA	Direct Push	NA
PZ-1S	854132.0	266532.8	500171.2	4915945.9	70.16	15	NA	1	24	NA	Direct Push	NA
PZ-2	855965.7	266395.5	500730.2	4915907.5	42.95	11	NA	1	11	NA	Direct Push	NA
PZ-3	855817.3	266521.7	500684.7	4915945.7	51.39	12	NA	1	12	NA	Direct Push	NA
PZ-4D	856194.6	266250.0	500800.2	4915863.6	36.47	10	NA	1	8.75	NA	Direct Push	NA
PZ-4S	856192.1	266250.8	500799.4	4915863.8	36.52	5	NA	1	8.75	NA	Direct Push	NA
SG-2	856261.9	265909.1	500821.3	4915759.8	32.63	NA	NA	1	NA	NA	NA	NA
SG-3	852528.4	267331.3	499681.1	4916186.2	69.72	NA	NA	1	NA	NA	NA	NA
SG-4	853192.5	266845.4	499884.3	4916039.4	30.93	NA	NA	1	NA	NA	NA	NA
					Private Wate	er Supply W	/ells					
WSW-01	852765.6	266569.4	499754.8	4915954.5	78.89	unknown	unknown	6	unknown	unknown	NA	NA
WSW-02	852702.3	265259.7	499737.5	4915555.2	80.83	230	unknown	6	unknown	unknown	NA	NA
WSW-03	852885.4	266896.0	499790.7	4916054.3	71.35	117	35	6	unknown	unknown	NA	NA
WSW-04	855622.1	264778.3	500628.5	4915414.1	53.07	226	unknown	6	unknown	unknown	NA	NA
WSW-05	852496.9	266658.0	499672.8	4915981.0	80.69	unknown	unknown	6	unknown	unknown	NA	NA
WSW-06	853071.7	268961.5	499843.6	4916683.9	110.03	unknown	unknown	6	unknown	unknown	NA	NA

Notes:

1. Estimated yields are based on rating after drilling from short term (7.5 to 8.5 hour) aquifer test using submersible

pump or through air lift testing using drilling equipment. Ratings are approximate.

2. Drilling fluid utilized during rotary wash drilling consisted of clean water with no additives other than cuttings derived from

the formation itself.

3. Information on construction of private water supply wells gathered from voluntary questionnaire responses from well owners.

TABLE 4. MONITORING FREQUENCY

Belfast Water District, Cassida, and Matthews Brothers Properties 285 Northport Avenue Belfast, Maine

				Intervening			Intervening		0040 T	Intervening	.		Intervening
		April 20 Monitoring	018 Test Monitoring	Time Manitanin a	August 2 Monitoring	2018 Test Monitoring	Time	November Monitoring	r 2018 Test Monitoring	Time	January Monitoring	2019 Test Monitoring	Time
Well ID	Monitoring Feature	Method ¹	Frequency ²	Monitoring Status	Method ¹	Frequency ²	Monitoring Status	Method ¹	Frequency ²	Monitoring Status	Method ¹	Frequency ²	Monitoring Status
						Monitoring Po						,,	
DRX-101	Bedrock Aquifer	Т, М	1 min	No	Т, М	1 min	Yes	T, M	30 sec	No	Т, М	1 min	No
DRX-102	Bedrock Aquifer	Т, М	1 min	No	Т, М	2 min	Yes	Т, М	30 sec	No	Т, М	30 sec	No
DRX-103	Bedrock Aquifer							Т, М	1 min	Yes	Т, М	1 min	Yes
GWW-101	Bedrock Aquifer	Т, М	30 sec	No	Т, М	30 sec	Yes	Т, М	30 sec	Yes	Т, М	30 sec	Yes
GWW-102	Bedrock Aquifer	Т, М ³	15 min	No	Т, М	15 min	Yes	Т, М	15 min	Yes	Т, М	30 min	Yes
GWW-103	Bedrock Aquifer	Т, М	30 sec	No	Т, М	1 min	Yes	Т, М	30 sec	No	Т, М	30 sec	No
NTB-101	Bedrock Aquifer	Т, М	1 min	No	Т, М	1 min	No	Т, М	1 min	Yes	Т, М	1 min	Yes
NTB-102	Bedrock Aquifer	Т, М	1 min	No	Т, М	5 min	Yes	Т, М	2 min	Yes	Т, М	1 min	Yes
NTB-103	Bedrock Aquifer	NM	NA	No	NM	NA	No	M	2x + daily	No	M	2x + daily	No
PSD-101	Bedrock Aquifer							Т, М	30 sec	No	Т, М	1 min	No
PSD-102	Bedrock Aquifer							Т, М	30 sec	No	Т, М	30 sec	No
PW-1	Bedrock Aquifer				Т, М	30 sec	No	Т, М	30 sec	No	Т, М	30 sec	No
PZ-1D	Deep Wetland Piezometer							Т, М	5 min	Yes	Т, М	10 min	Yes
PZ-1S	Shallow Wetland Piezometer							T, M	5 min	Yes	T, M ³	10 min	Yes
PZ-2	Deep Wetland Piezometer							M	2x + daily	No	Т, М	10 min	Yes
PZ-3	Deep Wetland Piezometer							Т, М ³	10 min	Yes	T, M	10 min	Yes
PZ-4D⁵	Deep Wetland Piezometer							М	2x + daily	No	M	2x + daily	No
PZ-4S	Shallow Wetland Piezometer							Т, М	5 min	Yes	Т, М	10 min	Yes
SG-1⁴	Lower Reservoir	Т, М	15 min	No									
SG-2	Lower Reservoir				Т, М	15 min	Yes	Т, М	15 min	No	М	2x + daily	No
SG-3	Upper Reservoir							T, M	15 min	No	М	2x + daily	No
SG-4	Little River							T, M	15 min	No	М	2x + daily	No
					Pri	ivate Water Supp	ly Wells ⁶	, , , , , , , , , , , , , , , , , , ,				, , , , , , , , , , , , , , , , , , ,	
WSW-01	Bedrock Aquifer	NM	NA	NA	NM	NA	NA	Т	5 min	Yes	Т	15 min	Yes
WSW-02	Bedrock Aquifer	NM	NA	NA	NM	NA	NA	NM	NM	No	Т	5 min	Yes
WSW-03	Bedrock Aquifer	NM	NA	NA	NM	NA	NA	Т	5 min	Yes	Т	15 min	Yes
WSW-04	Bedrock Aquifer	NM	NA	NA	Т	5 min	Yes	Т	5 min	Yes	Т	15 min	Yes
WSW-05	Bedrock Aquifer	NM	NA	NA	NM	NA	NA	Т	5 min	Yes	Т	15 min	Yes
WSW-06	Bedrock Aquifer	NM	NA	NA	Т	5 min	Yes	Т	5 min	Yes	Т	15 min	Yes

Notes:

1. T: Monitored with transducer; M: Monitored manually; NM: Not monitored; --: Monitoring point not installed or destroyed.

2. Monitoring Frequency represents the transducer interval, when used, or the approximate frequency of manual measurements. NA: Monitoring frequency not applicable.

3. Transducer record only covers a portion of the aquifer test period.

4. Monitoring point SG-1 was installed in the Lower Reservoir, however, it was damaged by ice before it could be surveyed.

5. Monitoring point PZ-4D has never had a measureable groundwater present when checked.

6. Private water supply wells were generally only manually measured to calibrate the transducer measurement.

TABLE 6. AQUIFER TEST DETAILS

Belfast Water District, Cassida, and Matthews Brothers Properties 285 Northport Avenue Belfast, Maine

	Pumping Wells	Pump Setting (ft bgs)	Step Test Performed?		Date and Time Off (EST)	Pumping Duration	Nominal Pumping Rate ² (gpm)	Static Water Level (ft NAVD88)	Pumping Water Level (ft NAVD88)	Maximum Drawdown (ft)	Cor
	GWW-101	150	Yes	4/2/2018 8:30	4/5/2018 8:30	72:00:00	100	22.14	-6.2	28.34	Pumping rate was set based on the step t installed in the well.
April 2018 Test	GWW-103	100	Yes	4/2/2018 8:30	4/5/2018 8:30	72:00:00	100	14.02	-15.95	29.97	Pumping rate was set based on the step t installed in the well. Borehole sloughing re fouling of pump.
August 2018 Test	³ PW-1	127	Yes	8/27/2018 8:20	8/30/2018 8:31	72:11:00	250	21.33	-56.19	77.52	Pumping rate was set based on the step t
	DRX-101	150	Yes ¹	11/18/2018 9:00	11/21/2018 9:00	72:00:00	30	24.14	-12.62	36.76	Pumping rate was based on maximum pu course of the test.
	DRX-102	150	Yes ¹	11/18/2018 12:44	11/21/2018 9:00	68:16:00	30	43.57	-24.06	67.63	Pumping rate was based on maximum pu course of the test. The pump start was de
	GWW-103	127	No	11/18/2018 9:00	11/21/2018 9:00	72:00:00	175	14.08	-35.84	49.92	Pumping rate was based on the maximum
November 2018 Test	PSD-101	250	Yes ¹	11/18/2018 9:00	11/21/2018 9:00	72:00:00	15	60.07	6.87	53.2	Pumping rate had to be adjust constantly gate valve. Final rate of 15 gpm determine stuck reading 15 gpm at shutdown, indica (likely less than 15 gpm).
	PSD-102	150	Yes ¹	11/18/2018 9:00	11/21/2018 9:00	72:00:00	100	60.33	-1.9	62.23	Pumping rate was based on the maximum
	PW-1	127	No	11/18/2018 9:00	11/21/2018 9:00	72:00:00	250	22.1	-57.4	79.5	Three-phase pump was wired in reverse to reached ~24 hours into the test discharge
	DRX-102	150	No	1/8/2019 12:40	1/12/2019 10:15	93:35:00	30	44.06	-23.37	67.43	Pumping rate was based on maximum pu course of the test.
	GWW-103	127	No	1/8/2019 13:20	1/12/2019 10:15	92:55:00	175	14.69	-35.38	50.07	Pumping rate was based on the maximum
January	PSD-102	150	No	1/11/2019 10:20	1/12/2019 5:27	19:07:00	100	61.54	7.94	53.6	Pumping rate was based on the maximum
2019 Test	PW-1 (1st Step)	127	No	1/9/2019 10:16	1/10/2019 10:15	23:59:00	145	22.77	-17.1	39.87	PW-1 was run at a low and high pumping well in private wells west of the Little Rive PW-1 was run at a low and high pumping
	PW-1 (2nd Step)	127	No	1/10/2019 10:15	1/12/2019 10:15	48:00:00	250	-17.1	-54.98	37.88	well in private wells west of the Little Rive pump contractor. Once critical head point contued to fall to a final rate of ~234 gpm.

Notes:

1. Simplified step tests were conducted for these wells to ensure that they were capable of supporting the maximum pumping rate the installed pump was able to produce.

2. The Nominal Pumping Rate represents the pumping rate set for the well based on test design parameters and pump capabilities. The actual pumping rate varied depending on pump performance and valve drift. Changes in pumping rates were recorded and in cases of significant pumping rate drift that could not be corrected during the test, the actual pumping rate at the conclusion of the test is noted in the comments.

comments

p test and maximum capacity of the pump

p test and maximum capacity of the pump resulted in blockage at 120 ft bgs and periodic

p test conducted prior to the test.

pump capacity and varied ~2-3 gpm over the

pump capacity and varied ~2-3 gpm over the delayed due to a GFCI issue with the generator.

um capacity of the pump installed in the well.

tly during initial portion of test due to issues with ined after starting at 30 gpm. Flow meter was icating discharge may not have been 15 gpm

um capacity of the pump installed in the well.

e by pump contractor. Once critical head point ge contued to fall to a final rate of ~230 gpm.

pump capacity and varied ~2-3 gpm over the

um capacity of the pump installed in the well.

um capacity of the pump installed in the well.

ng rate to assess response to pumping from this iver.

ng rate to assess response to pumping from this iver. Three-phase pump was wired in reverse by int reached ~24 hours into the test discharge m

TABLE 7. GROUNDWATER LABORATORY ANALYTICAL RESULTS Belfast Water District, Cassida, and Matthews Brothers Properties 285 Northport Avenue Belfast, Maine

Sample Location	GWW-101	GWW-101	GWW-103	GWW-103	PW-1	PSD-101	PSD-102	DRX-102	
Date Collected	2/27/2018	4/5/2018	3/6/2018	4/5/2018	8/30/2018	11/21/2018	11/21/2018	11/21/2018	
Conditions of Collection	collected following well completion	collected at end of 72-hr pump test	collected following well completion	collected at end of 72-hr pump test	collected at end of 72-hr pump test	collected at end of 72-hr pump test	collected at end of 72-hr pump test	collected at end of 72-hr pump test	Recommended
Observations	clear	clear	clear	clear	clear, sulfur odor, iron precipitate buildup in discharge tank	clear	clear	clear	Limits*
Volatile Organic Compounds (VOCs)				Concentrat	ions in micrograms pe	er liter (ug/L)			
Toluene	nd(0.75)	nd(0.75)	nd(0.75)	nd(0.75)	nd(0.75)	1.9	nd(0.75)	nd(0.75)	ne
Other VOCs**	nd	nd	nd	nd	nd	nd	nd	nd	ne
Semivolatile Organic Compounds (SVOCs)				Concentrat	ions in micrograms pe	er liter (ug/L)			
2-Methylnaphthalene	nd(0.10)	0.13	nd(0.10)	nd(0.10)	nd(0.10)	nd(0.10)	nd(0.10)	nd(0.10)	ne
Other SVOCs**	nd	nd	nd	nd	nd	nd	nd	nd	ne
Elements (Total/Dissolved)				Concentra	tions in milligrams per	liter (mg/L)			
Aluminum	0.188 / nd(0.100)	nd(0.100)	0.468 / nd(0.100)	nd(0.100)	nd(0.100)	nm	nm	nm	0.01-1.00
Antimony	nd(0.00400)	nd(0.00400)	nd(0.00400)	nd(0.00400)	nd(0.00400)	nm	nm	nm	ne
Arsenic	0.006 / 0.005	0.007 / 0.008	nd(0.005)	0.005 / nd(0.005)	0.006 / 0.005	nm / nd(0.005)	nm / 0.008	nm / 0.011	0.05-0.40
			. ,	, ,		· · /			
Barium	nd(0.010)	nd(0.010)	0.016 / 0.015	0.023 / 0.026	nd(0.010)	nm / nd(0.010)	nm / 0.010	nm / nd(0.010)	5
Beryllium	nd(0.00050)	nd(0.00050)	nd(0.00050)	nd(0.00050)	nd(0.00050)	nm	nm	nm	0.01-1.10
Boron	nd(0.030)	nd(0.030)	0.117 / 0.116	0.087 / 0.081	nd(0.030)	nm	nm	nm	5
Cadmium	nd(0.00020)	nd(0.00020)	nd(0.00020)	nd(0.00020)	nd(0.00020)	nm / nd(0.005)	nm / nd(0.005)	nm / nd(0.005)	0.0003-0.0700
Calcium	8.35 / 8.97	10.8 / 10.1	35.4 / 36.4	21.0 / 20.5	11.6 / 11.8	nm	nm	nm	4-160+
Chromium	nd(0.010)	nd(0.010)	nd(0.010)	nd(0.010)	nd(0.010)	nm / nd(0.010)	nm / nd(0.010)	nm / nd(0.010)	0.03-0.10
Cobalt	nd(0.020)	nd(0.020)	nd(0.020)	nd(0.020)	nd(0.020)	nm	nm	nm	0.010-0.05
Copper	nd(0.010)	nd(0.010)	nd(0.010)	nd(0.010)	nd(0.010)	nm / nd(0.010)	nm / nd(0.010)	nm / nd(0.010)	0.006-0.070
Iron	2.49 / 2.05	3.20 / 3.00	2.08 / 0.784	1.51 / 1.45	3.20 / 3.31	nm	nm	nm	0.1-1.1
Lead	nd(0.010)	nd(0.010)	nd(0.010)	nd(0.010)	nd(0.010)	nm / nd(0.010)	nm / nd(0.010)	nm / nd(0.010)	0.01-4.0
Magnesium	3.93 / 3.99	4.72 / 4.20	14.1 / 13.9	10.2 / 9.36	5.10 / 5.04	nm	nm	nm	15-28+
Manganese	0.030 / 0.028	0.035 / 0.033	0.046 / 0.041	0.029 / 0.030	0.034 / 0.036	nm	nm	nm	0.05-1.00
Mercury	nd(0.00020)	nd(0.00020)	nd(0.00020)	nd(0.00020)	nd(0.00020)	nm / nd(0.00020)	nm / nd(0.00020)	nm / nd(0.00020)	0.0001-0.0020
Molybdenum	nd(0.050)	nd(0.050)	nd(0.050)	nd(0.050)	nd(0.050)	nm	nm	nm	8+
Nickel	nd(0.025)	nd(0.025)	nd(0.025)	nd(0.025)	nd(0.025)	nm	nm	nm	0.01-0.40
	0.071 / 0.035	. ,	. ,	, ,	. ,				3+
Phosphorus (Total / Soluble)		0.122 / 0.125	0.101 / 0.018	0.048 / 0.049	0.116 / 0.106	nm	nm	nm	
Potassium	nd(2.50)	nd(2.50)	9.26 / 8.78	6.58 / 6.25	nd(2.5) / 2.51	nm	nm	nm	5-10+
Selenium	nd(0.010)	nd(0.010)	nd(0.010)	nd(0.010)	nd(0.010)	nm / nd(0.010)	nm / nd(0.010)	nm / nd(0.010)	0.005-0.020
Silicon	10.3 / 10.5	11.4 / 10.7	8.26 / 7.97	9.04 / 8.65	na / 10.8	nm	nm	nm	ne
Silver	nd(0.007)	nd(0.007)	nd(0.007)	nd(0.007)	nd(0.007)	nm / nd(0.007)	nm / nd(0.007)	nm / nd(0.007)	ne
Sodium	14.7 / 15.2	12.6 / 12.1	254 / 253	135 / 134	13.8 / 14.9	nm	nm	nm	600-1500+
Strontium	0.041 / 0.041	0.048 / 0.051	0.440 / 0.422	0.195 / 0.218	0.053 / 0.057	nm	nm	nm	ne
Sulfur (Total)	38.7	4.51	46.2	23.2	4.79	nm	nm	nm	ne
Thallium	nd(0.00050)	nd(0.00050)	nd(0.00050)	nd(0.00050)	nd(0.00050)	nm	nm	nm	ne
Titanium	nd(0.010)	nd(0.010)	0.016 / nd(0.010)	nd(0.010)	nd(0.010)	nm	nm	nm	ne
Vanadium	nd(0.010)	nd(0.010)	nd(0.010)	nd(0.010)	nd(0.010)	nm	nm	nm	0.1
Zinc	nd(0.050)	nd(0.050)	nd(0.050)	0.059 / 0.055	nd(0.050)	nm	nm	nm	0.005-0.269
Additional Parameters				Concentrations in milli	grams per liter (mg/L)	unless otherwise note	d		
Hardness	37.0	46.5	146	94.5	49.9	nm	nm	nm	20-400
Alkalinity (mg CaCO3/L)	57.9	54.9	143	116	71.3	nm	nm	nm	higher the better
Total Suspended Solids	nm	nd(5)	nm	nd(5)	nd(5)	nm	nm	nm	lower the better
Turbidity (NTU)	nm	nm	nm	nm	0.87	nm	nm	nm	lower the better
Dissolved Carbon Dioxide					17.7				
	nm	nm	nm	nm		nm	nm	nm	ne
Total Carbon Dioxide	nm	nm	nm	nm	980	nm	nm	nm	ne
True Color (A.P.C.U.)	nm	nm	nm	nm	7	nm	nm	nm	ne
Apparent Color (A.P.C.U.)	nm	nm	nm	nm	13	nm	nm	nm	ne
UV Absorbance @ 254nm (Abs/cm)	nm	0.023	nm	0.011	0.034	nm	nm	nm	lower the better

Notes:

nm = not measured; nd = not detected above laboratory detection limit, as noted in parenthesis; ne = not established
 Bold = above recommended limit for salmonid aquaculture

3. * Recommended limits for salmonid culture based on tables provided by Nordic Aquafarms, Inc. in a February 5, 2018 email.

**For individual VOC and SVOC detection limits, refer to the laboratory results in Appendix G.
 A groundwater sample from GWW101 on 4/4/2018, 48-hr into the pump test, was analyzed for pesticides; no pesticides were detected.

6. Concentrations of carbon dioxide may have been impacted by the discharge pipe assembly causing results to be biased high.

TABLE 8. FIELD ANALYSES OF GROUNDWATER QUALITY Belfast Water District, Cassida, and Matthews Brothers Properties 285 Northport Avenue Belfast, Maine

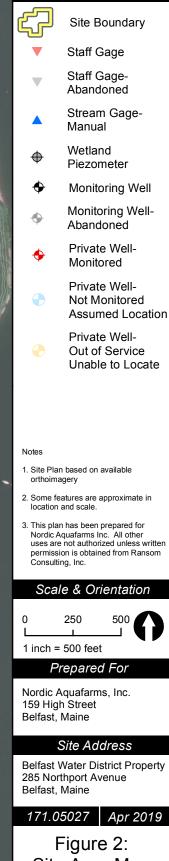
Sample Location	NTB-101	NTB-102
Date Collected	2/21/2018	2/27/2018
Observations	clear pumped water, end of drilling	clear pumped water, end of drilling
Temperature (degrees C)	9.6	8.2
pН	8.3	7.21
ORP (mV)	nm	-56
TDS (ppt)	0.112	0.10
Conductivity (mS/cm)	nm	0.20

Sample Location	GWW-101	GWW-101	GWW-101	GWW-101	GWW-101
Date Collected	2/26/2018	2/27/2018	2/27/2018	4/4/2018	4/5/2018
Observations	murky wash water during drilling at 140'	clear wash water during drilling at ~300'	clear wash water, end of drilling at 320', collected samples	47 hours into pump test	71 hours into pump test, collected samples
Temperature (degrees C)	10.1	8.8	8.2	8.0	7.3
pН	7.33	7.68	7.54	6.58	7.33
ORP (mV)	-39	-72	-76	-44	-29
TDS (ppt)	nm	0.09	0.09	0.07	0.07
Conductivity (mS/cm)	0.17	0.18	0.19	0.14	0.14

Sample Location	GWW-103	GWW-103	GWW-103	GWW-103	GWW-103	GWW-103	GWW-103
Date Collected	3/5/2018	3/5/2018	3/6/2018	3/6/2018	4/3/2018	4/4/2018	4/5/2018
Observations	murky wash water during drilling at ~200'	murky wash water during drilling at ~265'	fairly clear wash water during drilling at 300'	clear wash water, end of drilling at 340', collected samples	31 hours into pump test	47.5 hours into pump test	71.5 hours into pump test, collected samples
Temperature (degrees C)	10.4	10.8	10.4	9.9	9.4	8.9	6.7
pН	nm	7.09	7.83	7.86	7.60	7.13	7.18
ORP (mV)	nm	-31	-94	-101	-79	-72	-30
TDS (ppt)	0.20	0.35	0.65	0.69	0.38	0.35	0.37
Conductivity (mS/cm)	0.40	0.70	1.29	1.38	0.74	0.69	0.74

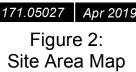
Sample Location	PW-1	PSD-101	PSD-102	DRX-101	DRX-102
Date Collected	8/30/2018	11/21/2018	11/21/2018	11/21/2018	11/21/2018
Observations	71 hours into pump test, collected samples	clear; end of 72-hr pump test			
Temperature (degrees C)	8.6	9.9	8.1	7.0	7.8
pН	6.72	6.65	6.13	6.93	6.94
ORP (mV)	-38	14	79	-48	-31
TDS (ppt)	nm	nm	nm	nm	nm
Conductivity (mS/cm)	0.19	0.16	0.19	0.19	0.19
Dissolved Oxygen (mg/L)	0.55	nm	nm	nm	nm

Notes:


1. nm = not measured

C:\Users\thomas.neilson\Documents\GIS\ME\Maps\NordicA

RANSOM Consulting Engineers and Scientists Legend & Notes


Belfast Bay

Tozler St

Hazeltine Rd

Seastde Dr

Assumed Location

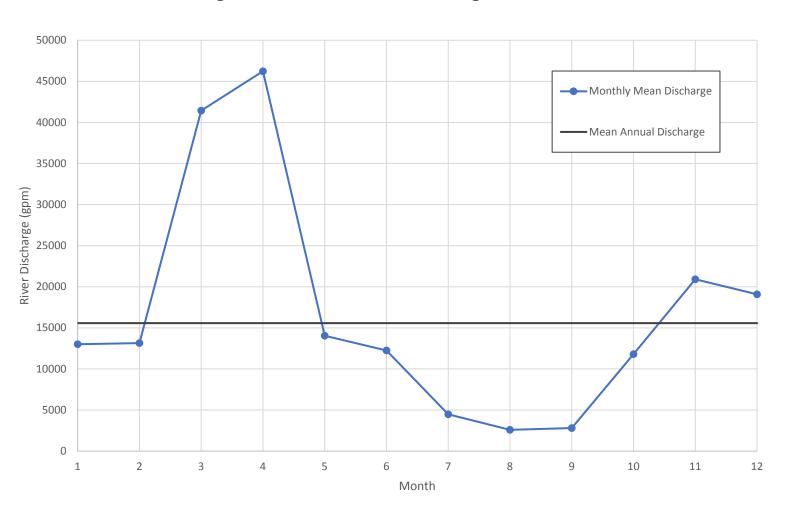
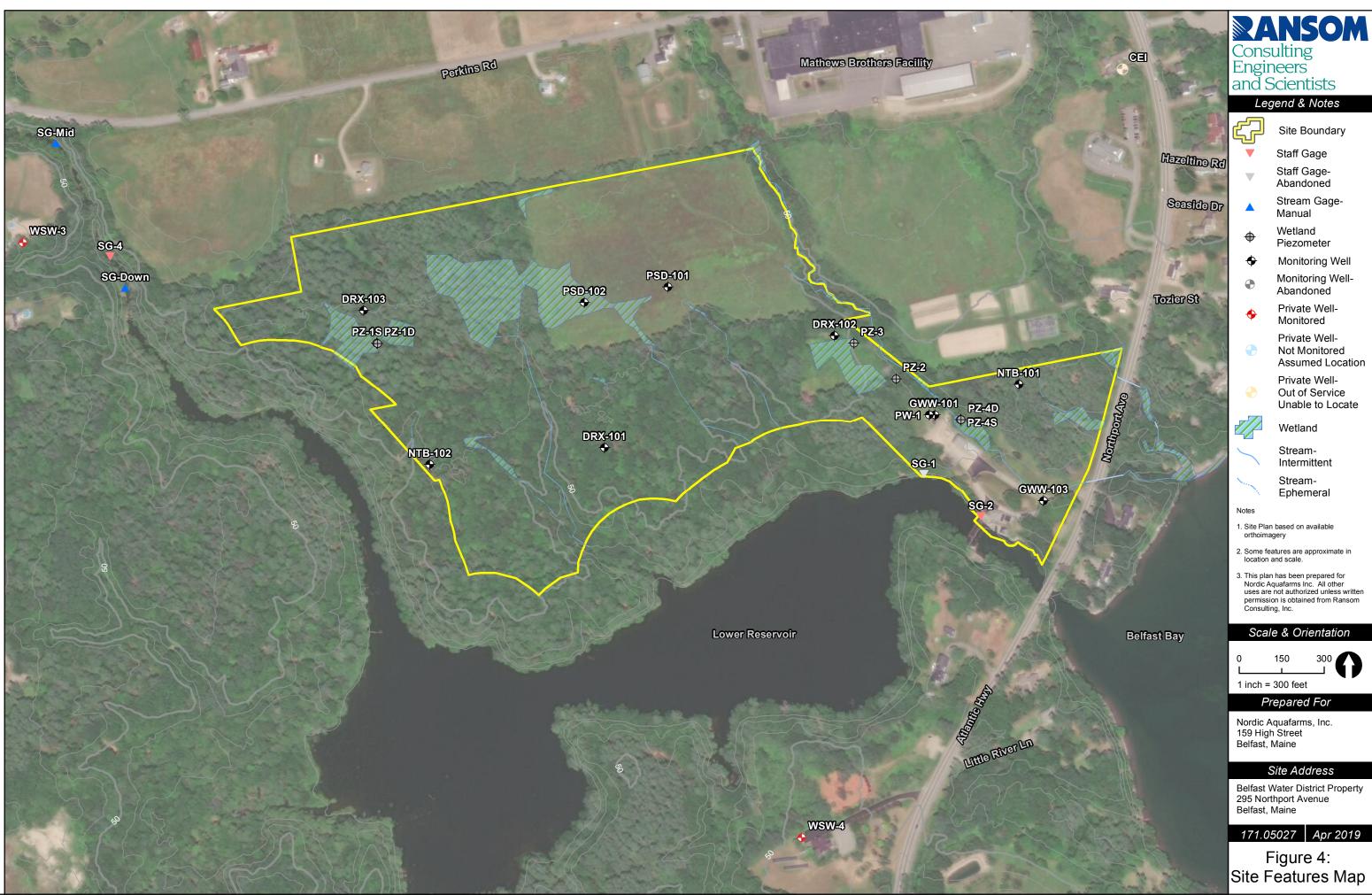
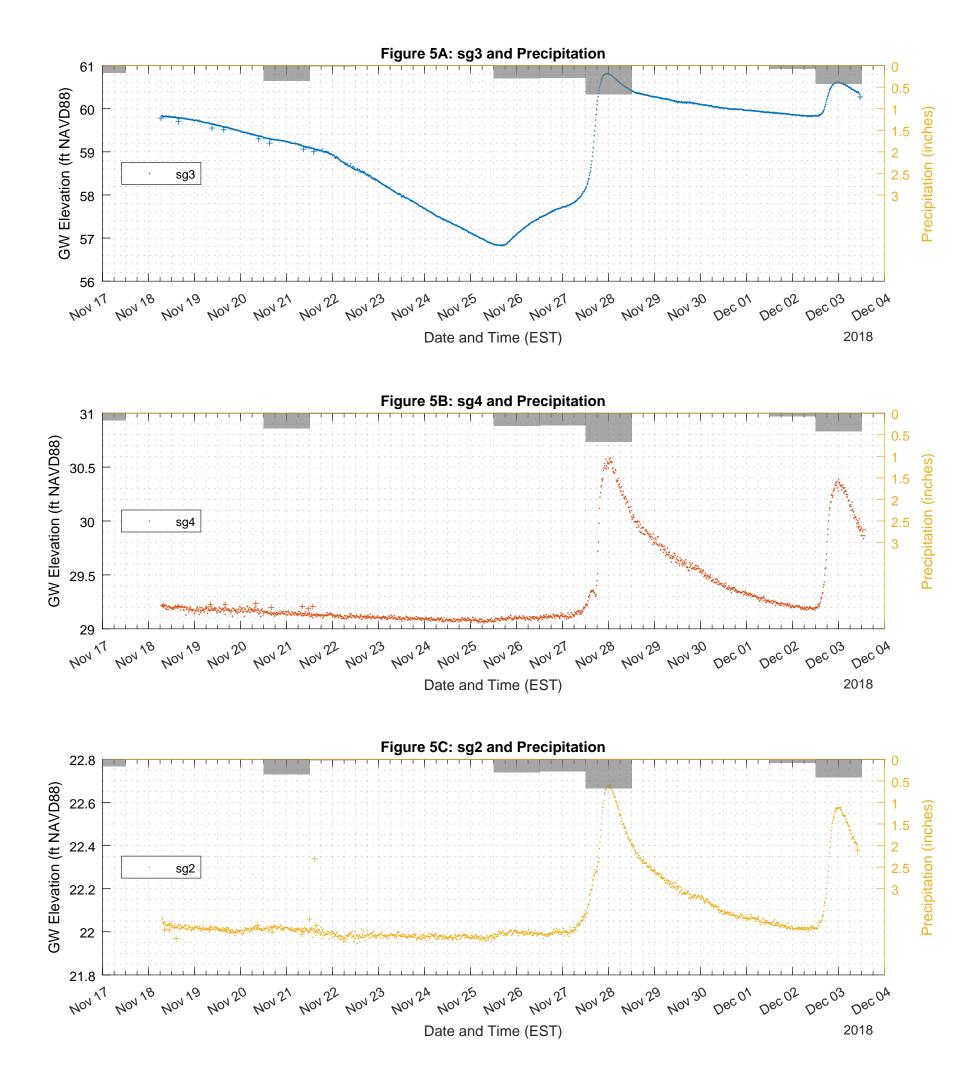
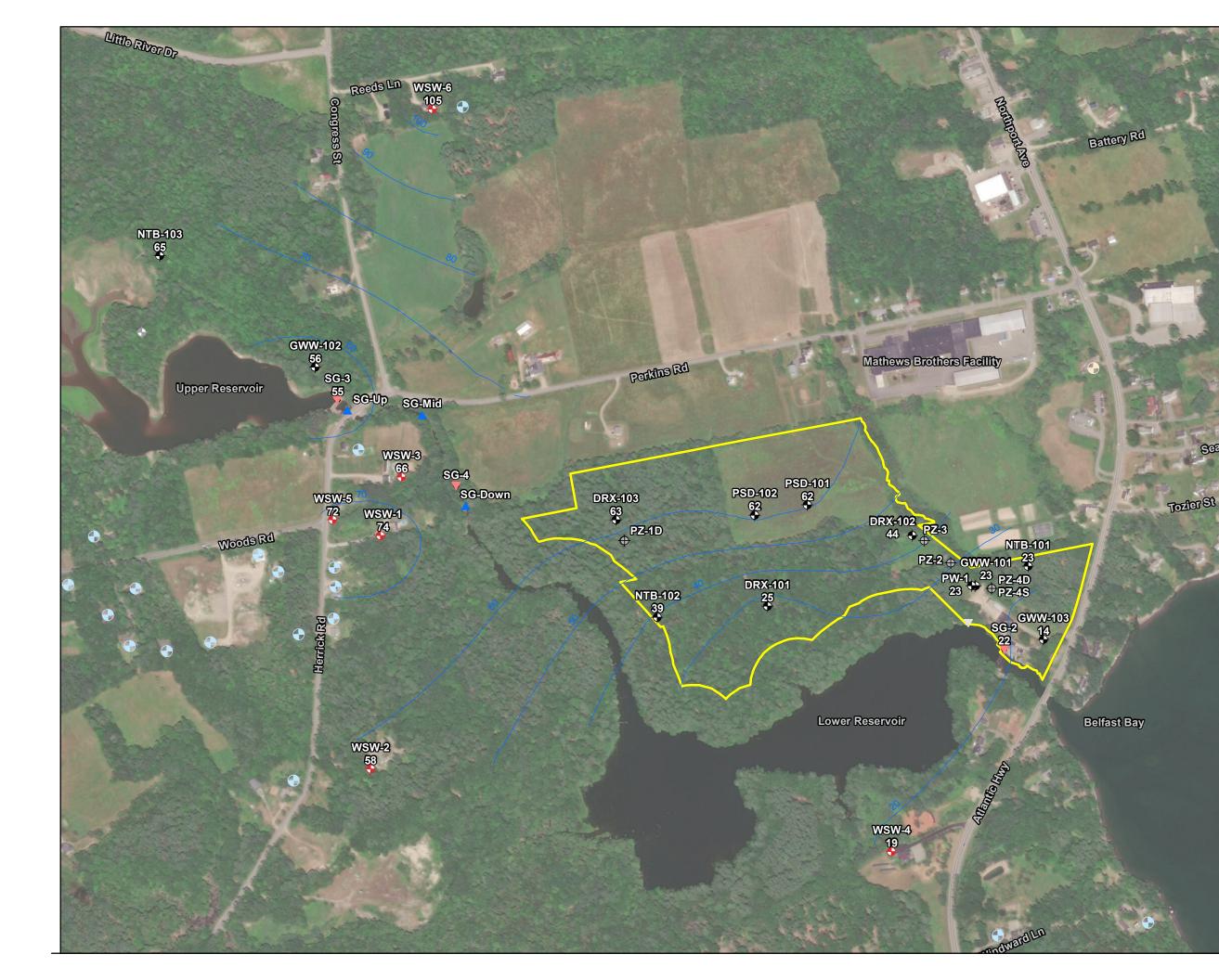
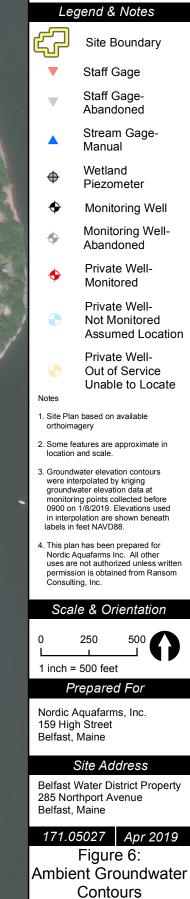





Figure 3: Annual Little River Discahrge from StreamStats



Consulting Engineers and Scientists

Hazeltine Rd

Seaside Dr

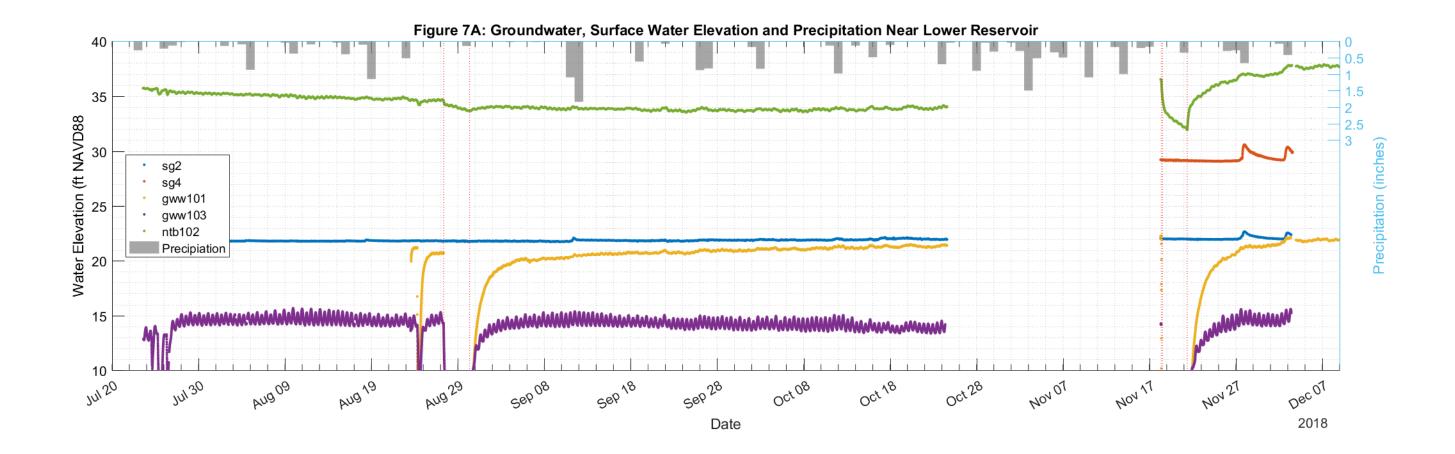
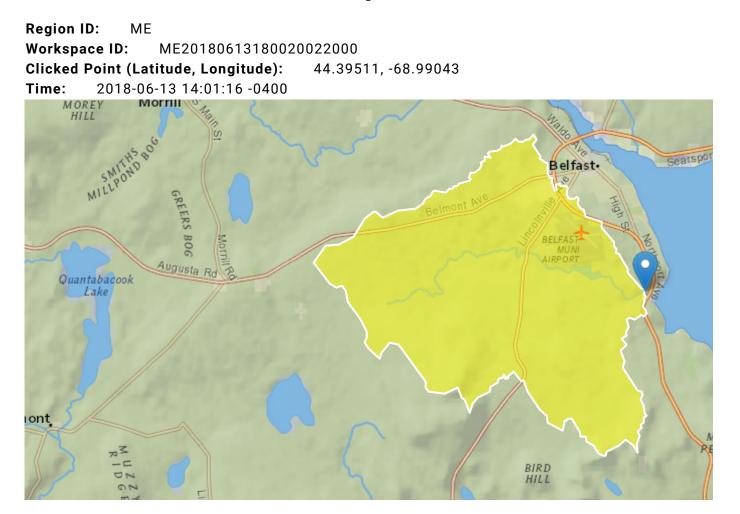


Figure 7B: Groundwater, Surface Water Elevation and Precipitation Near Upper Reservoir 65 j 1 60 Water Elevation (ft NAVD88 55 05 55 40 sg3 • gww102 • Precipiation 35 ^l JUI 20 JUI 30 Aug09 AU9 19 AU929 0^{ct08} 0^{ct 28} Sep 08 5ep 18 Sep 28 0^{ct 18} NOV OT Date



APPENDIX A

StreamStats Report and Precipitation Data

Hydrogeologic Investigation Report Proposed Commercial Land-Based Aquaculture Facility Belfast Water District, Cassida Back Lot, and Mathews Brothers West Field Properties 285 Northport Avenue Belfast, Maine

Little River StreamStats Report

Generated on 6/13/2018

Basin Characteristics							
Parameter Code	Parameter Description	Value	Unit				
DRNAREA	Area that drains to a point on a stream	16.7	square miles				
STORNWI	Percentage of strorage (combined water bodies and wetlands) from the Nationa Wetlands Inventory	7.05	percent				
SANDGRAVAF	Fraction of land surface underlain by sand and gravel aquifers	0.026	dimensionless				
ELEV	Mean Basin Elevation	267.8	feet				

Parameter Code	Parameter Description	Value	Unit
STATSGOA	Percentage of area of Hydrologic Soil Type A from STATSGO	0.87	percent
COASTDIST	Shortest distance from the coastline to the basin centroid	47	miles
BSLDEM10M	Mean basin slope computed from 10 m DEM	6.21	percent
LC06WATER	Percent of open water, class 11, from NLCD 2006	0.42	percent
ELEVMAX	Maximum basin elevation	747.5	feet
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	10.8	percent
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	2.88	percent
PRECIP	Mean Annual Precipitation	47.6	inches

Bankfull Statistics Parameters [Central and Coastal Bankfull 2004 5042]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	2.92	298

Bankfull Statistics Flow Report [Central and Coastal Bankfull 2004 5042]

Statistic	Value	Unit
Bankfull Streamflow	99.8	ft^3/s
Bankfull Width	33.2	ft
Bankfull Depth	1.55	ft
Bankfull Area	51.2	ft^2

Bankfull Statistics Citations

Dudley, R.W.,2004, Hydraulic-Geometry Relations for Rivers in Coastal and Central Maine: U.S. Geological Survey Scientific Investigations Report 2004-5042, 30 p (http://pubs.usgs.gov/sir/2004/5042/pdf/sir2004-5042.pdf)

Peak-Flow Statistics Parameters [Statewide Peak Flow Full GT 12sqmi WRI 99 4008]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	0.93	1653
STORNWI	Percentage of Storage from NWI	7.05	percent	0.7	26.7

Peak-Flow Statistics Flow Report [Statewide Peak Flow Full GT 12sqmi WRI 99 4008]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp	Equiv. Yrs.
2 Year Peak Flood	601	ft^3/s	335	1080	35.1	35.1	1.8
5 Year Peak Flood	948	ft^3/s	523	1720	36.1	36.1	2.5
10 Year Peak Flood	1210	ft^3/s	656	2230	36.8	36.8	3.2
25 Year Peak Flood	1560	ft^3/s	826	2950	38.6	38.6	4.1
50 Year Peak Flood	1840	ft^3/s	952	3550	39.9	39.9	4.8
100 Year Peak Flood	2140	ft^3/s	1080	4220	41.2	41.2	5.4
500 Year Peak Flood	2880	ft^3/s	1380	6030	44.9	44.9	6.4

Peak-Flow Statistics Citations

Hodgkins, G. A.,1999, Estimating the Magnitude of Peak Flows for Streams in Maine for Selected Recurrence Intervals: U.S. Geological Survey Water-Resources Investigations Report 99-4008, 45 p. (http://me.water.usgs.gov/99-4008.pdf)

Low-Flow Statistics Parameters [Statewide LowFlow SIR 2004 5026]

Parameter Code	Parameter Name		Value	e Units		Min Limit	Max Limit
DRNAREA	Drainage Area		16.7	square	miles	9.79	1418
SANDGRAVAF	Fraction of Sand an Aquifers	d Gravel	0.026	dimens	ionless	0	0.455
Low-Flow Statistics Flow Report [Statewide LowFlow SIR 2004 5026]							
PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other see report)							
Statistic		Value	Unit	SE	SEp	Equiv.	Yrs.

6/13/2018		StreamStats				
	Statistic	Value	Unit	SE	SEp	Equiv. Yrs.
	7 Day 10 Year Low Flow	0.728	ft^3/s	44.3	44.3	2.9

Low-Flow Statistics Citations

Dudley, R.W.,2004, Estimating Monthly, Annual, and Low 7-Day, 10-Year Streamflows for Ungaged Rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2004-5026, 22 p. (http://water.usgs.gov/pubs/sir/2004/5026/pdf/sir2004-5026.pdf)

Flow-Duration Statistics Parameters [Statewide Annual SIR 2015 5151]

Parameter Code	Parameter Name	Value Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7 square mile	s 14.9	1419
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0.026 dimensionle	ess O	0.212
ELEV	Mean Basin Elevation	267.8 feet	239	2120

Flow-Duration Statistics Flow Report [Statewide Annual SIR 2015 5151]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
1 Percent Duration	0.124	ft^3/s	144
5 Percent Duration	0.549	ft^3/s	62
10 Percent Duration	1.27	ft^3/s	41
25 Percent Duration	4.98	ft^3/s	22
50 Percent Duration	15.4	ft^3/s	20
75 Percent Duration	38.9	ft^3/s	17
90 Percent Duration	85	ft^3/s	17
95 Percent Duration	131	ft^3/s	18
99 Percent Duration	296	ft^3/s	29

Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015-5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

Annual Flow Statistics Parameters [Statewide Annual SIR 2015 5151]

Parameter Code	Parameter Name	Value Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7 square mile	es 14.9	1419
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0.026 dimensionl	ess O	0.212
ELEV	Mean Basin Elevation	267.8 feet	239	2120

Annual Flow Statistics Flow Report [Statewide Annual SIR 2015 5151]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
Mean Annual Flow	34.7	ft^3/s	16

Annual Flow Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015-5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

January Flow-Duration Statistics Parameters [Statewide January SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
STATSGOA	STATSGO Percent Hydrologic Soil Type A	0.87	percent	0	31.5

January Flow-Duration Statistics Flow Report [Statewide January SIR 2015 5151]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
January 1 Percent Duration	4.23	ft^3/s	49
January 5 Percent Duration	6.23	ft^3/s	37
January 10 Percent Duration	7.74	ft^3/s	35

Statistic	Value	Unit	SEp
January 25 Percent Duration	11	ft^3/s	28
January 50 Percent Duration	15.4	ft^3/s	35
January 75 Percent Duration	25.7	ft^3/s	39
January 90 Percent Duration	49	ft^3/s	40
January 95 Percent Duration	94.6	ft^3/s	45
January 99 Percent Duration	263	ft^3/s	79

January Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015–5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

Monthly Flow Statistics Parameters [Statewide January SIR 2015 5151]							
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit		
DRNAREA	Drainage Area	16.7	square miles	14.9	1419		
STATSGOA	STATSGO Percent Hydrologic Soil Type A	0.87	percent	0	31.5		
Monthly Flow Statistics Parameters [Statewide February SIR 2015 5151]							
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit		
DRNAREA	Drainage Area	16.7	square miles	14.9	1419		
COASTDIST	Distance From Coast To Basin Centroid	47	miles	46.6	193		
BSLDEM10M	Mean Basin Slope from 10m DEM	6.21	percent	1.5	26.6		
Monthly Flow Statistics Parameters [Statewide March SIR 2015 5151]							
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit		
DRNAREA	Drainage Area	16.7	square miles	14.9	1419		

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
COASTDIST	Distance From Coast To Basin Centroid	47	miles	46.6	193
LC06WATER	Percent_Water_from_NLCD2006	0.42	percent	0	6.2

Monthly Flow Statistics Parameters [Statewide April SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
COASTDIST	Distance From Coast To Basin Centroid	47	miles	46.6	193
LC06WATER	Percent_Water_from_NLCD2006	0.42	percent	0	6.2

Monthly Flow Statistics Parameters [Statewide May SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
BSLDEM10M	Mean Basin Slope from 10m DEM	6.21	percent	1.5	26.6
LC06WATER	Percent_Water_from_NLCD2006	0.42	percent	0	6.2

Monthly Flow Statistics Parameters [Statewide June SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
BSLDEM10M	Mean Basin Slope from 10m DEM	6.21	percent	1.5	26.6
LC06WATER	Percent_Water_from_NLCD2006	0.42	percent	0	6.2

Monthly Flow Statistics Parameters [Statewide July SIR 2015 5151]

Parameter			Min	Мах
Code	Parameter Name	Value Units	Limit	Limit

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0.026	dimensionless	0	0.212
ELEV	Mean Basin Elevation	267.8	feet	239	2120

Monthly Flow Statistics Parameters [Statewide August SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0.026	dimensionless	0	0.212
ELEV	Mean Basin Elevation	267.8	feet	239	2120

Monthly Flow Statistics Parameters [Statewide September SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0.026	dimensionless	0	0.212
ELEV	Mean Basin Elevation	267.8	feet	239	2120

Monthly Flow Statistics Parameters [Statewide October SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0.026	dimensionless	0	0.212
ELEV	Mean Basin Elevation	267.8	feet	239	2120

Monthly Flow Statistics Parameters [Statewide November SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
ELEVMAX	Maximum Basin Elevation	747.5	feet	633	6290

Monthly Flow Statistics Parameters [Statewide December SIR 2015 5151]

Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
STATSGOA	STATSGO Percent Hyd Type A	trologic Soil 0.87	percent	0	31.5
Monthly Flow S	tatistics Flow Report [Statewide Jan	uary SIR 2015 5151]			
	nterval-Lower, Plu: Predictio (other see report)	n Interval-Upper, SEp: Sta	ndard Error of	F Prediction	, SE:
Statistic		Value	Unit		SEp
January Mea	n Flow	29	ft^3/s		32
Monthly Flow S	tatistics Flow Report [Statewide Feb	ruary SIR 2015 5151]			
	nterval-Lower, Plu: Predictio (other see report)	n Interval-Upper, SEp: Sta	ndard Error of	f Prediction	, SE:
Statistic		Value	Unit		SEp
February Me Monthly Flow S	an Flow tatistics Flow Report [Statewide Ma	29.3 ch SIR 2015 5151]	ft^3/s		17
Monthly Flow S PII: Prediction I Standard Error		ch SIR 2015 5151] n Interval-Upper, SEp: Stai	ndard Error of		, SE:
Monthly Flow S PII: Prediction I Standard Error Statistic	tatistics Flow Report [Statewide Ma nterval-Lower, Plu: Predictio (other see report)	ch SIR 2015 5151] n Interval-Upper, SEp: Star Value	ndard Error of Unit		, SE: SEp
Monthly Flow S PII: Prediction I Standard Error Statistic March Mean	tatistics Flow Report _{[Statewide Ma} nterval-Lower, Plu: Predictio (other see report) Flow	ch SIR 2015 5151] n Interval-Upper, SEp: Stat Value 92.3	ndard Error of		, SE:
Monthly Flow S PII: Prediction I Standard Error Statistic March Mean Monthly Flow S PII: Prediction I	tatistics Flow Report [Statewide Ma nterval-Lower, Plu: Predictio (other see report)	rch SIR 2015 5151] n Interval-Upper, SEp: Stat Value 92.3	ndard Error of Unit ft^3/s		, SE: SEp 21
Monthly Flow S PII: Prediction I Standard Error Statistic March Mean Monthly Flow S PII: Prediction I	tatistics Flow Report [Statewide Ma nterval-Lower, Plu: Predictio (other see report) Flow tatistics Flow Report [Statewide Apr nterval-Lower, Plu: Predictio	rch SIR 2015 5151] n Interval-Upper, SEp: Stat Value 92.3	ndard Error of Unit ft^3/s	Prediction	, SE: SEp 21
Monthly Flow S PII: Prediction I Standard Error Statistic March Mean Monthly Flow S PII: Prediction I Standard Error	tatistics Flow Report [Statewide Ma nterval-Lower, Plu: Predictio (other see report) Flow tatistics Flow Report [Statewide Apr nterval-Lower, Plu: Predictio (other see report)	rch SIR 2015 5151] n Interval-Upper, SEp: Stat Value 92.3 II SIR 2015 5151] n Interval-Upper, SEp: Stat	ndard Error of Unit ft^3/s ndard Error of	Prediction	, SE: SEp 21 , SE:
Monthly Flow S PII: Prediction I Standard Error Statistic March Mean Monthly Flow S PII: Prediction I Standard Error Statistic April Mean F	tatistics Flow Report [Statewide Ma nterval-Lower, Plu: Predictio (other see report) Flow tatistics Flow Report [Statewide Apr nterval-Lower, Plu: Predictio (other see report)	rch SIR 2015 5151] n Interval-Upper, SEp: Star Value 92.3 ISIR 2015 5151] n Interval-Upper, SEp: Star Value 103	ndard Error of Unit ft^3/s ndard Error of Unit	Prediction	, SE: SEp 21 , SE: SEp
Monthly Flow S PII: Prediction I Standard Error Statistic March Mean Monthly Flow S PII: Prediction I Standard Error Statistic April Mean F Monthly Flow S PII: Prediction I	tatistics Flow Report [Statewide Ma nterval-Lower, Plu: Predictio (other see report) Flow tatistics Flow Report [Statewide Apr nterval-Lower, Plu: Predictio (other see report) low	ch SIR 2015 5151] n Interval-Upper, SEp: Stat Value 92.3 iI SIR 2015 5151] n Interval-Upper, SEp: Stat Value 103	ndard Error of Unit ft^3/s ndard Error of Unit ft^3/s	f Prediction	n, SE: SEp 21 n, SE: SEp 18
Monthly Flow S PII: Prediction I Standard Error Statistic March Mean Monthly Flow S PII: Prediction I Standard Error Statistic April Mean F Monthly Flow S PII: Prediction I	tatistics Flow Report [Statewide Ma nterval-Lower, Plu: Predictio (other see report) Flow tatistics Flow Report [Statewide Apr nterval-Lower, Plu: Predictio (other see report) low tatistics Flow Report [Statewide Man nterval-Lower, Plu: Predictio	ch SIR 2015 5151] n Interval-Upper, SEp: Stat Value 92.3 iI SIR 2015 5151] n Interval-Upper, SEp: Stat Value 103	ndard Error of Unit ft^3/s ndard Error of Unit ft^3/s	Prediction S	n, SE: SEp 21 n, SE: SEp 18

Monthly Flow Statistics Flow Report [Statewide June SIR 2015 5151]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
June Mean Flow	27.3	ft^3/s	21

Monthly Flow Statistics Flow Report [Statewide July SIR 2015 5151]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
July Mean Flow	10	ft^3/s	22

Monthly Flow Statistics Flow Report [Statewide August SIR 2015 5151]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
August Mean Flow	5.77	ft^3/s	34

Monthly Flow Statistics Flow Report [Statewide September SIR 2015 5151]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
September Mean Flow	6.27	ft^3/s	33

Monthly Flow Statistics Flow Report [Statewide October SIR 2015 5151]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
October Mean Flow	26.3	ft^3/s	35

Monthly Flow Statistics Flow Report [Statewide November SIR 2015 5151]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
November Mean Flow	46.6	ft^3/s	23

Monthly Flow Statistics Flow Report [Statewide December SIR 2015 5151]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
December Mean Flow	42.5	ft^3/s	29

Monthly Flow Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015-5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

February Flow-Duration Statistics Parameters [Statewide February SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
COASTDIST	Distance From Coast To Basin Centroid	47	miles	46.6	193
BSLDEM10M	Mean Basin Slope from 10m DEM	6.21	percent	1.5	26.6

February Flow-Duration Statistics Flow Report [Statewide February SIR 2015 5151]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
February 1 Percent Duration	4.85	ft^3/s	50
February 5 Percent Duration	5.91	ft^3/s	37
February 10 Percent Duration	7.66	ft^3/s	33
February 25 Percent Duration	10.8	ft^3/s	27
February 50 Percent Duration	15.9	ft^3/s	23
February 75 Percent Duration	29.7	ft^3/s	16
February 90 Percent Duration	55.3	ft^3/s	22
February 95 Percent Duration	106	ft^3/s	31
February 99 Percent Duration	259	ft^3/s	46

February Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015–5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

March Flow-Duration Statistics Parameters [Statewide March SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
COASTDIST	Distance From Coast To Basin Centroid	47	miles	46.6	193
LC06WATER	Percent_Water_from_NLCD2006	0.42	percent	0	6.2

March Flow-Duration Statistics Flow Report [Statewide March SIR 2015 5151]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
March 1 Percent Duration	7.6	ft^3/s	48
March 5 Percent Duration	10.3	ft^3/s	41
March 10 Percent Duration	13.8	ft^3/s	31
March 25 Percent Duration	23.9	ft^3/s	23
March 50 Percent Duration	53.2	ft^3/s	20
March 75 Percent Duration	109	ft^3/s	25
March 90 Percent Duration	212	ft^3/s	29
March 95 Percent Duration	296	ft^3/s	37
March 99 Percent Duration	606	ft^3/s	33

March Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015-5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

April Flow-Duration Statistics Parameters [Statewide April SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
COASTDIST	Distance From Coast To Basin Centroid	47	miles	46.6	193
LC06WATER	Percent_Water_from_NLCD2006	0.42	percent	0	6.2

April Flow-Duration Statistics Flow Report [Statewide April SIR 2015 5151]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
April 1 Percent Duration	16.6	ft^3/s	38
April 5 Percent Duration	23.5	ft^3/s	37
April 10 Percent Duration	29.5	ft^3/s	28
April 25 Percent Duration	42.7	ft^3/s	24
April 50 Percent Duration	61.3	ft^3/s	22
April 75 Percent Duration	114	ft^3/s	22
April 90 Percent Duration	215	ft^3/s	20
April 95 Percent Duration	321	ft^3/s	19
April 99 Percent Duration	731	ft^3/s	32

April Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015-5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

May Flow-Duration Statistics Parameters [Statewide May SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
BSLDEM10M	Mean Basin Slope from 10m DEM	6.21	percent	1.5	26.6

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
LC06WATER	Percent_Water_from_NLCD2006	0.42	percent	0	6.2

May Flow-Duration Statistics Flow Report [Statewide May SIR 2015 5151]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
May 1 Percent Duration	3.87	ft^3/s	43
May 5 Percent Duration	6.12	ft^3/s	34
May 10 Percent Duration	7.87	ft^3/s	31
May 25 Percent Duration	12.3	ft^3/s	26
May 50 Percent Duration	20.3	ft^3/s	22
May 75 Percent Duration	34.4	ft^3/s	24
May 90 Percent Duration	61.1	ft^3/s	30
May 95 Percent Duration	92.8	ft^3/s	31
May 99 Percent Duration	202	ft^3/s	27

May Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015-5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

June Flow-Duration Statistics Parameters [Statewide June SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
BSLDEM10M	Mean Basin Slope from 10m DEM	6.21	percent	1.5	26.6
LC06WATER	Percent_Water_from_NLCD2006	0.42	percent	0	6.2

June Flow-Duration Statistics Flow Report [Statewide June SIR 2015 5151]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
June 1 Percent Duration	2.32	ft^3/s	69
June 5 Percent Duration	3.06	ft^3/s	52
June 10 Percent Duration	3.71	ft^3/s	46
June 25 Percent Duration	6.02	ft^3/s	34
June 50 Percent Duration	10.8	ft^3/s	27
June 75 Percent Duration	24.8	ft^3/s	28
June 90 Percent Duration	61.9	ft^3/s	34
June 95 Percent Duration	121	ft^3/s	34
June 99 Percent Duration	388	ft^3/s	47

June Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015–5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

July Flow-Duration Statistics Parameters [Statewide July SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0.026	dimensionless	0	0.212
ELEV	Mean Basin Elevation	267.8	feet	239	2120

July Flow-Duration Statistics Flow Report [Statewide July SIR 2015 5151]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
July 1 Percent Duration	0.421	ft^3/s	96
July 5 Percent Duration	0.796	ft^3/s	78
July 10 Percent Duration	1.05	ft^3/s	64
July 25 Percent Duration	1.69	ft^3/s	49
July 50 Percent Duration	3.6	ft^3/s	37

Statistic	Value	Unit	SEp
July 75 Percent Duration	9.08	ft^3/s	31
July 90 Percent Duration	22.6	ft^3/s	28
July 95 Percent Duration	39.4	ft^3/s	33
July 99 Percent Duration	96.5	ft^3/s	60

July Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015-5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

August Flow-Duration Statistics Parameters [Statewide August SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0.026	dimensionless	0	0.212
ELEV	Mean Basin Elevation	267.8	feet	239	2120

August Flow-Duration Statistics Flow Report [Statewide August SIR 2015 5151]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
August 1 Percent Duration	0.0402	ft^3/s	319
August 5 Percent Duration	0.121	ft^3/s	155
August 10 Percent Duration	0.183	ft^3/s	130
August 25 Percent Duration	0.699	ft^3/s	60
August 50 Percent Duration	1.58	ft^3/s	40
August 75 Percent Duration	5.04	ft^3/s	35
August 90 Percent Duration	13.4	ft^3/s	36
August 95 Percent Duration	22.8	ft^3/s	34
August 99 Percent Duration	71.2	ft^3/s	59

August Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015–5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

September Flow-Duration Statistics Parameters [Statewide September SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0.026	dimensionless	0	0.212
ELEV	Mean Basin Elevation	267.8	feet	239	2120

September Flow-Duration Statistics Flow Report [Statewide September SIR 2015 5151]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
September 1 Percent Duration	0.0341	ft^3/s	304
September 5 Percent Duration	0.0521	ft^3/s	315
September 10 Percent Duration	0.215	ft^3/s	106
September 25 Percent Duration	0.552	ft^3/s	65
September 50 Percent Duration	1.56	ft^3/s	36
September 75 Percent Duration	5.17	ft^3/s	26
September 90 Percent Duration	12.5	ft^3/s	38
September 95 Percent Duration	24.7	ft^3/s	44
September 99 Percent Duration	94.1	ft^3/s	67

September Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015-5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

October Flow-Duration Statistics Parameters [Statewide October SIR 2015 5151]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
SANDGRAVAF	Fraction of Sand and Gravel Aquifers	0.026	dimensionless	0	0.212
ELEV	Mean Basin Elevation	267.8	feet	239	2120

October Flow-Duration Statistics Flow Report [Statewide October SIR 2015 5151]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
October 1 Percent Duration	0.229	ft^3/s	129
October 5 Percent Duration	0.359	ft^3/s	110
October 10 Percent Duration	0.748	ft^3/s	64
October 25 Percent Duration	2.39	ft^3/s	28
October 50 Percent Duration	7.57	ft^3/s	33
October 75 Percent Duration	24.2	ft^3/s	39
October 90 Percent Duration	61.8	ft^3/s	47
October 95 Percent Duration	110	ft^3/s	45
October 99 Percent Duration	308	ft^3/s	61

October Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015–5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

November Flow-Duration Statistics Parameters [Statewide November SIR 2015 5151]						
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	16.7	square miles	14.9	1419	
ELEVMAX	Maximum Basin Elevation	747.5	feet	633	6290	

November Flow-Duration Statistics Flow Report [Statewide November SIR 2015 5151]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
November 1 Percent Duration	1.51	ft^3/s	141
November 5 Percent Duration	2.65	ft^3/s	91
November 10 Percent Duration	5.83	ft^3/s	45
November 25 Percent Duration	14.8	ft^3/s	32
November 50 Percent Duration	28.7	ft^3/s	24
November 75 Percent Duration	54.2	ft^3/s	21
November 90 Percent Duration	101	ft^3/s	26
November 95 Percent Duration	148	ft^3/s	37
November 99 Percent Duration	308	ft^3/s	58

November Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015-5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	16.7	square miles	14.9	1419
STATSGOA	STATSGO Percent Hydrologic Soil Type A	0.87	percent	0	31.5

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SEp
December 1 Percent Duration	1.95	ft^3/s	109
December 5 Percent Duration	5.14	ft^3/s	33
December 10 Percent Duration	9.29	ft^3/s	26
December 25 Percent Duration	15.7	ft^3/s	27
December 50 Percent Duration	26.9	ft^3/s	35

Statistic	Value	Unit	SEp
December 75 Percent Duration	42.9	ft^3/s	39
December 90 Percent Duration	78.3	ft^3/s	39
December 95 Percent Duration	133	ft^3/s	38
December 99 Percent Duration	310	ft^3/s	61

December Flow-Duration Statistics Citations

Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015-5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.2.1

APPENDIX B

Resistivity Survey Report

Hydrogeologic Investigation Report Proposed Commercial Land-Based Aquaculture Facility Belfast Water District, Cassida Back Lot, and Mathews Brothers West Field Properties 285 Northport Avenue Belfast, Maine

ELECTRICAL RESISTIVITY SURVEY AT THE BELFAST WATER DISTRICT SITE, BELFAST, MAINE

For:

RANSOM CONSULTING, INC.

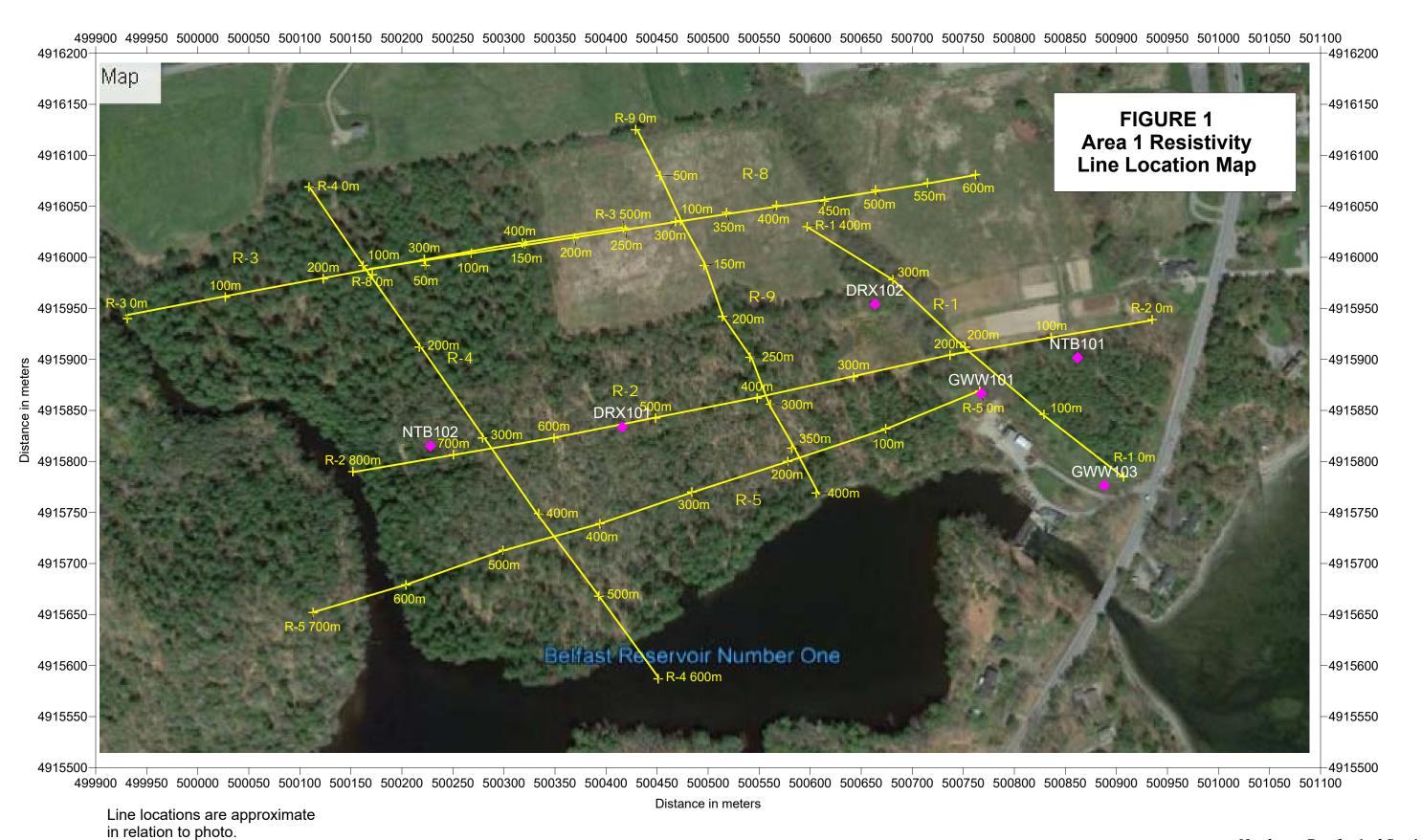
Northeast Geophysical Services 4 Union Street, Suite 3 Bangor, Maine 04401 October, 2018

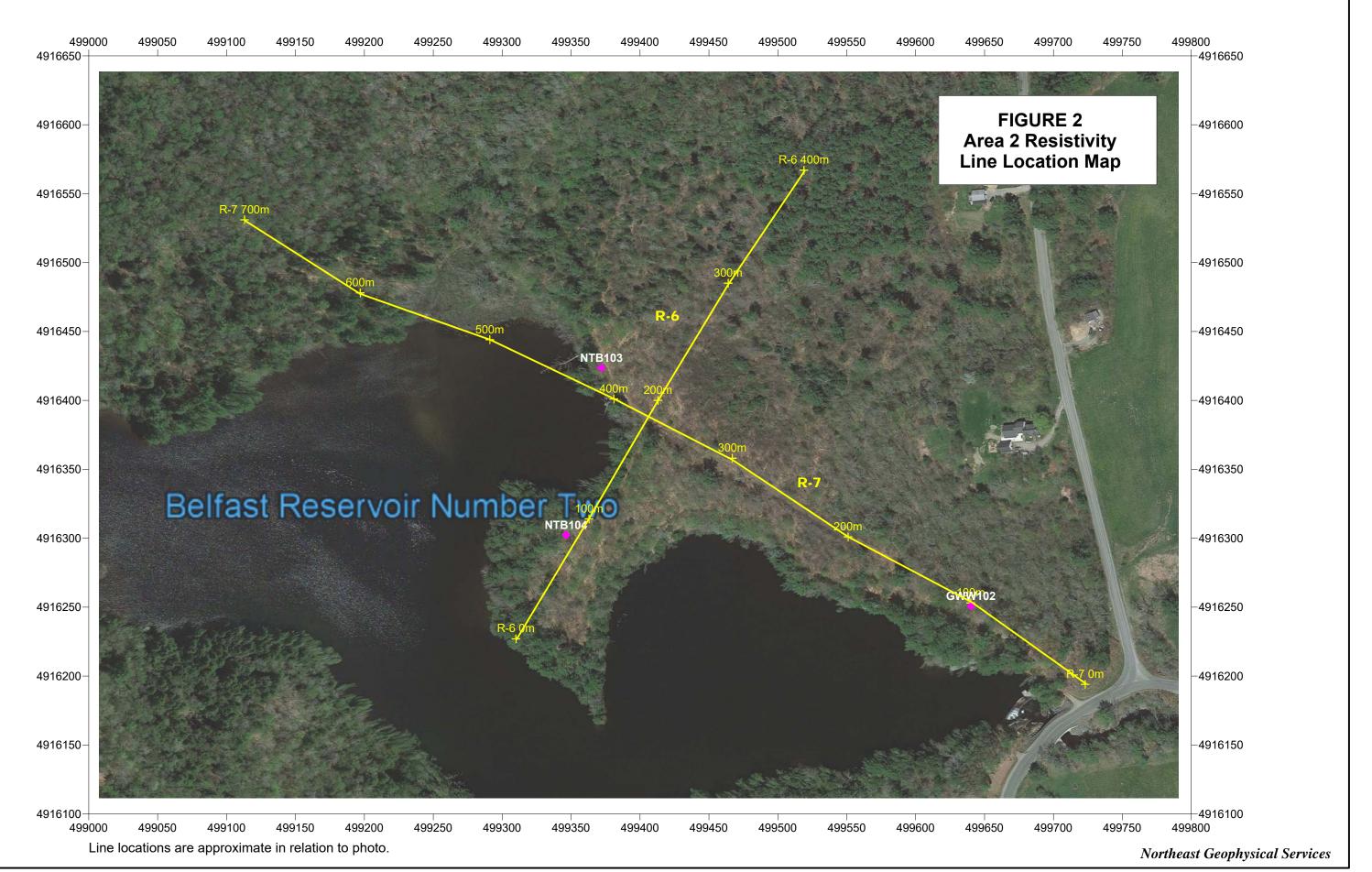
ELECTRICAL RESISTIVITY SURVEY AT THE BELFAST WATER DISTRICT SITE, BELFAST, MAINE

INTRODUCTION

At the request of Ransom Consulting, Inc. an electrical resistivity survey was completed by Northeast Geophysical Services (NGS) at the Belfast Water District property in Belfast, Maine. Nine survey lines totaling 16,800 feet were surveyed. Fieldwork for Lines 1-7 was done on February 6-15, 2018 by Mike Scully, Rudy, Jack and Richard Rawcliffe of NGS. Fieldwork for Lines 8 and 9 was done on September 27 and October 1, 2018 by Mike Scully, Rudy Rawcliffe and Wayne Campbell of NGS. The results of the survey will be used to assist in the selection of well drilling locations. This report describes the equipment and methods used and the results of the survey. Vertical profiles that show the modeled 2-D resistivity for each survey line are included with the report.

SITE LOCATION


Two areas, named Area 1 and Area 2, were explored. Area 1 contains resistivity Lines 1 through 5 and also Line 8 and 9 and is located in the area north of Belfast Reservoir Number One. Area 2 contains resistivity Lines 6 and 7 and is located in the area north of Belfast Reservoir Number Two of the Belfast Water District. The line locations were surveyed using a hand-held GPS instrument. Figure 1, on the following page, shows the location and orientation of the seven lines (Lines 1-5, 8 and 9) in Area 1. Figure 2 (page 3) shows the location and orientation of the two lines (Lines 6 and 7) in Area 2.


RESISTIVITY METHOD AND INSTRUMENTATION

Electrical resistivity is the resistance (in ohms) to the flow of electricity across a volume of material. Resistivity values are commonly expressed in ohmmeters. The resistivity of earth material is determined by measuring the voltage drop between two electrodes when current is applied into the earth through two other electrodes located a set distance away. Resistivity is calculated by dividing the voltage by the current multiplied by a constant. This constant is determined by the electrode spacing and configuration.

At the Belfast Water District site resistivity data were collected using an ABEM Terrameter SAS 4000 resistivity meter with an ABEM LUND 10-64e electrode selector. This is an automated multi-electrode resistivity system. The survey was conducted using the gradient array. The gradient configuration consists of pairs of potential electrodes that are inside a pair of current electrodes. Depth of investigation is determined by the spacing between the current electrodes with the wider spacing penetrating more deeply into the earth.

gradient configuration

The resistivity of earth material is primarily determined by its water content and the water salinity. Lower resistivities can be caused by increasing the water content or by increasing the water salinity or both. Thus, dry soil or rock typically has a higher resistivity than if it is saturated. And generally, the more porous or highly fractured that saturated material is, the lower its resistivity will be. The following table shows some general ranges in resistivity of some common earth materials.

Material	Resistivity (ohmmeters)
Wet to moist clayey soil and wet clay	1s to 10s
Wet to moist silty soil and silty clay	Low 10s
Wet to moist silty and sandy soils	10s to 100s
Sand and gravel with layers of silt	Low 1000s
Course dry sand and gravel deposits	High 1000s
Well-fractured to slightly fractured saturated rock	100s
Slightly fractured rock with dry, soil filled cracks	Low 1000s
Massively bedded rock	High 1000s

(from Burger, H. R., 1992, <u>Exploration Geophysics of the Shallow Subsurface pp. 295</u> Prentice Hall, Inc., Englewood Cliffs, New Jersey 07632)

SURVEY RESULTS

The data were interpreted using the RES2DINV interpretation software written by M.H. Loke. This program creates a 2-dimensional model of the subsurface resistivity based on the apparent resistivities measured at the surface. The effectiveness of the model to match the surface measurements is calculated as a percentage of the root-mean-square (% RMS) difference between the modeled and actual measurements. In general, a RMS value of 10% or less is considered a close match between the model and field measurements. At the Belfast Water District site, the RMS values for the models was generally good, averaging less than 10%.

The interpreted data was then contoured using the Surfer contouring program by Golden Software and presented as colorized vertical sections of apparent resistivity for each line. The colors in these sections depict the modeled resistivity with light orange-red to dark red-brown representing areas of high resistivity (700 to >10,000 ohmmeters) and low resistivities (below 200 ohmmeters) shown in blue shades. Resistivities from 200 to 600 ohmmeters are represented by white to yellow tones.

The interpreted data are presented in the appendix as colorized vertical profiles of the modeled resistivity for each of the seven survey lines. The lowest resistivities, which are shown in blue, are interpreted to represent saturated soils or highly fractured saturated bedrock. The highest resistivities, shown in dark red-brown, are interpreted to represent dry sand and gravel soil or massive (unfractured) bedrock. Intermediate colors (yellows to light orange) are interpreted to represent or saturated bedrock.

Also shown on the profiles are the approximate locations of the test wells that were drilled after the resistivity survey.

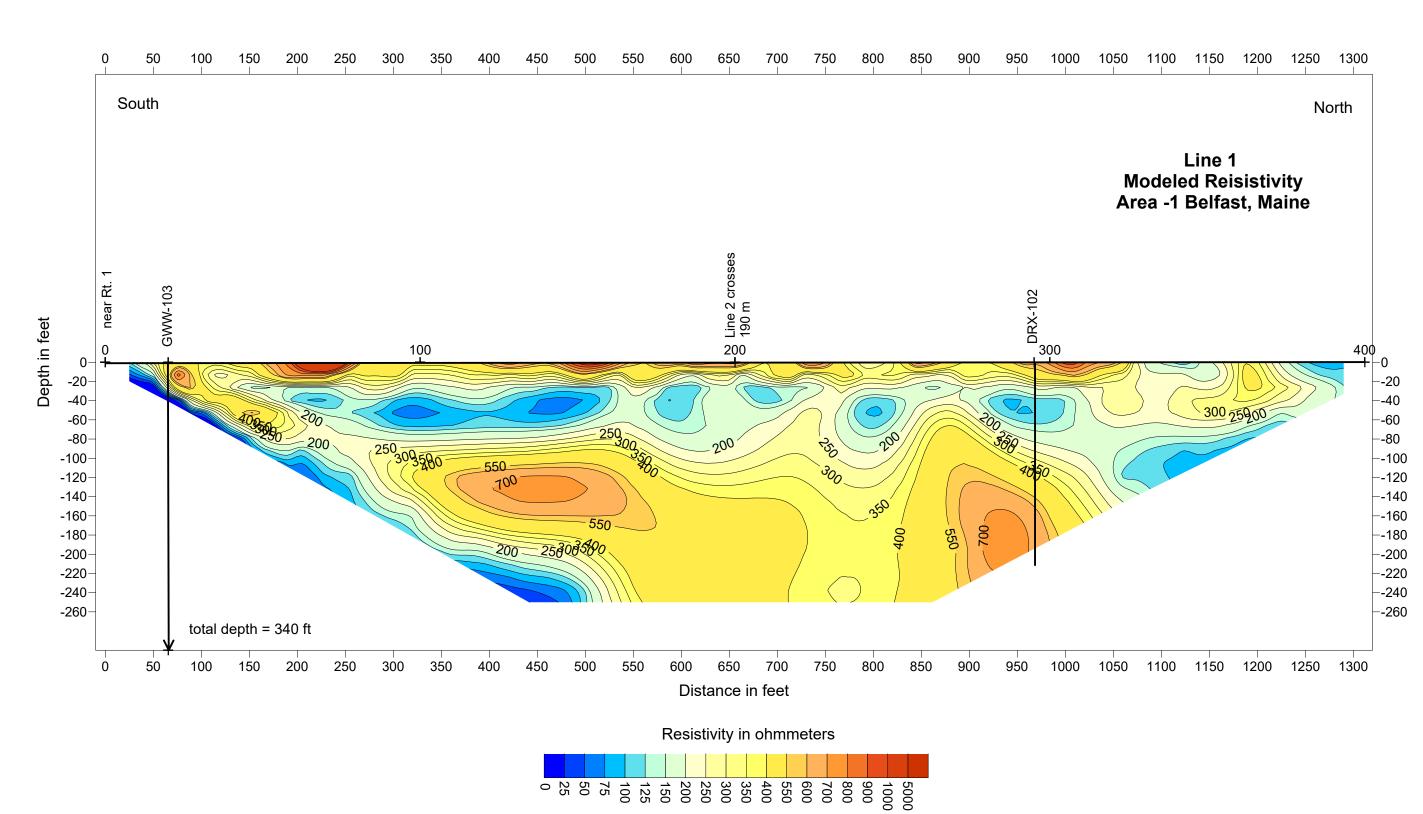
Possible fracture zones may appear on the profiles as areas of relatively low resistivity that cut across areas of high resistivity. For example, on Line 2 there is an east dipping resistivity low area from about 1,800 to 1,400 feet along the line. Similarly, on Line 3 there is a near vertical

low resistivity zone from about 975 to 1075 feet along the line. These and other relatively low resistivity zones seen on the models may represent bedrock fracture zones.

LIMITATIONS

The interpreted resistivity sections in this report provide an indication of subsurface conditions at the sites surveyed. This information should be used along with other sources such as geologic mapping, photo-lineament mapping and other geophysical surveys in order to prioritize and optimize drill hole locations.

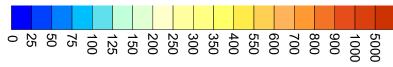
Electrical resistivity is an effective tool for mapping subsurface features such as saturated sediment or bedrock fracture zones. However, as with any indirect measurement, there are limitations to this method that should be kept in mind. First, it is possible that erroneous or bad data points may have been collected. Bad data would result in incorrect interpretations of the subsurface. A common difficulty in resistivity surveys is high contact resistance between the electrodes and the ground. Ideally, contact resistance should be about 1,000 ohms. The frozen soil along some of the survey lines was challenging and did cause high contact resistances in some areas but the data collected at the Belfast Water District site appeared to be generally good.

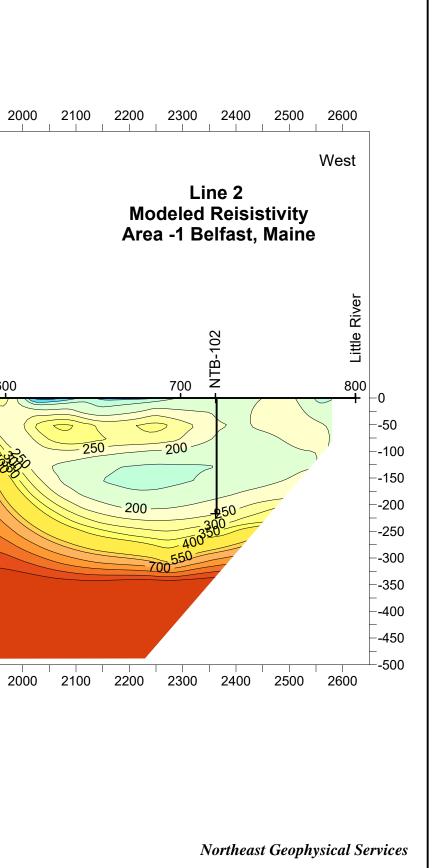

Data quality was assessed in two ways. During data acquisition the instrument makes resistivity readings at each point using forward and reversed polarities (pulsing from electrode A to electrode B and then pulsing from B to A). Unless the data is noisy, these readings should repeat to less than 1%. The difference between the forward and reversed polarity measurements in the resistivity readings at the Belfast Water District site was generally less than 1%.

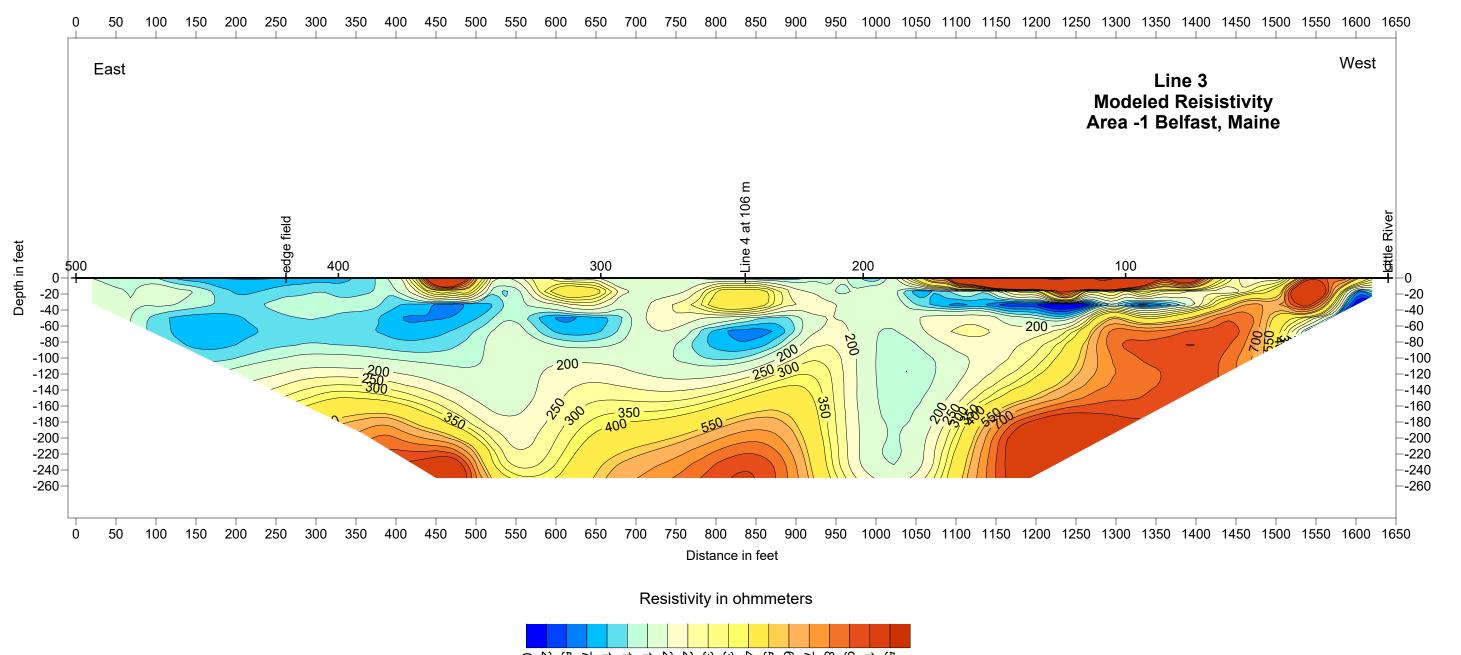
After the data had been collected, profiles of the apparent resistivity for each "n" level on each of the lines surveyed were examined. Normally, these resistivity profiles should be relatively flat or smoothly varying. Bad data points can be identified as data points that abruptly deflect either upwards or downwards from the profile. There were a few bad data points observed in each of lines of the Belfast Water District site data set. Obviously bad data points were removed before each profile was interpreted.

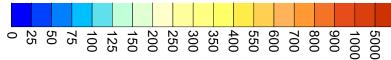
The modeled resistivity sections presented in this report created interpretations of the subsurface that closely agree mathematically with the field measurements. However, it is possible that other models of the subsurface exist that could also match the field measurements.

It should also be kept in mind that the modeled interpretations assume that changes in resistivity occur in two dimensions, either with depth or distance along the line. In reality the resistivity measurements also measure material to the left and right of the survey line. Thus, it is possible that the program might model a feature that is not actually directly below the electrodes. A worst-case scenario of this would be if a resistivity survey line were run parallel to a vertical conductor such as a metal pipeline or a vertical bedrock fracture. This feature might be detected and shown on the profile as a resistivity low zone even though it is not below the electrodes. Ideally, the resistivity lines should be oriented so as to cross any suspected features (such as bedrock fractures) at right angles to the strike of that feature.

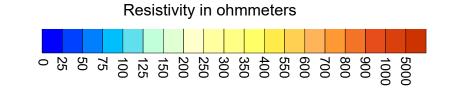

MODELED RESISTIVITY PROFILES

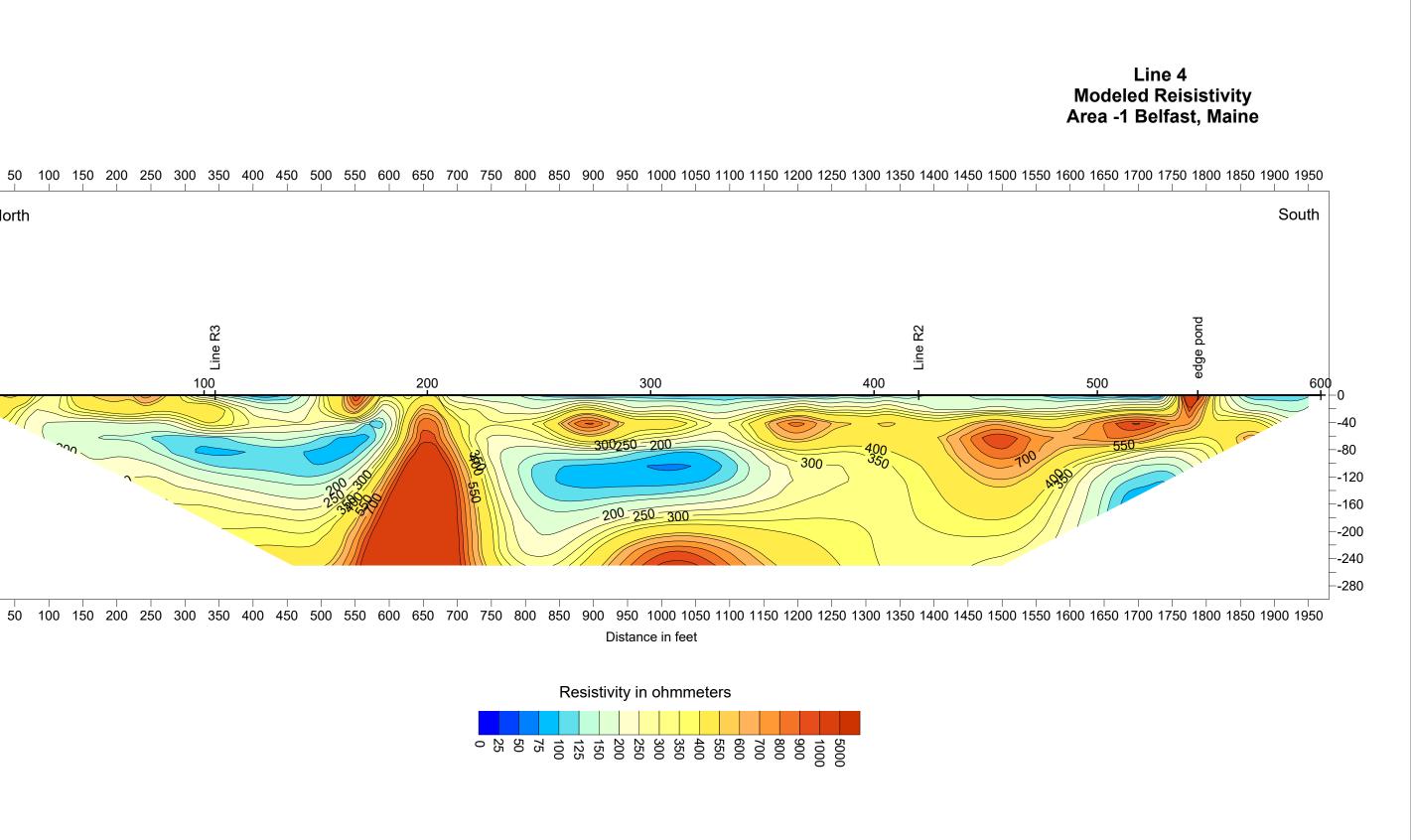


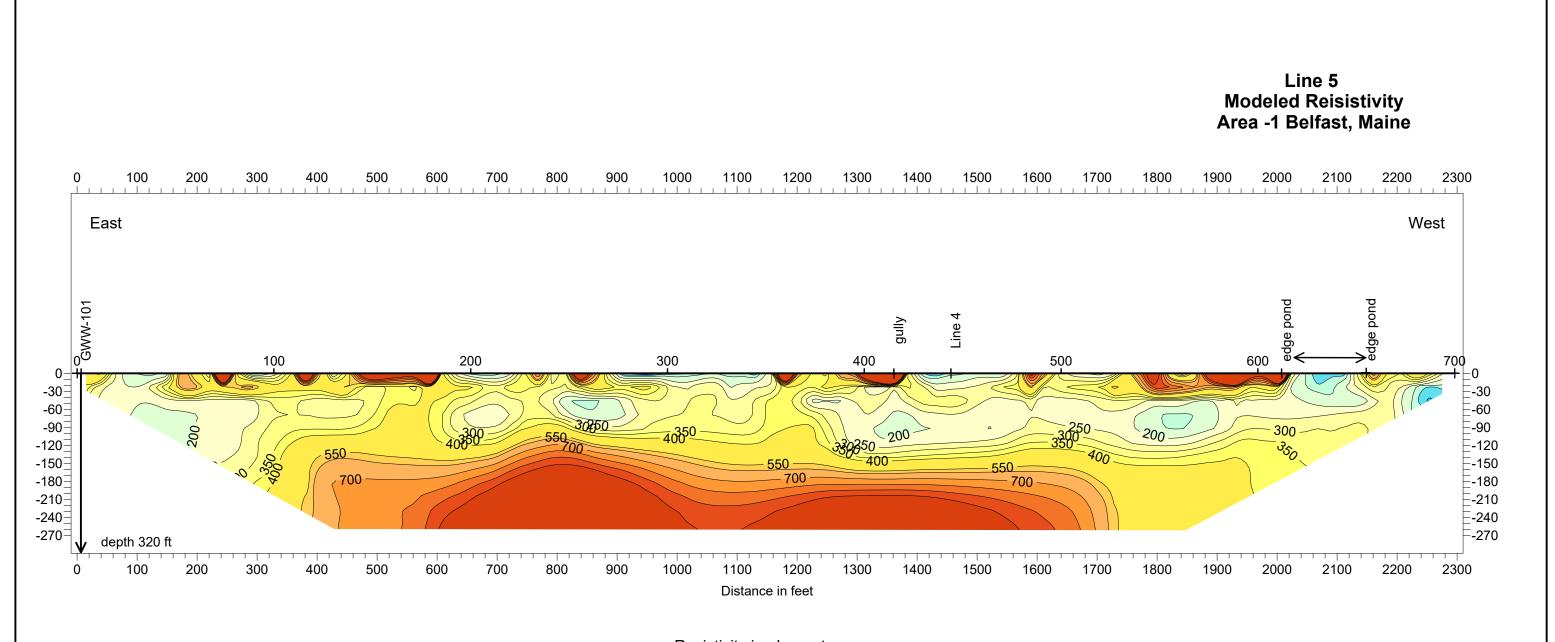

_ _ _

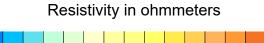

East Line 1 crosses at 200 m Rt. 1 to the east ·NTB-101 -DRX-101 \bigcirc -50-200--100-550 700 350 -3(400 --150-550 700 -200--250--300--350--400--450--500 Distance in feet Resistivity in ohmmeters

1100 1200 1300 1400 1500 1600 1700 1800 1900

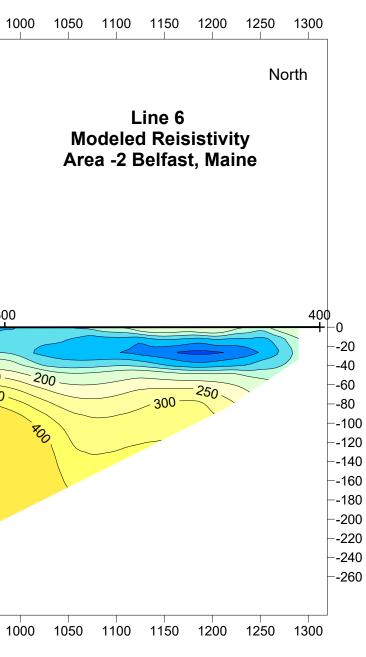


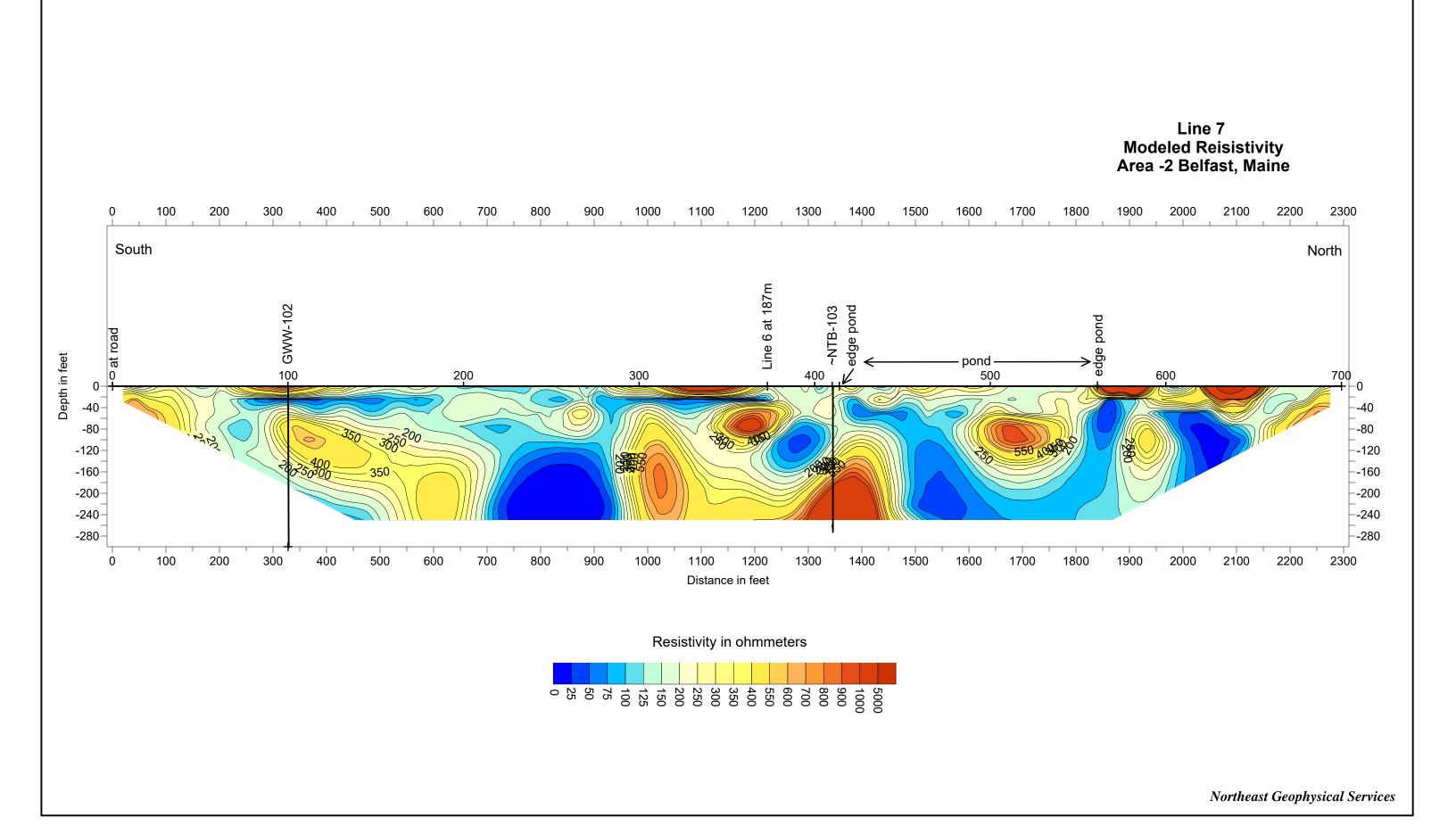


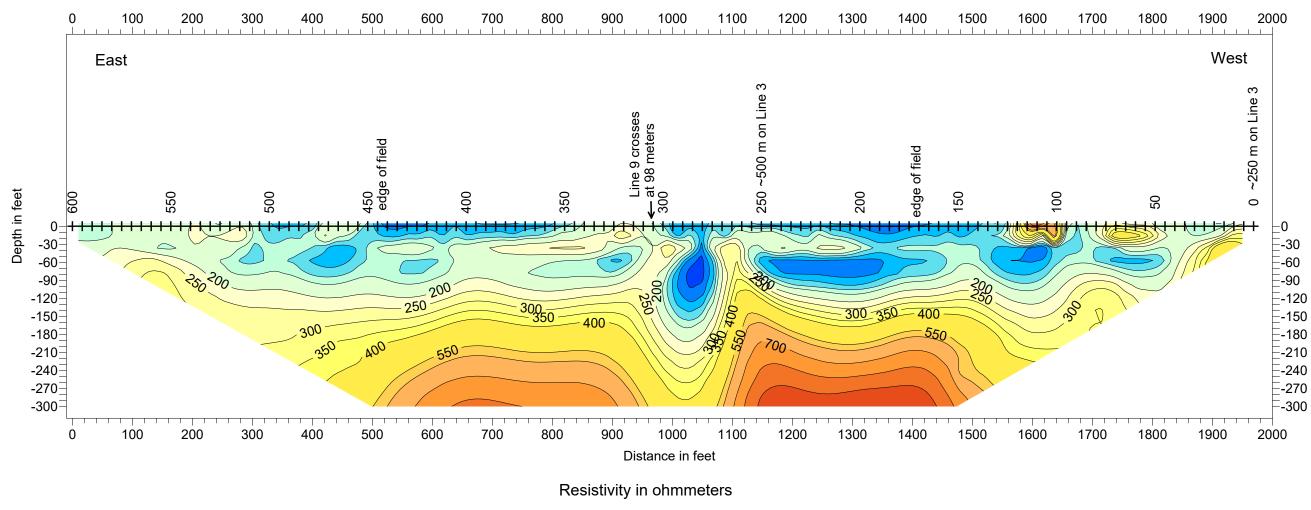


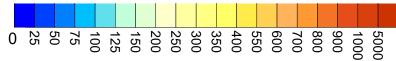

North oedge field Line R3 Line R2 Depth in feet 100 200 300 400 0 -40- \bigcirc 300250 200 400 -80-Ê 300 -120-550 -160-200 250 300--200--240--280-100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 0 50 Distance in feet

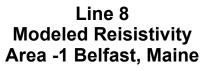
0

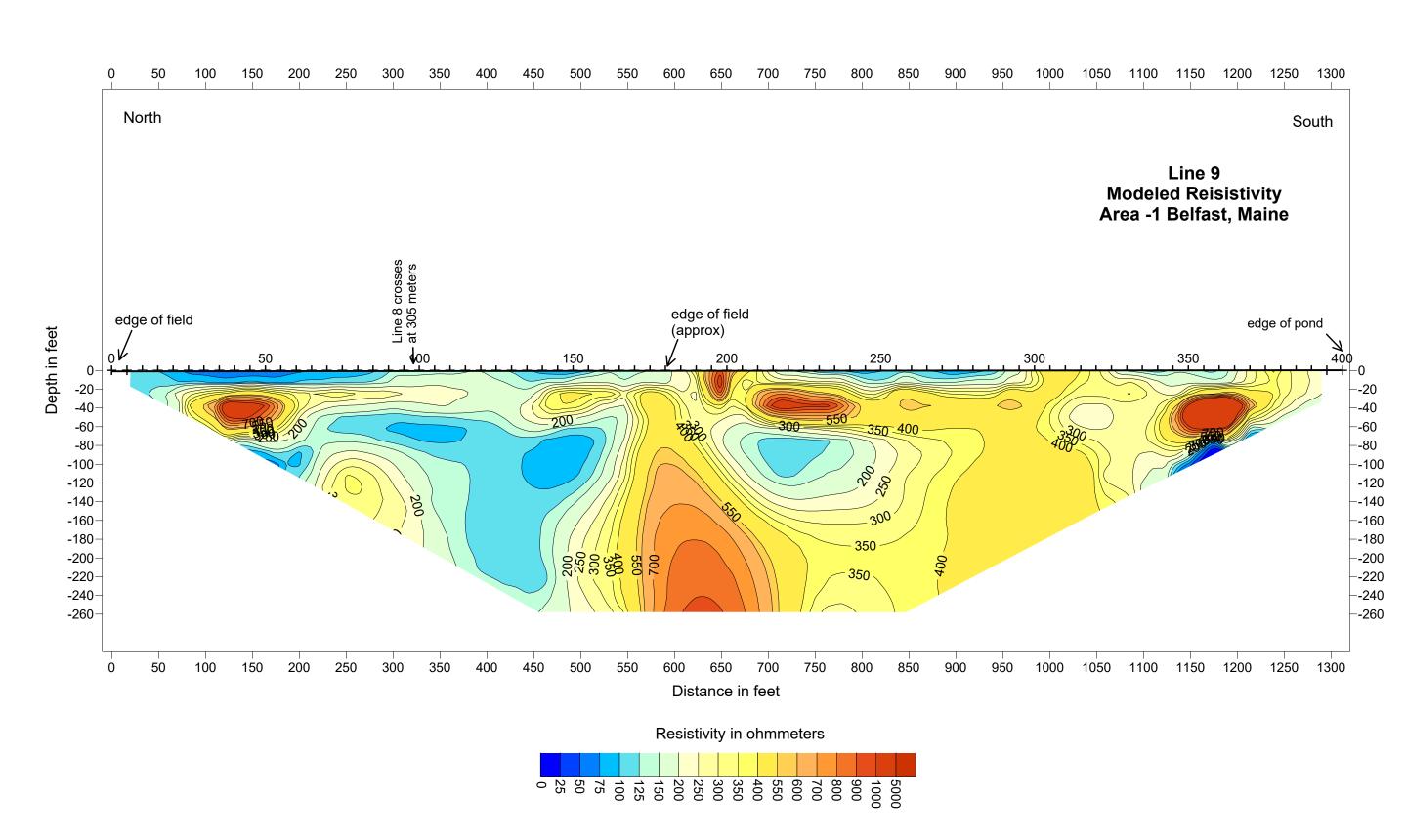









South Line 7 at 373m solge pond -NTB-104 Depth in feet -20 -40 -60 -80 -100-ROO -120 -140 -160-2~300 300--180 -200 -220--240 -260-Distance in feet Resistivity in ohmmeters 900 800 600 550 400 220 125 125 75 50 225



APPENDIX C

Boring Logs

Hydrogeologic Investigation Report Proposed Commercial Land-Based Aquaculture Facility Belfast Water District, Cassida Back Lot, and Mathews Brothers West Field Properties 285 Northport Avenue Belfast, Maine

Consulting Engineers	MONITOR	RING	WEL	LL LOG
and Scientists				
Project: Nordic Aquafarms	Drilling Co.: Drilex Environmental		•	/Well No.: DRX-101
Project No.: 171.05027.003	Driller: Jason			lo.: Standard Ransom Lock
Site Location: BWD- Lower Reservoir Property	Drilling Method: Air Rotary			Date: 3/27/18
Geologist: Thomas Neilson	Drilling Equip: CME-55 Track Mour	nt		Complete: 3/28/18
Ground Elev.: 55.9 feet (Approximate)	Static Water (b-toc):			Boring Depth: 210 feet
Top of Casing Elev.: 58.9 feet (Surveyed) Remarks: Casing advanced through overburden using air ro	Easting: 500416 m	rotan/	Northir	ng: 4915834 m (Zone 19 N)
seed to drill through bedrock until compressed air was unabl advance an additional 10°. Water source for rotary wash was	e to evacuate water from wellbore, rotary wash		۵	AS-BUILT WELL SCHEMATIC
GEOLOGIC LO	G	Depth (ft.) 2.0 - 3.0		
		2.0 - 3.0 Above Grade		7
Above Grade		1.0 - 2.0 About Grado		3' stick-up, finished with locking cap
		Above Grade 0.0 - 1.0		
		Above Grade	Ш	Grade
		5.0		Well Casing Material: Steel
0'-13': Unconsolidated overburden material (likely Presumps	scot Formation and Glacial Till).	10.0		Well Casing Diameter: 4 inches
		15.0		Well Casing Length: 35 feet
		20.0		
3'-32': Heavily weathered bedrock. Cuttings are biotite and	quartz rich schist. Casing set at 32.4' in less	25.0		Depth to Bedrock: 13 feet
veathered bedrock. Begin to see trace of water at 32'.				Depth of Casing: 32.4 feet
		30.0		
		35.0		
		40.0		
		45.0		Open Interval: 32.4 - 210 feet
		50.0	l	Open Hole Diameter: 4 inches
32'-76': Less heavily weathered bedrock, drilling progressing	smoothly. Lithology is same as above with	55.0	ļ	
periodic intervals of lighter colored harder metasandstone. V		60.0		
		65.0		
		70.0		
		75.0		
		80.0		
		85.0		
		90.0		
		95.0		
'6'-114': Same as above, well is producing ~5 gpm at 114'.		100.0		
		105.0		
			1	
		110.0		
141 4041 Come on above tis in second compressor to belo	lift uptor and outlings. Mall begins	115.0		
14'-121': Same as above, tie in second compressor to help producing ~10 gpm at 121'.	mit water and cullings. Well Degins	120.0		
		125.0		l
		130.0		
		135.0		
		140.0		
21'-160': Same as above, at 160' drilling is slightly harder a space (fracture). Producing ~12 gpm at 160'.	and cnoppy, bit appeared to drop through void	145.0		
		145.0		
		155.0		
		160.0		
60'-168': Same as above, fractured area at 168', now produ	ucing ~14 gpm.	165.0		
	_ 0.	170.0		
68'-178': Same as above, performed short air lift test at 17'		175.0		
Making ~20 gpm at 178'. Yield rating becomes challenging d		180.0		
178'-184': Same as above, harder and choppy drilling in frac gpm at 184'.	ctured area at 184'. Well is producing >25	185.0		
μmarıo+.				
184'-200': Same as above. Very large fracture at 200', air ha	ammer is flooded and no longer able to	190.0		
advance. Air lift yield appears to be 60 gpm or greater. Switc		195.0		
		200.0		
200'-210': Very soft drilling, unable to circulate water to remo	ove cuttings even at max pump speed.	205.0		
Lithology same as above. Hole appears unstable from 208'-		210.0		
10': End of exploration. Unable to continue drilling without I	arger rig due to high well vield		L	-1

Consulting	MONITO	RING	WE	LL LOG
Engineers and Scientists				
Project: Nordic Aquafarms	Drilling Co.: Drilex Environmental		Borin	g/Well No.: DRX-102
Project No.: 171.05027.003	Driller: Jason			No.: Standard Ransom Lock
Site Location: BWD- Lower Reservoir Property	Drilling Method: Air Rotary			Date: 3/28/18
Geologist: Thomas Neilson	Drilling Equip: CME-55 Track Mour	nt	Date	Complete: 3/29/18
Ground Elev.: 55 feet (Approximate)	Static Water (b-toc):		Total	Boring Depth: 211 feet
Top of Casing Elev.: 58.1 feet (Surveyed)	Easting: 500663 m		North	ing: 4915954 m (Zone 19 N)
Remarks: Casing advanced through overburden using air rota to drill through bedrock until compressed air was unable to eva advance an additional 10'. Water source for rotary wash was I	acuate water from wellbore, rotary wash used			AS-BUILT WELL SCHEMATIC
GEOLOGIC LOG		Depth (ft.)		
		2.0 - 3.0 Above Grade	Г	7
Above Grade		1.0 - 2.0 Above Grade		3' stick-up, finished with locking cap
		0.0 - 1.0		
		Above Grade		Grade
		5.0		Well Casing Material: Steel
0'-22': Unconsolidated overburden material (likely Presumpso	ot Formation and Glacial Till) to 19', bedrock	10.0		Well Casing Diameter: 4 inches
below 19'. Casing driven to 22'.		15.0		Well Casing Length: 30 feet
		20.0		Depth to Bedrock: 19 feet
22'-36': Bedrock, drilling progressing smoothly. Lithology is bio of lighter colored harder metasandstone. Small fracture at 26'. creating bubbles in surface water puddles.		25.0		Depth of Casing: 27 feet
26'-35': Same as above, fracture at 34'. Well is producing ~10	-15 gpm at 35'. Drive casing to 27' to seal	30.0		
off fracture with direct surface connection at 26'.	to get at 00. Drive dasing to 27 to sed	35.0		
		40.0		
		45.0		Open Interval: 27 - 211 feet
	- to a data with the Mitching and the to a set of the second set o	50.0		Open Hole Diameter: 4 inches
35'-65': Same as above. Significant fracture at 65' with iron stained (65'.	ained cuttings. Well is producing ~17 gpm at	55.0		Open Hole Diamater. 4 Inches
		60.0		
		65.0		
65'-73': Same as above. Significant fracture at 73'. Well is pro	ducing ~20 gpm at 73'.	70.0		
		75.0		
		80.0		
		85.0		
		90.0		
73'-116': Same as above. Significant fracture from 113'-116' v	vith iron stained cuttings. Well is producing	95.0		
~25 to 30 gpm at 116'. Tie in second compressor to help lift w	ater and cuttings.	100.0		
		105.0		
		110.0		
		115.0		
		120.0		
		125.0		
116'-140': Same as above, small fractures (minimal additional	water) noted every ~5'. Larger fracture at	130.0		
140', modest increase in water production.		135.0		
		140.0		
140'-152': Same as above. Larger fracture at 152', well is proc	lucing ~35 to 40 apm.	145.0		
		150.0		
		155.0		
		160.0		
150' 196': Como oo obeye Displicant for the of 100'	dized outlings Mister discharge having	165.0		
152'-186': Same as above. Significant fracture at 186' with oxi surging heavily, nearing the capacity of the compressors to ev		170.0		
gpm		175.0		
		180.0		
		185.0		
		190.0		
		195.0		
186'-211': Same lithology as above. Fractures every ~4' contin nammer is barely able to advance. Air hammer completely flo		200.0		
Well is producing >60 gpm.	ouce at 2 m, unable to continue unitifig.	205.0		
		210.0		
		210.0	۱ ۱ ـ	
211': End of exploration. Unable to continue drilling without la	ger rig due to high well yield.			

MONITORING WELL LOG

and Sciencists				
Project: Nordic Aquafarms	Drilling Co.: Drilex Environmental	Drilling Co.: Drilex Environmental		g/Well No.: DRX-103
Project No.: 171.05027.003	Driller: Jaime		Lock No.: Standard Ransom Lock	
Site Location: BWD- Lower Reservoir Property	Drilling Method: Air Rotary		Start [Date: 11/6/18
Geologist: Thomas Neilson	Drilling Equip: CME 55 Track Mou	nted	Date (Complete: 11/7/18
Ground Elev.: 70 feet (Approximate)	Static Water (bgs):			Boring Depth: 150 feet
Top of Casing Elev.: 72.49 feet (Surveyed)	Easting: 500157.3 m		Northi	ng: 4915981.4 m (UTM 19N)
Remarks: Boring advanced with air rotary and casing hamm competent bedrock. Boring advanced with air rotary into bed approximately 35 to 40 gpm.				AS-BUILT WELL SCHEMATIC
GEOLOGIC LC	DG	Depth (ft.)		
		2.0 - 3.0 Above Grade		-
Above Grade		1.0 - 2.0 Above Grade		2.5' stick-up, finished with locking cap
		0.0 - 1.0 Above Grade		Grade
		5.0		Well Casing Material: Steel
		10.0		Well Casing Diameter: 4 inches
0' to 24': Overburden consisting of glaciomarine clayey silt (F	Presumpscot Formation) over silty till.	15.0		Well Casing Length: 27.5 feet
		20.0		Depth to Bedrock: 24 feet
		25.0		Depth of Casing: 25 feet
		30.0		Departor Casing, 25 reet
		35.0		
24' to 50': Phyllitic grey schist, no water produced until fractu	re at 50', producing minimal water (~1 gpm).	40.0		
24 to 50. Phyllic grey schist, no water produced until fractu		45.0		Open Interval: 25 - 150 feet
		50.0		Open Hole Diameter: 4 inches
		-		Open Hole Diameter. 4 Inches
		55.0		
		60.0		
		65.0		
50' to 90': Phyllitic grey schist with interbedded light colored of	quatrzite. Minor water producing fractures	70.0		
encountered at 60' (~1 gpm) and 65' (~2-3 gpm).		75.0		
		80.0		
		85.0		
		90.0		
		95.0		
		100.0		
		105.0		
		110.0		
		115.0		
90' to 150': Similar lithology to above. Slightly more productiv		120.0		
100', and 120'. Below 120' drilling was softer and identifying i increased considerably with depth to 150'. Final estimated yi		125.0		
gpm.		130.0		
		-		
		135.0		
		140.0		
		145.0		
		150.0	Ĺ_	l

MONITORING WELL LOG

and Scientists				
Project: Nordic Aquafarms	Drilling Co.: Northern Test Borings		Boring	g/Well No.: NTB-101
Project No.: 171.05027.003	Driller: Mike Nadeau			No.: Standard Ransom Lock
Site Location: BWD- Lower Reservoir Property	Drilling Method: Rotary Wash			Date: 2/19/2018
Geologist: Thomas Neilson	Drilling Equip: Dietrich D-50 Track Static Water (b-toc): 15.59' (3/30/18			Complete: 2/20/2018
Ground Elev.: 38 feet (Approximate) Top of Casing Elev.: 39.9 feet (Surveyed)	Easting: 500862)		Boring Depth: 192 feet ing: 4915902 (Zone 19 N)
Remarks: Casing advanced through overburden using drives	•	drock.	North	
Roller cone bit and mud (water) rotary used to drill through be Reservoir.	edrock. Water source for washing cuttings was	Lower		AS-BUILT WELL SCHEMATIC
GEOLOGIC LO	G	Depth (ft.)		
	-	2.0 - 3.0 Above Grade		
Above Grade		1.0 - 2.0 Above Grade	Γ	2' stick-up, finished with locking cap
		0.0 - 1.0 Above Grade		Grade
0'-13': Clayey silt (Presumpcot Formation).		5.0 10.0		Well Casing Material: Steel
				Well Casing Diameter: 4 inches
13'-15.5': Glacial till. Top of weathered bedrock at 15.6'. Casi	ng set to 16.5'	15.0		Well Casing Length: 18 feet
		20.0		
17'-40': Generally soft drilling, cuttings are biotite and quartz		25.0		Depth of Casing: 16.5 feet
water. Intervals of hard/rough drilling, likely metasandstone. 7 water loss until 40' bgs, minor water loss below.	to 15 minutes per 5-foot run. No significant	30.0		
		35.0		
		40.0		
		45.0		Open Interval: 16.5 - 192 feet
		50.0		Open Hole Diameter: 4 inches
		55.0		
		60.0		
40'-85': Same as above, no change in water loss until 85' bgs	s, moderate water loss below 85'.	65.0		
	-	70.0		
		75.0		
		80.0		
		85.0		
		90.0		
85'-111': Same as above, no change in water loss until loss of		95.0		
Circulation regained shortly after passing fracture. Estimate le	bosing ~7 gpm from circulation.	100.0		
		105.0		
		110.0		
111'-122': Same as above, minor increase in water loss. Estin	mated ~9 gpm loss from circulation.	115.0		
		120.0		
122'-128': Same as above, minor increase in water loss at 12		125.0 130.0		
128'-135': Same as above, change bit at 135' (change from 3	7/8" bit to 3 3/4" bit)	130.0		
	,	135.0		
		140.0		
		150.0		
135'-164': Same as above, no significant change in water los	s.	155.0		
		160.0		
164'-165': Very hard drilling (3 min/3 inches). Pull rods to che	ck hit no issues. Likely hard quartzite had	165.0		
	and a second and a second and a second and a second s	170.0		
		175.0		
165'-192': After hard quartzite bed drilling is similar to above.	No significant additional water loss.	180.0		
		185.0		
		190.0		
192': End of Exploration		195.0		

Consulting	MONITO	RING	WEL	L LOG
Engineers and Scientists				
Project: Nordic Aquafarms	Drilling Co.: Northern Test Borings		Boring/	Well No.: NTB-102
Project No.: 171.05027.003	Driller: Mike Nadeau			o.: Standard Ransom Lock
Site Location: BWD- Lower Reservoir Property	Drilling Method: Rotary Wash			ate: 2/21/2018
Geologist: Thomas Neilson	Drilling Equip: Dietrich D-50 Track	Mount		omplete: 2/23/2018
Ground Elev.: 59 feet (Approximate)	Static Water (b-toc):			oring Depth: 217 feet
Top of Casing Elev.: 62.2 feet (Surveyed) Remarks: Casing advanced through overburden using drive	Easting: 500228	ock Roller		g: 4915815 (Zone 19 N)
cone bit and mud (water) rotary used to drill through bedrock Reservoir.				S-BUILT WELL SCHEMATIC
GEOLOGIC LO	G	Depth (ft.)	1	
		2.0 - 3.0 Above Grade		
		1.0 - 2.0		2' stick-up, finished with locking ca
Above Grade		Above Grade	-	
		0.0 - 1.0 Above Grade		Grade
		5.0		Well Casing Material: Steel
0'-18': Clayey silt, some fine sand (Presumpscot Formation).		10.0		Well Casing Diameter: 4 inches
- TO . Orayey sin, some nine sand (Flesumpscol Formation).		15.0		_
		20.0		Well Casing Length: 30 feet
18'-27': Glacial till. Top of weathered bedrock ~25', competer	at bedrock at 26'. Set casing to 27'	25.0		Depth to Bedrock: 25 feet
	a sources at 20 . Our easing to 21 .	30.0		Depth of Casing: 27 feet
		35.0		
		40.0		
27'-63': Generally soft to moderate drilling, cuttings are biotiti sheen on wash water. Intervals of hard/rough drilling, likely n		45.0		Open Interval: 27 - 217 feet
run. No significant water loss.		50.0		Open Hole Diameter: 4 inches
	55.0			
		60.0		
		65.0		
63'-76.5': Same as above, except very soft from 63'-63.5' wit	h heavily weathered rock (clay) plugging bit	70.0		
and then being washed up. Minor water loss below 63.5'.		75.0		
		80.0		
		85.0		
	C' with modest increase in water loss. New	90.0		
76.5'-102': Same as above, except drill rod dropped 2" at 76. losing moderate amount of water.	5, with modest increase in water loss. Now			
с С		95.0		
		100.0		
		105.0		
		110.0		
102'-124': Softer drilling, 6 to 8 minutes per 5-foot run.		115.0		
		120.0		
		125.0		
		130.0		
		135.0		
124'-147': Same as above, fracture at 124' with increased wa	ater loss. Losing 275 gallons for 15' of drilling.	140.0		
		145.0		
		150.0		
147'-159': Same as above, losing 275 gallons for 10 feet of c	Irilling. Roller bit worn, replaced worn 3 7/8"	155.0		
bit with new 3 3/4" bit at 159'.	- •			
159'-166': Minor fracture at 159, minor increase in water loss	. Hard drilling (15 min/3 feet). Likelv quartzite	160.0		
bed ~159'-166'.		165.0		
166'-174': Same as above, drilling speed slightly more variat	le (likely in and out of quartzite), modest	170.0		
increase in water loss at 166'.		175.0		
174'-185'- Same as above, minor increase in water loss at 1	74'.	180.0		
		185.0		
185'-196': Same as above, increase in water loss at 185', no minimal water circulation.	table decrease in water return from borehole,	190.0 195.0		
196'-198.5': Same as above, increase in water loss at 196', l	ad to increase circulation nump speed	200.0		
196'-198.5': Same as above, increase in water loss at 196', h	had to increase circulation pump speed.	205.0		
206'- Losing more water.		210.0		ļ
208.5'- Losing more water		215.0		
		220.0	I L	1

RANSOM				
Consulting	MONITO	RING	WEL	L LOG
Engineers and Scientists				
Project: Nordic Aquafarms	Drilling Co.: Northern Test Borings		-	Vell No.: NTB-103
Project No.: 171.05027.003	Driller: Mike Nadeau			.: Standard Ransom Lock te: 2/27/18
Site Location: BWD- Upper Reservoir Property Geologist: Thomas Neilson	Drilling Method: Rotary Wash Drilling Equip: Dietrich D-50 Track	Mount		mplete: 2/28/18
Ground Elev.: 80 feet (Approximate)	Static Water (b-toc):		Total Bo	ring Depth: 267 feet
Top of Casing Elev.: 80.86 feet (Surveyed)	Easting: 499377.1 m		Northing	: 4916432.8 m (Zone 19 N)
Remarks: Casing advanced through overburden using drive a cone bit and mud (water) rotary used to drill through bedrock.				
Reservoir.			AS	S-BUILT WELL SCHEMATIC
GEOLOGIC LOC	1	Depth (ft.)		
		2.0 - 3.0 Above Grade		
Above Grade		1.0 - 2.0		~1' stick-up, finished with locking cap
		Above Grade 0.0 - 1.0		1
		Above Grade		Grade
		5.0		Well Casing Material: Steel
0'-24.1': Clayey silt, some fine sand (Presumpscot Formation 24.1'.). Top of Bedrock at 23.1', set casing at	15.0		Well Casing Diameter: 4 inches
		20.0		Well Casing Length: 25 feet
		25.0		Depth to Bedrock: 23.1 feet
		30.0		Depth of Casing: 24.1 feet
		35.0		
		40.0		
		45.0		Open Interval: 23.1 - 267 feet
		50.0		Open Hole Diameter: 4 inches
		55.0		
		60.0		
24.1'-117': Generally soft to moderate drilling, cuttings are bio	otite and quartz rich schist. Intervals of	65.0		
hard/rough drilling, likely metasandstone. 8 to 10 minutes per gallons for every 5' of advancement (~10 gpm).		70.0		
galions for every 5 or advancement (To gpin).		75.0		
		80.0		
		85.0		
		90.0 95.0		
		100.0		
		105.0		
		110.0		
		115.0		
		120.0		
		125.0		
		130.0		
117'-152': Same as above, graphite sheen begins to form on	wash water at 152'.	135.0		
		140.0		
		145.0 150.0		
152'-157': Same as above except softer drilling, begin to lose	slightly more water at 157'.	155.0		
	•	160.0		
157'-164': Same as above.		165.0		
164'-172': Very soft drilling, 4 minutes per 5 foot run. No char	nge in water loss.	170.0		
172'-177': Back to soft to moderate drilling, similar lithology, i		175.0		
bit to new 3 3/4" bit at 177'.		180.0		
		185.0		
		190.0		
		195.0		
		200.0		
		205.0		
		210.0		
		215.0		
177'-267': Generally soft to moderate drilling, approximately ' lithology to above. No change in water loss since 157'.	10 to 12 minutes per 5-foot run. Similar	220.0 225.0		
		225.0		
		240.0		
		245.0		
		250.0		
		255.0		
		260.0		
		265.0		
267': End of exploration.		270.0		1

RANSOM				
Consulting	MONITO	RING	WEL	LLOG
Engineers				
and Scientists			.	
Project: Nordic Aquafarms Project No.: 171.05027.003	Drilling Co.: Northern Test Borings Driller: Mike Nadeau		•	Vell No.: NTB-104 .: Standard Ransom Lock
Site Location: BWD- Upper Reservoir Property	Drilling Method: Rotary Wash			te: 3/1/18
Geologist: Thomas Neilson	Drilling Equip: Dietrich D-50 Track	Mount	Date Co	mplete: 3/2/18
Ground Elev.: 76 feet (Approximate)	Static Water (b-toc): N/A		Total Bo	ring Depth: 187 feet
Top of Casing Elev.: Not Surveyed	Easting: 499346 m		Northing	: 4916302 m (Zone 19 N)
Remarks: Casing advanced through overburden using drive an Roller cone bit and mud (water) rotary used to drill through bed Reservoir. Well was abandoned immediatly after drilling due to	rock. Water source for washing cuttings wa		AS	BUILT WELL SCHEMATIC
GEOLOGIC LOG		Depth (ft.)		
		2.0 - 3.0 Above Grade		
Above Grade		1.0 - 2.0 Above Grade		Well Abandonded after drilling
		0.0 - 1.0 Above Grade		
		5.0		Grade
		10.0		Well Casing Material: Steel
		15.0		Well Casing Diameter: 4 inches
		20.0		Well Casing Length: N/A feet
		25.0		Depth to Bedrock: 60.2 feet
0'-50': Clayey silt, some fine sand (Presumpscot Formation).		30.0		Depth of Casing: NA feet
		35.0		
		40.0		
		45.0		Open Interval: Abandonded
		50.0		Open Hole Diameter: N/A
		55.0		
50'-64': Glacial Till. Top of heavily weathered bedrock at 60.2',	casing set at 64'.	60.0		
		65.0		
64'-74': Very soft drilling, cuttings are biotite and quartz rich sch heavily weathered bedrock.	ist. 4 to 6 minutes per 5-foot run. Likely	70.0		
		75.0		
74'-88': Generally soft to moderate drilling. Intervals of hard/rou	oh drilling, likely metasandstone, 8 to 10	80.0		
minutes per 5-foot run. Similar lithology, slightly less weathered		85.0		
		90.0		
88'-104': Same as above, except begin losing a little water (like	ly washing around casing through	95.0		
weathered rock).	,	100.0		
		105.0		
		110.0		
		115.0		
		120.0		
		125.0		
104'-162': Same as above, except begin losing a little less wate	er at 104'. Still minimal water loss. Casing	130.0		
came loose at 162', water flushing around the casing and stripp		135.0		
still not sealed, drove 10' more casing (total of 80' of casing).		140.0		
		145.0		
		150.0		
		155.0		
		160.0		
162'-167': All wash water returning to surface from around casi borehole.	ng. Drive 1.5' more casing to seal	165.0		
borenoie.		170.0		
		175.0		
167'-187': Same lithology as above, no observable water loss.		180.0		
		185.0		
187': End of exploration. Casing removed and well abandoned	due to poor water production.	190.0	لساسا ا	1
		220.0	l	
		I		

Consulting MONITORING WELL LOG				
Engineers and Scientists				
Project: Nordic Aquafarms	Drilling Co.: Pine State Drilling		Boring/Well No.: PSD-101	
Project No.: 171.05027.003 Site Location: Mathews Brothers Field	Driller: Chad Grignon Drilling Method: Air Rotary		Lock No.: Standard Ransom Lock Start Date: 11/12/18	
Geologist: Drew Fuchs	Drilling Equip: Versa V-2000NG truck rig		Date Complete: 11/12/18	
Ground Elev.: 63 feet (Approximate)	Static Water (bgs):		Total Boring Depth: 400 feet	
Top of Casing Elev.: 64.33 feet (Surveyed)	Easting: 500484.7 m		Northing: 4916006.5 m (UTM 19N)	
Remarks: Casing advanced through overburden using air rotary methods and casing set into bedrock. Air rota diril through bedrock unitil pre-determined completion depth of 400 FeA. Arefusal situation from an inability to water from wellbore was not reached. Water generated during drilling was discharged through a diverter into a complicating yield estimates.		vacuate		S-BUILT WELL SCHEMATIC
GEOLOGIC LOG		Depth (ft.)		
Above Grade		2.0 - 3.0 Above Grade		T
		1.0 - 2.0 Above Grade		2.5' stick-up, finished with locking cap
		0.0 - 1.0		
		Above Grade		Grade
		5.0 10.0		Well Casing Material: Steel
0'-20': Unconsolidated overburden material (likely Presumpscot F	ormation and Glacial Till).	15.0		Well Casing Diameter: 6 inches
		20.0		Well Casing Length: 40 feet
		25.0		Depth to Bedrock: 20 feet
20-36.5: Heavily weathered bedrock. Casing set at ~37.5' in more competent bedrock.		30.0		Depth of Casing: 37.5 feet
		35.0	11	1
		40.0		ļ
36.5-100°: Competent bedrock; cuttings are biotite, graphite, and quartz rich schist. Minimal water yield, 1-2 gpm.		45.0		Open Interval: 37.5 - 400 feet
		50.0		Open Hole Diameter: 6 inches
		55.0		
		60.0		
		65.0		
		70.0		
		75.0		
		80.0		
		85.0		
		90.0		
		95.0		
		100.0		
100'-115': Same as above. Fracture at 115'; well is producing ~20 gpm.		105.0		
		110.0		
		115.0		
115'-132': Same as above. Fracture at 132'; well is producing ~50 gpm.		120.0		
		125.0		
		130.0		
		135.0		
		140.0		
		145.0		
		150.0		
132'-220': Same as above, minimal increase in water production.		155.0		
		160.0		
		165.0		
		170.0		
		175.0		
		180.0		
		185.0		
		190.0		1
		195.0 200.0		
		200.0		
		210.0		1
		220.0		
		230.0		1
220'-280': Lithology is biotite, graphite and quartz rich schist with periodic intervals of lighter colored harder		240.0		
220'-280': Lithology is biotite, graphite and quartz rich schist with metasandstone. Minor increase in water production, yield of ~60		260.0		
		270.0		1
		280.0		
		290.0		
		300.0		
280°-400°: Same lithology as above. Estimated well yield of 30-50 gpm based on flow rate out of 6° opening in discharge filter bag. Yield appears reduced compared to earlier estimates during drilling; possible depletion of stored water.		310.0		1
		320.0		1
		330.0		1
		340.0		1
		350.0		1
or otor our weller.		360.0		
		370.0		
		380.0		
		390.0		1
		400.0	11	
400': End of exploration at pre-determined depth.				4

RANSOM				
Consulting	MONITO	RING	WEL	L LOG
Engineers				
and Scientists				
Project: Nordic Aquafarms	Drilling Co.: Pine State Drilling			Well No.: PSD-102
Project No.: 171.05027.003	Driller: Chad Grignon			o.: Standard Ransom Lock
Site Location: Mathews Brothers Field Geologist: Drew Fuchs	Drilling Method: Air Rotary Drilling Equip: Versa V-2000NG tru	ick rig		ate: 11/12/18 omplete: 11/12/18
Ground Elev.: 65 feet (Approximate)	Static Water (bgs):	ick ng		oring Depth: 400 feet
Top of Casing Elev.: 66.16 feet (Surveyed)	Easting: 500394.6 m			g: 4915989.9 m (UTM 19N)
Remarks: Casing advanced through overburden using air rotary m		irv used to	Northing	g. 4313363.3 III (0 IIII 1314)
drill through bedrock until pre-determined completion depth of 400	feet. A refusal situation from an inability to e	evacuate		
water from wellbore was not reached. Water generated during drilli complicating yield estimates.	ng was discharged through a diverter into a	filter bag,	A	S-BUILT WELL SCHEMATIC
		-		
GEOLOGIC LOG		Depth (ft.) 2.0 - 3.0		
		Above Grade	_	-
Above Grade		1.0 - 2.0 Above Grade		2' stick-up, finished with locking cap
		0.0 - 1.0 Above Grade		
		5.0		Grade
		10.0		Well Casing Material: Steel
	method and Olaviel Tilly traditionics into	15.0		Well Casing Diameter: 6 inches
0'-28': Unconsolidated overburden material (likely Presumpscot For highly weathered bedrock.	ornation and Glacial Till), transitioning into			Well Casing Length: 40 feet
		20.0		Depth to Bedrock: 18-28 feet
		25.0		Depth of Casing: 38 feet
		30.0		
28-37': Moderately weathered bedrock. Casing set at ~38' in more	e competent bedrock.	35.0		
		40.0		1
		45.0		Open Interval: 38 - 400 feet
37'-60': Competent bedrock; cuttings are biotite, graphite, and qua ~5 gpm.	rtz rich schist. Minimal water yield,	50.0		Open Hole Diameter: 6 inches
-5 gpm.		55.0		
		60.0		
		65.0		
60'-75': Same lithology as above. Significant fracture at 75', well is	producing ~60 gpm.	70.0		
	5 5	75.0		
		80.0		1
		85.0		
		90.0		
		95.0		1
		100.0		
		105.0		
		110.0		
		115.0		1
75'-160': Same lithology as above. Small fracture at 158'; well is p	roducing ~80 gpm.	120.0		
		125.0		
		130.0		
		135.0		
		140.0		
		145.0		1
		150.0		1
		155.0		
		160.0		1
		165.0		1
		170.0		1
		175.0		
		180.0		1
		185.0		
		190.0		
160'-260': Same lithology as above. Small water gains with depth,	no obvious fractures, well yield of ~100	195.0		
gpm.		200.0		
		210.0		
		220.0		
		230.0		1
		240.0		
		250.0		
				1
		260.0		1
		270.0		
260'-300': Same lithology as above. Small water gains with depth,	no obvious fractures, well yield of ~120	280.0		
gpm.		290.0		1
		300.0		
		310.0		
		320.0		
		330.0		1
		340.0		
300'-400': Lithology is biotite, graphite and quartz rich schist with p		350.0		
metasandstone. Minimal increase in water production with depth.		360.0		1
based on flow rate out of 2' hole in discharge filter bag.		370.0		1
		370.0		
		390.0		
		400.0		L
400': End of exploration at pre-determined depth.				

MONITORING WELL LOG

Project No.: TX hodic Aquafarms Drilling Co.: Goodwin Well and Water Booing/Well No.: Stendard Ransom Lock Differ Raph Ryder Lock No.: Standard Ransom Lock Site Location: B/W-L Lower Reservoir Property Drilling Method: Air Rotary Start Date: 724/2018 Geologist: Thomas Neilson Cole Loc State Water (Dgs). Total Boring Depth: 615 feet State Water (Dgs). Total Boring Depth: 615 feet State Water Vell and	and Scientists				
Site Location: BWD- Lower Reservoir Property Dilling Method: Air Rotary State Diet; 7242018 Geologist: Thomas Nelson Drilling Equip: Water Well Rig Date Complete: 7262018 Ground Else: 42 Elet (Approximate) State: Water (Cgs): Total Boring Dephr. 615 feet Northing: 4915868.7 m (UTM 19N) Remarks: Boring advanced through orchostaden and in boards of transpic Casing diven to -45.5 bgs and annual space grouted. Boring advanced into before/using air notary, with auxiliary compresor used from 490 6 615 Solg gen: Generating advanced mito before/using air notary, with auxiliary compresor used from 490 6 615 Solg gene. Generating advanced into before/using air notary, with auxiliary compresor used from 490 for 6 15 Solg gene. Generating advanced into before/using air notary, with auxiliary compresor used from 490 for 6 15 Solg gene. Generating advanced into before/using air notary, with auxiliary compresor used from 490 for 6 15 Solg gene. Generating advanced into before/using air notary, with auxiliary compresor used from 490 for 6 15 Solg gene. Generating advanced from 40 for 50 generating advanced from 400 for 50 generating advanced from 40 for 60 for 50 generating advanced from 40 for 50 gener	Project: Nordic Aquafarms	Drilling Co.: Goodwin Well and Wa	iter	Boring/\	Well No.: PW-1
Geologist: Thomas Nelson Date Complete: 7/25/2018 Ground Elev: 42 firet (Approximate) Static Water (Vgs); To of Casing Elev: 43.52 feet (Surveyed) Easting: 500765.8 m Northing: 4916068.7 m (UTM 19N) Remarks Boorg advanced through overburden and hio bedrok with 12 ^m und rotary. Casing driven to -45.57 bgs and anala space grouted in bedrok using a rotary. with audity compresence used from 480 to 615 cm -338 gm. GEOLOGIC LOG -238 gm. GEOLOGIC LOG -240 cm -45.57 bgs and 56.67 m -330 gm. GEOLOGIC LOG -261 cm -46.67 bg -262 cm -46.67 bg -261 cm -46.67 bg -262	Project No.: 171.05027.003	Driller: Ralph Ryder		Lock No	b.: Standard Ransom Lock
Ground Elev:. 42 feet (Approximate) Istil: Water (bgs): Total Boring Depth: 615 feet Top of Casing Elev.: 43.52 feet (Surveyed) Easting: 500765.8 m Northing: 4915687.7 m (UTM 19N) Remarks: Boring advance through ownshrulen and into befords. With 12" mol totary. Chaing driven to ~45.8 bg and totar 14.8 mol totary of a run relax. Chaing driven to ~45.8 bg and totar 14.8 mol totary. Chaing driven to ~45.8 bg and totar 14.8 mol totary of a run relax. Northing: 4915687.7 m (UTM 19N) Remarks: Boring advance through ownshrulen and into befords. With 12" mol totary. Chaing driven to ~45.8 bg and totar 14.8 mol totary of a run. Final yield checked with 55-gg alon barrel, estimated at 7.9 mol totary. As-Bult Well Schematte Above Grade 1.9 stokug, finshed with locking cap 15 to 45: Phyllitic dark grey schist, soft drilling. Set casing to 45.5 bgs and grout. 40.0 45 to 130: Primarily soft dark grey schist with beds of lipht grey quartitle every 25.30. Small water bearing finance of grading and to 27.6 g gran) and 107 (5 g gran). Fractures correspond to quartitle beds. 100.0 120 to 280: Libhology similar to above. Very large fracture at 130; producing >100 gm and communication continued util 1-140 (water starbas with 24.8 mol to 24.9 mol to 24.0 mol t	Site Location: BWD- Lower Reservoir Property	Drilling Method: Air Rotary		Start Da	ate: 7/24/2018
Top of Casing Elev: 43.5 feet (Surveyed) Easting: 500765.8 m Northing: 4015868.7 m (UTM 19N) Brenche: Eoring advanced freigh beforks using air rotary, with autilary compressor used from 480 to 615 Solution 1000000000000000000000000000000000000	Geologist: Thomas Neilson	Drilling Equip: Water Well Rig		Date Co	omplete: 7/26/2018
Remets Borrig Jackanced through overburder and into bedrock with 12 ⁻ mult rotary. Casing driven to 4-55 bgs and amula space groups and tho ethorok using a rotary. with availary compression used from 4810 bits and a memoral of curring and water. Drilling water discharged through filter bags with all fence surrourding. Upon a stranged with polymer foam and blown for -1 nr. Final yield checked with 55-gailon barrie, estimated and the term of the drive the stranged through filter bags with all fence surrourding. Upon a stranged with polymer foam and blown for -1 nr. Final yield checked with 55-gailon barrie, estimated with locking cap the stranged through other bags with a strange stranged barries and the store and the store barries barries barries barries and the store and the stranged barries and the store and the stranged barries and the store and the store and the store and the store and the stranged barries and the store and the stranged barries and the store a	Ground Elev.: 42 feet (Approximate)	Static Water (bgs):		Total Bo	oring Depth: 615 feet
amual space grouted. Boring advanced into bedrock using air rotary, with autilary compressor used from 480° to 615 origination will purged with polymer foam and bloom for -1 fr. Final yeld checked with 55 gailon barrel, estimated at -30 gm. <u>GEOLOGIC LOG</u> <u>original</u> -30 gm. <u>GEOLOGIC LOG</u> <u>original</u> -50 original -50 original		3		Northing	g: 4915868.7 m (UTM 19N)
Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Grade Above Gra	annual space grouted. Boring advanced into bedrock using air to aid in removal of currting and water. Drilling water discharge completion well purged with polymer foam and blown for ~1 hr.	rotary, with auxillary compressor used from 4 d through filter bags with silt fence surrounding	80' to 615' g. Upon	AS	S-BUILT WELL SCHEMATIC
Above Grade Above Grade Above Grade	GEOLOGIC LOG				
Autore Glade Actor Gase 0: 10 12: 0.3 - 10 Actor Gase 0: 10 15: Overburden (clayey sill and till) 15 to 45: Phyllic dark grey schist, soft drilling. Set casing to 45.5' bgs and grout. 40.0 46: 00.0 15 to 45: Phyllic dark grey schist with beds of light grey quartate every 25:00. Small water bearing fractures noted at 75' (5 gpm) and 107' (5 gpm). Fractures correspond to quartate beds. 100.0 120: 120.0 130' to 260: Lithology similar to above. Very large fracture at 130', producing >100 gpm and communicating with minor component of phyllic schist. Thcks second my minerization was heavily breaded quartate in minor component of phyllic schist. Thcks second my minerization was heavily breaded quartate in minor component of phyllic schist. Thcks second my minerization mineralization rinds. 280.0 280.0 300.0 380.0 300.0 380.0 380.0 440.0 380.0 240.0 380.0 380.0 380.0 460.0 380.0 380.0 380.0 380.0 380.0 460.0 380.0 380.0 380.0 460.0 380.0 380.0 380.0 460.0 380.0 380.0 380.0 460.0 380.0 380.0					
None Cancel Grade 01 05: Overburden (clayey silt and till) 20.0 15' to 45': Phyllitic dark grey schist, soft drilling. Set casing to 45.5' bgs and grout. 40.0 60.0 60.0 45' to 130': Primarily soft dark grey schist with beds of light grey quartzite every 25-30'. Small water bearing fractures noted at 75' (5 gpm) and 107' (5 gpm). Fractures correspond to quartzite beds. 60.0 130' to 260': Lithology similar to above. Very large fracture at 130', producing >100 gpm and communicating with GWW-101 (6' well ~5 feet away). Communication continued until ~140' (water stoped blowing uto g GWW-101). Large (fits tasked) pieces of rock blow out of the during drilling. Rock was heavily becciated quartzite with mior components of phyllitic schist. Thick secondary mineralization rinds. 20.0 180' to 615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded acting transmit. Similar to date or this depth due to volume of water observed). Fredominantly acting that due to fiss. Similar lithology to above. Predominantly light grey to white quartzite to thinly interbedded acting the fiss. Similar lithology to above. Predominantly light grey to white depth due to volume of water being produced from well. 480.0 480.0 160' to 615': Similar lithology to above. Predominantly light grey to white depth due to volume of water being produced from well. 480.0 480.0 480.0 160' to 615': Similar lithology to above. Predominantly light grey to white depth due to volume of water being produced from well. <t< td=""><td>Above Grade</td><td></td><td></td><td></td><td>1.5' stick-up, finished with locking cap</td></t<>	Above Grade				1.5' stick-up, finished with locking cap
15' to 45': Phyllitic dark grey schist, soft drilling. Set casing to 45.5' bgs and grout. 400 15' to 45': Phyllitic dark grey schist, soft drilling. Set casing to 45.5' bgs and grout. 400 45' to 130': Primarity soft dark grey schist with beds of light grey quartzite every 25-30'. Small water bearing fractures noted at 75' (5 gpm) and 107' (5 gpm). Fractures correspond to quartzite beds. 800 130' to 280': Lithology similar to above. Very large fracture at 130', producing >100 gpm and communicating with GWW-101 (6' weil ~15 feet away). Communication continued until ~140' (water stopped blowing out og GWW-101). Large (fist sized) pieces of rock blown out of hole during drilling. Rock was heavily breaded at 615'. Gen Hole Diameter: 8 inches 200.0 280.0 280.0 30' to 5615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded at 615', final estimated yield ~330 gpm. Majority of water operavel. J corresponding to quartzite bedia. 400.0 460.0 400.0 420.0 280.0 330.0 330.0 320.0 330.0 320.0 330.0 320.0 330.0 320.0 330.0 320.0 330.0 320.0 330.0 320.0 330.0 320.0 330.0 320.0 330.0 320.0 330.0 320.0 330.0 320.0 330.0 320.					Grade
100 to 615°: Similar lihology to above. Predominantly light grey to white quartzite or thinly interbedded schiat and quartzite from well. 60.0 60.0 100 to 615°: Similar lihology to above. Predominantly light grey to white quartzite or thinly interbedded schiat and quartzite fractures below this depth due to volume of water being produced from well. 60.0 100 to 615°: Similar lihology to above. Predominantly light grey to white quartzite or thinly interbedded schiat and quartzite fractures below this depth due to volume of water being produced from well. 60.0	0' to 15': Overburden (clayey silt and till)		20.0		wen casing matchai. Steel
45' to 130': Primarily soft dark grey schist with beds of light grey quartzle every 25-30'. Small water bearing fractures noted at 75' (5 gpm) and 107' (5 gpm). Fractures correspond to quartzle beds. 80.0 130' to 260': Lithology similar to above. Very large fracture at 130', producing >100 gpm and communicating with GWW-101 (6' well ~15 feet away). Communication continued until ~140' (water stopped blowing out og GWW-101). Large (fist sized) pleces of rock blown out of hole during driling. Rock as heavily break with minor components of phylling bits. It is the schedule during the minor components of phylling bits. It is the schedule during the minor components of phylling bits. It is the schedule during the discrete fracture at 130', producing view out of hole during driling. Rock as heavily break with minor components of phylling bits. It is the schedule during the discrete fracture at 130', producing view out of hole during driling. Rock as heavily break with minor components of phylling to schelul. Thick secondary mineralization rinds of predominantly pyrite observed, and dark graphitic material deposited on inside (void space) of schedule during the discrete fracture at 230'. (No additional water observed.) Predominantly as 1-30', however, difficult to discrete fractures below this depth due to volume of water being produced from well. 300.0 160' to 615'. Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260' to 360', with a soft spot at 237' (no additional water observed). Predominantly at -30', however, difficult to discrete fractures below this depth due to volume of water being produced from well. 40.0 400.0 480.0 500.0 500.0 500.0 500.0 500.0 560.0	15' to 45': Phyllitic dark grey schist, soft drilling. Set casing to 4	5.5' bgs and grout.	40.0		Well Casing Diameter: 8 inches
45° to 130°: Primarily soft dark grey schist with beds of light grey quartzite every 25-30°. Small water bearing 80.0 100.0 130° to 280°: Lithology similar to above. Very large fracture at 130°, producing >100 gpm and communication continucation continued until -140° (water stopped blowing out og QWW-101). Large (fist sized) pieces of rock blown out of hole during drilling. Rock awas heavily fractizate during to size on pieces of rock blown out of hole during drilling. Rock 200.0 200.0 200.0 280.0 200.0 280.0 200.0 200.0 160° to 615°: Similar lithology to above. Predominantly light grey to while quartzite or thinly interbedded at 450° corresponding to quartzite bed. Exploration ended at 615°. Small fracture noted at 450° corresponding to quartzite bed. Exploration ended at 615°. Small fracture noted at 450° corresponding to quartzite bed. Exploration ended at 615°. Small fracture noted at 450° corresponding to quartzite bed. Exploration ended at 615°. Small fractures below this depth due to volume of water being produced from well. 400.0 160° to 615°. Similar lithology to above. Predominantly light grey to while quartzite or thinly interbedded at 615°. Gmall fracture noted at 450° corresponding to quartzite bed. Exploration ended at 615°. Small fractures below this depth due to volume of water being produced from well. 400.0 460.0 680.0 680.0 680.0 680.0 680.0 680.0 680.0 680.0			60.0		
43: to 130: Primarily soft dark grey schet with beds of light grey quartize every 25-30: Small water bearing 100.0 120.0 120.0 130: to 280: Lithology similar to above. Very large fractures correspond to quartize beds. 160.0 130' to 280: Lithology similar to above. Very large fracture at 130'; producing >100 gpm and communicating with GWW-101. Large (first sized) pieces of rock blown out of hole during drilling. Rock was heavly breciated quartize with minor components of phyllitic schist. Thick secondary mineralization rinds. 200.0 220.0 240.0 280.0 280.0 300: to 615: Similar lithology to above. Predominantly light grey to white quartize or thinly interbedded schist and quarizite from 200 to 360', with a soft spot at 220' (corresponding to quarize bed. Exploration ended at 615'. final estimated yield -330 gpm. Majority of water appears to come from fracture at 460.0 400.0 41:01.0 460.0 460.0 42:01.0 320.0 320.0 30:02.0 320.0 320.0 30:00.0 320.0 320.0 30:00.0 320.0 320.0 30:00.0 320.0 320.0 30:00.0 320.0 320.0 30:00.0 320.0 320.0 30:00.0 320.0 320.0 30:00.0 35.5			80.0		í
130' to 260': Lithology similar to above. Very large fracture at 130', producing >100 gpm and communicating with GWW-101 (6" well ~15 feet away). Communication continued until ~140 (water stoped blowing out og GWW-101). Large (fist sized) pieces of rock blown out of hole during dilling. Rock was heavily brecolated quartize with minor components of phyllitic schist. Thick secondary mineralization inds. 0pen Interval: 45.5 - 615 feet 0pen Hole Diameter: 8 inches 220.0 220.0 220.0 220.0 220.0 220.0 240.0 220.0 240.0 220.0 240.0 220.0 240.0 220.0 240.0 280.0 380.0 380.0 380.0 400.0 380.0 400.0 380.0 400.0 380.0 410.1 420.0 280.0 380.0 400.0 380.0 400.0 380.0 400.0 380.0 400.0 440.0 50/ to 615': Similar lithology to above. Predominantly light grey to while quartize or thinly interbedded at 51, final estimated yield - 330 gm. Majority of water papers to come from fracture at grey schist from 380' to 615': Small fracture noted at 450' corresponding to quartize bed. 400.0 520.0 520.0 520.0 520.0 520.0 520.0 520.0			100.0		1
130' to 260': Lithology similar to above. Very large fracture at 130', producing >100 gpm and communicating with GWW-101 (6'' well ~15 feet away). Communication continued until ~140' (water stopped blowing out og GWW-101). Large (fist sized) pieces of rock blown out of hole during drilling. Rock was heavily breciated quartzite with minor components of phyllitic schist. Thick secondary mineralization rinds. 200.0 220.0 240.0 260.0 280.0 380.0 380.0 300 to 615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260' to 360', with a soft spot at 287' (no additional water observed). Predominantly softer dark grey schist from 380' to 615'. Smill fracture noted at 450' corresponding to quartzite bed. Exploration ended at 615'. Smill are listimated yield ~330 gm. Majorty of water appears to come from fracture at ~130', nowever, difficult to discern discrete fractures below this depth due to volume of water being produced from well. 480.0	fractures noted at 75 (5 gpm) and 107 (5 gpm). Fractures com	espond to qualizite beus.	120.0		Deptil of Casing, 45.5 leet
130' to 260': Lithology similar to above. Very large fracture at 130', producing >100 gpm and communicating with GWW-101 (6'' well ~15 feet away). Communication continued until ~140' (water stopped blowing out og GWW-101). Large (fist sized) pieces of rock blown out of hole during drilling. Rock was heavily breciated quartzite with minor components of phyllitic schist. Thick secondary mineralization rinds. 200.0 220.0 240.0 260.0 280.0 380.0 380.0 300 to 615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260' to 360', with a soft spot at 287' (no additional water observed). Predominantly softer dark grey schist from 380' to 615'. Smill fracture noted at 450' corresponding to quartzite bed. Exploration ended at 615'. Smill are listimated yield ~330 gm. Majorty of water appears to come from fracture at ~130', nowever, difficult to discern discrete fractures below this depth due to volume of water being produced from well. 480.0					
130' to 280': Lithology similar to above. Very large fracture at 130', producing >100 gpm and communicating with GWW-101', Large (fist sized) pieces of rock blown out of hole during drilling. Rock was heavily brecciated quartize with minor components of phyllitic schist. Thick secondary mineralization rinds of predominantly pyrite observed, and dark graphitic material deposited on inside (void space) of mineralization rinds. 180.0 20.0 240.0 240.0 240.0 280.0 300.0 300.0 320.0 300.0 320.0 340.0 360.0 380.0 400.0 440.0 440.0 400.0 440.0 440.0 4100 rodder from well. 415', final estimated yield ~330 gpm. Majority of water appears to come from fracture at ~100', however, difficult to discern discrete fractures below this depth due to volume of water being produced from well. 480.0					
Communicating with GeWW-101 (6 Wei ~15 teet away). Communication continued until ~140 (weirr stopped blowing out og GWW-101). Large (fils sized) pieces of rock blown out of hole during drilling. Rock was heavily brecciated quartizite with minor components of phyllitic schist. Thick secondary mineralization rinds of predominantly pyrite observed, and dark graphitic material deposited on inside (void space) of mineralization rinds. 280.0 300.0 320.0 340.0 360.0 380.0 400.0 380.0 400.0 4	130' to 260': Lithology similar to above. Very large fracture at 1	30', producing >100 gpm and			Open Interval: 45.5 C45 feet
was heavily brecciated quartzite with minor components of phyllitic schist. Thick secondary mineralization 220.0 rinds of predominantly pyrite observed, and dark graphitic material deposited on inside (void space) of 240.0 280.0 280.0 300.0 320.0 340.0 360.0 380.0 340.0 380.0 340.0 380.0 340.0 380.0 340.0 380.0 340.0 380.0 340.0 380.0 340.0 380.0 340.0 380.0 340.0 380.0 400.0 420.0 220.0 380.0 340.0 380.0 400.0 400.0 360.0 380.0 400.0 440.0 440.0 41.0 heaver, difficult a soft spot at 287' (no additional water observed). Predominantly softer dark grey schist from 380' to 615'. Small fracture noted at 450' corresponding to quartice bed. Exploration ended at 615', final estimated yield ~330 gm. Majority of water appears to come from fracture at ~100. heaver, difficult to discern discrete fractures below this depth due to volume of water being produced from well. <					
160' to 615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260' to 360, with a soft spot at 287' (no additional water observed). Predominantly 240.0 160' to 615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260' to 360, with a soft spot at 287' (no additional water observed). Predominantly 360.0 380.0 420.0 260.0 360.0 380.0 440.0 440.0 440.0 450' to 615'. Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260' to 360', with a soft spot at 287' (no additional water observed). Predominantly 440.0 440.0 450' to 615'. Similar estimated yield ~330 gpm. Majority of water appears to come from fracture at ~30', however, difficult to discern discrete fractures below this depth due to volume of water being produced from well. 480.0 500.0 520.0 540.0 560.0 580.0 600.0					Open Hole Diameter: 8 inches
160° to 615°: Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260° to 360°, with a soft spot at 287° (no additional water observed). Predominantly asofter dark grey schist from 380° to 615°. Small fracture noted at 450° corresponding to quartzite bed. 400.0 420.0 400.0 380.0 400.0 420.0 440.0 900.0 380.0 400.0 420.0 420.0 440.0 440.0 440.0 440.0 440.0 500.0 520.0 520.0 540.0 560.0 580.0 660.0 580.0		erial deposited on inside (void space) of			
160' to 615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260' to 350', with a soft spot at 287' (no additional water observed). Predominantly 420.0 380.0 300 to 615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260' to 350', with a soft spot at 287' (no additional water observed). Predominantly 420.0 440.0 Softer dark grey schist from 380' to 615'. Small fracture noted at 450' corresponding to quartzite bed. 440.0 Exploration ended at 615', final estimated yield -330 gpm. Majority of water appears to come from fracture at ~130', however, difficult to discern discrete fractures below this depth due to volume of water being produced from well. 460.0 500.0 520.0 540.0 560.0 580.0 600.0	mineralization milds.		240.0		
300.0 320.0 340.0 360.0 380.0 360.0 380.0 400.0 380.0 400.0 schist and quartzite from 260' to 360', with a soft spot at 287' (no additional water observed). Predominantly softer dark grey schist from 380' to 615'. Small fracture noted at 450' corresponding to quartzite bed. Exploration ended at 615', final estimated yield ~330 gpm. Majority of water appears to come from fracture at ~130', however, difficult to discern discrete fractures below this depth due to volume of water being produced from well. \$500.0 \$50.0 \$50.0 \$60.0 \$60.0 \$60.0 \$60.0 \$60.0 \$60.0 \$60.0 \$60.0 \$60.0 \$60.0 \$60.0 \$60.0 \$60.0 \$60.0			260.0		
160' to 615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded 340.0 380.0 380.0 400.0 420.0 schist and quartzite from 260' to 360', with a soft spot at 287' (no additional water observed). Predominantly 420.0 softer dark grey schist from 380' to 615'. Small fracture noted at 450' corresponding to quartzite bed. 440.0 Exploration ended at 615', final estimated yield ~330 gpm. Majority of water appears to come from fracture at ~130', however, difficult to discern discrete fractures below this depth due to volume of water being produced from well. 460.0 500.0 520.0 540.0 540.0 560.0 580.0 600.0 600.0 600.0			280.0		
160' to 615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260' to 360', with a soft spot at 287' (no additional water observed). Predominantly softer dark grey schist from 380' to 615'. Small fracture noted at 450' corresponding to quartzite bed. 400.0 Exploration ended at 615', final estimated yield ~330 gpm. Majority of water appears to come from fracture at ~130', however, difficult to discern discrete fractures below this depth due to volume of water being produced from well. 460.0 500.0 520.0 540.0 560.0 580.0 600.0			300.0		
160' to 615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260' to 360', with a soft spot at 287' (no additional water observed). Predominantly softer dark grey schist from 380' to 615'. Small fracture noted at 450' corresponding to quartzite bed. 420.0 Exploration ended at 615', final estimated yield ~330 gpm. Majority of water appears to come from fracture at ~130', however, difficult to discern discrete fractures below this depth due to volume of water being produced from well. 440.0 480.0 500.0 520.0 540.0 540.0 580.0 600.0 580.0			320.0		
160' to 615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260' to 360', with a soft spot at 287' (no additional water observed). Predominantly softer dark grey schist from 380' to 615'. Small fracture noted at 450' corresponding to quartzite bed. 420.0 Exploration ended at 615', final estimated yield ~330 gpm. Majority of water appears to come from fracture at ~130', however, difficult to discern discrete fractures below this depth due to volume of water being produced from well. 440.0 500.0 520.0 540.0 540.0 580.0 600.0			340.0		
160' to 615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260' to 360', with a soft spot at 287' (no additional water observed). Predominantly softer dark grey schist from 380' to 615'. Small fracture noted at 450' corresponding to quartzite bed. 400.0 Exploration ended at 615', final estimated yield ~330 gpm. Majority of water appears to come from fracture at 440.0 440.0 grey schist from well. 440.0 500.0 500.0 520.0 540.0 540.0 580.0 600.0 580.0			360.0		
160' to 615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260' to 360', with a soft spot at 287' (no additional water observed). Predominantly softer dark grey schist from 380' to 615'. Small fracture noted at 450' corresponding to quartzite bed. 420.0 Exploration ended at 615', final estimated yield ~330 gpm. Majority of water appears to come from fracture at ~130', however, difficult to discern discrete fractures below this depth due to volume of water being produced from well. 460.0 520.0 540.0 520.0 540.0 560.0 580.0 600.0 580.0 600.0			380.0		
160' to 615': Similar lithology to above. Predominantly light grey to white quartzite or thinly interbedded schist and quartzite from 260' to 360', with a soft spot at 287' (no additional water observed). Predominantly softer dark grey schist from 380' to 615'. Small fracture noted at 450' corresponding to quartzite bed. 420.0 Exploration ended at 615', final estimated yield ~330 gpm. Majority of water appears to come from fracture at ~130', however, difficult to discern discrete fractures below this depth due to volume of water being produced from well. 460.0 520.0 540.0 540.0 560.0 580.0 600.0			400.0		
Softer dark grey schist from 380' to 615'. Small fracture noted at 450' corresponding to quartite bed. 440.0 Exploration ended at 615', final estimated yield ~330 gpm. Majority of water appears to come from fracture at ~130', however, difficult to discern discrete fractures below this depth due to volume of water being produced from well. 460.0 9 500.0 500.0 520.0 540.0 540.0 580.0 660.0 580.0					
Exploration ended at 615', final estimated yield ~330 gpm. Majority of water appears to come from fracture at ~130', however, difficult to discern discrete fractures below this depth due to volume of water being produced from well. 460.0 480.0 500.0 520.0 540.0 540.0 580.0 600.0					
480.0 500.0 520.0 540.0 560.0 580.0 600.0	Exploration ended at 615', final estimated yield ~330 gpm. Maj	ority of water appears to come from fracture			
- 480.0 500.0 520.0 540.0 560.0 580.0 600.0					
520.0 540.0 560.0 580.0 600.0					
540.0 560.0 580.0 600.0			500.0		
560.0 580.0 600.0			520.0		
580.0 600.0			540.0		
600.0			560.0		
			580.0		
620.0 i			600.0		
			620.0	ⁱ	1
				1	

RANSOM				
Consulting	MONITO	RING	WEL	L LOG
Engineers				• • •
and Scientists				
Project: Nordic Aquafarms	Drilling Co.: Goodwin Well and Wa	ater	Boring/V	Vell No.: GWW-101
Project No.: 171.05027.003	Driller: Joe Bubier			.: Standard Ransom Lock
Site Location: BWD- Lower Reservoir Property	Drilling Method: Air Roatary		Start Da	te: 2/26/2018
Geologist: Drew Fuchs	Drilling Equip: Water Well Rig		Date Co	mplete: 2/28/2018
Ground Elev.: 42 feet (Approximate)	Static Water (bgs):		Total Bo	ring Depth: 320 feet
Top of Casing Elev.: 43.40 feet (Surveyed)	Easting: 500767.7 m		Northing	: 4915866.5 m (UTM 19N)
Remarks: Boring advanced through overburden using 8 3/4" r 3/4" hole and air rotary used to advanced into bedrock.	mud roatary into bedrock. Casing driven to be	ottom of 8		
3/4 Hole and all fotally used to advanced into bedrock.			AS	-BUILT WELL SCHEMATIC
		-		
GEOLOGIC LOG	•	Depth (ft.) 2.0 - 3.0		
		Above Grade		
Above Grade		1.0 - 2.0 Above Grade		1.5' stick-up, finished with locking cap
		0.0 - 1.0		
		Above Grade	H	Grade
0' to 15': Clayey glaciomarine silt (Presumpscot Formation) an	nd silty gravel till. Overburden.	10.0		Well Casing Material: Steel
15' to 26.5': Heavily weathered phyllitic grey schist. Casing dri	iven to ~26.5' bgs.	20.0		Well Casing Diameter: 6 inches
, , , , , , , , , , , , , , , , , , ,	~	30.0		Well Casing Length: 28 feet
		40.0		Depth to Bedrock: 15 feet
26.5' to 78': Interbedded moderately weathered brownish-grey quartzite. Quartzite beds less frequent and harder to drill than		50.0		Depth of Casing: 26.5 feet
produced.	, , at the approximation water beiling	60.0		
		70.0		
		80.0		
		90.0		Open Interval: 26.5 - 320 feet
78' to 139': Minimally weathered interbedded dark grey phylliti Quartzite beds less frequent and harder to drill than phyllitic b		100.0		Open Hole Diameter: 6 inches
encountered at 78' (12 gpm), 112' (8 gpm), and 136' to 139' (5		110.0		
		120.0		
		130.0		
		140.0		
		150.0		
		160.0		
		170.0		
		180.0		
		190.0		
		200.0		
139' to 286': Similar lithology to above. Quatrzite beds (~10' th	nick) alternate with phyllitic beds (~10' thick)			
Quartzite to phyllite ratio near ~50%. Water producing fracture	es encountered at 235' (25 gpm), 275' (50	210.0		
gpm), 285' (50 gpm). Air hammer flooded (well producing ~20 air.	0 gpm), continue drilling with roller bit and	220.0		
		230.0		
		240.0		
		250.0		
		260.0		
		270.0		
		280.0		
		290.0		
286' to 320': Lithilogy and bed thickness/spacing similar to ab observable increase in yield. Exploration ended at 320' bgs, to		300.0		
pumping at 200 gpm.	otar yielu estimateu aner ~1 nour an ill	310.0		
		320.0		

Engineers and Scientists				
Project: Nordic Aquafarms	Drilling Co.: Goodwin Well and Wa	ater	Boring	/Well No.: GWW-102
Project No.: 171.05027.003	Driller: Joe Bubier		Lock N	No.: Standard Ransom Lock
Site Location: BWD- Upper Reservoir Property	Drilling Method: Air Roatary		Start D	Date: 2/28/2018
Geologist: Drew Fuchs	Drilling Equip: Water Well Rig		Date 0	Complete: 3/1/2018
Ground Elev.: 73.5 feet (Approximate)	Static Water (bgs):		Total B	Boring Depth: 420 feet
Top of Casing Elev.: 74.70 feet (Surveyed)	Easting: 499642.9 m		Northi	ng: 4916242.6 m (UTM 19N)
Remarks: Boring advanced through overburden using 8 3/4 3/4" hole and air rotary used to advanced into bedrock. Cas pushed further after additional drilling, and final casing dept neavily weathered nature of formation.	ing originally set at 38' bgs, however, casing w	as easily		AS-BUILT WELL SCHEMATIC
GEOLOGIC LO	OG	Depth (ft.)		
		2.0 - 3.0 Above Grade		
Above Grade		1.0 - 2.0		1' stick-up, finished with locking cap
nuove Graue		Above Grade		
		0.0 - 1.0 Above Grade		Grade
		10.0		
0' to 32': Overburden. Predominantly clayey glaciomarine si	It (Presumpscot Formation)	20.0		Well Casing Material: Steel
				Well Casing Diameter: 6 inches
32' to 41': Heavily weathered dark grey phyllitic schist. No a	ppreciable water produced.	30.0		Well Casing Length: 42 feet
		40.0		Depth to Bedrock: 32 feet
		50.0		Depth of Casing: 41 feet
		60.0		
41' to 108': Heavily weathered dark grey phyllitic schist. Una		70.0		1
extremely soft and hole stripping some during drilling. Casir		80.0		1
produced.				Open Interval: 41 - 420 feet
		90.0		
		100.0		Open Hole Diameter: inches
		110.0		
		120.0		
		130.0		
		140.0		
		150.0		
		160.0		
		170.0	l	1
		180.0	ļ	
		190.0		
		200.0		
108' to 333': Moderately weathered dark grey phyllitic schist	interbedded with light grey/white guartzite.	210.0		1
Quartzite beds ~10' to 20' thick and phyllitic beds ~15' to 60	thick. Fractures producing water	220.0		
encountered at 108' (7.5 gpm), 126' (12.5 gpm), 220' (10 gp from 330' to 333', but no appreciable water noted.	m), 244' (33 gpm). Sotter drilling encountered	230.0		
ees to ooo, but no appreciable water noted.		240.0		
		250.0		
		260.0		
		270.0		
		280.0		
		290.0		
		300.0		1
		310.0		1
		320.0		
		330.0		
		340.0		1
		350.0		
		360.0		1
		370.0		
333' to 420': Predominantly moderately to slightly weathered of quartzite beds observed. No additional water bearing fractional states and the states of		380.0		
or ~1-hour after completion. Final estimated yield of 63 gpr		390.0		
		400.0		
		410.0		
			1	1
		420.0		
		420.0	Ł.	_1
		420.0	Ĺ.	_1

RANSOM				
Consulting	MONITO	RING	WEL	L LOG
Engineers				
and Scientists	1		r	
Project: Nordic Aquafarms	Drilling Co.: Goodwin Well and Wa	ater		Vell No.: GWW-103
Project No.: 171.05027.003	Driller: Joe Bubier			.: Standard Ransom Lock
Site Location: BWD- Lower Reservoir Property Geologist: Drew Fuchs	Drilling Method: Air Roatary Drilling Equip: Water Well Rig			te: 3/5/2018 mplete: 3/7/2018
Ground Elev.: 30 feet (Approximate)	Static Water (bgs):			ring Depth: 340 feet
Top of Casing Elev.: 31.80 feet (Surveyed)	Easting: 500888.3 m			: 4915776.5 m (UTM 19N)
Remarks: Boring advanced through overburden using 8 3/4" m	÷	ottom of 8		,
3/4" hole and air rotary used to advanced into bedrock.				
			AS	BUILT WELL SCHEMATIC
GEOLOGIC LOG		Depth (ft.)		
		2.0 - 3.0 Above Grade		
Alteria Crada		1.0 - 2.0		~2' stick-up, finished with locking cap
Above Grade		Above Grade		
		0.0 - 1.0 Above Grade		Grade
0' to 16': Overburden. Clayey glaciomarine silt (Presumpscot F	formation) to 15' silty till from 15' to 16'	10.0		Well Casing Material: Steel
		20.0		Well Casing Diameter: 6 inches
16' to 29': Weathered dark gray phyllitic schist. Set casing to 29	9' bgs.	30.0		Well Casing Length: 31 feet
		40.0		
		50.0		Depth to Bedrock: 16 feet
		60.0		Depth of Casing: 29 feet
		70.0		
		80.0		
29' to 157': Interbedded dark grey phyllitic schist and light grey/	white quartzite Phyllitic beds range from			Open Interval: 29 - 340 feet
~10' to 30'+ in thickness, quartzite beds range from 5' to 20' in	thickness and are harder to drill through.	90.0		
Some borhole stripping occuring ~63'. Water bearing fractures gpm),	encountered at 63' (5 gpm) and 112' (15	100.0		Open Hole Diameter: 6 inches
98		110.0		
		120.0		
		130.0		
		140.0		
		150.0		
		160.0		
		170.0		
		180.0		
		190.0		
		200.0		
		210.0		
157' to 280': Lithology similar to above, however, quartzite bed fractures encountered at 157' (100 gpm), 272' (30 gpm), 276' (5	s slightly more common. Water bearing	220.0		
hammer unable to conitnue drilling. Air hammer removed and s		230.0		
		240.0		
		250.0		
		260.0		
		270.0		
		280.0		
		290.0		
		300.0		
280' to 240': Roller bit through similar lithology to above. Water gpm), and softer drilling at 336', though no additional water obs		310.0		
yield estimated by air lift for ~30-40 minutes. Final yield estimated		320.0		
		340.0		
		0.0		
1			-	

Consulting Engineers	MONITO	RING	WE	EL	L LOG
and Scientists					
Project: Nordic Aquafarms	Drilling Co.: Environmental Poject	s Inc.	Borii	ng/V	Vell No.: PZ-1D
Project No.: 171.05027.003	Driller: Mike				.: Standard Ransom Lock
Site Location: BWD- Lower Reservoir Property	Drilling Method: Direct Push		Star	t Da	te: 10/1/2018
Geologist: Thomas Neilson	Drilling Equip: Geoprobe 7822DT				mplete: 10/1/2018
Ground Elev.: 68 feet (Approximate)	Static Water (bgs):				ring Depth: 24 feet
Top of Casing Elev.: 70.14 feet (Surveyed)	Easting: 500172.1 m				: 4915945.6 m (UTM 19N)
Remarks: Boring advanced using direct push through overbui	Ç.	burden to	NOIL	ming	: 4913943.0 m (0 m 13N)
bedrock due to heavily weathered bedrock surface. Well deve completion.	eloped for ~40 minutes with peristaltic pump			AS	-BUILT WELL SCHEMATIC
GEOLOGIC LOG		Depth (ft.)			
		2.0 - 3.0 Above Grade			~2' stick-up, finished with protective
Above Grade		1.0 - 2.0	i r		standpipe and locking cap
Above Grade		Above Grade			
		0.0 - 1.0 Above Grade			Grade
		1.0			Well Casing Material: Sch. 40 PVC
		2.0			Well Casing Diameter: 1 inch
		3.0			Well Casing Length: 26 feet
		4.0	11		
0' to 8': Olive-brown mottled SILT, little to some Clay, little to t	rance fine sand. Presumpscot Formation				Depth to Bedrock: 24 feet
-		5.0			
		6.0			
		7.0	11		
		8.0			Annulus Fill Material: Native Formation
		9.0			Screen Interval: 19 - 24 feet
		10.0			Screen Size: 10-slot
10' to 12': Olive Brown highly plastic CLAY and SILT, wet/moi	st.				
		11.0			Sand Pack: #2 Sand
		12.0			
		13.0			
		14.0			
		15.0			
12' to 18': SAA grading to medium grey SILT, little clay, very p	plastic, wet.	16.0			
		10.0			
		17.0			
		18.0			
18' to 19': SAA grading to medium grey SILT, little to some Sa	and little clay trace f gravel wet	19.0			
To to 19. SAA grading to medium grey SIET, inter to some Se	and, nue clay, trace i. gravel, wet.			ļ	
		20.0		j	
		21.0			
19' to 24': Rusty red to grey SILT, some to little Clay, little san		22.0		ļ	
pedrock- difficult to distinguish boundary. Wet. End of explore	ation at 24'.			į	
		23.0		j	
		24.0			
			1 "	i	
			1		
			1		
		1			
			1		
			ł		
		I			
		1			
			1		
			1		
			1		
		1			
			1		
			1		
			ł		
		1			
			1		
			1		
		L	1		

RANSOM				
Consulting	MONITO	RING	WEL	L LOG
Engineers				
and Scientists				
Project: Nordic Aquafarms	Drilling Co.: Environmental Pojects	s Inc.		Vell No.: PZ-1S
Project No.: 171.05027.003	Driller: Mike			:: Standard Ransom Lock
Site Location: BWD- Lower Reservoir Property Geologist: Thomas Neilson	Drilling Method: Direct Push Drilling Equip: Geoprobe 7822DT			ite: 10/1/2018 omplete: 10/1/2018
Ground Elev.: 68 feet (Approximate)	Static Water (bgs):			pring Depth: 15 feet
Top of Casing Elev.: 70.16 feet (Surveyed)	Easting: 500171.2 m			g: 4915945.9 m (UTM 19N)
Remarks: Boring advanced using direct push through overbur	den. PZ-1S installed as shallow pair to PZ-1			,
observed entering through screen during attempted developm clogged tubing from highly plastic clay.	ent with peristaltic pump. Unable to develop	due to		
slogged tabling instituting in places start.			AS	B-BUILT WELL SCHEMATIC
GEOLOGIC LOG		Depth (ft.)	1	
		2.0 - 3.0 Above Grade		
		1.0 - 2.0		~2' stick-up, finished with protective standpipe and locking cap
Above Grade		Above Grade		
		0.0 - 1.0 Above Grade		Grade
		1.0		Well Casing Material: Sch. 40 PVC
		2.0	1	Well Casing Diameter: 1 inch
		3.0	11	
		4.0		Well Casing Length: 17 feet
		5.0		Depth to Bedrock: N/A
		6.0		
		7.0		
See PZ-1D for geologic description.				
		8.0		Annulus Fill Material: Native Formation Screen Interval: 10 - 15 feet
		9.0	┨┦╹	
		10.0		Screen Size: 10-slot
		11.0		Sand Pack: #2 Sand
		12.0		
		13.0		
		14.0		
		15.0		
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			-	
			1	

RANSOM				
Consulting	MONITO	RING	WFI	
Engineers				
and Scientists				
Project: Nordic Aquafarms	Drilling Co.: Environmental Pojects	Inc.	-	Vell No.: PZ-2
Project No.: 171.05027.003	Driller: Mike			.: Standard Ransom Lock
Site Location: BWD- Lower Reservoir Property	Drilling Method: Direct Push			te: 10/1/2018
Geologist: Thomas Neilson	Drilling Equip: Geoprobe 7822DT Static Water (bgs):			mplete: 10/1/2018
Ground Elev.: 41 feet (Approximate) Top of Casing Elev.: 42.95 feet (Surveyed)	Easting: 500730.2 m			pring Depth: 11 feet g: 4915907.5 m (UTM 19N)
Remarks: Boring advanced using direct push through overburde		to lack of		
measureable groundwater.				
			AS	B-BUILT WELL SCHEMATIC
GEOLOGIC LOG		Depth (ft.)		
		2.0 - 3.0 Above Grade		
Alterna Oracla		1.0 - 2.0		~2' stick-up, finished with protective standpipe and locking cap
Above Grade		Above Grade		
		0.0 - 1.0 Above Grade		Grade
		1.0		Well Casing Material: Sch. 40 PVC
		2.0		Well Casing Diameter: 1 inch
		3.0		Well Casing Length: feet
		4.0		Depth to Bedrock: feet
0' to 9.5': 2" organic soil over Olive-brown SILT, little clay, little fi	ne sand, moist.	5.0		
		6.0	1	
		7.0		
		8.0		Annulus Fill Material: Native Formation
		9.0		Screen Interval: feet
9.5' to 11': Brown fine SAND and SILT, little clay, trace gravel (til	I) grading into heavily weathered brown	10.0		Screen Size: 10-slot
bedrock, wet. Refusal at 11'.		11.0		Sand Pack: #2 Sand
			(
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			1	
			l	

RANSOM				
Consulting	MONIT	ORING	WEL	LLOG
Engineers				
and Scientists				
Project: Nordic Aquafarms	Drilling Co.: Environmental Poj	ects Inc.	-	Vell No.: PZ-3
Project No.: 171.05027.003	Driller: Mike			.: Standard Ransom Lock
Site Location: BWD- Lower Reservoir Property	Drilling Method: Direct Push Drilling Equip: Geoprobe 78221	דר		te: 10/1/2018 omplete: 10/1/2018
Geologist: Thomas Neilson Ground Elev.: 49 feet (Approximate)	Static Water (bgs):			pring Depth: 12 feet
Top of Casing Elev.: 51.39 feet (Surveyed)	Easting: 500684.7 m			g: 4915945.7 m (UTM 19N)
Remarks: Boring advanced using direct push through overbur	÷	due to lack of	Northing	g. 4919949.7 III (OTWI 1914)
measureable groundwater.				
			AS	B-BUILT WELL SCHEMATIC
GEOLOGIC LOG		Depth (ft.)		
		2.0 - 3.0		
		Above Grade		~2' stick-up, finished with protective standpipe and locking cap
Above Grade		Above Grade		standpipe and locking cap
		0.0 - 1.0 Above Grade		Grade
		1.0	H	Well Casing Material: Sch. 40 PVC
		2.0	1	-
		3.0		Well Casing Diameter: 1 inch
		4.0		Well Casing Length: 14 feet
0' to 9.75': Olive-brown to greay SILT, some to little Clay, som	e to little fine Sand, mottled, moist	5.0		Depth to Bedrock: 12 feet
		6.0	ļļ	
		7.0		
		8.0		Annulus Fill Material: Native Formation
		9.0		Screen Interval: 7 - 12 feet
9.75' to 12': Brownish-red SILT and SAND, little clay, little grav	vol (till) grading into graviah baavily	10.0		Screen Size: 10-slot
weathered bedrock (transition point difficult to identify). Moist.	Refusal at 12'.	11.0		Sand Pack: #2 Sand
		12.0		
			·	<u>,</u>
			1	
			1	
			1	
			1	
			1	
			ļ	
			1	

RANSOM				
Consulting	MONITO	RING	WEL	L LOG
Engineers				
and Scientists	Drilling Co - Environmental Reise	to Inc	Dering	
Project: Nordic Aquafarms Project No.: 171.05027.003	Drilling Co.: Environmental Pojec Driller: Mike	13 IIIC.	-	Well No.: PZ-4D b.: Standard Ransom Lock
Site Location: BWD- Lower Reservoir Property	Drilling Method: Direct Push			ate: 10/2/2018
Geologist: Thomas Neilson	Drilling Equip: Geoprobe 7822DT			omplete: 10/2/2018
Ground Elev.: 34.5 feet (Approximate)	Static Water (bgs):		Total Bo	pring Depth: 10 feet
Top of Casing Elev.: 36.47 feet (Surveyed)	Easting: 500800.2 m		Northing	g: 4915863.6 m (UTM 19N)
Remarks: Boring advanced using direct push through overbuintermittent stream. Unable to develop due to lack of measure		t to		
intermittent siteam. Onable to develop due to laok of measur	cable groundwater after completion.		AS	S-BUILT WELL SCHEMATIC
GEOLOGIC LOO	3	Depth (ft.)	1	
		2.0 - 3.0 Above Grade		~2' stick-up, finished with protective
Above Grade		1.0 - 2.0 Above Grade		standpipe and locking cap
		0.0 - 1.0		
		Above Grade	H	Grade
		1.0		Well Casing Material: Sch. 40 PVC
0' to 5': 8" Organic rich brown SILT, some fine Sand, some C Clay, some to little fine Sand, some to little gravel from 4.75'		2.0		Well Casing Diameter: 1 inch
only, some to intro the band, some to little graver holl 4.75	to other opposition and include a contract of the second sec	3.0		Well Casing Length: 12 feet
		4.0	ļļ	Depth to Bedrock: 8.75 feet
		5.0		
5' to 8.75': Olive-brown to brownish-grey SILT, some Clay, so	me to little fine Sand, moist.	6.0		
		7.0		
		8.0		Annulus Fill Material: Native Formation
8.75' to 10': Light grey crushed weathered bedrock. Refusal a	at 10'.	9.0		Screen Interval: 5 - 10 feet
		10.0		Screen Size: 10-slot
				Sand Pack: #2 Sand
			-	
			-	
			1	
		—		
		—		
			1	
			1	
			1	
			-	
			1	
]	
			-	

RANSOM			
Consulting	MONITORI	NG WE	LL LOG
Engineers			
and Scientists			
Project: Nordic Aquafarms	Drilling Co.: Environmental Pojects Inc		g/Well No.: PZ-4S
Project No.: 171.05027.003	Driller: Mike		No.: Standard Ransom Lock
Site Location: BWD- Lower Reservoir Property Geologist: Thomas Neilson	Drilling Method: Direct Push Drilling Equip: Geoprobe 7822DT		Date: 10/2/2018 Complete: 10/2/2018
Ground Elev.: 34.5 feet (Approximate)	Static Water (bgs):		Boring Depth: 5 feet
Top of Casing Elev.: 36.52 feet (Surveyed)	Easting: 500799.4 m		ning: 4915863.8 m (UTM 19N)
Remarks: Boring advanced using direct push through overburn	den. Located in narrow flood plain adjacent to		5
intermittent stream. Unable to develop due to lack of measure with top of screen at grade, however, locking standpipe extend		ed	
with top of soreen at grade, nowever, looking standpipe extend	s to o below grade.		AS-BUILT WELL SCHEMATIC
GEOLOGIC LOG	De	oth (ft.)	
	2.	I - 3.0 e Grade	
		- 2.0	~2' stick-up, finished with protective standpipe and locking cap
Above Grade	Abov	e Grade	
	0.1 Abov	l - 1.0 e Grade	Grade
		1.0	Well Casing Material: Sch. 40 PVC
		2.0	Well Casing Diameter: 1 inch
See PZ-4D log for geologic description.		3.0	
		4.0	Well Casing Length: 7 feet
		5.0	Depth to Bedrock: N/A
		— I L	l
			Annulus Fill Material: Native Formation
			Screen Interval: 0 - 5 feet
			Screen Size: 10-slot
			Sand Pack: #2 Sand
		_	
		_	
1			

APPENDIX D

Groundwater and Surface Water Data

Hydrogeologic Investigation Report Proposed Commercial Land-Based Aquaculture Facility Belfast Water District, Cassida Back Lot, and Mathews Brothers West Field Properties 285 Northport Avenue Belfast, Maine

Appendix D – Monitoring Data Description and Metadata

Hydrogeologic Investigation Report Proposed Commercial Land-Based Aquaculture Facility Belfast Water District, Cassida, and Mathews Brothers Properties 285 Northport Avenue Belfast, Maine

The appendix consists of electronic data files provided on a CD and/or USB drive with the hard copy of the above reference report. The files included herein are raw data files, and either do not lend themselves to being displayed as a printed table (e.g. too many lines) or are not intended to be displayed as tables. They are included in an effort to provide all relevant data collected during the performance of the activities detailed in the above referenced report to the MEDEP. The electronic media contains a folder with the following contents:

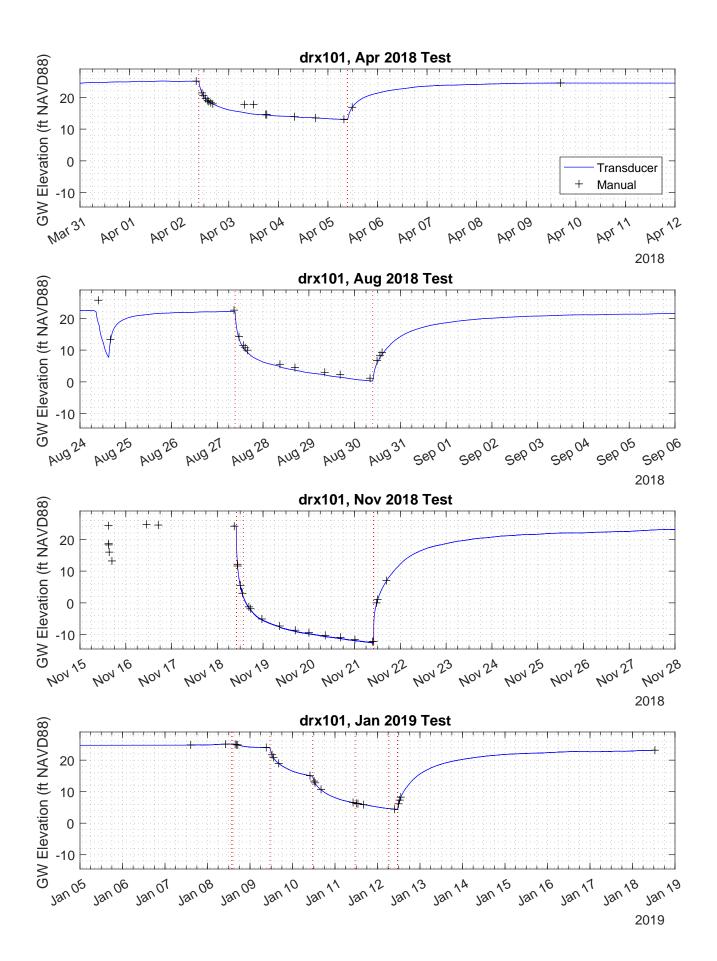
NAF_XDCRData_gen_01-Apr-2019.csv

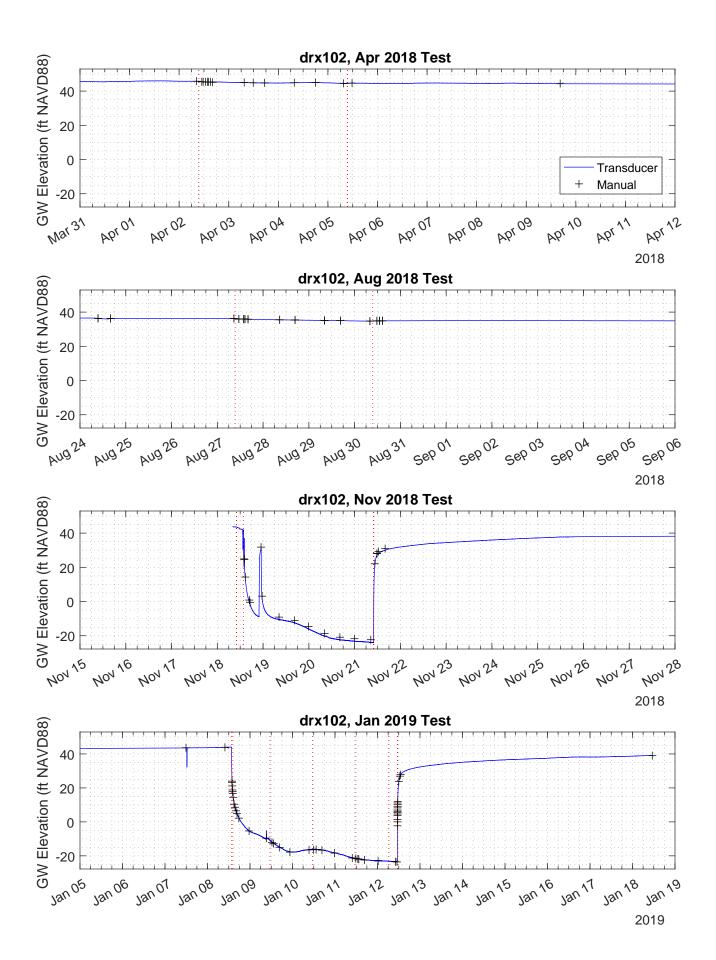
- 1. This file includes all the manual measurements collected at Nordic Aquafarms to date. It was created on April 1, 2019 by TBN.
- 2. Fields Include:
 - a. Monitoring Point- The name of the monitoring point where the measurement was made
 - b. t_st- Date and time of measurement given in eastern standard time
 - c. t_dst- Date and time of measurement given in eastern daylight savings time
 - d. DTW-btoc- The measured depth to water below the top of casing in feet, which is the surveyed reference point
 - e. gw_elev- The elevation of water in feet NAVD88, defined as the Survey Elevation DTW_btoc
 - f. Notes- Pertinent narrative information about the measurement
 - g. TestName- This pumping test during which the measurement was made. Values are as given:
 - Apr 2018: Initial pumping test with gww101 and gww103 pumped at 100 gpm for 72 hrs
 - Aug 2018: Second test, conducted to assess max yield of pw1, pw1 pumped at 250 gpm for 72 hours
 - Nov 2018: Third test, conducted to assess potential Site-Wide yield. Six wells pumped simultaneously for 72 hours
 - Jan 2019: The fourth test, conducted to assess connectivity between wells (e.g. fracture groups) by pumping four wells with staggered starts. Total run time 96 hours
 - Background: Any data point that does not fall within five days before the start of the test or ten days after the pump(s) were turned off

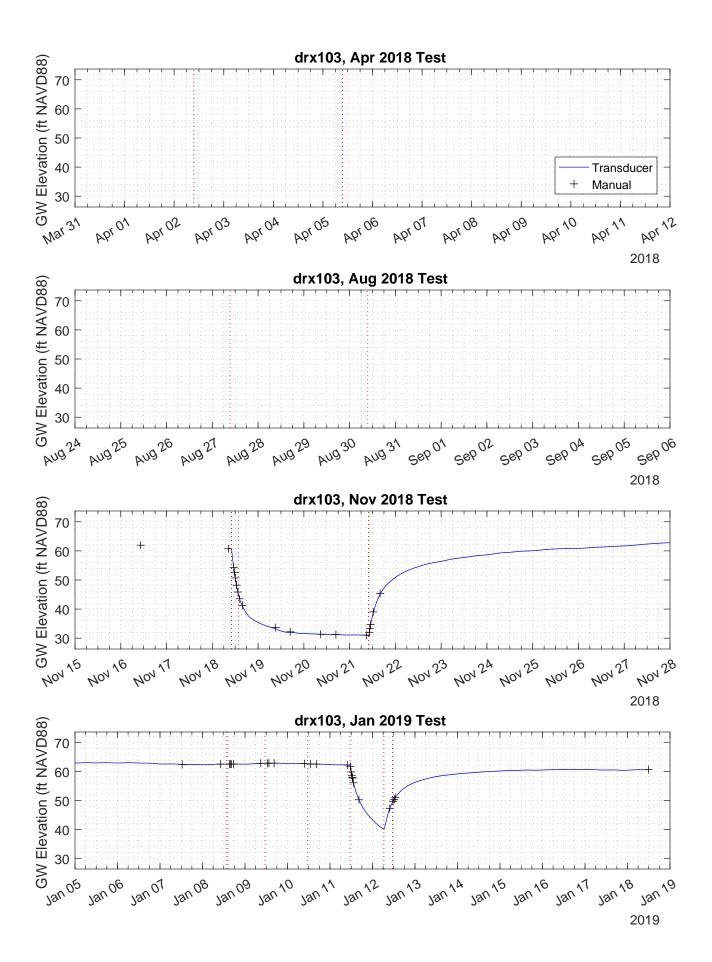
NAF_ManualData_gen_01-Apr-2019.csv

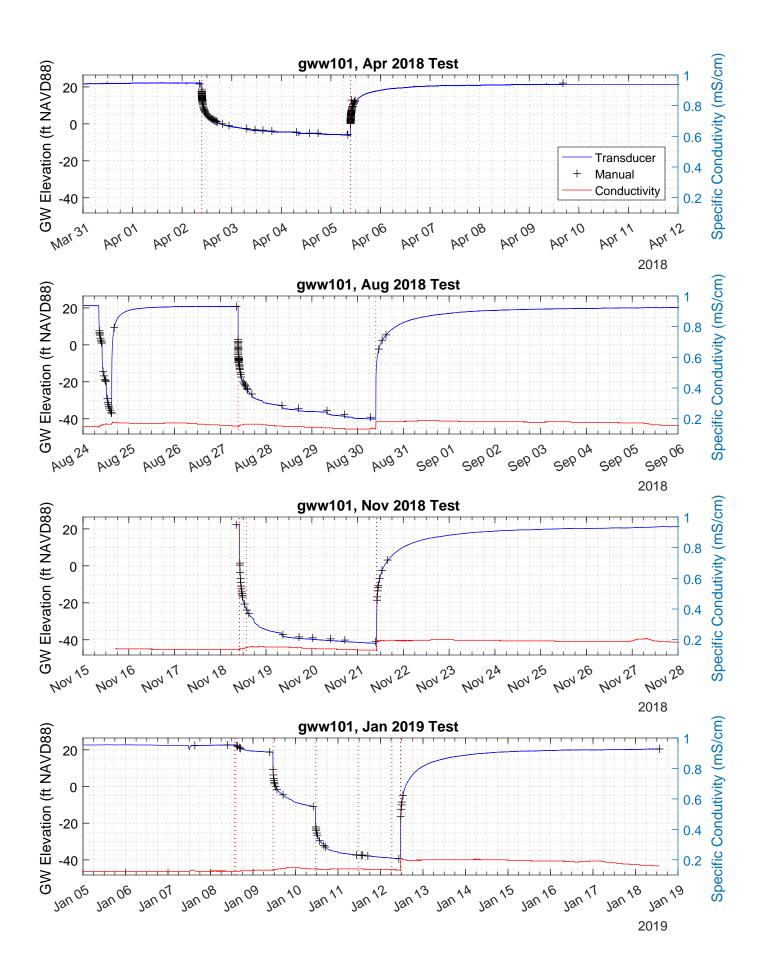
1. This file includes all the transducer measurements collected at Nordic Aquafarms to date. It was created on April 1, 2019 by TBN.

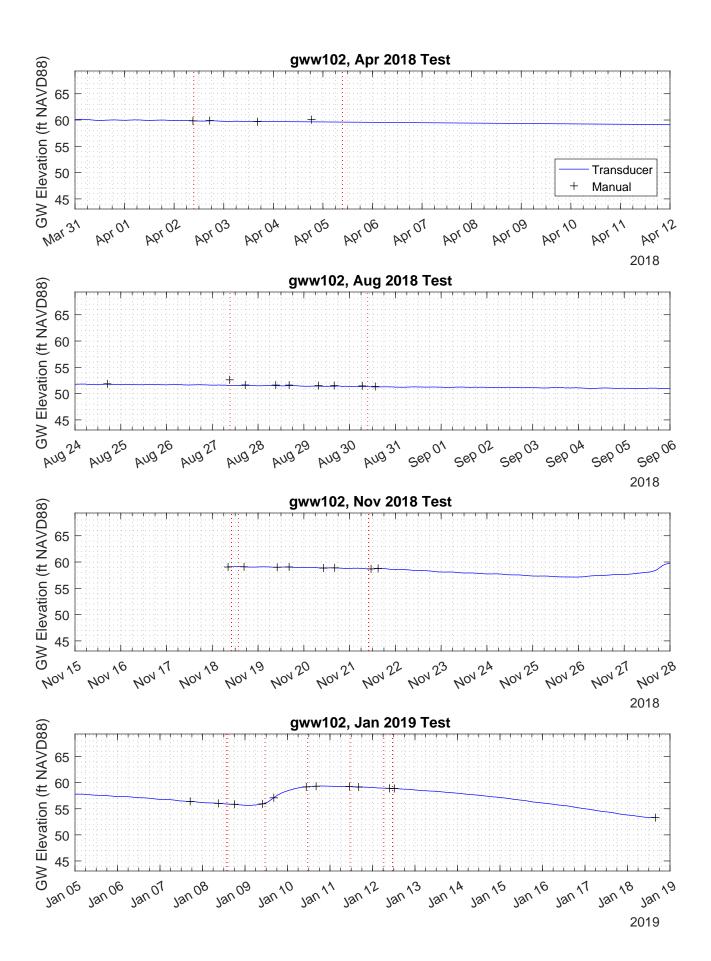
- 2. Fields include:
 - a. Monitoring Point- The name of the monitoring point the measurement was made at
 - b. t_st- Date and time of measurement given in eastern standard time
 - c. t_dst- Date and time of measurement given in eastern daylight savings time
 - d. Temperature- The temperature of the water at the time given in degrees Celsius
 - e. Conductivity- The specific conductance of the water at the time given in ms/cm. Instruments without this capability have a value of NaN entered.
 - f. WaterLevel- The height of water column above the instrument given in cm
 - g. DTW-btoc- The measured depth to water below the top of casing in feet, which is the surveyed reference point
 - h. gw_elev- The elevation of water in feet NAVD88, defined as the Survey Elevation DTW_btoc
 - i. TestName- This pumping test during which the measurement was made. Values are as given:
 - Apr 2018: Initial pumping test with gww101 and gww103 pumped at 100 gpm for 72 hrs
 - Aug 2018: Second test, conducted to assess max yield of pw1, pw1 pumped at 250 gpm for 72 hours
 - Nov 2018: Third test, conducted to assess potential Site-Wide yield. Six wells pumped simultaneously for 72 hours
 - Jan 2019: The fourth test, conducted to assess connectivity between wells (e.g. fracture groups) by pumping four wells with staggered starts. Total run time 96 hours
 - Background: Any data point that does not fall within five days before the start of the test or ten days after the pump(s) were turned off

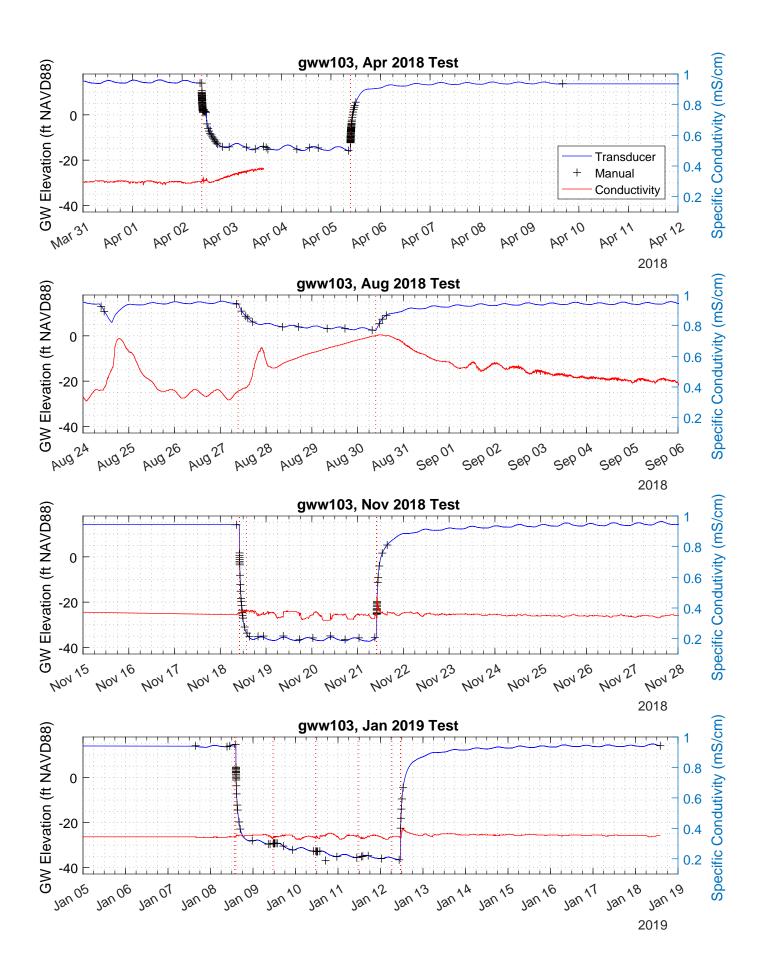

NAF_StreamData.xlsx

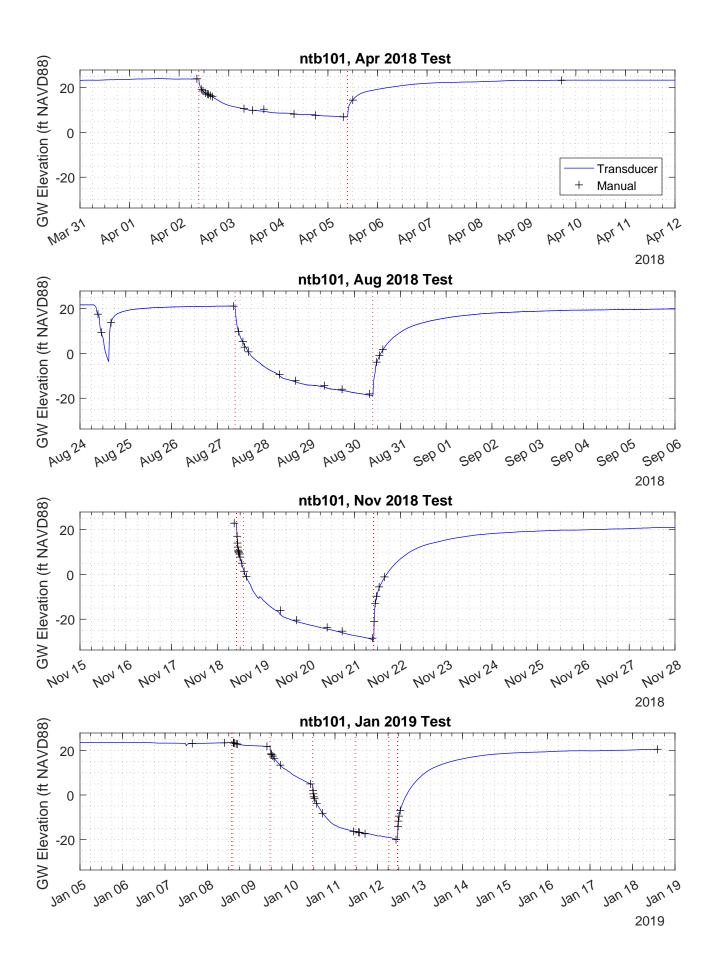

1. This file contains a spreadsheet that tabulates the calculated stream discharge in the Little River at each of the gaging locations. Stream gaging was conducted using a wading rod and flow meter using standard USGS procedures. For depths less than 2.5 feet along each transect the velocity was measured at 0.6 times the total depth, and depths greater than 2.5 feet the velocity was averaged between a measurement at 0.2 and 0.8 times the total depth. Transects were completed in the same location at each gaging event, and each transect had a minimum of 20 measurements recorded.

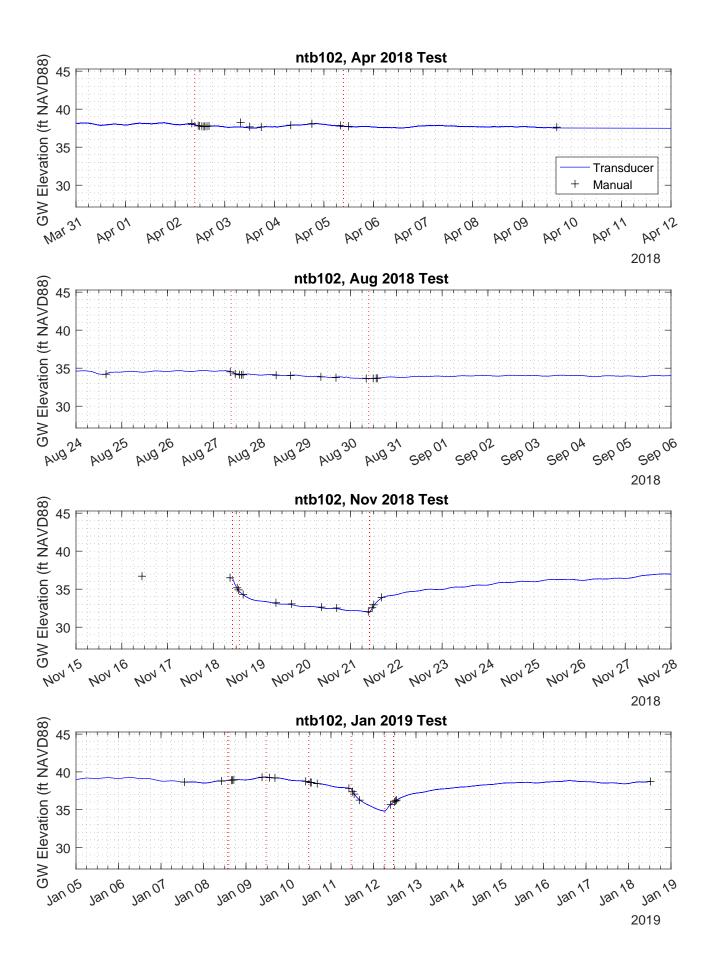

APPENDIX E

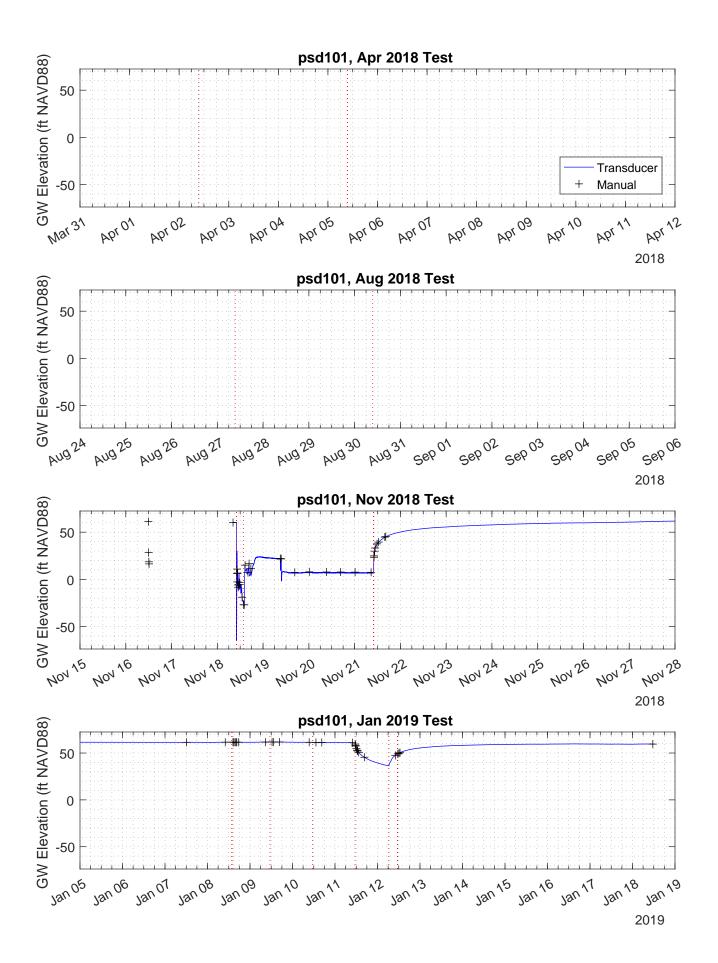

Aquifer Test Drawdown Plots

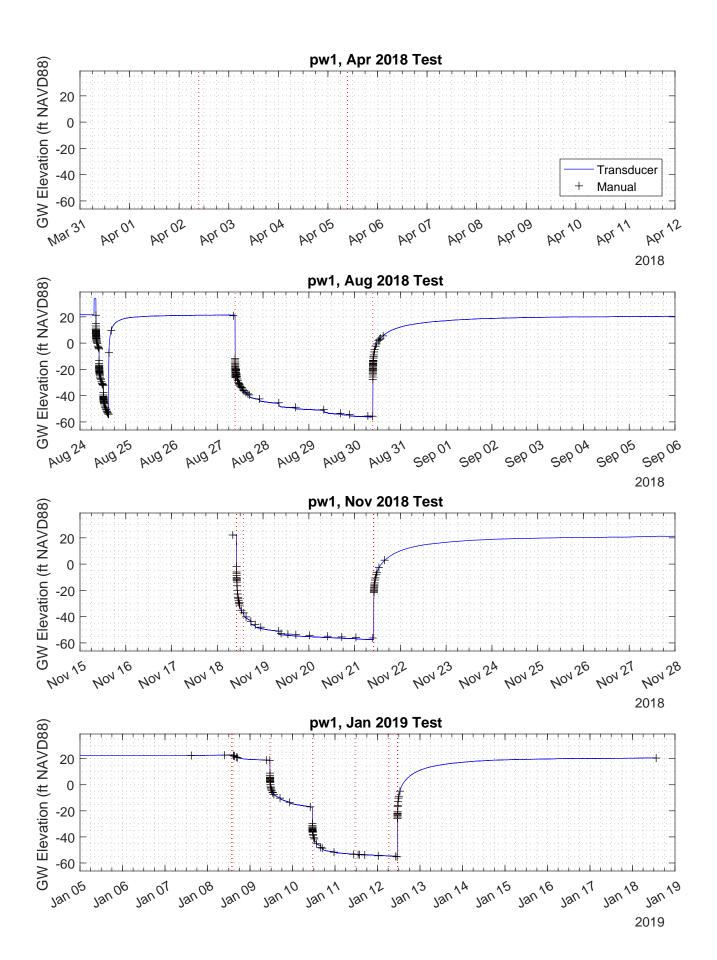

Hydrogeologic Investigation Report Proposed Commercial Land-Based Aquaculture Facility Belfast Water District, Cassida Back Lot, and Mathews Brothers West Field Properties 285 Northport Avenue Belfast, Maine

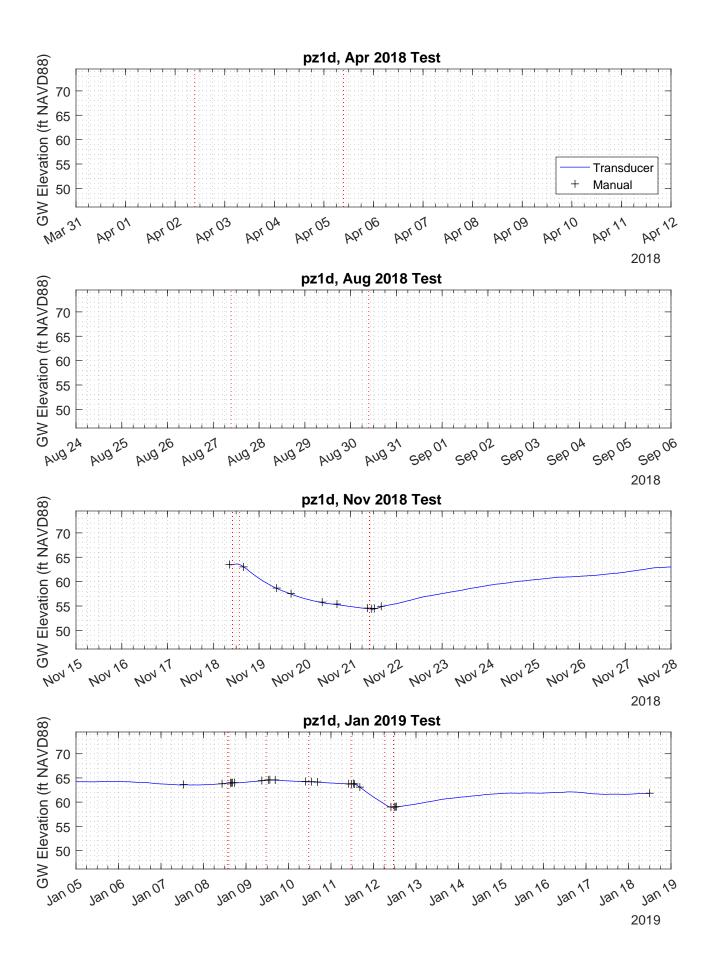


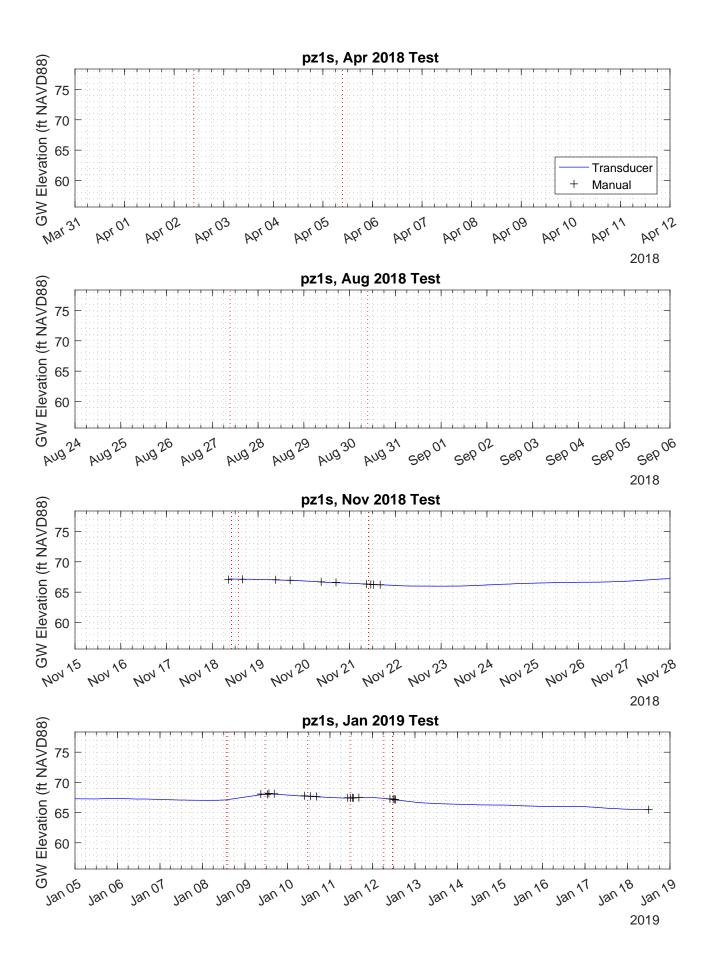


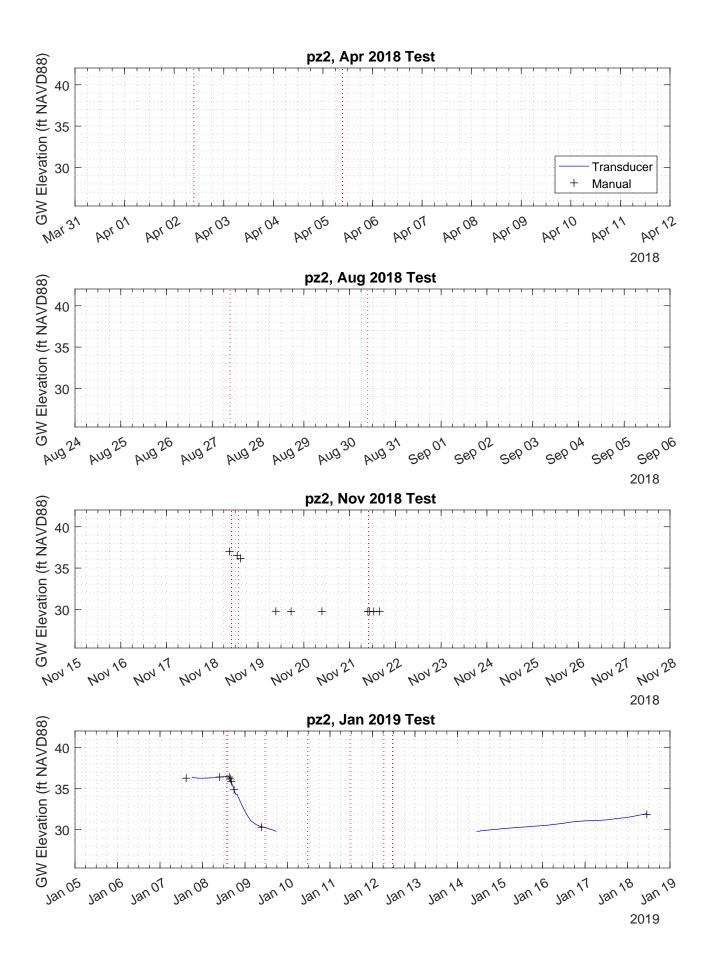




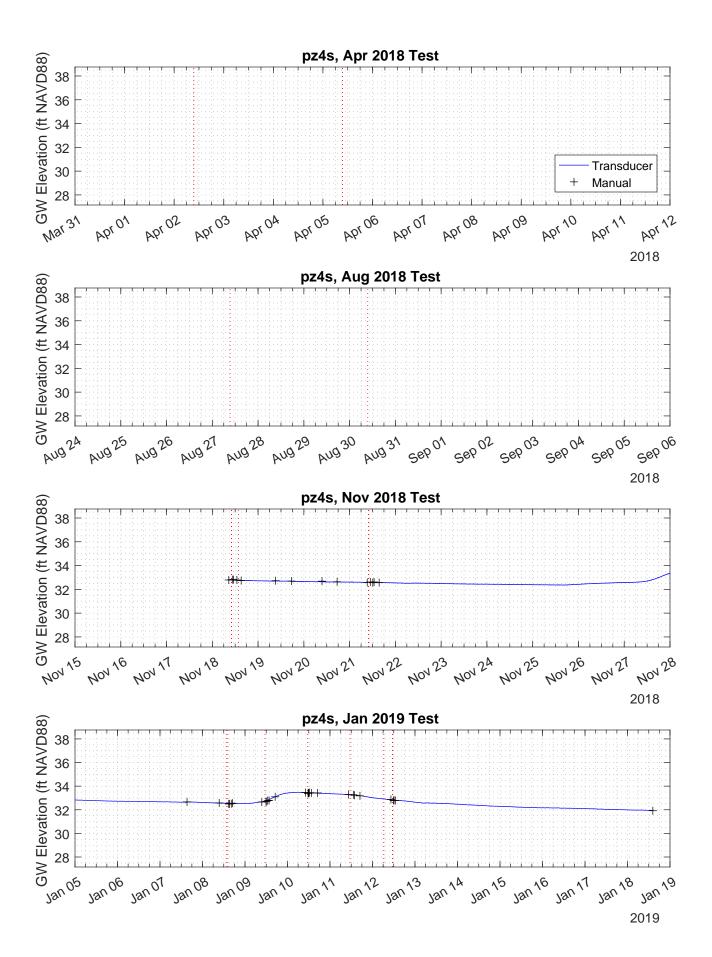


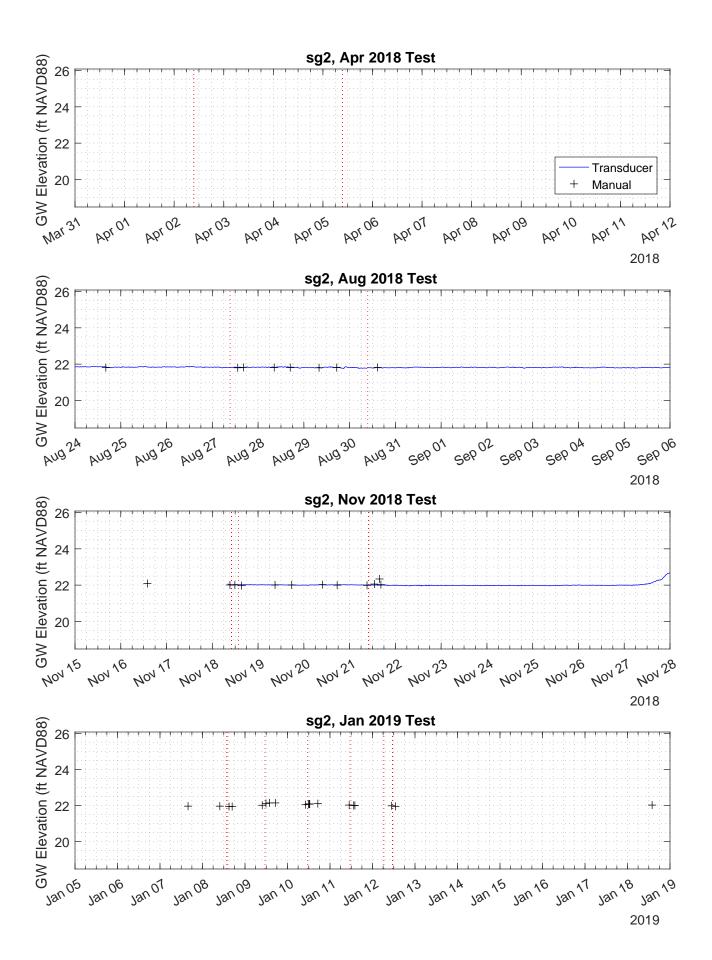


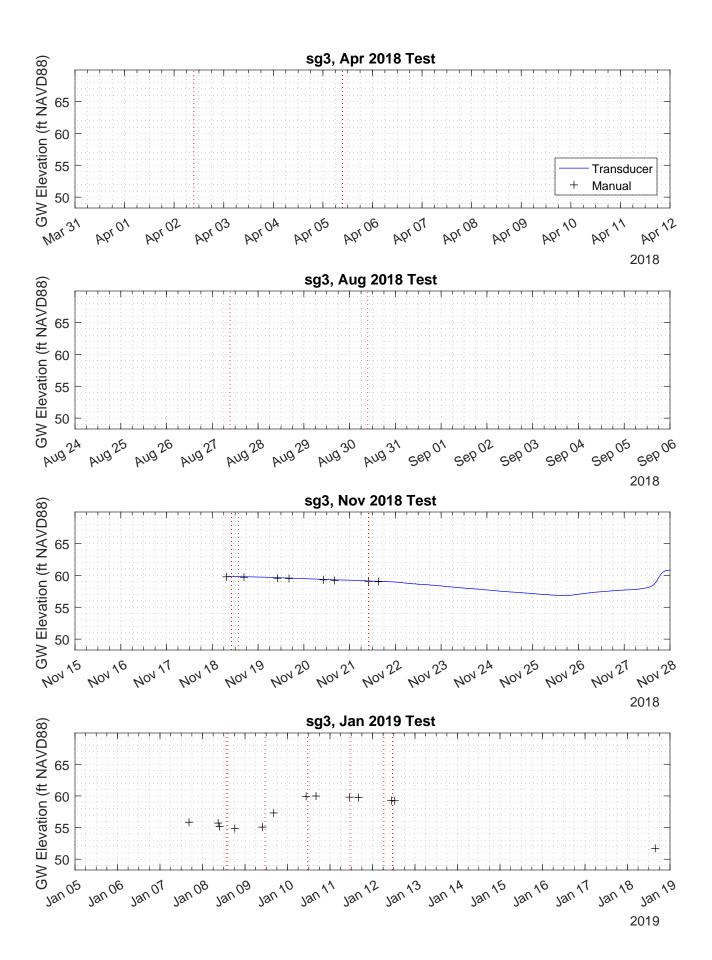


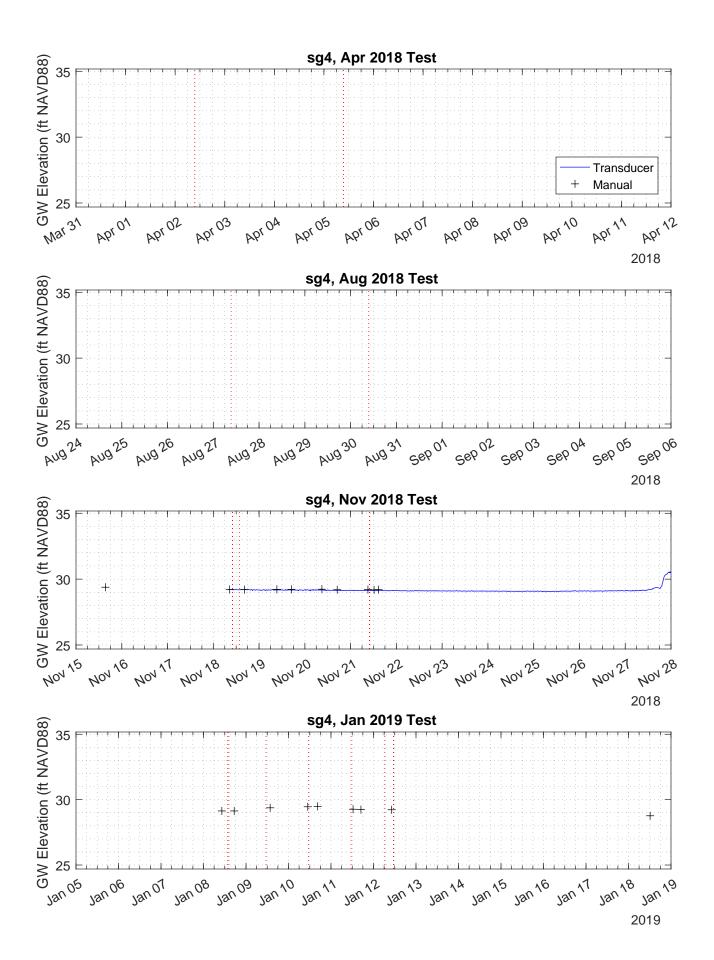


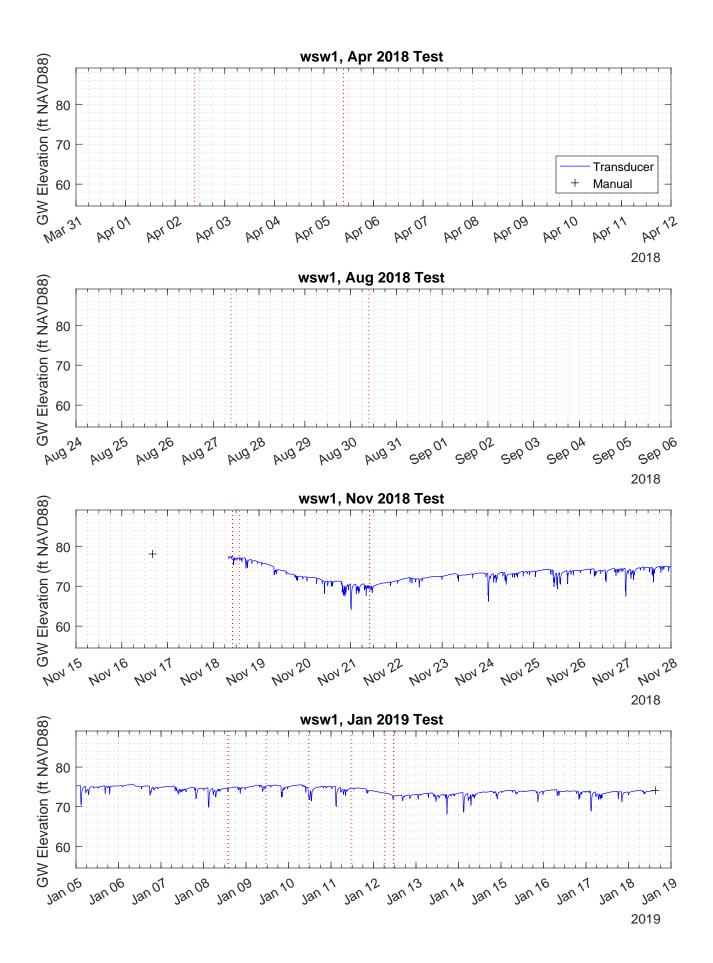


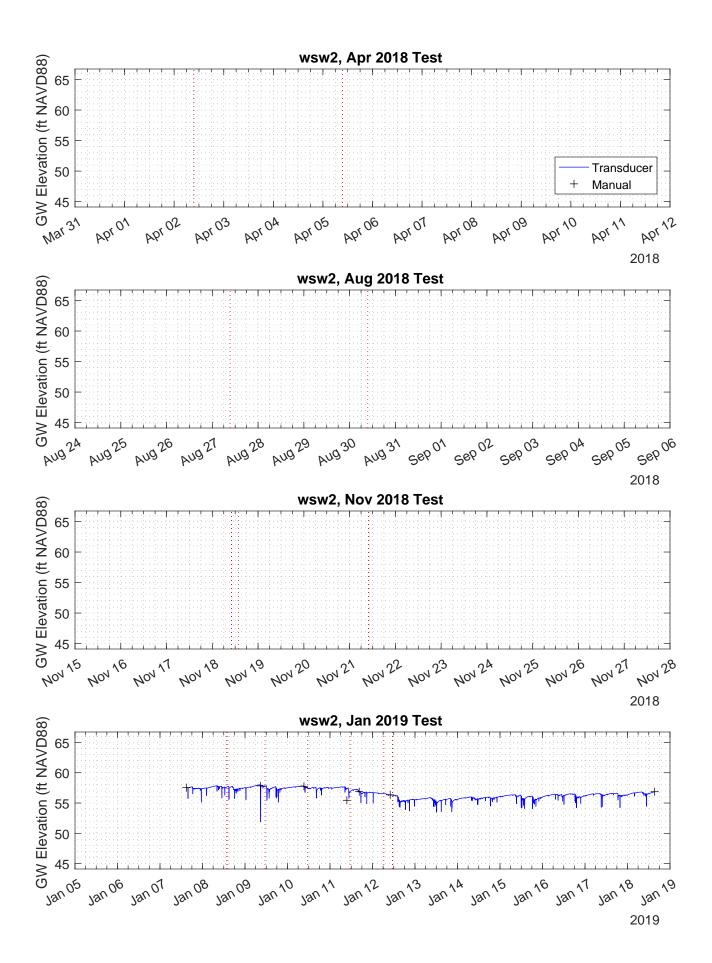


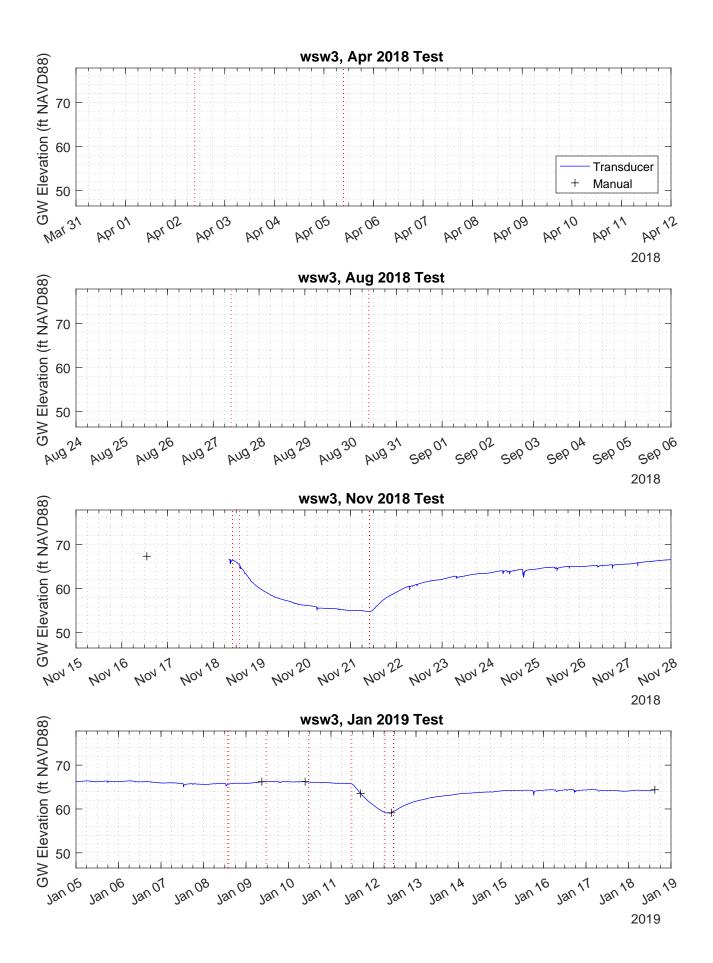


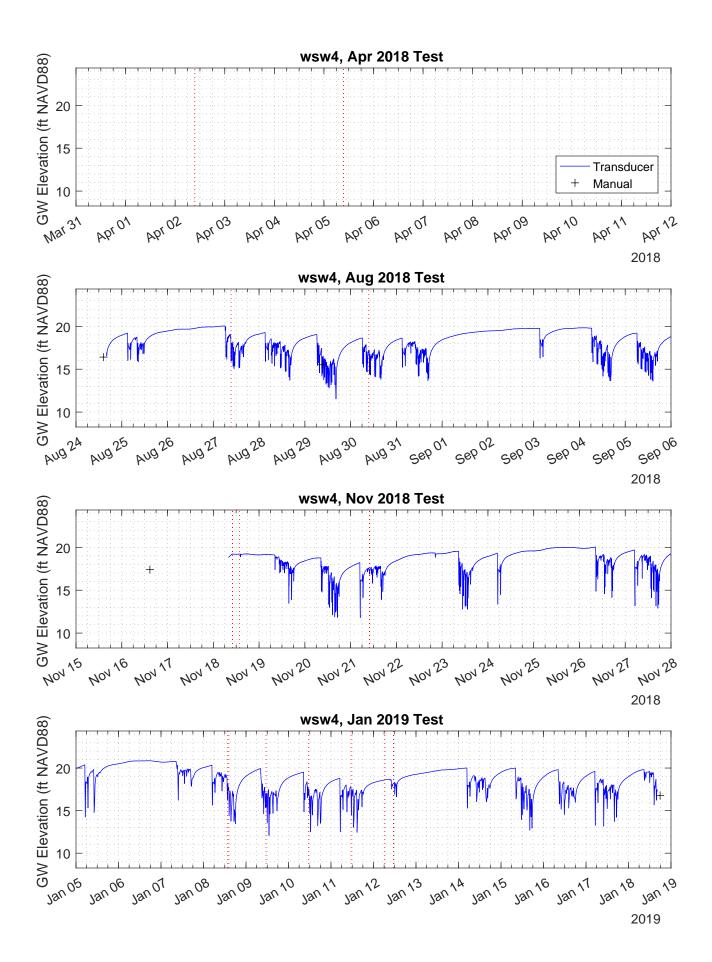


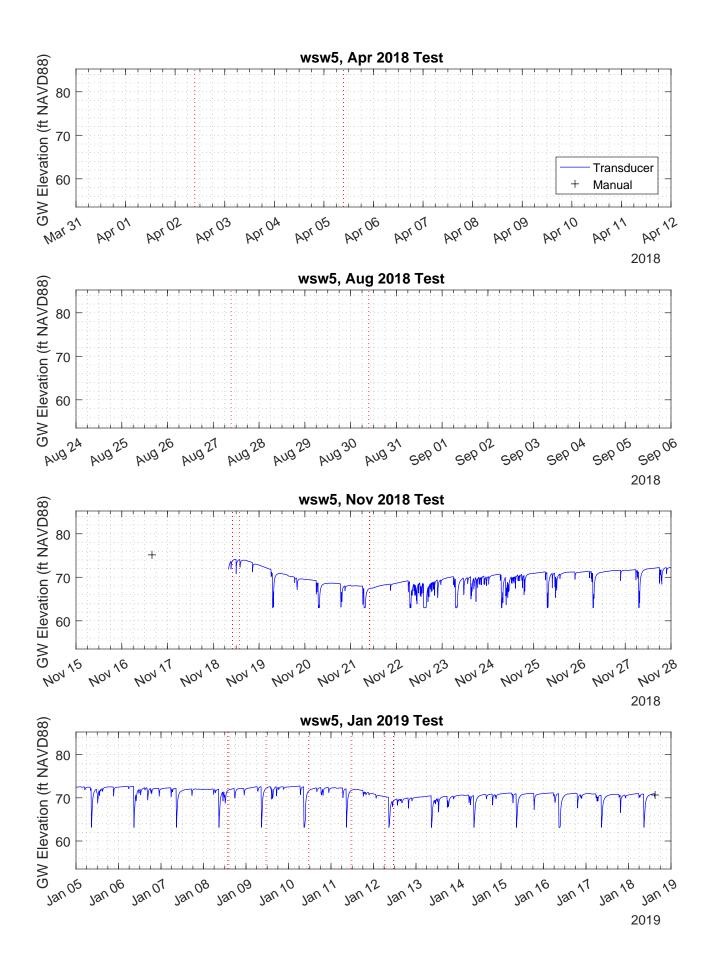


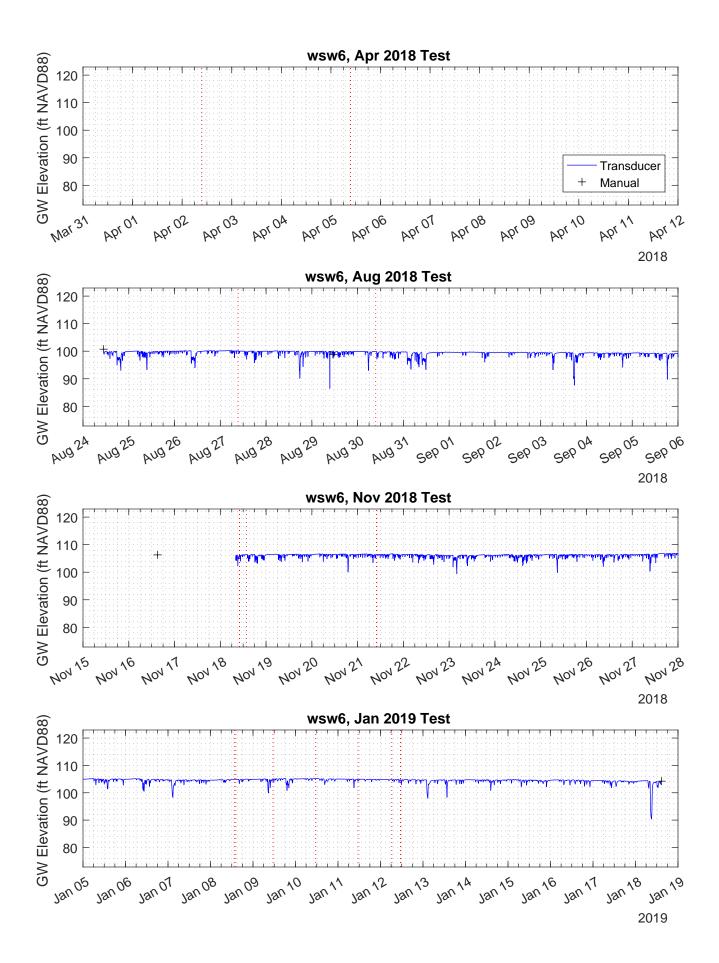












APPENDIX F

Groundwater Modeling Technical Memo

Hydrogeologic Investigation Report Proposed Commercial Land-Based Aquaculture Facility Belfast Water District, Cassida Back Lot, and Mathews Brothers West Field Properties 285 Northport Avenue Belfast, Maine

280 Pleasant Street, Concord, NH 03301 Phone: (603) 228-2280 www.mcdonaldmorrissey.com

FROM: Michael A. Mobile, Ph.D., McDonald Morrissey Associates, LLC
TO: Elizabeth M. Ransom, P.G., Ransom Consulting, Inc.
DATE: April 10, 2019
SUBJECT: Summary of Groundwater Modeling to Support Significant Groundwater Well Permit Application, Proposed Nordic Aquafarms Facility, Belfast, Maine

Background

This technical memorandum summarizes a groundwater modeling assessment performed by McDonald Morrissey Associates, LLC (MMA) to support the Significant Groundwater Well permit application associated with the proposed Nordic Aquafarms facility located in Belfast, Maine. The wells associated with this proposed facility are located on property situated immediately north of the Lower Reservoir (an area generally referred to herein as the Site). A map showing the Site location and associated key features is included as **Figure 1**.

The objectives of the modeling effort summarized herein are as follows:

- 1. Construct a numerical groundwater flow model for the bedrock aquifer occurring in the Site vicinity based on available data and information;
- 2. With support from the model, assess primary source(s) of recharge to the local bedrock aquifer and proposed supply well network; and
- 3. With support from the model, assess potential long-term viability of proposed withdrawal rates based on drawdown effects occurring away from the proposed well network.

The following sections summarize development of the above-referenced numerical model and results produced from its application. Additional background information pertaining to the Site, including summaries of the hydrogeologic setting, the conceptual hydrogeologic model, and data collection activities, is presented in the Site's Hydrogeologic Investigation Report.

Code Selection and Model Construction

A three-dimensional numerical model of the Site vicinity was prepared using the MODFLOW-USG (Un-Structured Grid) numerical modeling code (Panday et al., 2017). MODFLOW-USG was developed by the U. S. Geological Survey (USGS) to support a variety of structured and unstructured grid types, including nested grids and grids based on prismatic triangles, rectangles, hexagons, and other cell shapes. The flexibility in grid design afforded by MODFLOW-USG was used in this project to focus resolution along certain boundary conditions and in the vicinity of active groundwater withdrawals where hydraulic gradient magnitudes were anticipated to be greatest. Model pre- and post-processing steps were completed using the Groundwater Modeling System (GMS) software package¹.

The following information was used to support construction of the numerical model:

- Publicly-available information from the Maine Office of GIS Data Catalog², including surficial geology mapping; LiDAR elevation data; and hydrography coverages.
- Publicly-available information on private wells in the Site vicinity obtained from the Maine Geological Survey's Water Well Database³.
- Publicly-available predicted tide data obtained from the National Oceanographic and Atmospheric Administration (NOAA) Tides & Currents database⁴.
- Data collected during investigations conducted within the study area vicinity, including geophysical survey results; boring logs; measured groundwater elevations; and streamflow measurements. Locations associated with these measurements are illustrated as **Figure 2**.
- Reports describing local and regional hydrology and hydrogeology, including reports prepared by the United States Geological Survey (USGS).
- Input and output files associated with a preliminary numerical groundwater flow model for the Site vicinity developed by Ransom.

Model Domain and Spatial Discretization

MODFLOW-USG provides flexibility to efficiently focus finite-difference grid resolution in areas of interest. This functionality was used, as illustrated by **Figure 3**, to focus grid resolution near pumping wells to model cell dimensions of approximately 9 inches by 9 inches relative to row and column orientation, respectively. At the perimeter

¹ Groundwater Modeling System (GMS) – a software package developed by Aquaveo, LLC of Provo, UT. <u>https://www.aquaveo.com/software/gms-groundwater-modeling-system-introduction</u>

² Maine Office of GIS Data Catalog: <u>https://www1.maine.gov/geolib/catalog/index.shtml</u>

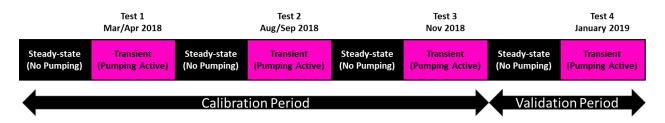
³ Maine Geological Survey Water Well Database: <u>https://www.maine.gov/dacf/mgs/pubs/digital/well.htm</u> ⁴ NOAA Tides & Currents Database: <u>https://tidesandcurrents.noaa.gov/</u>

of the model where grid resolution becomes coarse, model cell dimensions approach approximately 800 feet by 800 feet.

Vertically, the model domain was discretized using the following steps:

- 1. A generic model domain was developed and vertically divided into three (3) model layers⁵. Conceptually, layers 1 through 3 were created to approximately coincide with unconsolidated overburden materials (e.g., Presumpscot Formation, glacial till), the interfacial region between the unconsolidated overburden and competent bedrock (e.g., weathered bedrock zone), and the productive portion of the more-competent fractured bedrock aquifer, respectively.
- 2. The top of the model was designed based on LiDAR data available for the study area. LiDAR data were converted to a Triangulated Irregular Network (TIN), which was then converted to model layer 1 top elevation assignments within GMS using linear interpolation, as illustrated by **Figure 4**.
- 3. Bottom of layer 1 / top of layer 2 elevation assignments were supported by developing a data set containing reported bedrock depths from Site wells and the MGS private well database. Figure 5 shows the locations associated with this data set. Where surveyed reference elevations were not available (e.g., private wells), bedrock elevations were estimated by offsetting reported bedrock depths using available LiDAR elevation data. The resultant data set was then converted to model input using linear interpolation.
- 4. Similar to step 3, bottom of layer 2 / top of layer 3 elevation assignments were supported by developing a data set containing reported casing depths from Site wells and the MGS private well database.
- 5. Finally, layer 3 bottom elevation assignments were developed based on a constant thickness approach, where thickness was determined based on the difference between the casing bottom elevation and elevation at the depth-of-penetration at PW-1.

Cross-sections illustrating the extent of the model domain and vertical grid discretization, or model layering, are included as **Figures 6a and 6b**.


Temporal Discretization

Individual simulations were performed to support calibration (and sensitivity testing), verification, and application of the numerical model. The following table summarizes periods of coverage and the general manner in which time is discretized within each simulation:

⁵ Spatial discretization tasks were performed based on information projected using the Maine State Plane Coordinate System (East Zone) referenced horizontally to the North American Datum of 1983 (NAD83) and vertically to the North American Vertical Datum of 1988 (NAVD88), units of U.S. survey feet.

Simulation Type	Starting Date	Ending Date	Number of Stress Periods	Additional Notes
Calibration and Sensitivity Testing	3/30/2018	11/29/2018	133	Steady-state periods initialize transient periods spanning three pumping tests (1 through 3). Stress periods designed to represent variations in supply well pumping rates and predicted high and low tide conditions.
Verification	1/8/2019	1/18/2018	8	Single steady-state period initializing a transient period associated with pumping test 4. Stress periods designed to coincide with timing of well additions and rate increases.
Application	Not applicable		1	Steady-state projection runs performed with and without pumping to estimate maximum stabilized drawdown. Transient simulations used to estimate the time required for drawdowns to stabilize.

The simulation period associated with model calibration and verification can be schematically depicted relative to the pumping tests conducted at the Site as follows:

Boundary Conditions

A map showing the locations and types of boundary conditions represented within the model is included as **Figure 7**. These boundary types are described below by category:

No-Flow Boundaries

No-flow boundaries were used to limit the active portion of the model domain to an area coinciding with the approximate extent of the Little River watershed. These boundaries were assigned consistently in all model layers under the assumption that groundwater flow to-and-from the delineated drainage basin is small relative to flow within the active model area. A no-flow boundary was also assigned at the base of model layer 3, reflecting the assumption that deeper zones within the bedrock aquifer do not contribute significantly to wells drawing from shallower zones.

Specified Head Boundary

A combination of no-flow and constant head boundaries, the latter being assigned using the MODFLOW Time-Variant Specified Head or CHD package, was used to represent the freshwater/saltwater interface occurring along the coastline adjacent to Belfast Bay and within the tidal inlet below the Lower Reservoir.

Within model layer 1, these locations were treated as a specified head boundary. Tidal predictions at the NOAA subordinate station in Belfast (Station ID 8415191, refer to **Figure 8**) were used to support the development of CHD boundary head specifications. The approach used to convert this information to head specifications varied by simulation and stress period type. For transient stress periods associated with calibration simulations (i.e., where greater temporal definition was desired), head assignments were varied with time to account for the oscillating tidal condition. Head assignments pertaining to other simulations (i.e., verification and application) and all simulated steady-state stress periods are representative of a mean sea level condition⁶, which is assumed to approximate the average hydraulic condition at this boundary. Prior to developing the boundary assignments, tidal predictions were adjusted based on Haitjema (2007) to appropriately estimate the so-called "freshwater head" condition influencing the simulated freshwater system⁷.

Within model layers 2 and 3, the eastern limit of the active model domain was treated as no-flow boundary to reflect a steeply-dipping freshwater/saltwater interface. This approach is generally consistent with the Ghyben-Herzberg Relationship, which suggests that the depth to the position of the freshwater/saltwater interface can be estimated by multiplying the local freshwater hydraulic head by a factor of 40 (Masterson, 2004).

Head-Dependent Boundaries

The Little River and associated tributary network occurring above the Upper Reservoir and between the reservoirs were represented within the model using the MODFLOW Stream Flow Routing (SFR2) package. Stream top elevation inputs were estimated using available LiDAR data. Flow within the simulated streams was estimated using a wide channel approximation, as described by Niswonger and Prudic (2005).

The MODFLOW General Head Boundary (GHB) package was used to represent certain persistent water bodies, including the Upper Reservoir and the Lower Reservoir (refer to **Figure 7**). For the reservoirs, head assignments were developed by estimating an average representative stage based on available data collected from representative staff gages (SG-2 and SG-3). For smaller water bodies, representative heads were estimated using available LiDAR data.

The MODFLOW Drain (DRN) package was used to represent smaller streams and gullies occurring below the reservoirs. These features were assumed to represent limited sources of recharge to the local groundwater system. Drain bottom elevations were assigned based on available LiDAR data.

⁶ As reported as the Mean Sea Level (MSL) datum for NOAA subordinate station ID 8415191

⁷ "Freshwater head" conditions were estimated via equation 3 from Haitjema (2007) under the assumption of a confined flow condition.

As required for head-dependent boundaries, cell-specific conductance parameters are specified in the GHB and DRN input files⁸. Similarly, the hydraulic conductivities of streambed sediments are specified in the SFR2 input file. These values were included as variable parameters in the calibration process, as discussed in the **Model Calibration** section below.

Hydraulic Properties

Hydraulic properties assigned to active model cells include horizontal hydraulic conductivity (K_h), horizontal anisotropy factor (HANI)⁹, vertical anisotropy factor (VANI)¹⁰, specific storage (S_s), and specific yield (S_y). Properties were either assigned as constant/uniform values for a given model layer or material type (i.e., based on surficial geology mapping) or as spatially-varying fields for given model layer or material type. The latter is an approach referred to as pilot-point parameter specification, which required an inverse-distance weighted (IDW) interpolation scheme to develop parameter value fields based on distributed point estimates.

Model Layer	Horiz. Hyd. Conductivity (K _h)	Horiz. Aniso. (HANI)	Vert. Aniso. (VANI)	Storage Parameter(s) (Ss and/or Sy)
1	Constant value for areas generally mapped as glacial till; pilot point approach for Presumpscot Formation area	Constant value of 1.0	Variable for layer based on pilot point approach	Layer type set as convertible. S _y set to constant value of 0.1. S _s set to constant value of 3.4e-4 per foot (Anderson and Woessner, 1991).
2	Variable for layer based on pilot point approach	Constant value of 1.0	Variable for layer based on pilot point approach	Layer type set as convertible. S_y set to constant value of 0.1. S_s set to constant value of 3.4e-4 per foot (Anderson and Woessner, 1991).
3	Variable for layer based on pilot point approach	Constant value	Constant value	Layer type set as confined. S _s variable for layer based on pilot point approach.

The following table provides a summary of the techniques used to specify K_h , HANI, VANI, S_s , and S_v :

⁸ GHB conductance per unit area of coverage within a given model cell was assumed to be equal to swamp deposit hydraulic conductivity, as estimated via calibration, divided by a wetland bottom thickness of 1 foot.

⁹ Horizonal anisotropy factors (HANI) represent the ratio of horizontal hydraulic conductivity along model columns to horizontal hydraulic conductivity along model rows.

¹⁰ Vertical anisotropy factors (VANI) represent the ratio of horizontal hydraulic conductivity to vertical hydraulic conductivity.

Where specific values are indicated in the table above, property value assignments were held constant through the model calibration process. Examples include constant HANI values of 1.0 in model layers 1 and 2, which reflect the general assumption of horizontally-isotropic hydraulic conductivity in unconsolidated deposits and highly-weathered bedrock, and uses of representative (i.e., mean), literature-supported values of storage parameters for model layers 1 and 2.

Where specific values are not provided (e.g., "constant value") or where the pilot point approach is referenced, parameter values are ultimately determined via the model calibration process, which is further discussed below in the **Model Calibration** section.

Recharge/Discharge

Recharge from Precipitation

Rates of groundwater recharge assigned to the model domain were guided by several studies of hydrogeologic conditions occurring in the Site vicinity. These studies focused on areas with hydrogeologic characteristics like those of the Site vicinity, including significant presences of glacial till and the glaciomarine Presumpscot formation.

A summary of the above-referenced studies presented by Nielsen and Locke (2014) was used to estimate representative mean annual recharge rates as input to the MODFLOW Recharge (RCH) package. Areas within the active model domain mapped as glacial till were assigned a mean annual recharge rate equivalent to 5.25 inches per year (based on an average of the reported range of 2.5 to 8 inches per year). Similarly, areas mapped as Presumpscot formation were assigned a mean annual recharge rate equivalent to 1.2 inches pear year (based on an average of the reported range of 0.5 to 1.9 inches per year). These rates were applied to steady-state stress periods; recharge was conservatively assumed to be inactive during transient periods with the exception of transient application simulations performed to estimate the time required for stabilization of drawdown.

The recharge rates described above are assumed to represent net aquifer recharge inclusive of unsaturated zone and shallow saturated zone effects, including evapotranspiration (ET). For this reason, ET was not explicitly simulated as an active process in this modeling effort.

Supply Well Withdrawals

Information describing timing, rates, and locations of pumping withdrawals occurring during the four pumping tests conducted at the Site was provided to MMA by Ransom. This information was used as input to the MODFLOW Well (WEL) package, which was used to represent supply well withdrawals in the form of specified flux to or from a given model cell. **Figures 9a and 9b** summarize the planned pumping rates associated with the pumping tests 1 through 3, which coincide with the simulation periods used for model calibration, and pumping test 4, which coincides with the simulation period used for model verification.

In developing input for calibration simulations, WEL package inputs were refined based on daily and sub-daily withdrawal records provided to MMA by Ransom, which highlighted generally minor deviations from the planned rates presented in **Figures 9a and 9b**. Examples include rare cases of pump downtime (e.g., DRX-102 during 11/18/2018 due to generator failure) and decreasing well yield due to hydraulic head reduction (e.g., PW-1 rate decreased from 250 gallons per minute [gpm] during 11/18/2018 to 230 gpm by the conclusion of the third pumping test on 11/21/2018).

Verification simulations used the planned rates directly, as daily/sub-daily field records suggested deviations, in most cases, were minimal during the fourth pumping test. However, based on these records, the withdrawal rate at PW-1 did appear to decrease as the test progressed and head above the pump was reduced, as was the case during the third pumping test. This difference between verification model input specifications and field conditions is further discussed below in the **Model Verification** section.

Note that residential pumping was not represented within the model due to limited information availability (e.g., unavailable well construction information, limited information describing timing and rates of active pumping, etc.). Furthermore, it was assumed that residential pumping represents a negligible consumptive component of the simulated system's volumetric balance, as residential pumping rates are generally low, wells are generally distributed in terms of their locations, and some return flow from private septic infiltration would be anticipated.

Model Calibration

Model calibration was accomplished using trial-and-error and automated techniques, with the latter approach involving use of a model-independent parameter estimation utilities called PEST (Watermark Numerical Computing, 2016) and PEST_HP (Watermark Numerical Computing, 2017). In using this utility, batches of parallel calibration simulations reflecting parameter value perturbations were performed to minimize an aggregated difference of simulated and measured hydraulic heads, the latter of which is referred to herein as the calibration target data set.

The calibration target data set was created using head measurements provided to MMA by Ransom. These head measurements were collected using a network of pressure transducers placed in shallow piezometers, monitoring wells, pumping wells, residential wells, and staff gages located throughout the Site vicinity. In generating the calibration target data set, only pressure transducer data were used; manual measurements were not included.

To support and constrain the calibration process, initial values and upper and lower limits for adjustable parameters were estimated based on site-specific information, where available, and published ranges consistent with the general descriptions of the material/deposit types (e.g., Anderson and Woessner, 1992). In select cases, a combination of modeling experience and relatively broad parameter value ranges was used to provide flexibility to the calibration process.

Model calibration results are summarized by **Figures 10a through 10c**, which compare measured hydraulic heads from the calibration target data set to comparable (i.e., in space and time) simulated conditions. These plots suggest general consistency between

measured and modeled conditions. This consistency is further evidenced through the following tabulated statistical summary, which is presented in terms of Residual Mean (RM) values, which are arithmetic averages of residuals calculated using the calibration target data set (measured groundwater elevation minus the comparable simulated groundwater elevation):

	Residual Mean (RM) Statistics			
Pumping Test / Simulated Period	Mean	10 th Percentile	90 th Percentile	
1 – March/April 2018	1.0	-1.0	3.0	
2 – August/September 2018	-1.6	-4.1	0.1	
3 – November 2018	0.2	-1.7	2.1	

Additionally, the calibration simulation produces a reasonable balance between volumetric inflows and outflows, as evidenced by the following summary:

	Volumetric Balance Percent	
	Discrepancy	
Minimum ¹	-0.34%	
Maximum ¹	+0.01%	
Cumulative	-0.15%	

¹Calculated from percent discrepancies reported for all calibration simulation time steps

Final hydraulic parameter values and ranges (i.e., for parameters estimated using pilot points) are presented in the following table:

Horizontal Hydraulic Conductivity (feet/day)						
Model Layer	Mapped Material Type	Parameter Bounds (lower – upper)	Calibrated Value/Range (value / lower – upper)			
1	Presumpscot formation	5.0E-04 - 150.0	5.0E-04 - 127.9			
1	Glacial till	0.045 - 4.0	0.045			
2	Shallow bedrock 0.05 - 10.0 0.05 - 9.9					
3	3 Bedrock 0.001 - 50.0 0.001 - 49.9					
Horizontal Anisotropy (dimensionless)						
3	3 Bedrock 0.005 - 1.0 0.01					
Vertical Anisotropy (dimensionless)						
1	Presumpscot formation & glacial till1.0 - 100.01.0 - 98.7					
2	Shallow bedrock	1.0 - 100.0	1.0 - 100.0			
3	Bedrock	1.0 - 100.0	1.0			
Specific Storage (1/foot)						
3	3 Bedrock 1.0E-10 - 2.1E-05 3.8E-09 - 2.1E-05					
Notoe						

Notes:

1. Calibrated ranges indicate the range of values for pilot points produced via calibration.

2. Horizonal Anisotropy and Vertical Anisotropy refer to the HANI and VANI factors, respectively.

Where applicable, IDW interpolation was used to convert parameter values estimated at pilot point locations to parameter fields. An example is shown in **Figure 11**, which depicts the final calibrated hydraulic conductivity fields for models layers 1 through 3.

Final parameter values associated with head-dependent boundaries are presented in the following table:

Drain Bed Conductance (feet^2/day)						
Location	Parameter Bounds	Calibrated Value/Range				
Location	(lower – upper)	(value / lower – upper)				
Periphery	0.001 - 15.0	0.30				
Near proposed site	0.001 - 15.0	0.001				
Reservoir Bed Conductance (feet^2/day)						
Upstream pond	1.0E-4 - 15.0	15.0				
Upper reservoir	1.0E-4 - 15.0	15.0				
Lower reservoir	1.0E-4 - 15.0	7.7				
Stream Bed Hydraulic Conductivity (feet/day)						
Streams draining to the Upper Reservoir	0.1 - 50.0	27.2				
Reach connecting reservoirs	0.1 - 50.0	3.7				
Streams draining to the Lower Reservoir	0.1 - 50.0	0.1				

Additional summaries of calibration simulation results are provided within the attached **Appendix**.

Sensitivity Testing

Following calibration, sensitivity testing was performed to assess the influence of parameters on the quality of model calibration. This assessment was performed using RM and two additional statistical performance metrics:

- 1. The Absolute Residual Mean (ARM), which is the arithmetic average of the absolute values of residuals calculated using the calibration target data set; and
- 2. The Residual Sum of Squares (RSOS), which is the sum of the squared values of residuals calculated using the calibration target data set.

In general, it is desirable from a calibration perspective to have RM approach a value of zero (0) while simultaneously minimizing the values of ARM and RSOS. It is important to note, however, that RSOS will typically be significantly greater in magnitude than ARM due to squaring and summing of residual values.

With the results of the calibration simulation as a starting point, sensitivity tests were performed by increasing and decreasing values for several parameter groups. Dedicated simulations were performed for adjustments to values of horizontal hydraulic conductivity, vertical anisotropy, horizontal anisotropy (model layer 3 only), specific storage, specific yield, recharge rate, GHB conductance, DRN conductance, and streambed (SFR2) hydraulic conductivity. The following table summarizes the sensitivity testing results:

Parameter Group	Change	RM (ft)	ARM (ft)	RSOS (ft ²)
Baseline (no change)	None	-0.1	1.5	4.6E+05
Horizontal Hydraulic Conductivity	+50%	-3.1	5.1	5.2E+06
Horizontal Hydraulic Conductivity	-50%	10.2	11.8	3.7E+07
Vertical Anisotropy	+50%	-2.0	2.7	9.9E+05
Vertical Anisotropy	-50%	2.3	3.5	1.5E+06
Horizontal Anisotropy (model layer 3 only)	+50%	-1.0	2.7	1.2E+06
Horizontal Anisotropy (model layer 3 only)	-50%	1.8	3.6	2.7E+06
Specific Storage	+50%	-0.4	1.8	5.9E+05
Specific Storage	-50%	0.4	2.1	7.1E+05
Specific Yield	+50%	-0.3	1.5	4.6E+05
Specific Yield	-50%	0.5	1.7	5.0E+05
Recharge Rate	+50%	-1.8	2.2	8.1E+05
Recharge Rate	-50%	3.6	3.9	1.7E+06
GHB Conductance	×10	-0.1	1.5	4.5E+05
GHB Conductance	÷10	-0.1	1.5	4.5E+05
DRN Conductance	×10	0.0	1.5	4.5E+05
DRN Conductance	÷10	-0.1	1.5	4.5E+05
Streambed (SFR2) Hydraulic Conductivity	×10	0.3	1.6	4.7E+05
Streambed (SFR2) Hydraulic Conductivity	÷10	-1.5	2.1	6.8E+05

As indicated by this table, RM, ARM, and RSOS are generally quite sensitive to hydraulic parameter values, with particularly sensitivity evident for the horizontal hydraulic conductivity parameter group. Conversely, the model generally demonstrates limited sensitivity to conductance and hydraulic conductivity values associated with head-dependent boundary types (GHB, DRN, and SFR2). This result appears to be

consistent with conditions predicted by the model at these boundaries (i.e., generally low volumetric rates of groundwater discharge to the boundary).

Model Verification

Following calibration, a simulation of pumping test 4 was performed as an additional assessment of model performance (referred to generally herein as verification). The assessment was supported by developing a verification data set, which was composed in the same manner as the calibration target data set, as described previously.

Results produced by the verification simulation are summarized by **Figure 12**, which compares measured hydraulic heads from the verification target data set to comparable (i.e., in space and time) simulated conditions. As was the case for the calibration results, these plots suggest general consistency between measured and modeled conditions. This consistency is further evidenced through the following tabulated summary of RM values:

	Residual Mean (RM) Statistics			
Pumping Test / Simulated Period	Mean	10 th Percentile	90 th Percentile	
4 – January 2019	0.9	-1.6	4.0	

As previously noted, the verification simulation included WEL package inputs reflecting planned pumping rates; though, a relatively minor deviation from the planned rate evident at PW-1 based on daily/sub-daily field records. As illustrated by **Figure 13** this difference appears to result in a continued downward trend in simulated hydraulic head at PW-1 that deviates slightly from the observed conditions at this location; whereas, the deviation is not as pronounced for the other active wells where planned rates were generally maintained throughout the duration of the pumping test.

Additional summaries of measured and simulated water levels from the verification simulation are provided within the attached **Appendix**.

Model Application

Following the calibration and verification steps, projection simulations were performed to estimate system responses under different pumping scenarios where locations and rates of withdrawal were varied. The objectives of these projection simulations were the following:

- 1. For a given pumping rate scenario, estimate the maximum amount of drawdown that may develop under long-term, average conditions; and
- 2. For a given pumping rate scenario, estimate the time required for drawdown to stabilize.

Relative to objective 1, above, estimates were generated using steady-state model simulations. First, a non-pumping (i.e., no active wells) simulation with estimated

average recharge rate specifications was performed to create a baseline condition. Additional steady-state simulations were then performed for three pumping scenarios. Each pumping scenario was simulated three times: once with estimated average recharge rate specifications consistent with the baseline simulation, once with the estimated average recharge rates halved to roughly approximate the lower bounds of the materialspecific recharge rate ranges reported by Nielsen and Locke (2014)¹¹, and once reflecting a 2-foot reduction in the head assigned to the Lower Reservoir head-dependent boundary. The second set of simulations (i.e., halved recharge rates) was performed to support a general assessment of the sensitivity of drawdown estimates to long-duration, reduced recharge conditions.

The third set of simulations was performed to support a general assessment of the sensitivity of drawdown estimates to long-duration changes to the stage of the Lower Reservoir. Minor modifications to model layering were required to support these simulations (i.e., lowering layer 1 bottom elevation assignments in the vicinity of the Lower Reservoir). No additional calibration or recalibration was performed using the modified version of the model grid; therefore, the results of the Lower Reservoir stage sensitivity assessment are considered to be general and qualitative.

Estimates of maximum drawdown under each pumping scenario and recharge condition were then generated by subtracting simulated heads for each model run from comparable (i.e., in terms of location) simulated heads from the baseline condition. Estimated maximum drawdown changes pertaining to the Lower Reservoir stage sensitivity assessment were generated by comparing simulated heads under normal stage (i.e., Lower Reservoir stage used during calibration) and modified stage (i.e., 2-foot reduction) conditions.

To address objective 2, above, the steady-state baseline simulation was extended by adding a second transient stress period with a duration of approximately 10 years. Simulations were performed with this version of the model with an initial, steady-state, non-pumping period followed by a transient period representative of each pumping scenario. Estimated average recharge rate specifications were used during the transient period.

The three pumping scenarios assessed using these approaches are summarized as follows:

¹¹ For the glacial till material group, the specified recharge rate was 5.25 inches per year / 2 = 2.63 inches per year versus a lower bound of 2.5 inches per year per Nielsen and Locke (2014). For the Presumpscot formation material group, the specified recharge rate was 1.2 inches per year / 2 = 0.6 inches per year versus a lower bound of 0.5 inches per year per Nielsen and Locke (2014).

Scenario ID	PW-1 (gpm)	GWW-103 (gpm)	DRX-102 (gpm)	PSD-102 (gpm)	DRX-101 (gpm)	Total Pumping (gpm)
1	250	175	30	0	0	455
2	250	175	30	30	30	515
3	125	87.5	15	0	0	227.5

The bases for these pumping scenarios are summarized as follows:

- Scenario 1 was designed based on the locations and rates active during pumping test 4 prior to adding PSD-102, which appeared to be well connected with residential supply wells (e.g., WSW-03) located west of the Site based on monitoring data.
- Scenario 2 was designed to match the final design rates targeted during pumping test 4. Thus, this scenario was simulated in order to approximately extend the final stage of pumping test 4.
- Scenario 3 is based on Scenario 1, but all withdrawal rates were halved.

Figures 14a through 14c illustrate simulated maximum drawdown in model layer 3 (fractured bedrock aquifer) for each of the three pumping scenarios under estimated average recharge conditions. For Scenario 1, maximum drawdown estimates for an on-Site monitoring/supply well and an off-Site monitored residential well are approximately 200 feet (PW-1) and 15 feet (WSW-04), respectively. For Scenario 2, maximum drawdown estimates at these locations increase to approximately 220 feet and 18 feet, respectively. For Scenario 3, maximum drawdown estimates at these locations decrease to approximately 85 feet and 5 feet, respectively.

Results for shallow piezometer monitoring locations (i.e., model layer 1) are similar for all scenarios under estimated average recharge conditions, with the maximum simulated drawdown for each scenario slightly exceeding 5 feet (PZ-1S).

Under reduced recharge conditions (halved recharge rates), maximum drawdown estimates increase to slightly more than 20 feet at off-Site locations for Scenario 1 (WSW-04 and WSW-01). Similar proportional increases are noted relative to Scenarios 2 and 3 compared to results produced under estimated average recharge conditions.

Qualitatively, model simulations reflecting a 2-foot lowering of Lower Reservoir stage suggest limited sensitivity at off-Site locations. For all simulated pumping scenarios, increases in maximum estimated drawdown of several feet or more (i.e., compared to the normal stage condition) were generally limited to the Site vicinity. Overall, the largest estimated change in maximum drawdown associated with the 2-foot lowering of the

Lower Reservoir stage occurred in the vicinity of pumping well GWW-103 for all simulated pumping scenarios.

Additional summaries of simulated drawdown results are provided within the attached **Appendix**.

Figure 15 provides a comparison of the volumetric flow budgets for the baseline (no pumping) and Scenario 1 simulations, both under estimated average recharge conditions. In both cases, recharge from precipitation represents the major source of water to the modeled groundwater system, with supplemental volume being provided from reservoir/pond leakage. These sources are mostly offset, in both cases, by groundwater discharge to streams and the coastal boundary. With pumping active (Scenario 1 case), the withdrawal demand appears to be partly satisfied by interception of groundwater that was previously discharging to streams, reservoirs/ponds, and the coastal boundary; though, some inflow from the coastal boundary is predicted. Sensitivity testing performed during model application also suggests that the volumetric rate of inflow from the coastal boundary may increase under reduced recharge and reduced Lower Reservoir stage conditions.

Transient scenario simulation results are presented in **Figures 16a through 16c** for monitored residential wells in the Site vicinity. Based on these results, drawdown effects may develop more rapidly in areas located west-northwest of the Site (i.e., as indicated by the estimated responses at the WSW-01, WSW-03, and WSW-05 locations) compared to areas due west (i.e., as indicated by the estimated response at the WSW-02 location) and south (i.e., as indicated by the WSW-04 response) of the Site. Stabilization times, however, are estimated to be many years to more than a decade for all locations under all simulated scenarios.

Summary

The numerical modeling described herein generally supports a proposed withdrawal plan similar to the Scenario 1 condition (a total of 455 gpm from wells PW-1, GWW-103, and DRX-102). Because modeling suggests pumping of Site wells may result in condition changes under average conditions (e.g., drawdown and induced coastal boundary flow), and because deviations from average conditions, such as sustained drought conditions, may alter these estimates, the following is recommended:

- Conduct further assessment of residential supply wells located in the Site vicinity to better understand typical conditions (e.g., range of head fluctuations occurring under normal use) and physical characteristics (e.g., pump depth).
- Develop a plan for monitoring:
 - o drawdown in bedrock supply wells located on- and off-Site;
 - drawdown of the water table near surface water features in the Site vicinity; and
 - in certain locations, water quality (e.g., total dissolved solids or TDS).

• Develop contingencies to address cases where current use changes (e.g., reduced well yield) can be attributed to effects caused by Site-related pumping.

Though calibration and verification simulations suggest good agreement between measured and simulated hydraulic conditions, it is important to note that model results are sensitive to key assumptions made in the modeling process that impact the availability of water within the simulated system. These assumptions include the conceptualization and representation (within the model) of system characteristics, including the key assumption that hydraulic properties controlling groundwater flow through porous media can be used to reasonably estimate bulk groundwater flow through the local fractured rock aquifer (generally referred to as the Equivalent Porous Medium or EPM assumption). Hydraulic controls that are not readily apparent from available data may alter model-based estimates, including point estimates of maximum anticipated drawdown and stabilization time for any pumping scenario, as well as the simulated extent of drawdown effects. Furthermore, scenario simulations (model application) were designed under the assumption that long-term conditions (e.g., estimated average and reduced annual recharge rates) reflect an appropriate basis for assessing drawdown effects in the Site vicinity. Shorter duration events, such as seasonal drought periods, were not assessed. Further discussion of limitations pertaining to the results presented herein is presented in the Limitations section.

References

Anderson, M. P. and Woessner, W. W., 1992. *Applied Groundwater Modeling – Simulation of Flow and Advective Transport*.

Haitjema, 2007. Freshwater and Salt Water Interface Flow in GFLOW. June 15, 2007.

Masterson, J. P., 2004. Simulated Interaction Between Freshwater and Saltwater and Effects of Ground-Water Pumping and Sea-Level Change, Lower Cape Cod Aquifer System, Massachusetts. U.S. Geological Survey Scientific Investigations Report 2004-5014.

Nielsen, M. G., and Locke, D. B., 2014. *Simulation of Groundwater Flow and Streamflow Depletion in the Branch Brook, Merriland River, and Parts of the Mousam River Watersheds in Southern Maine*. U.S. Geological Survey Scientific Investigations Report 2014-5235.

Niswonger, R. G., and Prudic, D. E., 2005. *Documentation of the Streamflow-Routing* (*SFR2*) *Package to include unsaturated flow beneath streams—A modification to SFR1*. U.S. Geological Survey Techniques and Methods 6-A13.

Panday, S., Langevin, C.D., Niswonger, R.G., Ibaraki, M., and Hughes, J.D., 2013. *MODFLOW-USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation.* U.S. Geological Survey Techniques and Methods, book 6, chap. A45, 66 p.

Watermark Numerical Computing, 2016. *PEST: Model-Independent Parameter Estimation. User Manual, Parts I and II. 6th edition.*

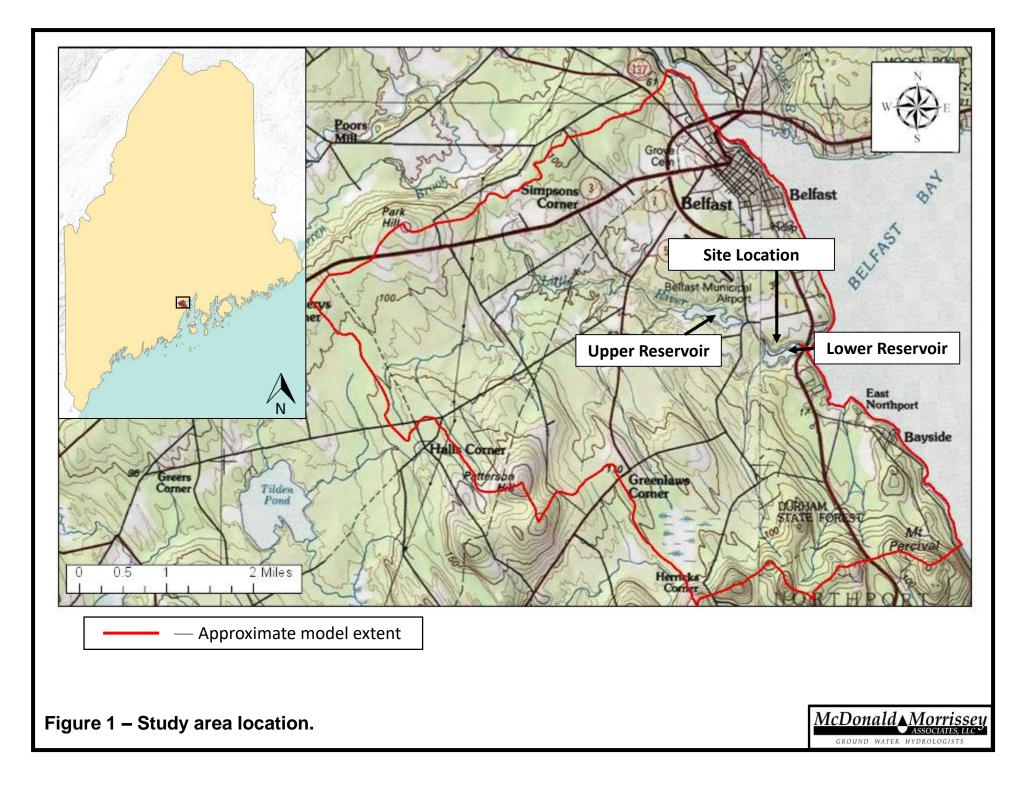
Watermark Numerical Computing, 2017. *PEST_HP*, *PEST for Highly Parallelized Computing Environments*. February, 2017.

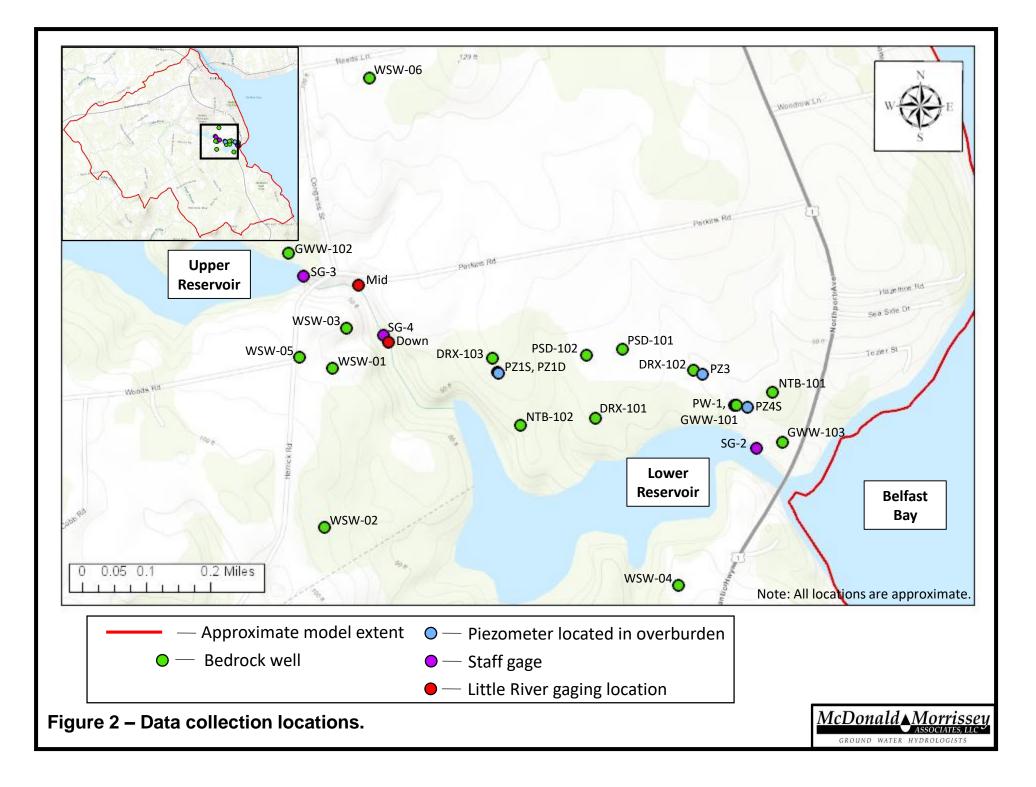
Attachments:

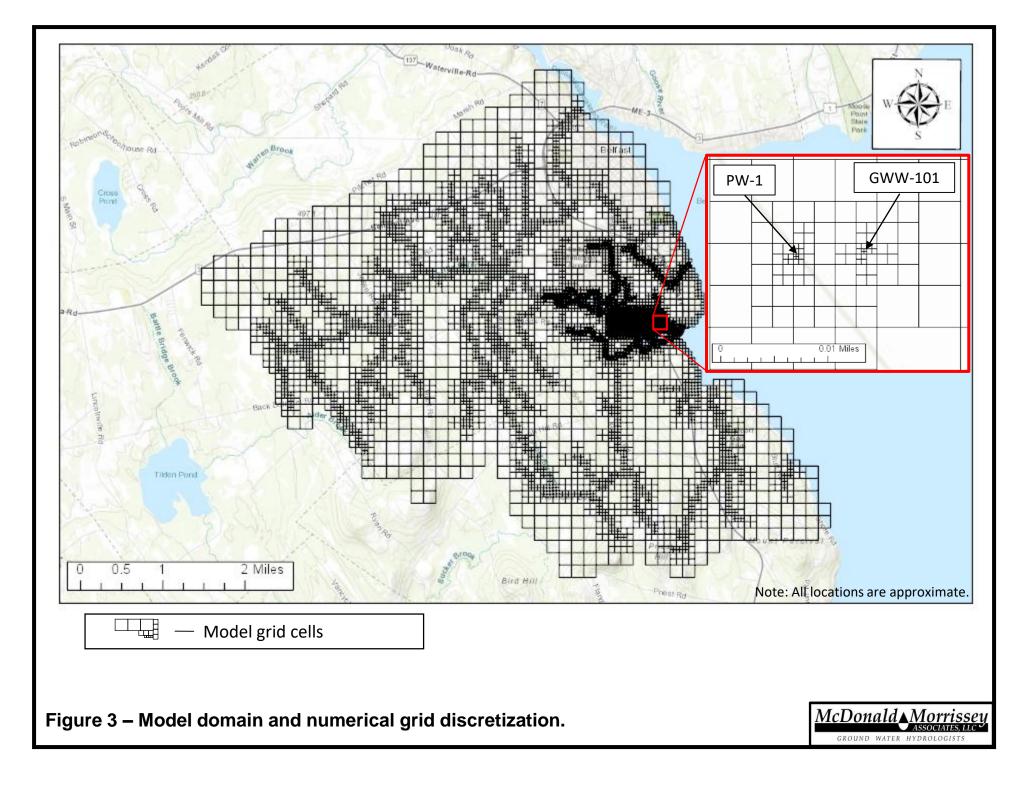
(1) Appendix A – Supplemental Tables and Figures

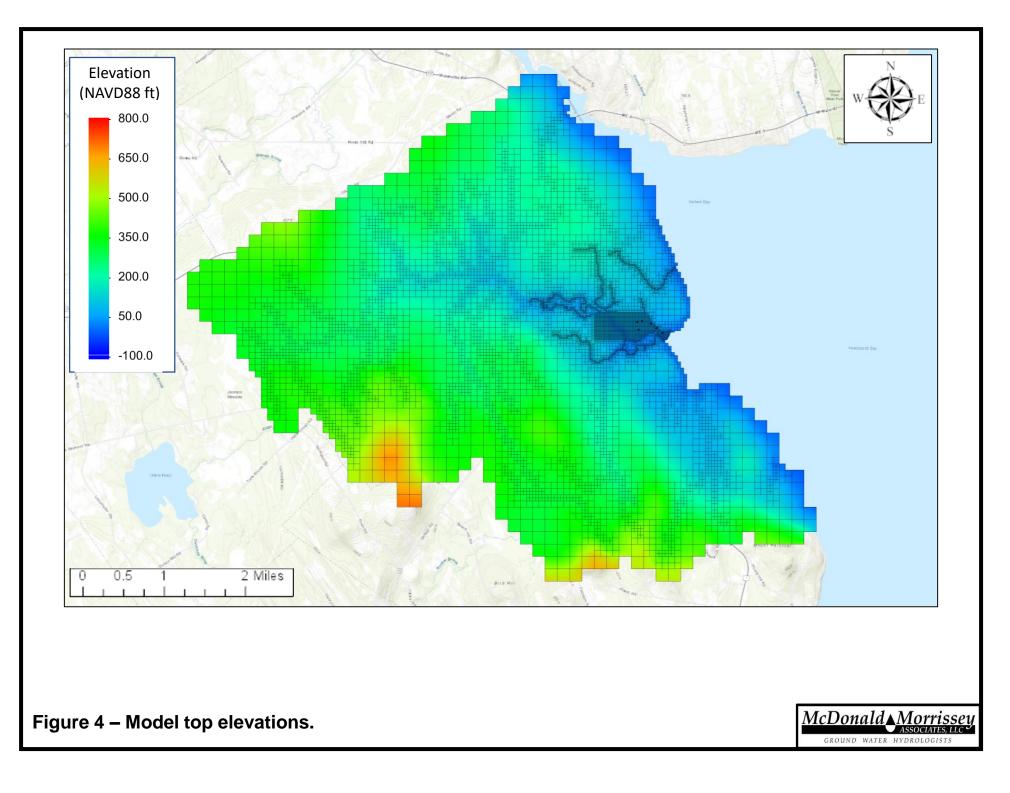
MAM

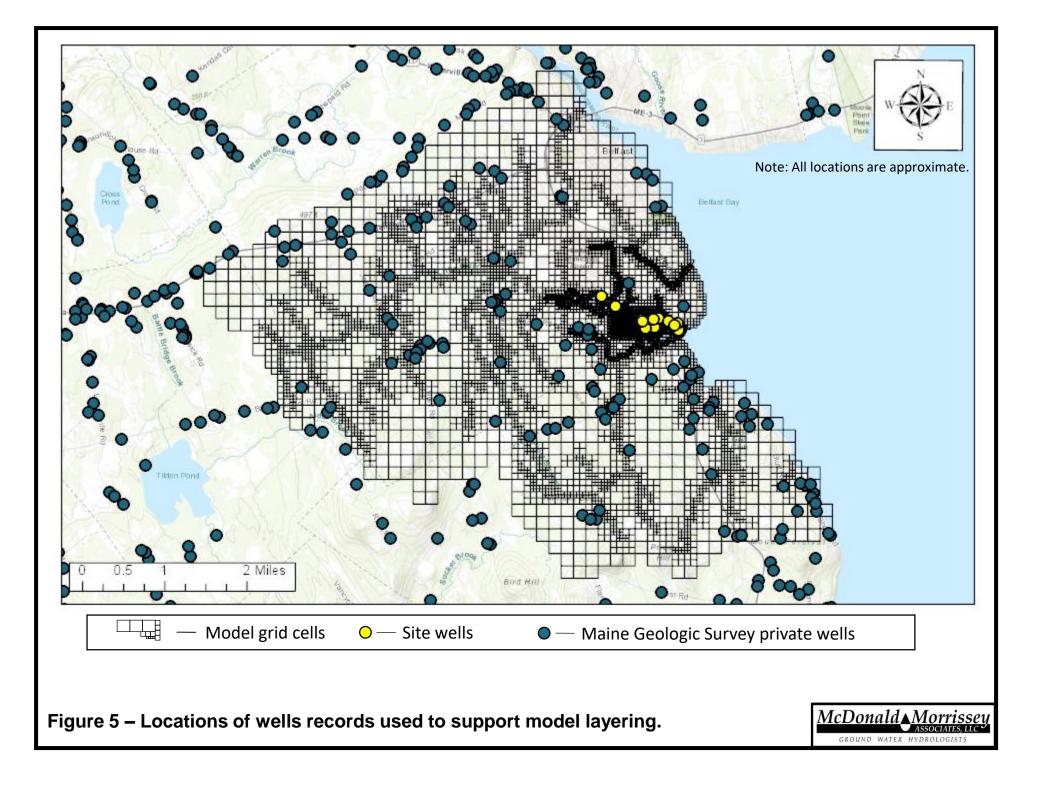
 $\label{eq:limit} where \continues \continu$

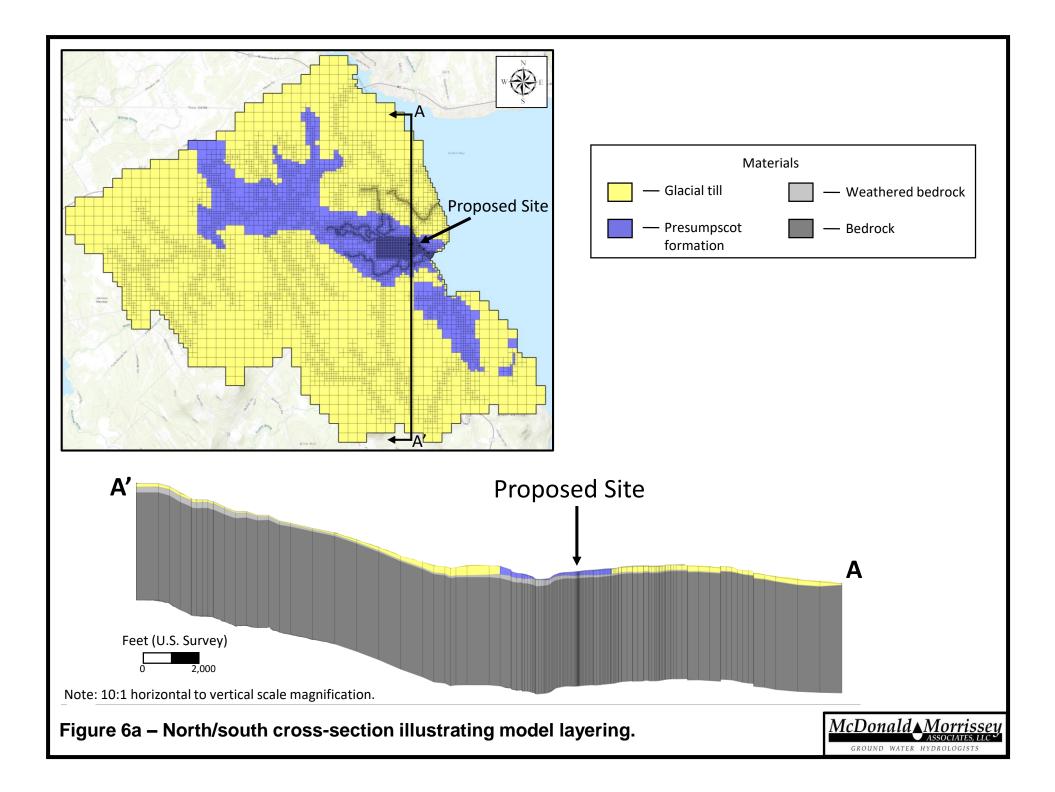

Limitations

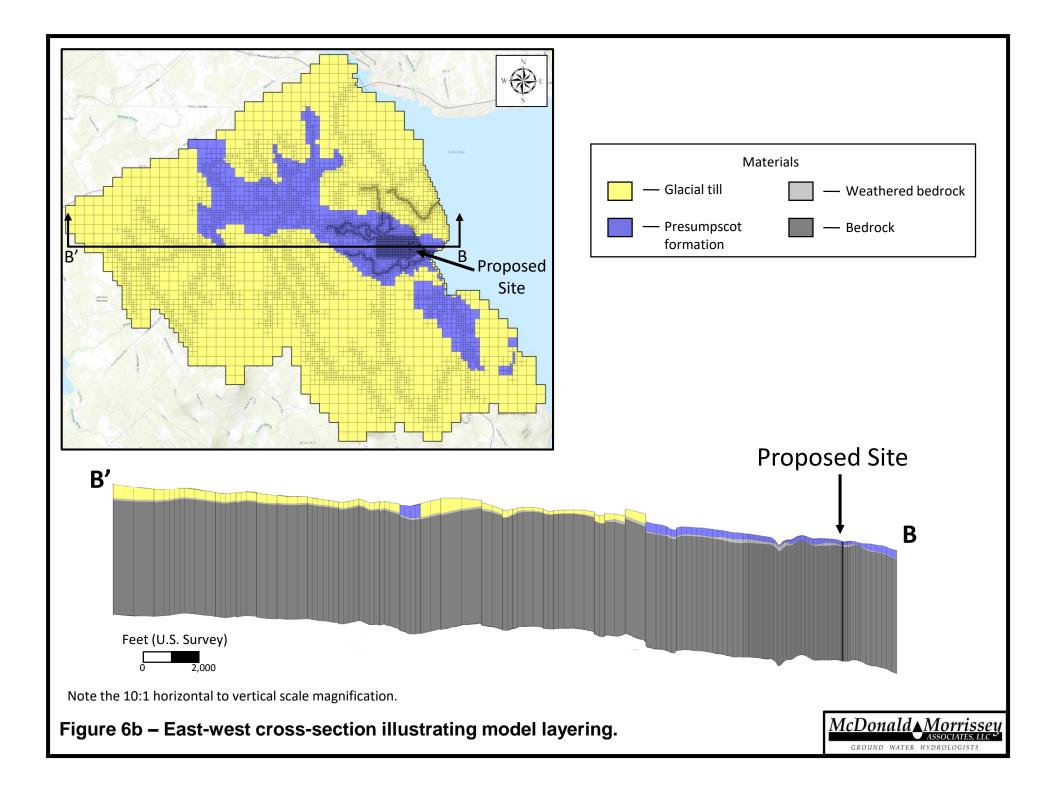

General

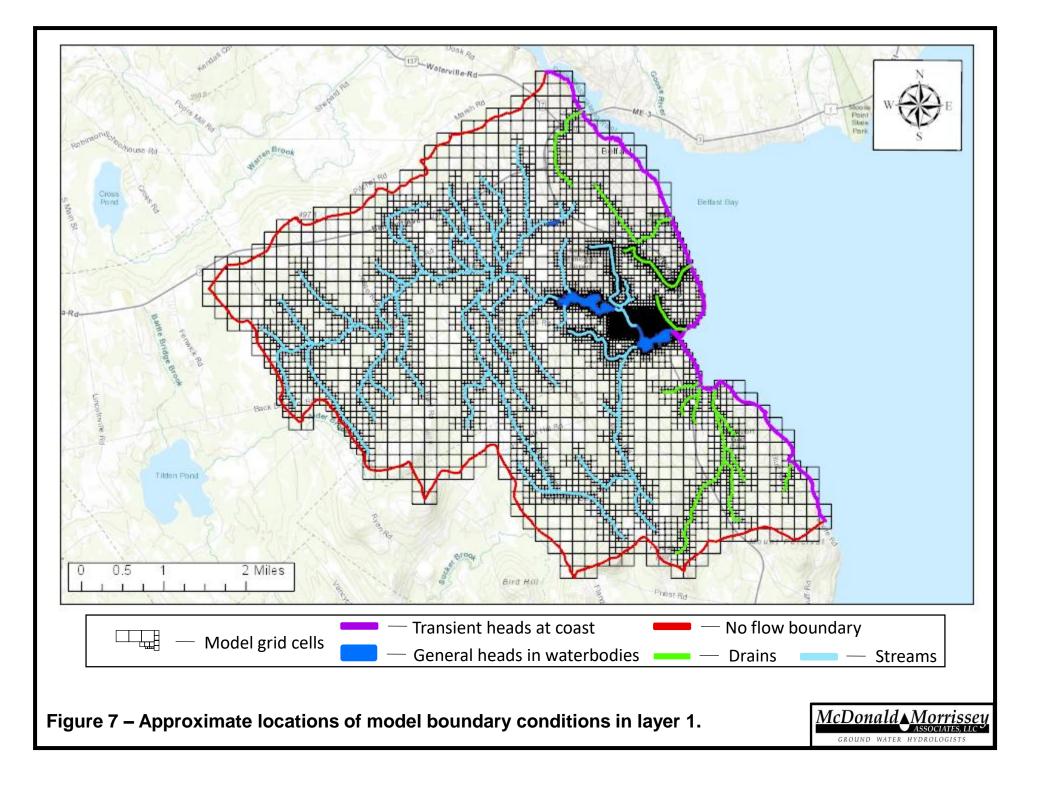

This technical memorandum was produced by McDonald Morrissey Associates, LLC (MMA) for exclusive use by our client and according to the purposes specifically described in the associated Scope of Work. MMA does not accept responsibility and/or liability for uses of the information contained within this memorandum by other parties and/or for other purposes without MMA's express written consent.

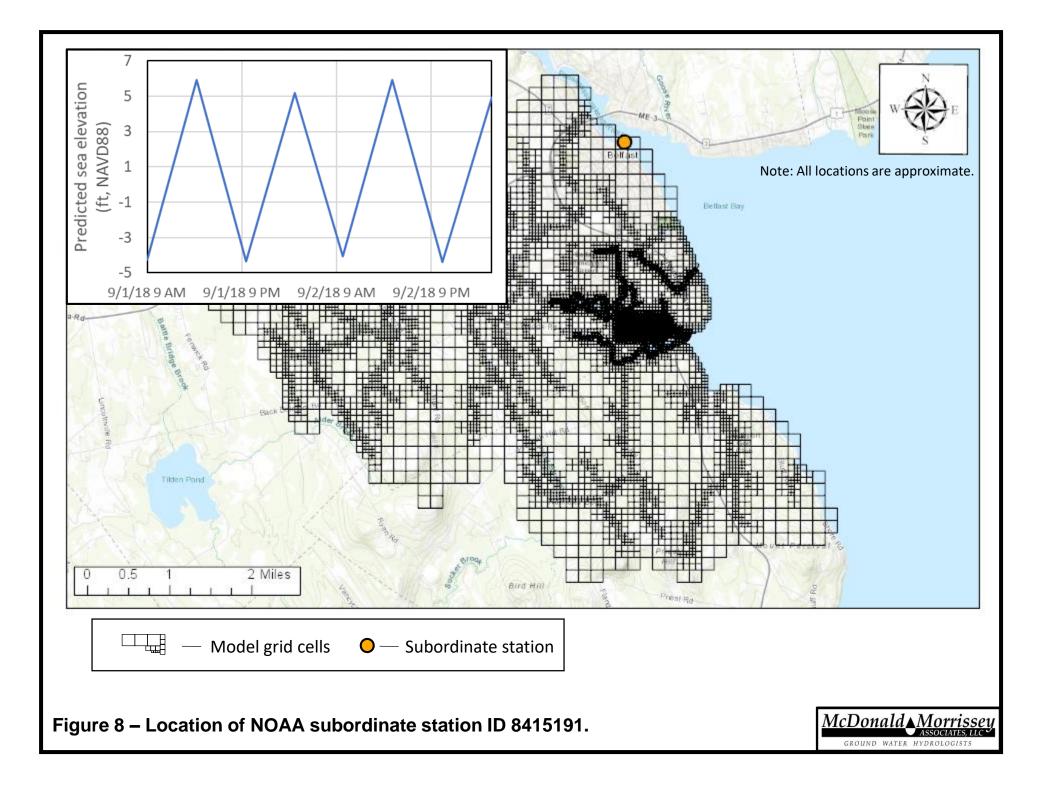

Additional Limitations

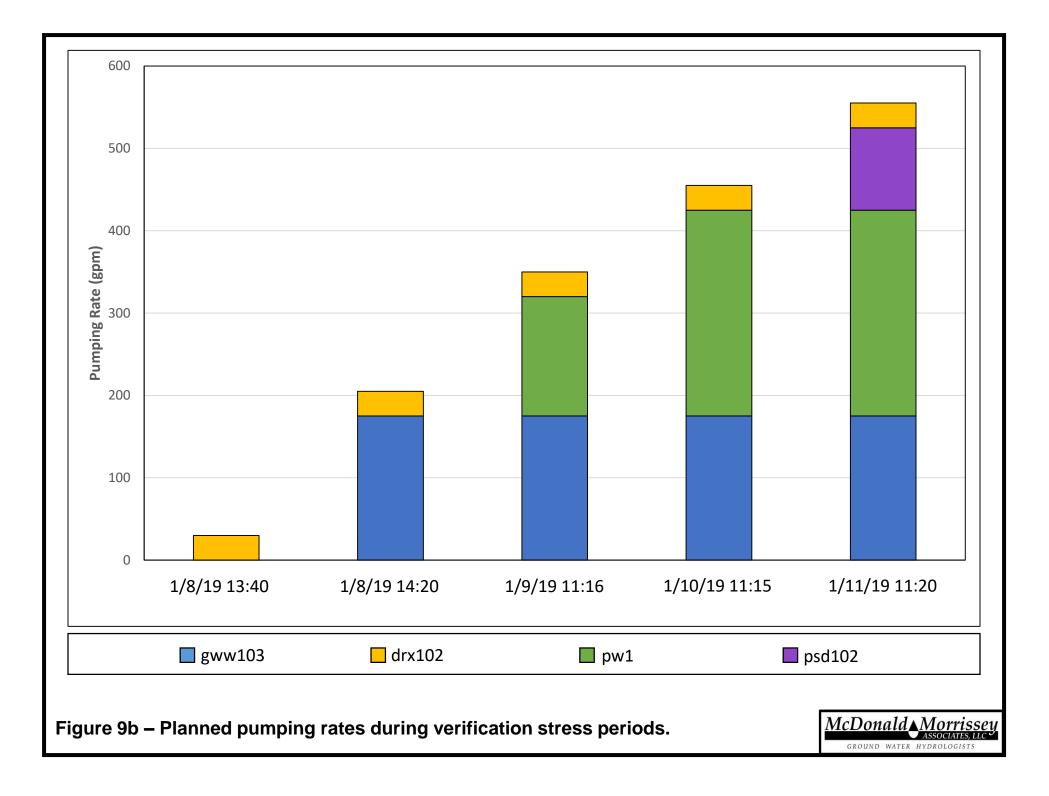

- 1. This technical memorandum summarizes a numerical model developed by MMA using data and information collected by and made available to MMA by other parties. The data and information represent discrete spatial and temporal measurements/interpretations of study area conditions, which may vary between points of measurement/information collection. No independent assessment of the quality of the data, including verification and/or validation, was performed by MMA.
- 2. In developing the numerical model described by this technical memorandum, simplifying assumptions and general simplifications pertaining to the simulated system were necessary and are inherent in any similar modeling assessment. Key assumptions and simplifications specific to the study area, which are summarized in the memorandum, were supported by MMA's professional judgement and were based on available information and data. Additional information and data collected and made available after the date of this memorandum may result in refinement or revision to the presented findings.
- 3. MMA performed the work described by this technical memorandum at a level of technical proficiency commensurate with that which would be anticipated from similar qualified professional practitioners provided with the same information, data, and objectives.
- 4. The work summarized by this technical memorandum is not subject to any form of warranty by MMA.

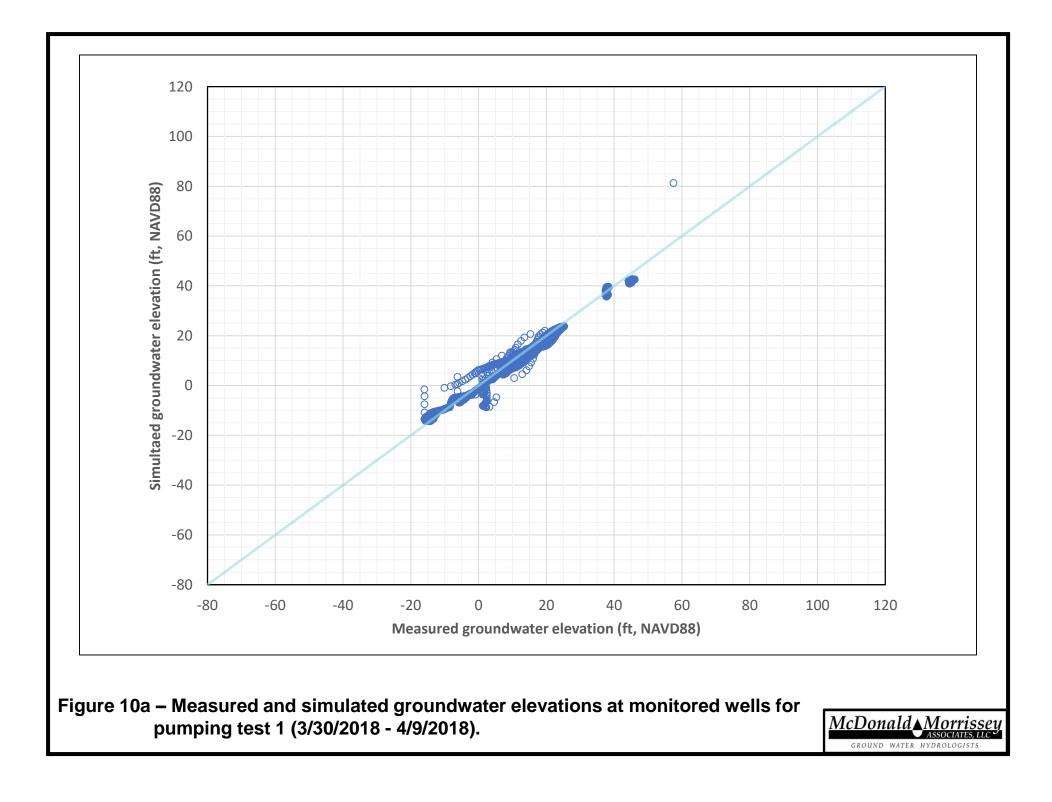


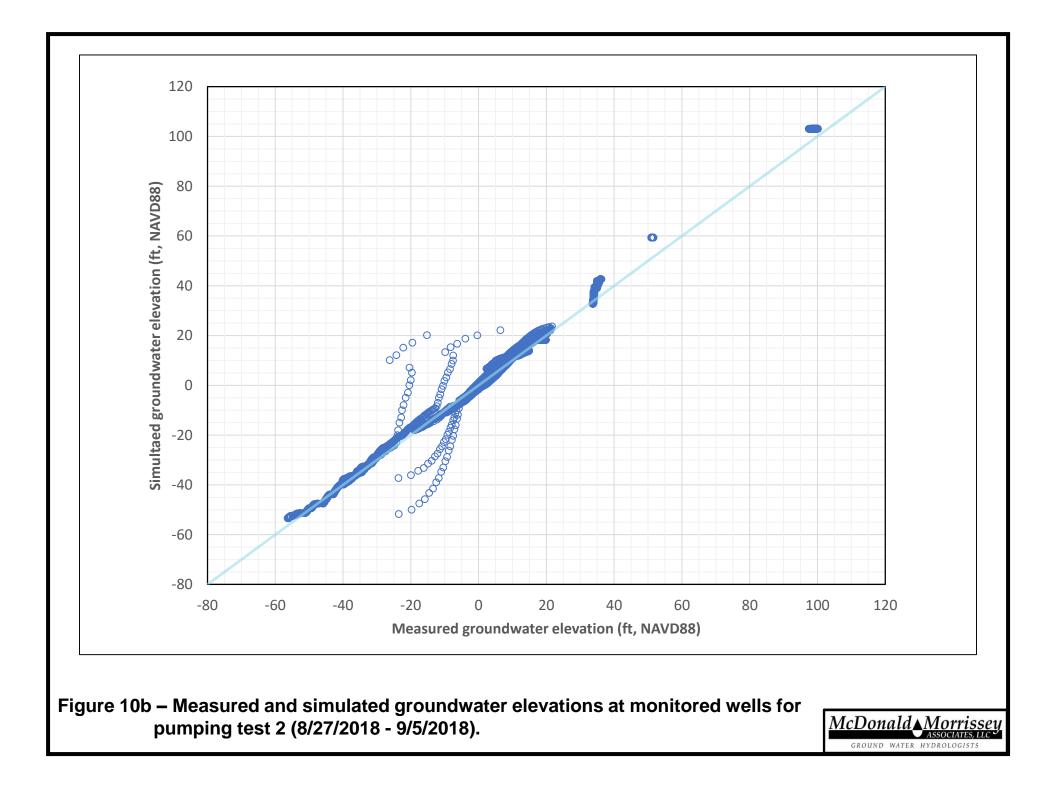


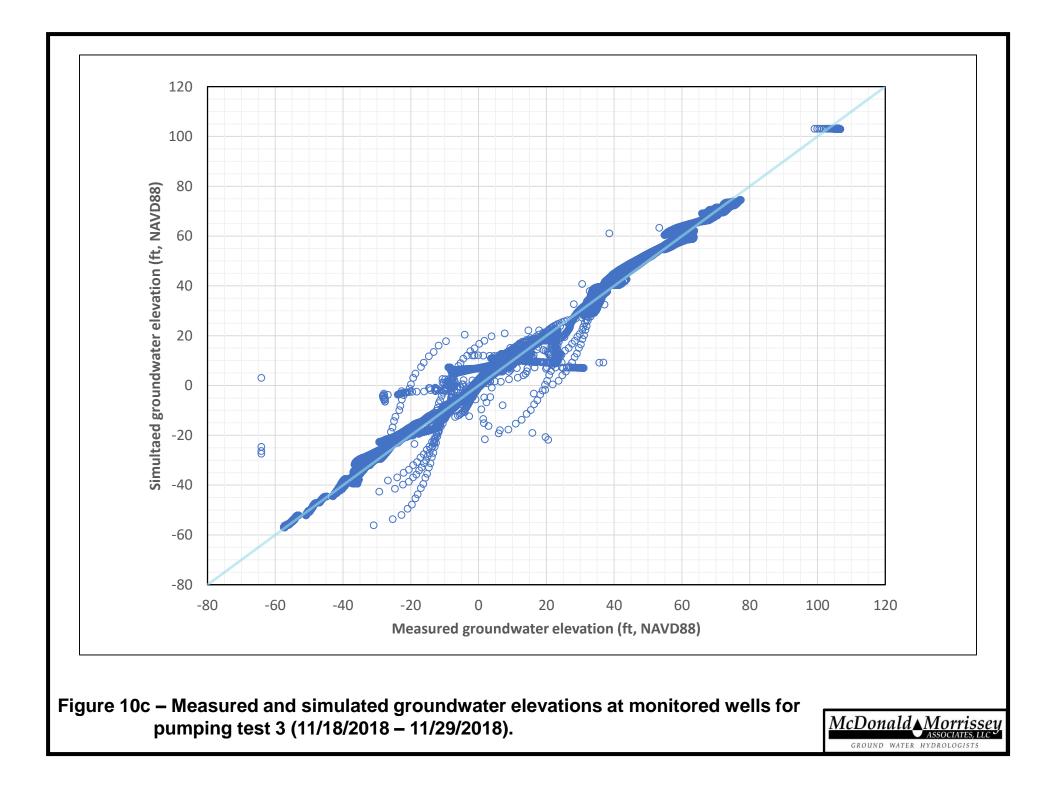


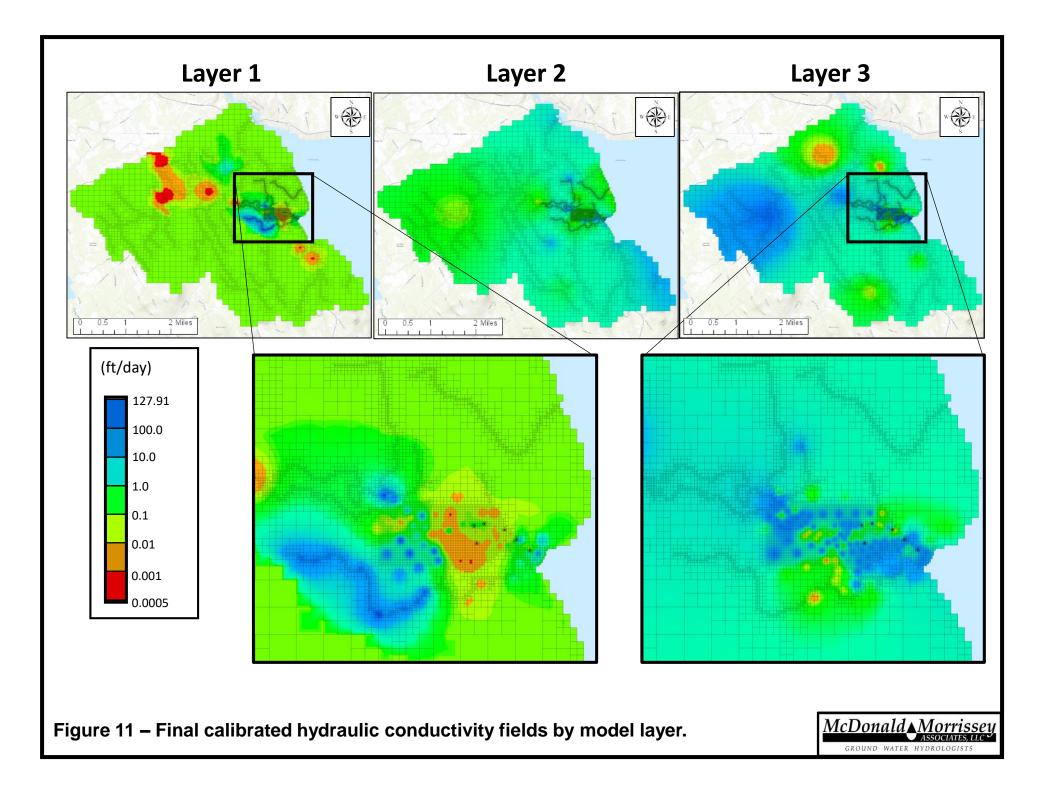


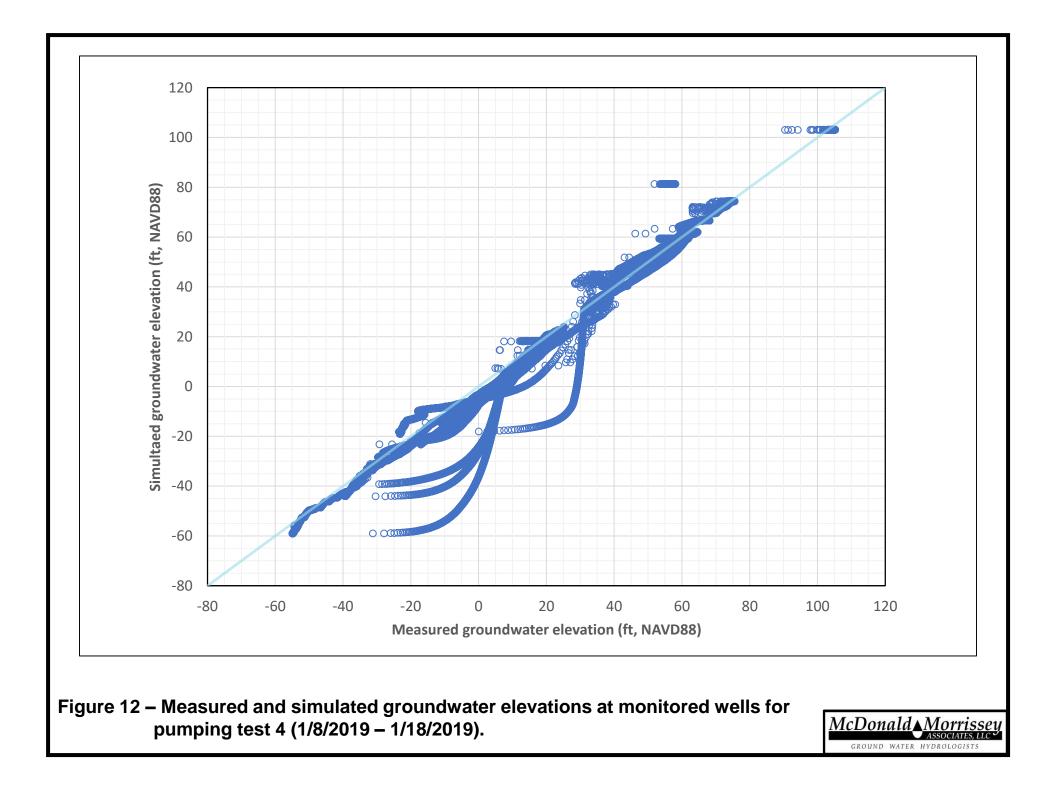


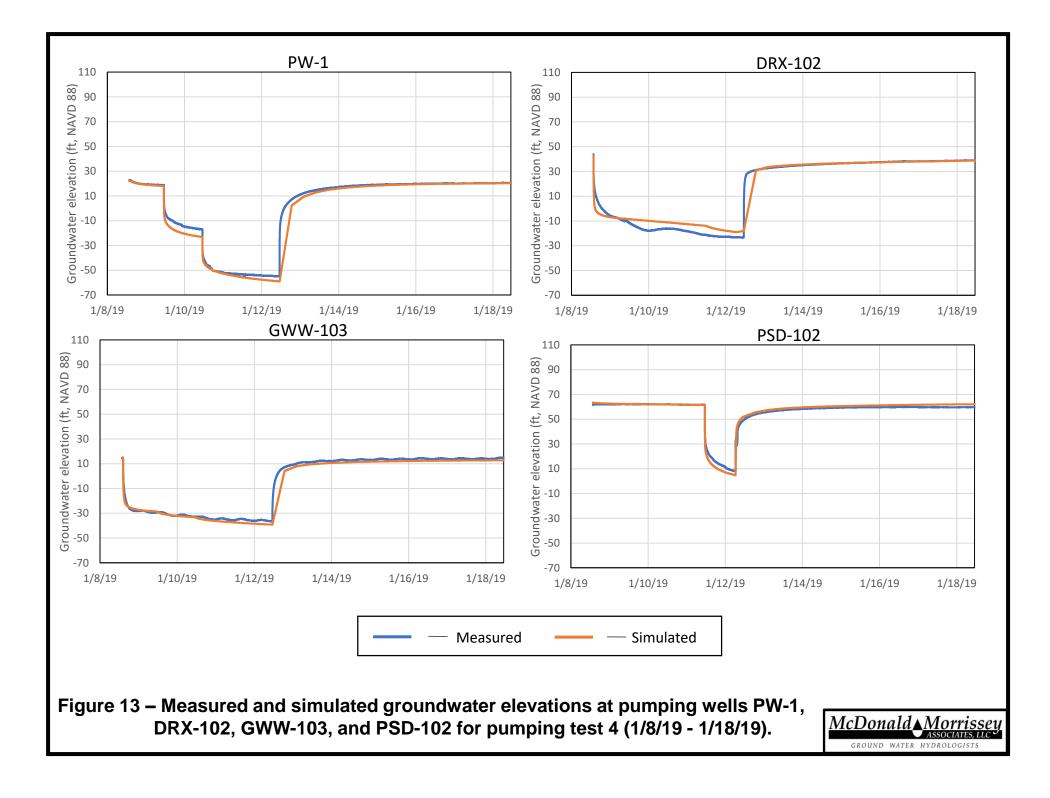


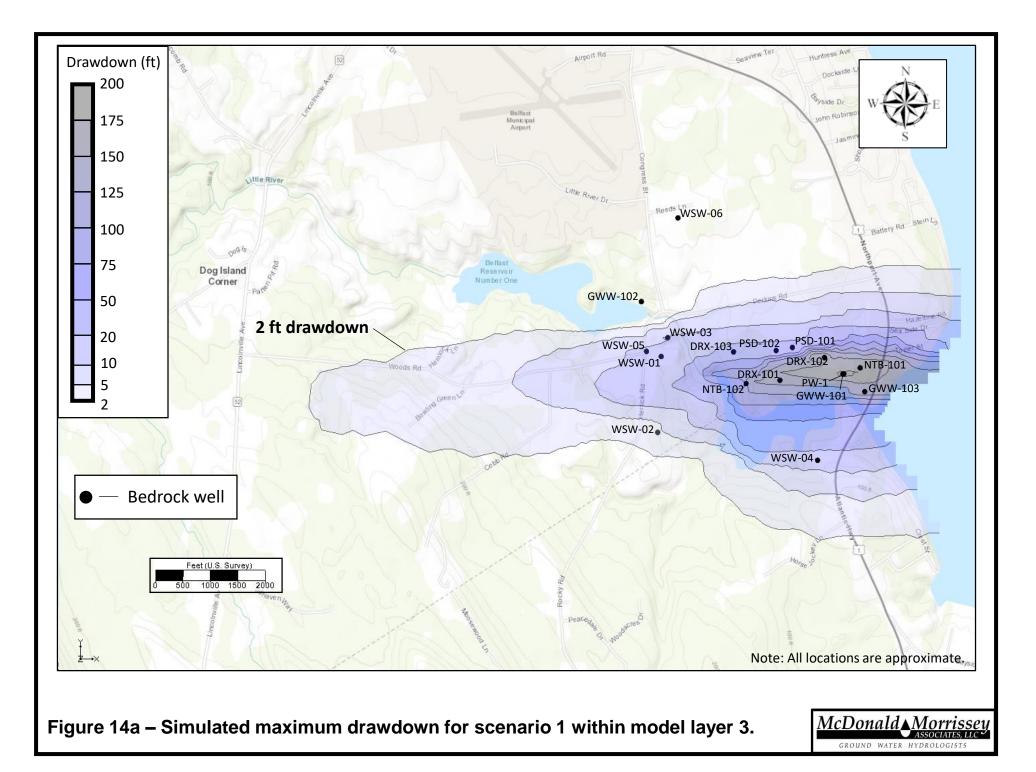


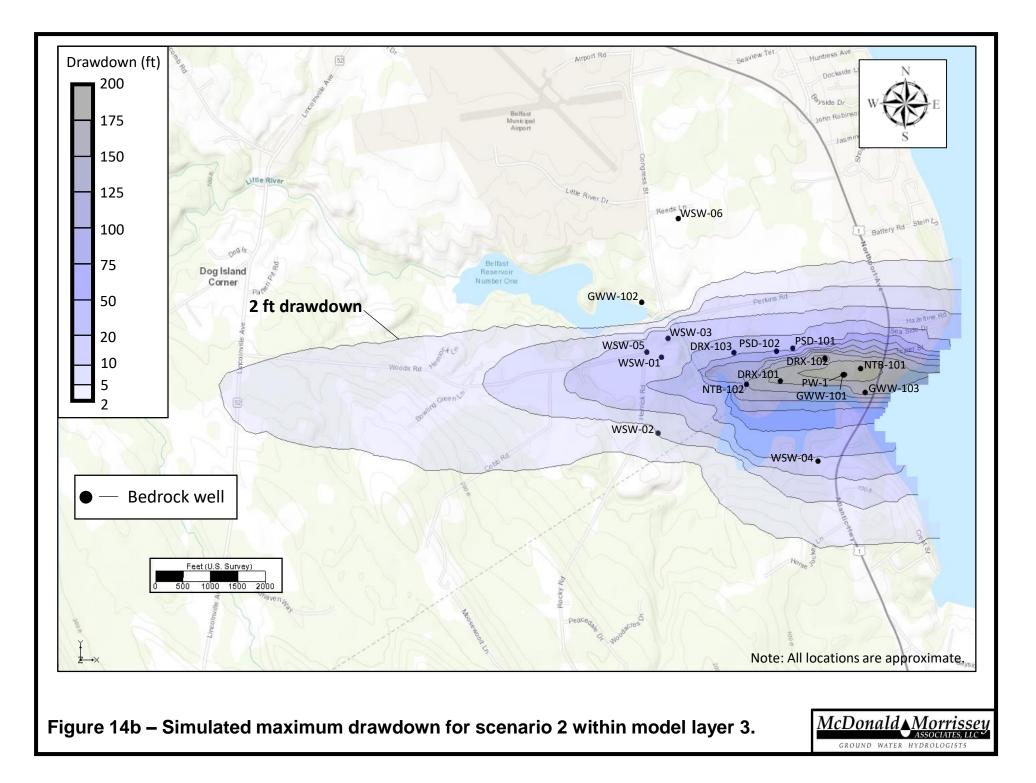


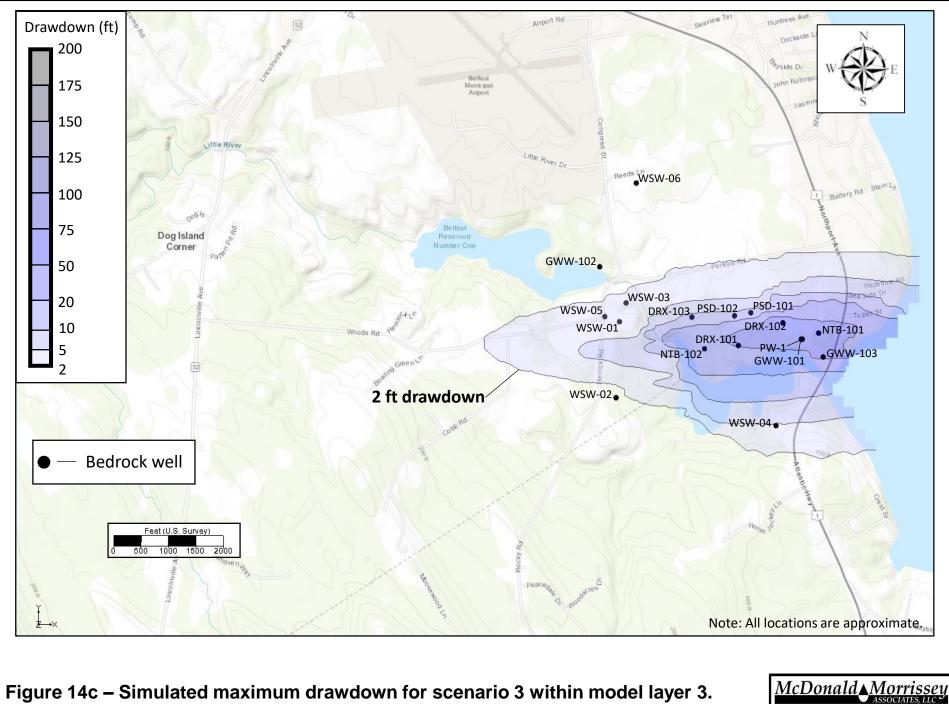


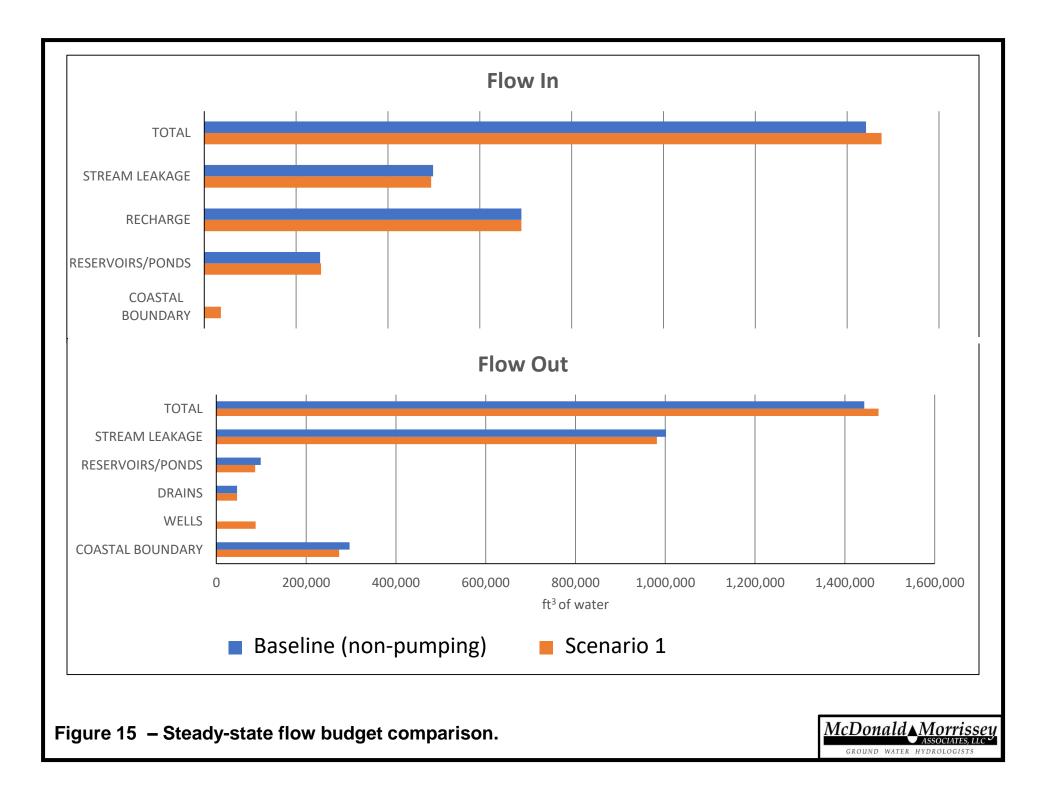


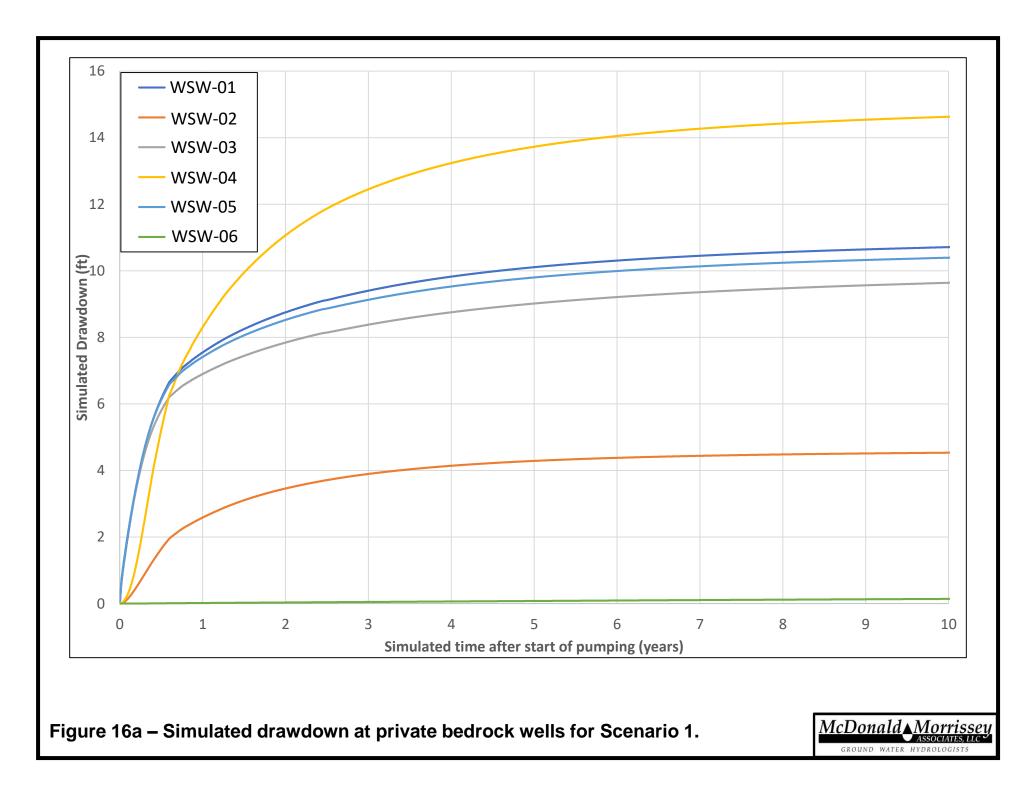


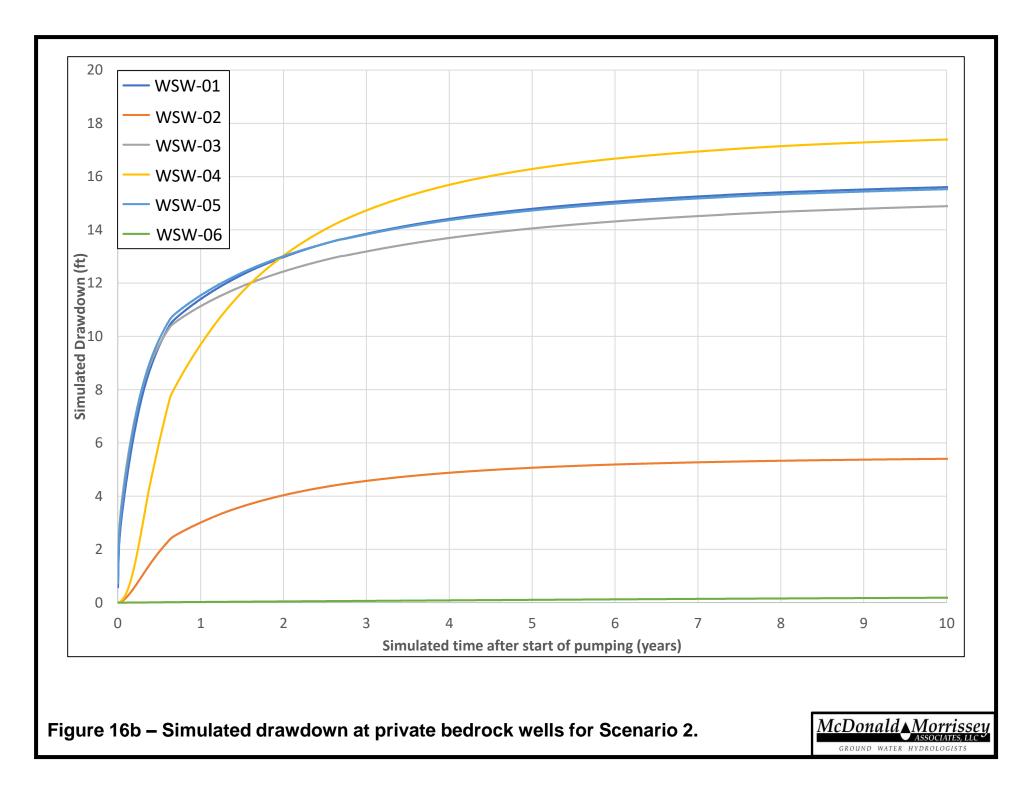


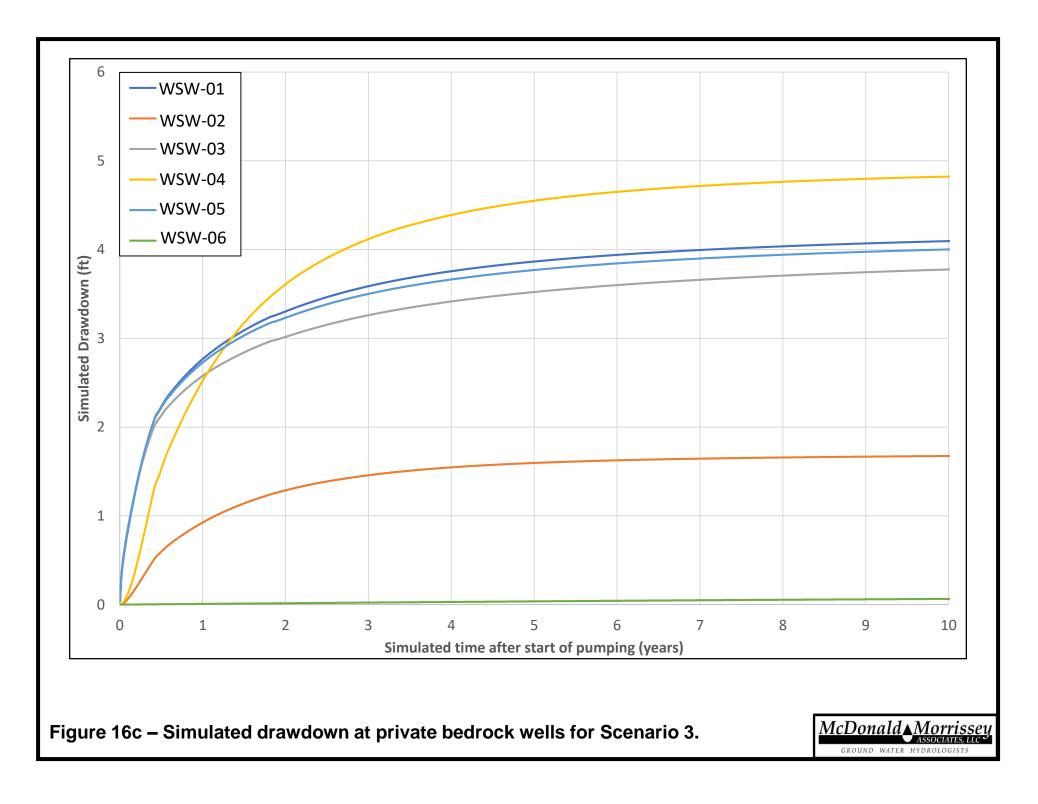












GROUND WATER HYDROLOGISTS

Summary of Groundwater Modeling to Support Significant Groundwater Well Permit Application

Proposed Nordic Aquafarms Facility

Belfast, Maine

Appendix A

Supplemental Tables and Figures

	Residual Statistics (ft)		
Well ID	Mean	10 th Percentile	90 th Percentile
DRX-101	1.1	0.7	1.5
DRX-102	3.0	2.5	3.5
DRX-103	-	-	-
GWW-101	0.4	0.0	1.1
GWW-102	-	-	-
GWW-103	-0.2	-2.0	0.9
NTB-101	2.0	1.3	2.9
NTB-102	-0.1	-1.5	1.7
PSD-101	-	-	-
PSD-102	-	-	-
PW-1	-	-	-
PZ1D	-	-	-
PZ1S	-	-	-
PZ3	-	-	-
PZ4S	-	-	-
WSW-01	-	-	-
WSW-02	-	-	-
WSW-03	-	-	-
WSW-04	-	-	-
WSW-05	-	-	-
WSW-06	-	-	-

Table A1. Target mean residuals and residual 10^{th} and 90^{th} percentiles during pumping test 1 (3/30/2018 – 4/9/2018).

	Residual Statistics (ft)		
Well ID	Mean	10 th Percentile	90 th Percentile
DRX-101	-1.8	-3.1	-0.7
DRX-102	-5.8	-6.8	-4.6
DRX-103	-	-	-
GWW-101	-1.2	-1.9	-0.9
GWW-102	-8.1	-8.4	-7.9
GWW-103	-1.4	-4.2	0.6
NTB-101	-1.1	-2.3	0.9
NTB-102	-1.8	-3.7	0.5
PSD-101	-	-	-
PSD-102	-	-	-
PW-1	-0.9	-2.0	0.0
PZ1D	-	-	-
PZ1S	-	-	-
PZ3	-	-	-
PZ4S	-	-	-
WSW-01	-	-	-
WSW-02	-	-	-
WSW-03	-	-	-
WSW-04	-0.1	-1.7	1.5
WSW-05	-	-	-
WSW-06	-3.8	-4.4	-3.3

Table A2. Target mean residuals and residual 10^{th} and 90^{th} percentiles during pumping test 2 (8/27/2018 – 9/5/2018).

	Residual Statistics (ft)		
Well ID	Mean	10 th Percentile	90 th Percentile
DRX-101	0.0	-1.4	1.0
DRX-102	-0.2	-1.4	3.2
DRX-103	0.2	-1.6	1.8
GWW-101	0.5	0.0	1.0
GWW-102	-0.9	-2.0	0.2
GWW-103	0.9	-1.9	2.3
NTB-101	-1.1	-4.0	0.2
NTB-102	0.8	-2.2	4.0
PSD-101	0.2	-3.7	2.1
PSD-102	0.0	-1.8	1.8
PW-1	0.1	-0.7	0.9
PZ1D	1.7	-1.0	4.1
PZ1S	0.1	-0.6	0.7
PZ3	-0.3	-1.1	1.1
PZ4S	2.4	2.1	3.2
WSW-01	0.9	0.0	2.4
WSW-02	-	-	-
WSW-03	-2.0	-5.6	0.7
WSW-04	0.3	-1.1	1.4
WSW-05	0.3	-1.4	1.8
WSW-06	3.0	2.6	3.5

Table A3. Target mean residuals and residual 10^{th} and 90^{th} percentiles during pumping test 3 (11/18/2018 – 11/29/2018).

	Residual Statistics (ft)		
Well ID	Mean	10 th Percentile	90 th Percentile
DRX-101	3.3	0.9	7.8
DRX-102	-0.9	-6.3	0.4
DRX-103	-0.5	-1.8	0.2
GWW-101	2.1	0.0	4.1
GWW-102	-2.3	-5.1	-0.2
GWW-103	2.1	0.1	2.8
NTB-101	1.6	-0.4	5.6
NTB-102	2.8	0.2	5.2
PSD-101	-0.6	-1.8	1.0
PSD-102	-0.7	-2.3	0.1
PW-1	2.5	0.1	6.0
PZ1D	1.8	0.9	2.4
PZ1S	0.0	-0.9	1.1
PZ3	-0.9	-2.1	1.3
PZ4S	2.3	1.7	3.1
WSW-01	0.1	-0.6	0.8
WSW-02	-24.8	-25.7	-23.7
WSW-03	-2.1	-3.5	-0.7
WSW-04	0.1	-1.6	1.6
WSW-05	-0.7	-1.6	0.3
WSW-06	1.4	0.8	1.9

Table A4. Target mean residuals and residual 10^{th} and 90^{th} percentiles during pumping test 4 (1/8/2019 – 1/18/2019).

	Drawdown (ft)		
Well ID	Scenario 1	Scenario 2	Scenario 3
DRX-101	133.2	158.2	50.9
DRX-102	180.4	198.1	75.7
DRX-103	28.8	46.3	11.3
GWW-101	187.2	206.3	76.3
GWW-102	0.2	0.2	0.1
GWW-103	153.6	169.0	58.9
NTB-101	172.6	191.6	68.4
NTB-102	90.8	106.1	33.9
PSD-101	29.7	45.4	11.7
PSD-102	29.6	56.8	11.6
PW-1	202.1	221.3	83.8
PZ1D	9.6	9.7	9.2
PZ1S	5.4	5.4	5.2
PZ3	4.2	4.2	4.1
PZ4S	0.1	0.1	0.1
WSW-01	11.1	16.1	4.3
WSW-02	4.6	5.6	1.7
WSW-03	10.1	15.4	4.0
WSW-04	15.0	17.9	4.9
WSW-05	10.8	16.0	4.2
WSW-06	0.2	0.3	0.1

Table A5. Maximum simulated drawdowns under estimated average recharge conditions for scenarios 1 - 3.

	Drawdown (ft)		
Well ID	Scenario 1	Scenario 2	Scenario 3
DRX-101	143.0	169.9	55.4
DRX-102	190.6	209.7	82.9
DRX-103	36.4	54.9	16.7
GWW-101	197.0	218.1	80.8
GWW-102	0.5	0.5	0.4
GWW-103	162.4	179.8	62.3
NTB-101	182.6	203.6	73.2
NTB-102	102.1	119.6	39.8
PSD-101	37.3	54.1	16.9
PSD-102	37.2	65.4	17.0
PW-1	211.9	233.1	88.3
PZ1D	9.8	9.8	9.6
PZ1S	8.1	8.1	8.0
PZ3	4.9	4.9	4.9
PZ4S	0.2	0.2	0.2
WSW-01	20.1	26.1	11.3
WSW-02	14.0	15.7	9.3
WSW-03	15.9	21.9	8.5
WSW-04	20.3	24.1	8.2
WSW-05	18.7	24.9	10.4
WSW-06	15.0	15.1	14.7

Table A6. Maximum simulated drawdowns under estimated low recharge conditions for scenarios 1 - 3.

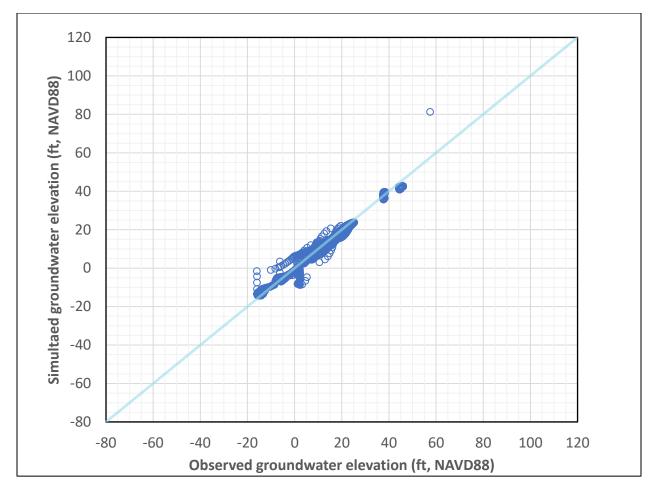


Figure A1. Observed and simulated groundwater elevations at bedrock wells for pumping test 1 (3/30/2018 - 4/9/2018).

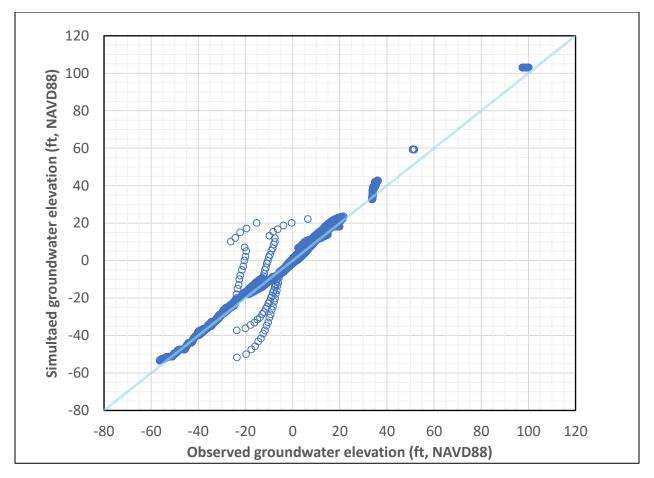


Figure A2. Observed and simulated groundwater elevations at bedrock wells for pumping test 2 (8/27/2018 - 9/5/2018).

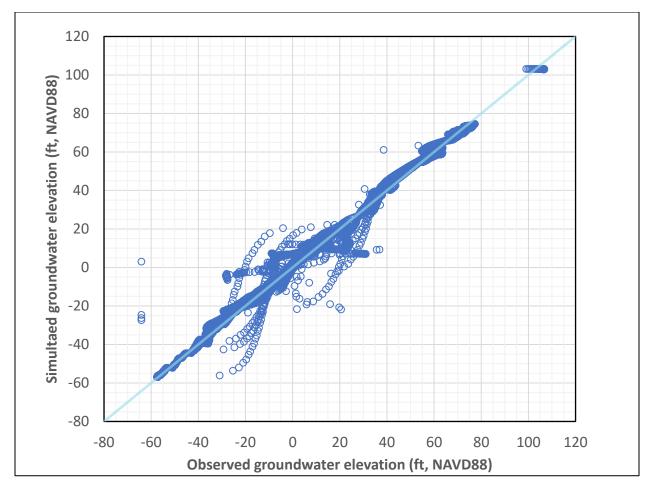


Figure A3. Observed and simulated groundwater elevations at bedrock wells and piezometers for pumping test 3 (11/18/2018 - 11/29/2018).

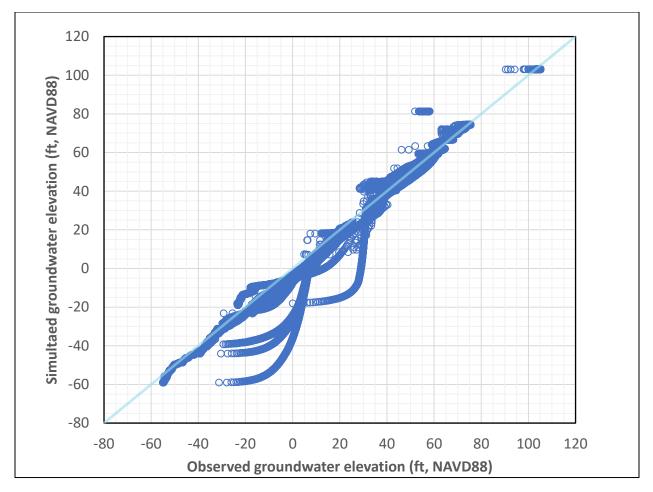


Figure A4. Observed and simulated groundwater elevations at bedrock wells and piezometers for pumping test 4 (1/8/2019 - 1/18/2019).

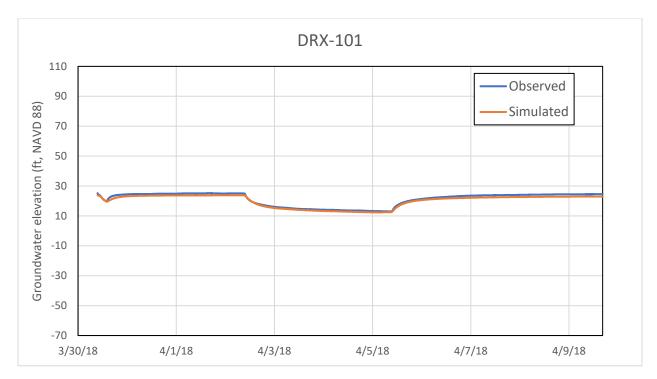


Figure A5. Observed and simulated groundwater elevations at pumping well DRX-101 during pump test 1 (3/30/2018 - 4/9/2018).

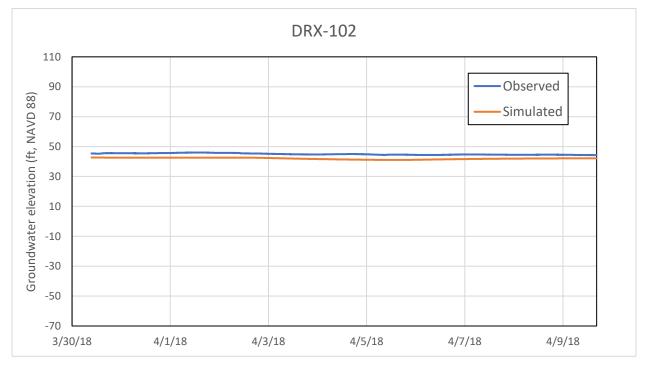


Figure A6. Observed and simulated groundwater elevations at pumping well DRX-102 during pump test 1 (3/30/2018 - 4/9/2018).

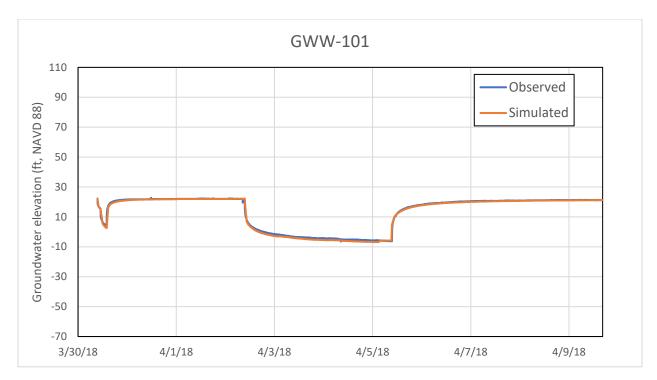


Figure A7. Observed and simulated groundwater elevations at pumping well GWW-101 during pump test 1 (3/30/2018 - 4/9/2018).

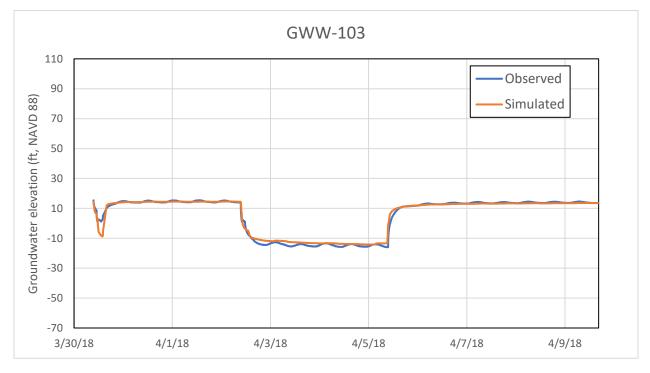


Figure A8. Observed and simulated groundwater elevations at pumping well GWW-103 during pump test 1 (3/30/2018 - 4/9/2018).

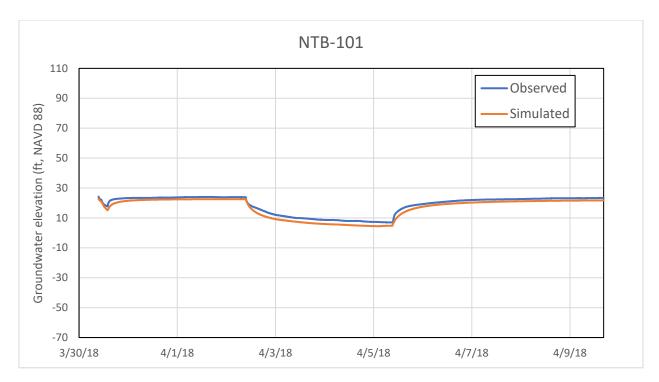


Figure A9. Observed and simulated groundwater elevations at bedrock well NTB-101 during pump test 1 (3/30/2018 - 4/9/2018).

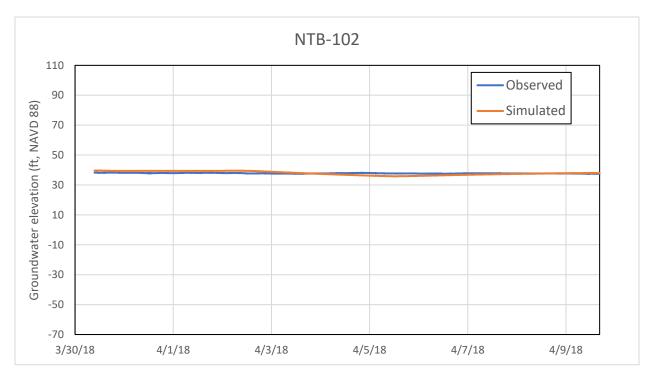


Figure A10. Observed and simulated groundwater elevations at bedrock well NTB-102 during pump test 1 (3/30/2018 - 4/9/2018).

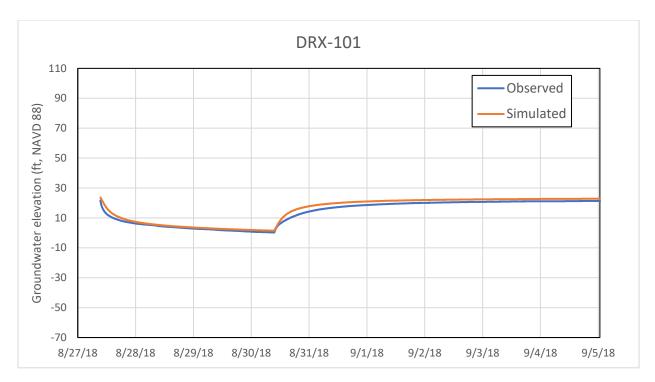


Figure A11. Observed and simulated groundwater elevations at pumping well DRX-101 during pump test 2 (8/27/2018 - 9/5/2018).

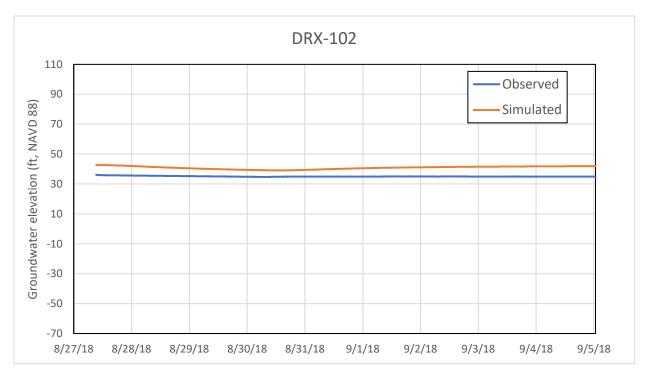


Figure A12. Observed and simulated groundwater elevations at pumping well DRX-102 during pump test 2 (8/27/2018 - 9/5/2018).

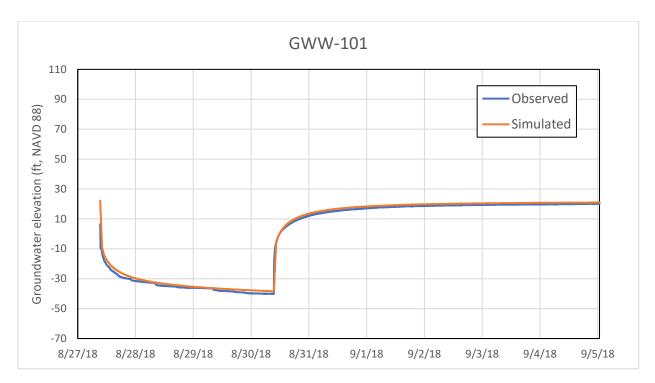


Figure A13. Observed and simulated groundwater elevations at pumping well GWW-101 during pump test 2 (8/27/2018 - 9/5/2018).

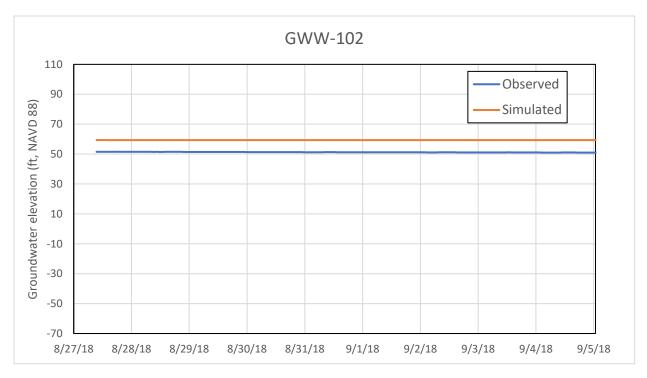


Figure A14. Observed and simulated groundwater elevations at bedrock well GWW-102 during pump test 2 (8/27/2018 - 9/5/2018).

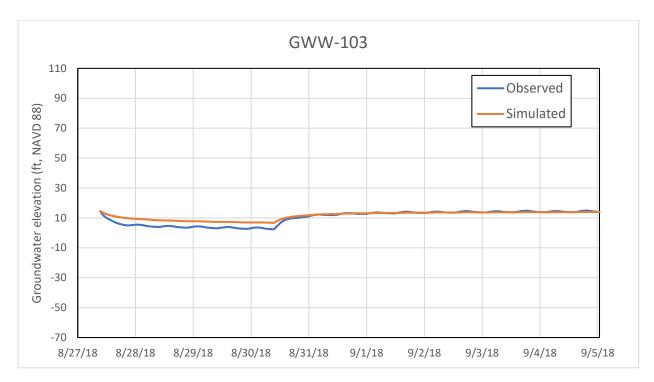


Figure A15. Observed and simulated groundwater elevations at pumping well GWW-103 during pump test 2 (8/27/2018 - 9/5/2018).

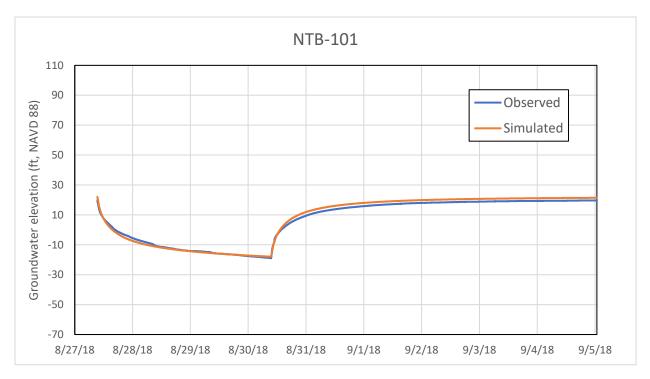


Figure A16. Observed and simulated groundwater elevations at bedrock well NTB-101 during pump test 2 (8/27/2018 - 9/5/2018).

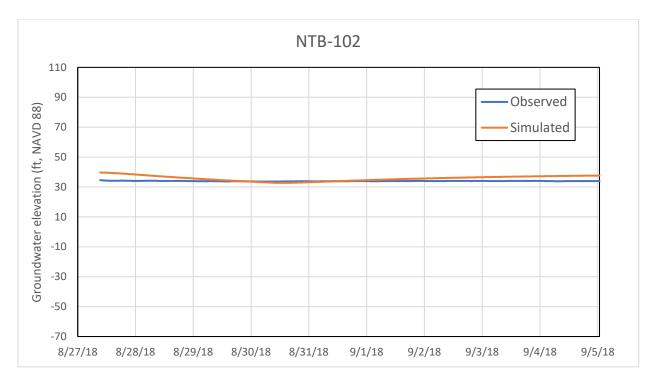


Figure A17. Observed and simulated groundwater elevations at bedrock well NTB-102 during pump test 2 (8/27/2018 - 9/5/2018).

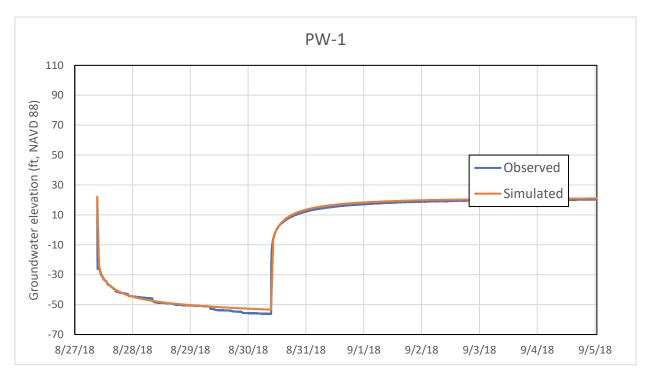


Figure A18. Observed and simulated groundwater elevations at pumping well PW-1 during pump test 2 (8/27/2018 - 9/5/2018).

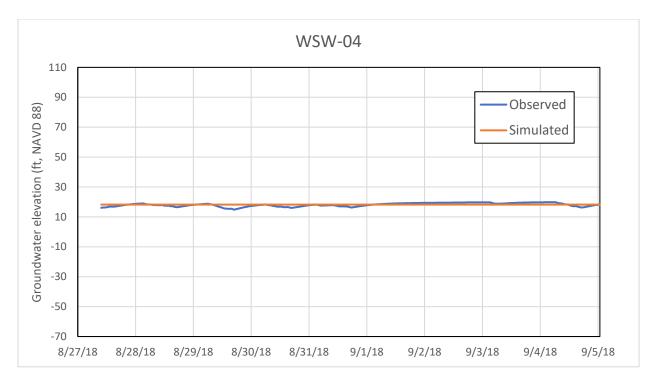


Figure A19. Observed and simulated groundwater elevations at bedrock well WSW-04 during pump test 2 (8/27/2018 - 9/5/2018).

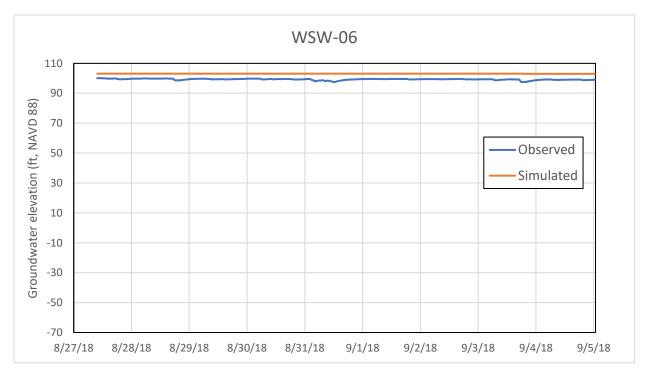


Figure A20. Observed and simulated groundwater elevations at bedrock well WSW-06 during pump test 2 (8/27/2018 - 9/5/2018).

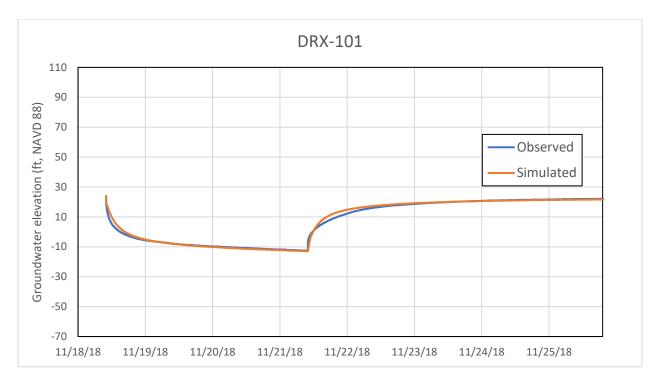


Figure A21. Observed and simulated groundwater elevation at pumping well DRX-101 during pump test 3 (11/18/2018 - 11/29/2018).

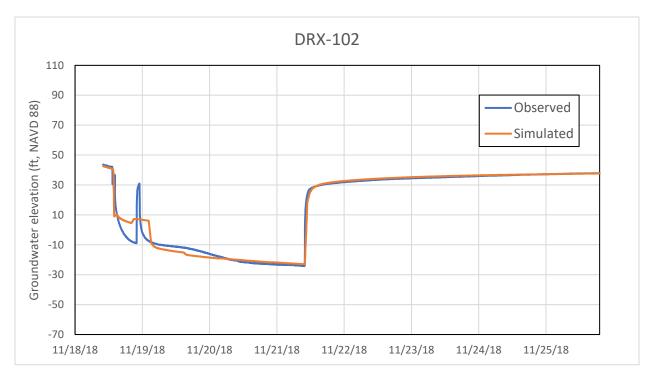


Figure A22. Observed and simulated groundwater elevation at pumping well DRX-102 during pump test 3 (11/18/2018 - 11/29/2018).

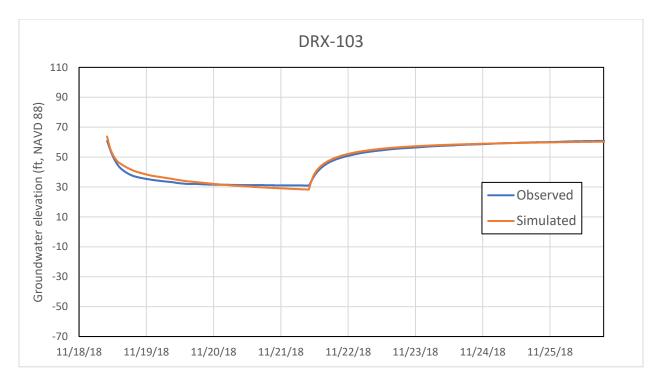


Figure A23. Observed and simulated groundwater elevation at bedrock well DRX-103 during pump test 3 (11/18/2018 - 11/29/2018).

Figure A24. Observed and simulated groundwater elevation at pumping well GWW-101 during pump test 3 (11/18/2018 - 11/29/2018).

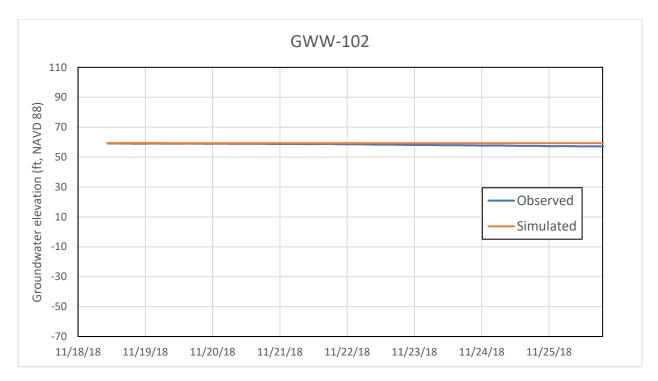


Figure A25. Observed and simulated groundwater elevation at bedrock well GWW-102 during pump test 3 (11/18/2018 - 11/29/2018).

Figure A26. Observed and simulated groundwater elevation at pumping well GWW-103 during pump test 3 (11/18/2018 - 11/29/2018).

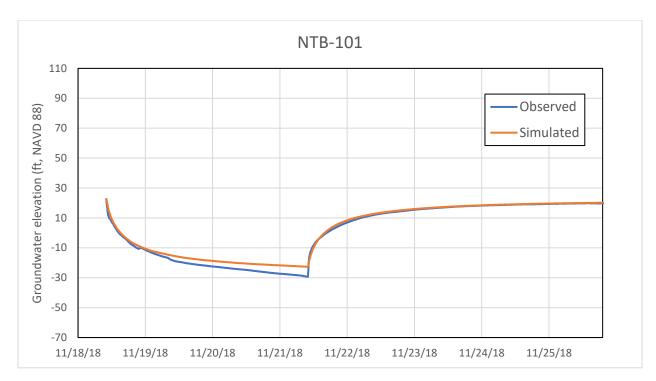


Figure A27. Observed and simulated groundwater elevation at bedrock well NTB-101 during pump test 3 (11/18/2018 - 11/29/2018).

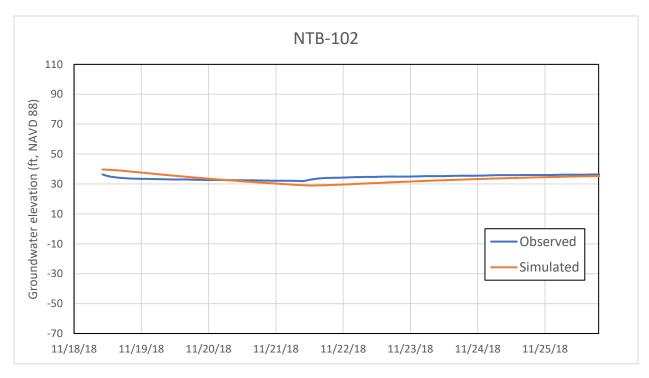


Figure A28. Observed and simulated groundwater elevation at bedrock well NTB-102 during pump test 3 (11/18/2018 - 11/29/2018).

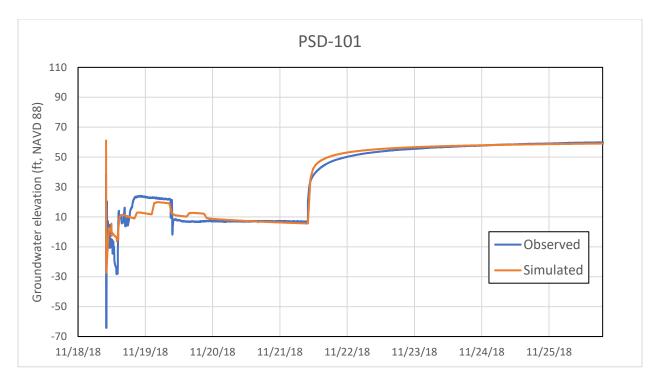


Figure A29. Observed and simulated groundwater elevation at pumping well PSD-101 during pump test 3 (11/18/2018 - 11/29/2018).

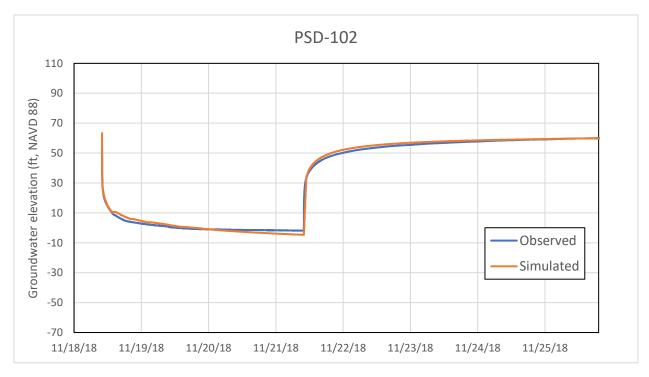


Figure A30. Observed and simulated groundwater elevation at pumping well PSD-102 during pump test 3 (11/18/2018 - 11/29/2018).

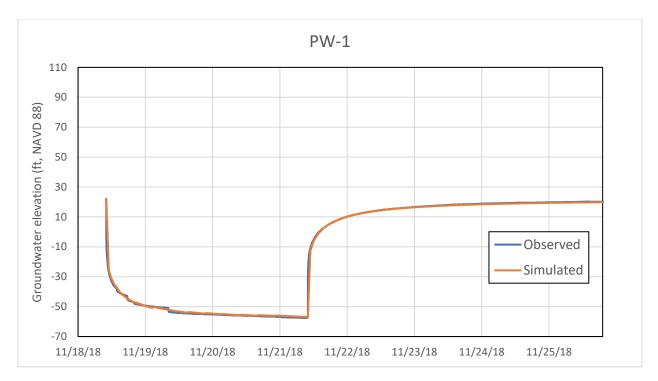


Figure A31. Observed and simulated groundwater elevation at pumping well PW-1 during pump test 3 (11/18/2018 - 11/29/2018).

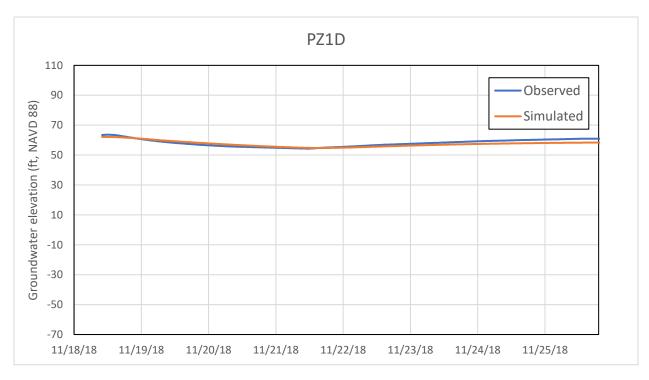


Figure A32. Observed and simulated groundwater elevation at piezometer PZ1D during pump test 3 (11/18/2018 - 11/29/2018).

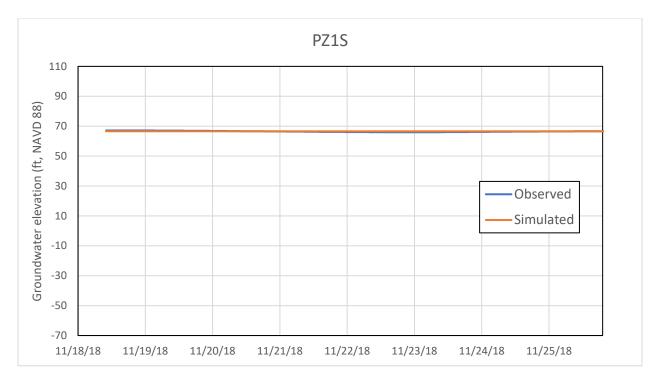


Figure A33. Observed and simulated groundwater elevation at piezometer PZ1S during pump test 3 (11/18/2018 - 11/29/2018).

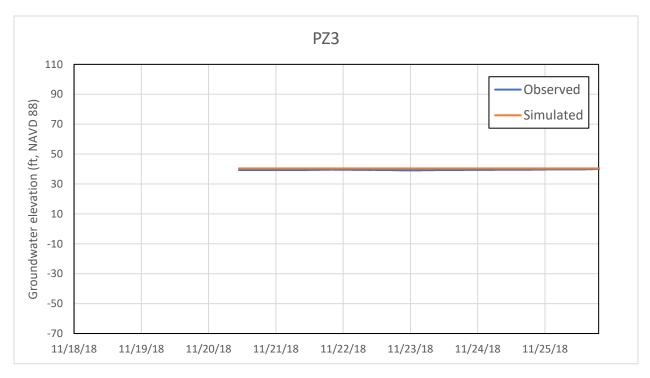


Figure A34. Observed and simulated groundwater elevation at piezometer PZ3 during pump test 3(11/18/2018 - 11/29/2018).

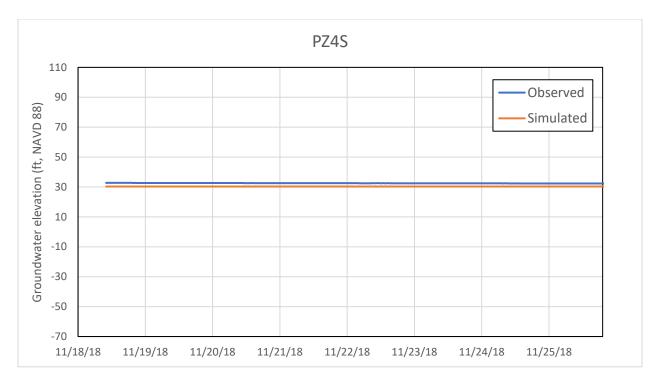


Figure A35. Observed and simulated groundwater elevation at piezometer PZ4S during pump test 3 (11/18/2018 - 11/29/2018).

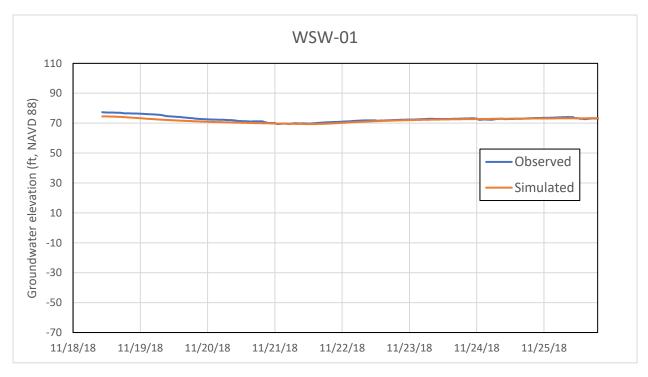


Figure A36. Observed and simulated groundwater elevation at bedrock well WSW-01 during pump test 3 (11/18/2018 - 11/29/2018).

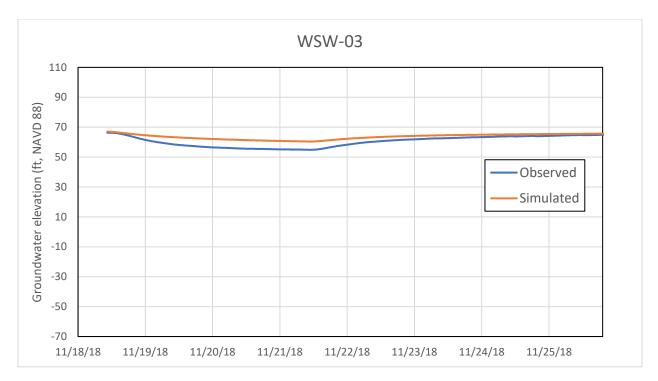


Figure A37. Observed and simulated groundwater elevation at bedrock well WSW-03 during pump test 3 (11/18/2018 - 11/29/2018).

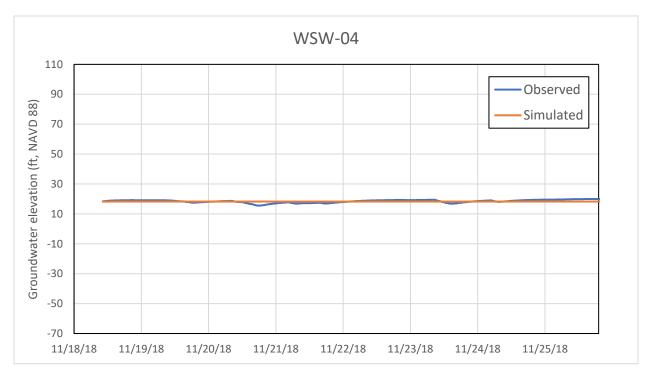


Figure A38. Observed and simulated groundwater elevation at bedrock well WSW-04 during pump test 3 (11/18/2018 - 11/29/2018).

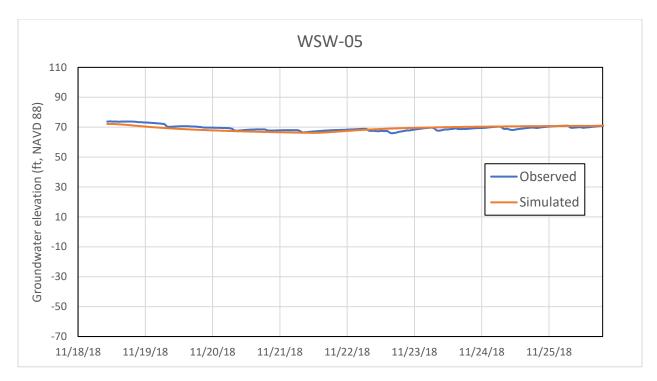


Figure A39. Observed and simulated groundwater elevation at bedrock well WSW-05 during pump test 3 (11/18/2018 - 11/29/2018).

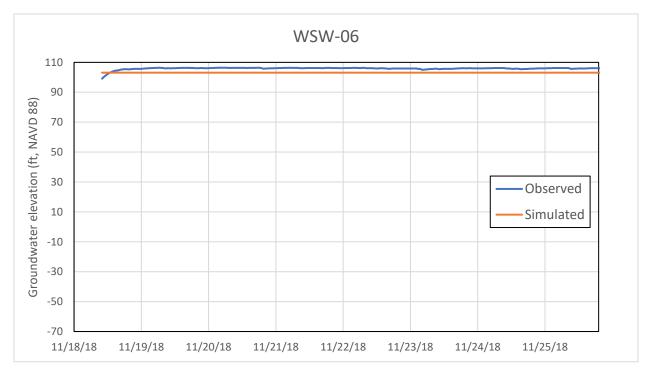


Figure A40. Observed and simulated groundwater elevation at bedrock well WSW-06 during pump test 3 (11/18/2018 - 11/29/2018).

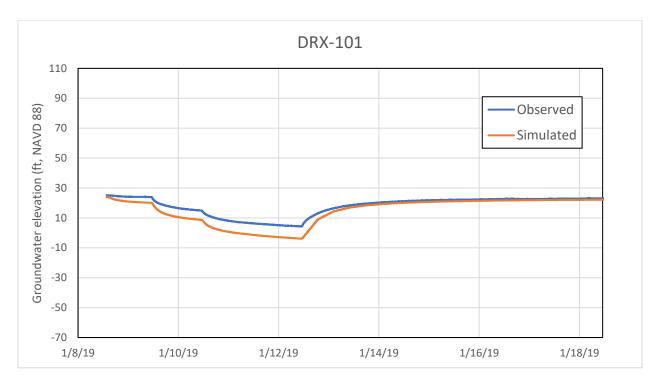


Figure A41. Observed and simulated groundwater elevation at pumping well DRX-101 during pump test 4 (1/8/2019 - 1/18/2019).

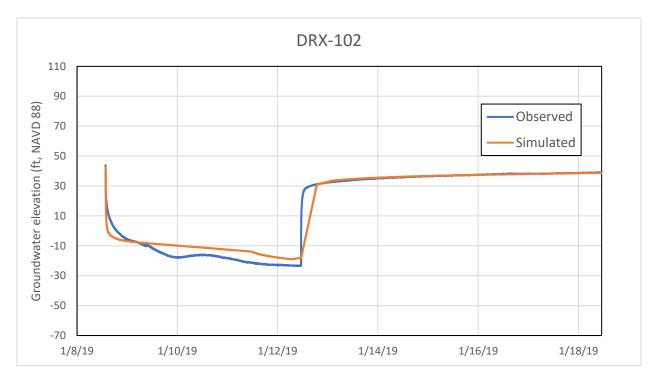


Figure A42. Observed and simulated groundwater elevation at pumping well DRX-102 during pump test 4 (1/8/2019 - 1/18/2019).

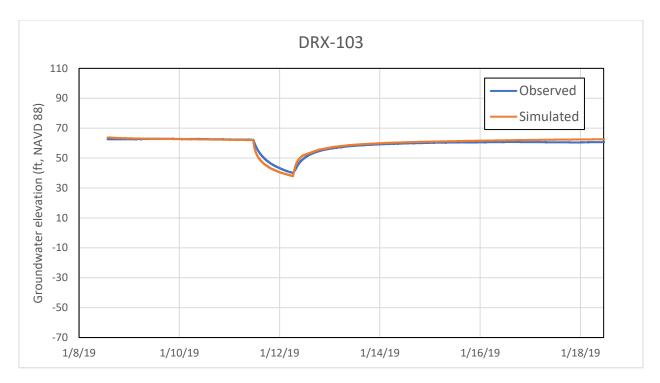


Figure A43. Observed and simulated groundwater elevation at bedrock well DRX-103 during pump test 4 (1/8/2019 - 1/18/2019).

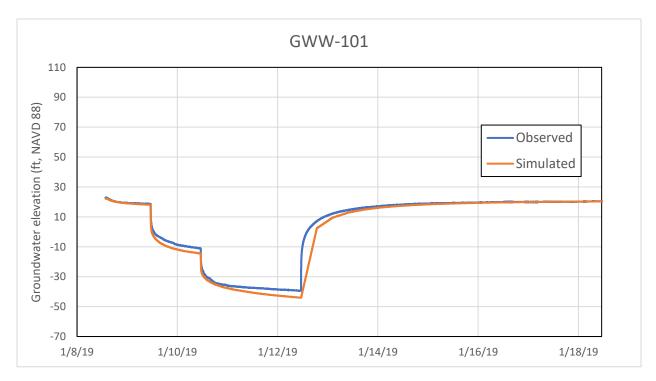


Figure A44. Observed and simulated groundwater elevation at pumping well GWW-101 during pump test 4 (1/8/2019 - 1/18/2019).

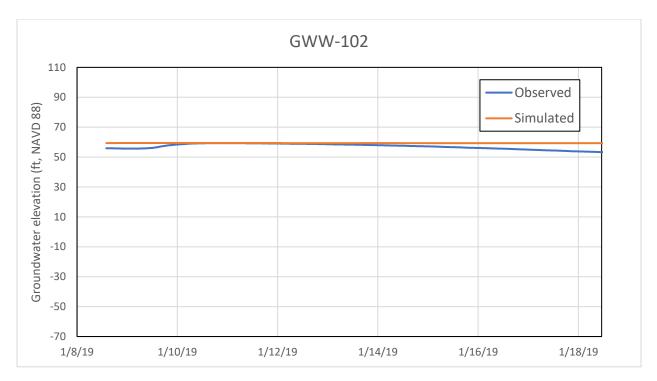


Figure A45. Observed and simulated groundwater elevation at bedrock well GWW-102 during pump test 4 (1/8/2019 - 1/18/2019).

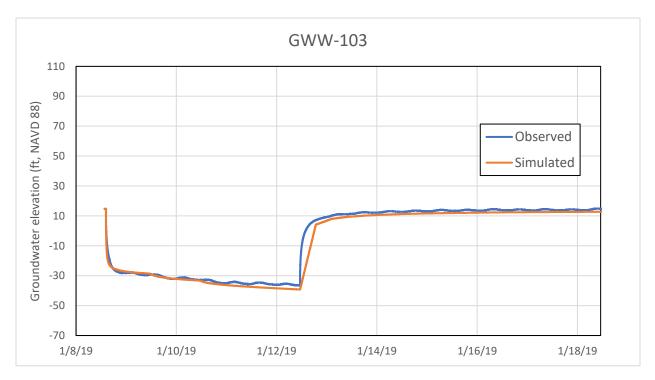


Figure A46. Observed and simulated groundwater elevation at pumping well GWW-103 during pump test 4 (1/8/2019 - 1/18/2019).



Figure A47. Observed and simulated groundwater elevation at bedrock well NTB-101 during pump test 4 (1/8/2019 - 1/18/2019).

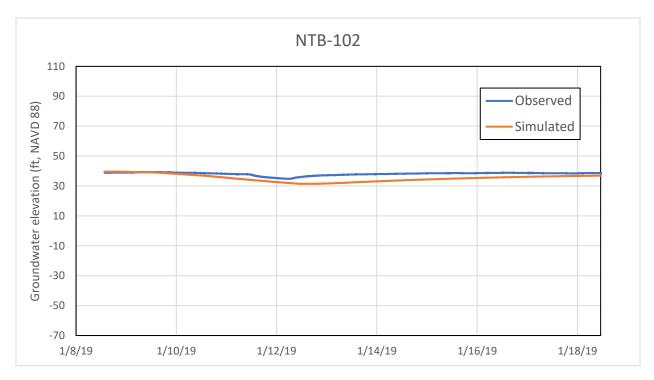


Figure A48. Observed and simulated groundwater elevation at bedrock well NTB-102 during pump test 4 (1/8/2019 - 1/18/2019).

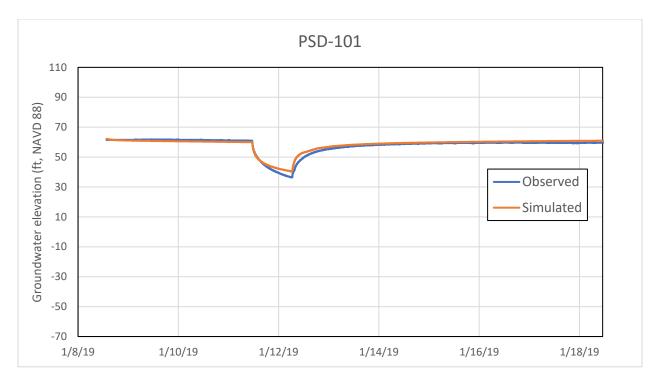


Figure A49. Observed and simulated groundwater elevation at pumping well PSD-101 during pump test 4 (1/8/2019 - 1/18/2019).

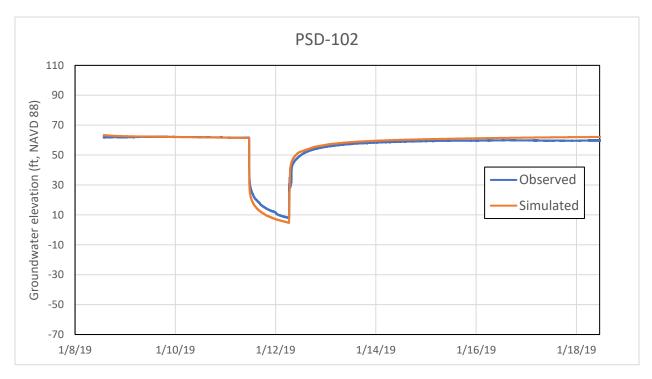


Figure A50. Observed and simulated groundwater elevation at pumping well PSD-102 during pump test 4 (1/8/2019 - 1/18/2019).

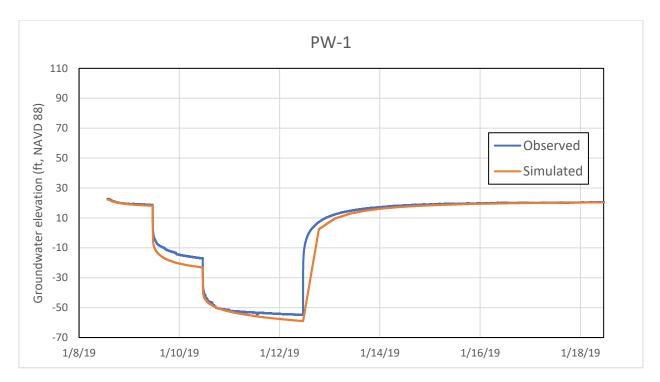


Figure A51. Observed and simulated groundwater elevation at pumping well PW-1 during pump test 4 (1/8/2019 - 1/18/2019).

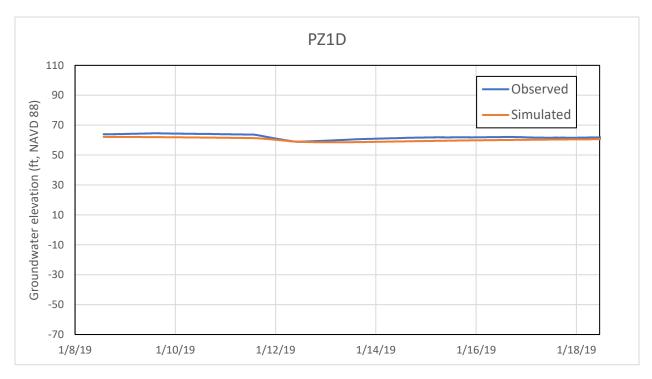


Figure A52. Observed and simulated groundwater elevation at piezometer PZ1D during pump test 4 (1/8/2019 - 1/18/2019).

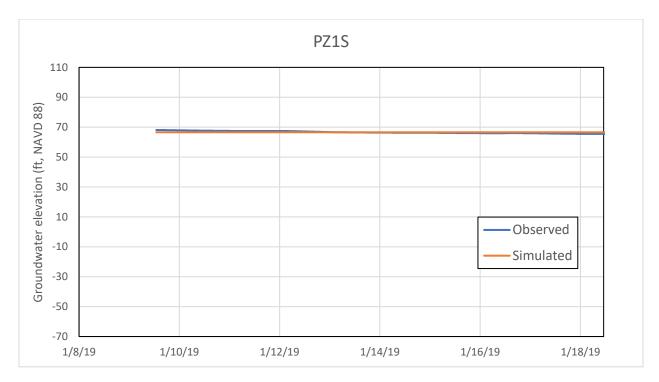


Figure A53. Observed and simulated groundwater elevation at piezometer PZ1S during pump test 4 (1/8/2019 - 1/18/2019).

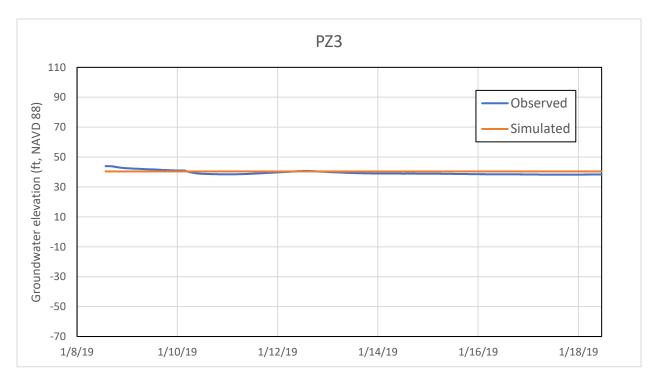


Figure A54. Observed and simulated groundwater elevation at piezometer PZ3 during pump test 4(1/8/2019 - 1/18/2019).

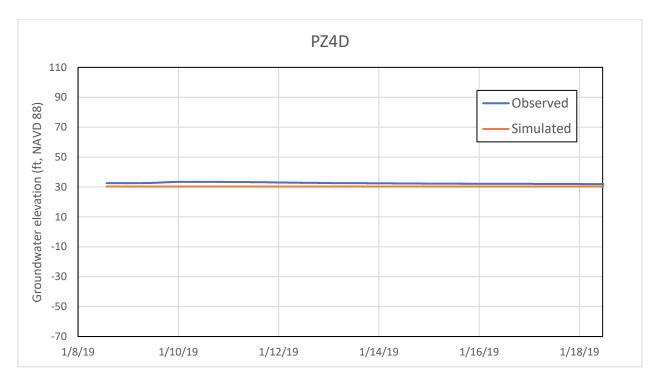


Figure A55. Observed and simulated groundwater elevation at piezometer PZ4D during pump test 4 (1/8/2019 - 1/18/2019).

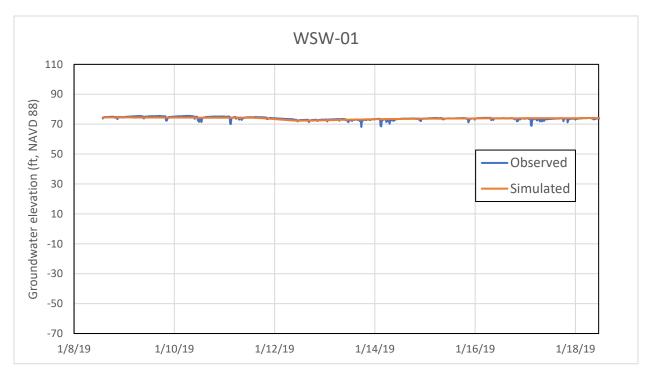


Figure A56. Observed and simulated groundwater elevation at bedrock well WSW-01 during pump test 4 (1/8/2019 - 1/18/2019).

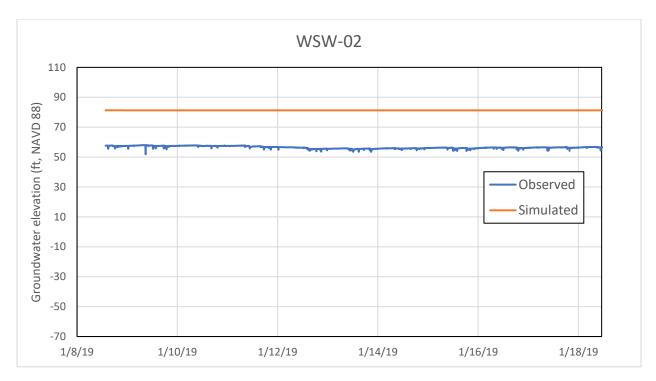


Figure A57. Observed and simulated groundwater elevation at bedrock well WSW-02 during pump test 4 (1/8/2019 - 1/18/2019).

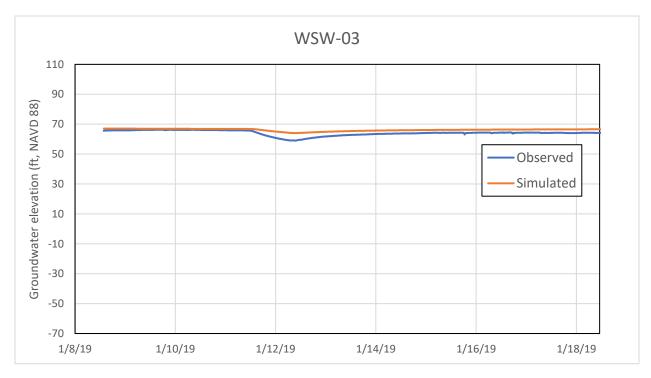


Figure A58. Observed and simulated groundwater elevation at bedrock well WSW-03 during pump test 4 (1/8/2019 - 1/18/2019).

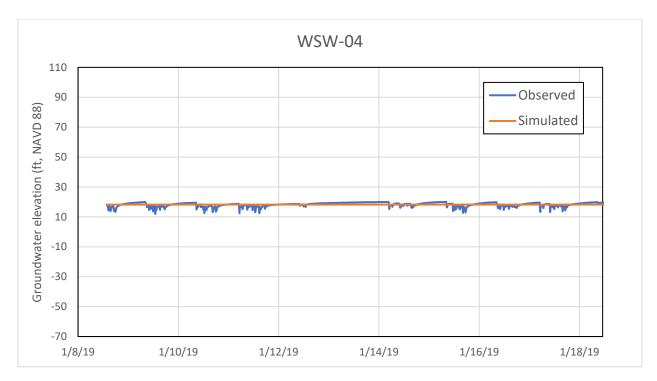


Figure A59. Observed and simulated groundwater elevation at bedrock well WSW-04 during pump test 4 (1/8/2019 - 1/18/2019).

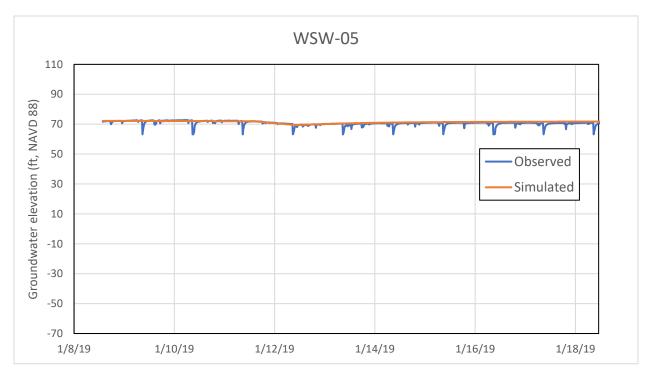


Figure A60. Observed and simulated groundwater elevation at bedrock well WSW-05 during pump test 4 (1/8/2019 - 1/18/2019).



Figure A61. Observed and simulated groundwater elevation at bedrock well WSW-06 during pump test 4 (1/8/2019 - 1/18/2019).

APPENDIX G

Laboratory Analytical Reports

Hydrogeologic Investigation Report Proposed Commercial Land-Based Aquaculture Facility Belfast Water District, Cassida Back Lot, and Mathews Brothers West Field Properties 285 Northport Avenue Belfast, Maine

> Ransom Consulting, Inc. Project 171.05027.003

ANALYTICAL REPORT

Lab Number:	L1807395
Client:	Ransom Consulting, Inc.
	400 Commercial Street
	Suite 404
	Portland, ME 04101-4660
ATTN:	Elizabeth Ransom
Phone:	(207) 772-2891
Project Name:	BELFAST WATER DISTRICT
Project Number:	171.05027.003
Report Date:	03/09/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	BELFAST WATER DISTRICT
Project Number:	171.05027.003

Lab Number:	L1807395
Report Date:	03/09/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1807395-01	NTB-102	WATER	BELFAST, ME	02/26/18 16:15	03/02/18
L1807395-02	NTB-103	WATER	BELFAST, ME	03/01/18 15:30	03/02/18
L1807395-03	GWW-101	WATER	BELFAST, ME	02/27/18 15:45	03/02/18
L1807395-04	GWW-102	WATER	BELFAST, ME	03/01/18 13:00	03/02/18
L1807395-05	TRIP BLANK	WATER	BELFAST, ME	02/26/18 00:00	03/02/18

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: BELFAST WATER DISTRICT Project Number: 171.05027.003
 Lab Number:
 L1807395

 Report Date:
 03/09/18

Case Narrative (continued)

Report Submission

The requested analyses were provided by the client.

Semivolatile Organics

L1807395-03: The surrogate recoveries are above the acceptance criteria for 2-fluorophenol (122%), nitrobenzene-d5 (153%), 2-fluorobiphenyl (170%), 2,4,6-tribromophenol (170%) and 4-terphenyl-d14 (184%). Since the sample was non-detect for all target analytes, re-analysis was not required.

Semivolatile Organics by SIM

L1807395-03: The surrogate recovery is above the acceptance criteria for 2-fluorophenol (122%), nitrobenzene-d5 (210%), 2-fluorobiphenyl (171%), 2,4,6-tribromophenol (162%) and 4-terphenyl-d14 (164%). Since the sample was non-detect for all target analytes, re-analysis was not required.

Total Metals

The WG1094454-1 Method Blank, associated with L1807395-03, has a concentration above the reporting limit for Sulfur. Since the associated sample concentration is greater than 10x the blank concentration for this analyte, no corrective action is required.

Phosphorus, Soluble

L1807395-03 was filtered with the method required holding time exceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 03/09/18

ORGANICS

VOLATILES

		Serial_No:03091814:39
Project Name:	BELFAST WATER DISTRICT	Lab Number: L1807395
Project Number:	171.05027.003	Report Date: 03/09/18
	SAMPLE RESUL	TS
Lab ID:	L1807395-03	Date Collected: 02/27/18 15:45
Client ID:	GWW-101	Date Received: 03/02/18
Sample Location:	BELFAST, ME	Field Prep: Field Filtered (Dissolved
Sample Depth:		Metals and phosphorus)
Matrix:	Water	
Analytical Method:	1,8260C	
Analytical Date:	03/05/18 19:08	
Analyst:	AD	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	1.0		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	0.20		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1

					Ś	Serial N	o:03091814:39
Project Name:	BELFAST WATER D	DISTRICT			Lab Nu		L1807395
Project Number:	171.05027.003				Report	Date:	03/09/18
,	111.00021.000	SAMP		s			03/03/10
Lab ID: Client ID: Sample Location: Sample Depth:	L1807395-03 GWW-101 BELFAST, ME				Date Col Date Rec Field Pre	ceived:	02/27/18 15:45 03/02/18 Field Filtered (Dissolved Metals and phosphorus)
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborou	igh Lab					
1,2-Dichloroethene, Tota	I	ND		ug/l	0.50		1
Trichloroethene		ND		ug/l	0.50		1
1,2-Dichlorobenzene		ND		ug/l	1.0		1
1,3-Dichlorobenzene		ND		ug/l	1.0		1
1,4-Dichlorobenzene		ND		ug/l	1.0		1
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
Xylenes, Total		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	1.0		1
1,4-Dichlorobutane		ND		ug/l	5.0		1
1,2,3-Trichloropropane		ND		ug/l	1.0		1
Styrene		ND		ug/l	1.0		1
Dichlorodifluoromethane		ND		ug/l	2.0		1
Acetone		ND		ug/l	5.0		1
Carbon disulfide		ND		ug/l	1.0		1
2-Butanone		ND		ug/l	5.0		1
Vinyl acetate		ND		ug/l	5.0		1
4-Methyl-2-pentanone		ND		ug/l	5.0		1
2-Hexanone		ND		ug/l	5.0		1
Ethyl methacrylate		ND		ug/l	5.0		1
Acrylonitrile		ND		ug/l	5.0		1
Bromochloromethane		ND		ug/l	1.0		1
Tetrahydrofuran		ND		ug/l	2.0		1
2,2-Dichloropropane		ND		ug/l	1.0		1
1,2-Dibromoethane		ND		ug/l	1.0		1
1,3-Dichloropropane		ND		ug/l	1.0		1
1,1,1,2-Tetrachloroethan	e	ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	1.0		1
n-Butylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	1.0		1
o-Chlorotoluene		ND		ug/l	1.0		1
p-Chlorotoluene		ND		ug/l	1.0		1
1,2-Dibromo-3-chloropro	pane	ND		ug/l	1.0		1
Hexachlorobutadiene	·	ND		ug/l	0.50		1
				~9,1			

					:	Serial_N	0:03091814:39
Project Name:	BELFAST WATER D	ISTRICT			Lab Nu	mber:	L1807395
Project Number:	171.05027.003				Report	Date:	03/09/18
		SAMP	LE RESULTS	5			
Lab ID: Client ID: Sample Location: Sample Depth:	L1807395-03 GWW-101 BELFAST, ME				Date Col Date Rec Field Pre	ceived:	02/27/18 15:45 03/02/18 Field Filtered (Dissolved Metals and phosphorus)
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westboroug	jh Lab					
Isopropylbenzene		ND		ua/l	0.50		1

Isopiopyiberizerie	ND	ug/i	0.50	 I	
p-Isopropyltoluene	ND	ug/l	0.50	 1	
Naphthalene	ND	ug/l	1.0	 1	
n-Propylbenzene	ND	ug/l	0.50	 1	
1,2,3-Trichlorobenzene	ND	ug/l	1.0	 1	
1,2,4-Trichlorobenzene	ND	ug/l	1.0	 1	
1,3,5-Trimethylbenzene	ND	ug/l	1.0	 1	
1,2,4-Trimethylbenzene	ND	ug/l	1.0	 1	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	 1	
Ethyl ether	ND	ug/l	1.0	 1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	104	70-130	

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Lab Number: L1807395 Report Date: 03/09/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	03/05/18 12:03
Analyst:	PD

Oblatile Organics by GC/MS - Westborough Lab for sample(s): 03 Batch: WG1094780-5 Methylene chloride ND ug/l 3.0 1,1-Dichloroethane ND ug/l 0.75 Chloroform ND ug/l 0.50 Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.50 2-Chloroethylwinyl ether ND ug/l 10 Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichlorofuoromethane ND ug/l 0.50 1,1-Dichloroethane ND ug/l 0.50 1,1-Dichloroethane ND ug/l 0.50 1,1-Dichloroethane ND	arameter	Result	Qualifier	Units	RL	MDL
1,1-Dichloroethane ND ug/l 0.75 Chloroform ND ug/l 0.75 Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 0.50 1,2-Dichloropropane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.75 1,1,2-Trichloroethane ND ug/l 0.50 2-Chloroethylvinyl ether ND ug/l 0.50 2-Chloroethane ND ug/l 0.50 Chloroethane ND ug/l 0.50 1,1-Dichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 1,1-Dichloropthane ND ug/l 0.50 1,1-Dichloroptopene ND ug/l 0.50 1,1-Dichloroptopene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 </td <td>olatile Organics by GC/MS - \</td> <td>Westborough La</td> <td>b for samp</td> <td>le(s): 03</td> <td>Batch:</td> <td>WG1094780-5</td>	olatile Organics by GC/MS - \	Westborough La	b for samp	le(s): 03	Batch:	WG1094780-5
Chloroform ND ug/l 0.75 Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 0.50 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.75 2-Chloroethylvinyl ether ND ug/l 0.50 Tetrachloroethane ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichlorofthane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 1,2-Dichloropthane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,1-Trichloropropene ND ug/l 0.50 1,2-Dichloropropene ND ug/l	Methylene chloride	ND		ug/l	3.0	
Carbon tetrachloride ND ug/l 0.50 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.75 2-Chloroethylvinyl ether ND ug/l 0.50 Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichloroftluoromethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND u	1,1-Dichloroethane	ND		ug/l	0.75	
1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.75 2-Chloroethylvinyl ether ND ug/l 10 2-Chloroethylvinyl ether ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,1-2,2-Tetrachoroethane ND ug/l<	Chloroform	ND		ug/l	0.75	
Dibromochloromethane ND ug/l 0.50 1,1,2-Trichloroethane ND ug/l 0.75 2-Chloroethylvinyl ether ND ug/l 10 Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 1.0 1,2-2-Tetrachloroethane ND ug/l 0.50 1,1-2,2-Tetrachloroethane ND	Carbon tetrachloride	ND		ug/l	0.50	
1,1,2-Trichloroethane ND ug/l 0.75 2-Chloroethylvinyl ether ND ug/l 10 Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 0.50 1,2-Dichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,2-Z-Tetrachloroethane ND ug/l 0.50 1,1-Dichloropthane ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND	1,2-Dichloropropane	ND		ug/l	1.0	
2-Chloroethylvinyl ether ND ug/l 10 Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloroptopene ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND	Dibromochloromethane	ND		ug/l	0.50	
Tetrachloroethene ND ug/l 0.50 Chlorobenzene ND ug/l 0.50 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 0.50 1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloroptopene ND ug/l 0.50 1,3-Dichloroptopene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l <	1,1,2-Trichloroethane	ND		ug/l	0.75	
ChlorobenzeneNDug/l0.50TrichlorofluoromethaneNDug/l1.01,2-DichloroethaneNDug/l0.501,1.1-TrichloroethaneNDug/l0.50BromodichloromethaneNDug/l0.50trans-1,3-DichloropropeneNDug/l0.501,3-DichloropropeneNDug/l0.501,3-DichloropropeneNDug/l0.501,3-DichloropropeneNDug/l0.501,3-DichloropropeneNDug/l0.501,3-DichloropropeneNDug/l0.501,1-DichloropropeneNDug/l0.501,1,2,2-TetrachloroethaneNDug/l0.501,1,2,2-TetrachloroethaneNDug/l0.501,1,2,2-TetrachloroethaneNDug/l0.501,1,2,2-TetrachloroethaneNDug/l0.501,1,2,2-TetrachloroethaneNDug/l0.501,1,2,2-TetrachloroethaneNDug/l0.50EthylbenzeneNDug/l0.50ChloromethaneNDug/l0.50ChloroethaneNDug/l0.20ChloroethaneNDug/l0.20ChloroethaneNDug/l0.50ChloroethaneNDug/l0.50 <td>2-Chloroethylvinyl ether</td> <td>ND</td> <td></td> <td>ug/l</td> <td>10</td> <td></td>	2-Chloroethylvinyl ether	ND		ug/l	10	
Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l	Tetrachloroethene	ND		ug/l	0.50	
1,2-Dichloroethane ND ug/l 0.50 1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 1.0 1,1-Dichloropropene ND ug/l 1.0 Bromoform ND ug/l 0.50 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 1.0 Vinyl chloride ND ug/l 0.20	Chlorobenzene	ND		ug/l	0.50	
1,1,1-Trichloroethane ND ug/l 0.50 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 tians-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Toluene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 0.20	Trichlorofluoromethane	ND		ug/l	1.0	
Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene, Total ND ug/l 1.0 1,1-Dichloropropene ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 Bromomethane ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.20 Chloroethane ND ug/l 1.0 Intro total ND ug/l 0.20 <td< td=""><td>1,2-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td></td></td<>	1,2-Dichloroethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene, Total ND ug/l 1.0 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 Bromomethane ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.20 Vinyl chloride ND ug/l 0.20 Vinyl chloride ND ug/l 0.20 Liotoloroethene ND ug/l 0.50	1,1,1-Trichloroethane	ND		ug/l	0.50	
cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 1.0 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.50 Bromomethane ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.00 Vinyl chloride ND ug/l 0.20 Vinyl chloride ND ug/l 0.20 Libropethane ND ug/l 0.50	Bromodichloromethane	ND		ug/l	0.50	
1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 1.0 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.75 Chloromethane ND ug/l 0.50 Ethylbenzene ND ug/l 0.75 Chloromethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.50 Vinyl chloride ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 I,1-Dichloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	trans-1,3-Dichloropropene	ND		ug/l	0.50	
1,1-Dichloropropene ND ug/l 1.0 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.50 Ethylbenzene ND ug/l 0.75 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 0.20 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 0.50	cis-1,3-Dichloropropene	ND		ug/l	0.50	
BromoformNDug/l1.01,1,2,2-TetrachloroethaneNDug/l0.50BenzeneNDug/l0.50TolueneNDug/l0.75EthylbenzeneNDug/l0.50ChloromethaneNDug/l0.50BromomethaneNDug/l0.50Vinyl chlorideNDug/l1.0ChloroethaneNDug/l1.0Vinyl chlorideNDug/l0.201,1-DichloroetheneNDug/l1.0	1,3-Dichloropropene, Total	ND		ug/l	0.50	
1,1,2,2-Tetrachloroethane ND ug/l 0.50 Benzene ND ug/l 0.50 Toluene ND ug/l 0.75 Ethylbenzene ND ug/l 0.50 Chloromethane ND ug/l 0.50 Bromomethane ND ug/l 0.50 Vinyl chloride ND ug/l 0.20 Vinyl chloroethane ND ug/l 0.20 ND ug/l 0.20 Vinyl chloride ND ug/l 0.20 ND ug/l 0.20 Vinyl chloride ND ug/l 0.20 ND ug/l 0.50 1,1-Dichloroethene ND ug/l 0.50	1,1-Dichloropropene	ND		ug/l	1.0	
BenzeneNDug/l0.50TolueneNDug/l0.75EthylbenzeneNDug/l0.50ChloromethaneNDug/l2.0BromomethaneNDug/l1.0Vinyl chlorideNDug/l0.20ChloroethaneNDug/l0.20I,1-DichloroetheneNDug/l1.0	Bromoform	ND		ug/l	1.0	
TolueneNDug/l0.75EthylbenzeneNDug/l0.50ChloromethaneNDug/l2.0BromomethaneNDug/l1.0Vinyl chlorideNDug/l0.20ChloroethaneNDug/l0.20I,1-DichloroetheneNDug/l1.0	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
EthylbenzeneNDug/l0.50ChloromethaneNDug/l2.0BromomethaneNDug/l1.0Vinyl chlorideNDug/l0.20ChloroethaneNDug/l1.01,1-DichloroetheneNDug/l0.50	Benzene	ND		ug/l	0.50	
ChloromethaneNDug/l2.0BromomethaneNDug/l1.0Vinyl chlorideNDug/l0.20ChloroethaneNDug/l1.01,1-DichloroetheneNDug/l0.50	Toluene	ND		ug/l	0.75	
BromomethaneNDug/l1.0Vinyl chlorideNDug/l0.20ChloroethaneNDug/l1.01,1-DichloroetheneNDug/l0.50	Ethylbenzene	ND		ug/l	0.50	
Vinyl chlorideNDug/l0.20ChloroethaneNDug/l1.01,1-DichloroetheneNDug/l0.50	Chloromethane	ND		ug/l	2.0	
ChloroethaneNDug/l1.01,1-DichloroetheneNDug/l0.50	Bromomethane	ND		ug/l	1.0	
1,1-Dichloroethene ND ug/l 0.50	Vinyl chloride	ND		ug/l	0.20	
	Chloroethane	ND		ug/l	1.0	
trans-1,2-Dichloroethene ND ug/l 0.75	1,1-Dichloroethene	ND		ug/l	0.50	
	trans-1,2-Dichloroethene	ND		ug/l	0.75	

L1807395

03/09/18

Lab Number:

Report Date:

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:03/05/18 12:03Analyst:PD

arameter	Result	Qualifier Uni	ts RL	MDL	
olatile Organics by GC/MS - \	Westborough La	b for sample(s)	03 Batch:	WG1094780-5	
1,2-Dichloroethene, Total	ND	uį	y/l 0.50		
Trichloroethene	ND	u	g/l 0.50		
1,2-Dichlorobenzene	ND	uç	g/l 1.0		
1,3-Dichlorobenzene	ND	uç	g/l 1.0		
1,4-Dichlorobenzene	ND	uç	ı/l 1.0		
Methyl tert butyl ether	ND	uç	ı/l 1.0		
p/m-Xylene	ND	uç	ı/l 1.0		
o-Xylene	ND	uç	ı/l 1.0		
Xylenes, Total	ND	u	j/l 1.0		
cis-1,2-Dichloroethene	ND	u	g/l 0.50		
Dibromomethane	ND	u	j/l 1.0		
1,4-Dichlorobutane	ND	u	g/l 5.0		
lodomethane	ND	u	g/l 5.0		
1,2,3-Trichloropropane	ND	u	j/l 1.0		
Styrene	ND	u	ı/l 1.0		
Dichlorodifluoromethane	ND	uç	g/l 2.0		
Acetone	ND	u	g/l 5.0		
Carbon disulfide	ND	Uį	j/l 1.0		
2-Butanone	ND	u	g/l 5.0		
Vinyl acetate	ND	u	g/l 5.0		
4-Methyl-2-pentanone	ND	u	g/l 5.0		
2-Hexanone	ND	u	g/l 5.0		
Ethyl methacrylate	ND	u	g/l 5.0		
Acrolein	ND	u(g/l 5.0		
Acrylonitrile	ND	uç	g/l 5.0		
Bromochloromethane	ND	u	y/l 1.0		
Tetrahydrofuran	ND	u	g/l 2.0		
2,2-Dichloropropane	ND	u	y/l 1.0		
1,2-Dibromoethane	ND	uç	y/l 1.0		

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

L1807395 Report Date: 03/09/18

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	03/05/18 12:03
Analyst:	PD

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough La	b for samp	le(s): 03	Batch:	WG1094780-5
1,3-Dichloropropane	ND		ug/l	1.0	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	
Bromobenzene	ND		ug/l	1.0	
n-Butylbenzene	ND		ug/l	0.50	
sec-Butylbenzene	ND		ug/l	0.50	
tert-Butylbenzene	ND		ug/l	1.0	
o-Chlorotoluene	ND		ug/l	1.0	
p-Chlorotoluene	ND		ug/l	1.0	
1,2-Dibromo-3-chloropropane	ND		ug/l	1.0	
Hexachlorobutadiene	ND		ug/l	0.50	
Isopropylbenzene	ND		ug/l	0.50	
p-Isopropyltoluene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	1.0	
n-Propylbenzene	ND		ug/l	0.50	
1,2,3-Trichlorobenzene	ND		ug/l	1.0	
1,2,4-Trichlorobenzene	ND		ug/l	1.0	
1,3,5-Trimethylbenzene	ND		ug/l	1.0	
1,3,5-Trichlorobenzene	ND		ug/l	1.0	
1,2,4-Trimethylbenzene	ND		ug/l	1.0	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	
Halothane	ND		ug/l	2.5	
Ethyl ether	ND		ug/l	1.0	
Methyl Acetate	ND		ug/l	10	
Ethyl Acetate	ND		ug/l	10	
Isopropyl Ether	ND		ug/l	1.0	
Cyclohexane	ND		ug/l	10	
Tert-Butyl Alcohol	ND		ug/l	10	
Ethyl-Tert-Butyl-Ether	ND		ug/l	1.0	
Tertiary-Amyl Methyl Ether	ND		ug/l	1.0	

L1807395

03/09/18

Lab Number:

Report Date:

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:03/05/18 12:03Analyst:PD

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by GC/MS - Wes	tborough La	b for sampl	e(s): 03	Batch:	WG1094780-5	
1,4-Dioxane	ND		ug/l	250		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/l	10		
Methyl cyclohexane	ND		ug/l	10		
p-Diethylbenzene	ND		ug/l	2.0		
4-Ethyltoluene	ND		ug/l	2.0		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0		

		A	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	103		70-130
Toluene-d8	94		70-130
4-Bromofluorobenzene	97		70-130
Dibromofluoromethane	104		70-130

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 03	Batch: WG	1094780-3	WG1094780-4			
Methylene chloride	100		100		70-130	0		20
1,1-Dichloroethane	100		100		70-130	0		20
Chloroform	110		110		70-130	0		20
Carbon tetrachloride	120		110		63-132	9		20
1,2-Dichloropropane	110		110		70-130	0		20
Dibromochloromethane	100		100		63-130	0		20
1,1,2-Trichloroethane	100		100		70-130	0		20
2-Chloroethylvinyl ether	80		83		70-130	4		20
Tetrachloroethene	100		100		70-130	0		20
Chlorobenzene	100		100		75-130	0		25
Trichlorofluoromethane	110		110		62-150	0		20
1,2-Dichloroethane	100		100		70-130	0		20
1,1,1-Trichloroethane	110		110		67-130	0		20
Bromodichloromethane	110		110		67-130	0		20
trans-1,3-Dichloropropene	100		100		70-130	0		20
cis-1,3-Dichloropropene	110		110		70-130	0		20
1,1-Dichloropropene	110		110		70-130	0		20
Bromoform	95		96		54-136	1		20
1,1,2,2-Tetrachloroethane	100		110		67-130	10		20
Benzene	110		110		70-130	0		25
Toluene	100		100		70-130	0		25
Ethylbenzene	110		110		70-130	0		20
Chloromethane	110		110		64-130	0		20

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 0	3 Batch: WG	1094780-3	WG1094780-4			
Bromomethane	74		73		39-139	1	20	
Vinyl chloride	110		110		55-140	0	20	
Chloroethane	110		110		55-138	0	20	
1,1-Dichloroethene	110		100		61-145	10	25	
trans-1,2-Dichloroethene	100		100		70-130	0	20	
Trichloroethene	100		110		70-130	10	25	
1,2-Dichlorobenzene	100		100		70-130	0	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	110		100		70-130	10	20	
Methyl tert butyl ether	98		99		63-130	1	20	
p/m-Xylene	110		110		70-130	0	20	
o-Xylene	110		110		70-130	0	20	
cis-1,2-Dichloroethene	100		100		70-130	0	20	
Dibromomethane	110		110		70-130	0	20	
1,4-Dichlorobutane	100		100		70-130	0	20	
lodomethane	58	Q	67	Q	70-130	14	20	
1,2,3-Trichloropropane	100		100		64-130	0	20	
Styrene	115		115		70-130	0	20	
Dichlorodifluoromethane	110		100		36-147	10	20	
Acetone	120		120		58-148	0	20	
Carbon disulfide	110		100		51-130	10	20	
2-Butanone	130		130		63-138	0	20	
Vinyl acetate	100		100		70-130	0	20	

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 03	Batch: WG	1094780-3	WG1094780-4			
4-Methyl-2-pentanone	98		100		59-130	2	20	
2-Hexanone	110		110		57-130	0	20	
Ethyl methacrylate	99		99		70-130	0	20	
Acrolein	130		130		70-130	0	20	
Acrylonitrile	100		110		70-130	10	20	
Bromochloromethane	110		100		70-130	10	20	
Tetrahydrofuran	110		110		58-130	0	20	
2,2-Dichloropropane	100		100		63-133	0	20	
1,2-Dibromoethane	99		99		70-130	0	20	
1,3-Dichloropropane	100		100		70-130	0	20	
1,1,1,2-Tetrachloroethane	110		110		64-130	0	20	
Bromobenzene	100		100		70-130	0	20	
n-Butylbenzene	120		110		53-136	9	20	
sec-Butylbenzene	120		110		70-130	9	20	
tert-Butylbenzene	110		110		70-130	0	20	
o-Chlorotoluene	110		100		70-130	10	20	
p-Chlorotoluene	100		100		70-130	0	20	
1,2-Dibromo-3-chloropropane	94		98		41-144	4	20	
Hexachlorobutadiene	110		110		63-130	0	20	
Isopropylbenzene	110		110		70-130	0	20	
p-Isopropyltoluene	110		110		70-130	0	20	
Naphthalene	110		120		70-130	9	20	
n-Propylbenzene	110		110		69-130	0	20	

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	-				WG1094780-4			
1,2,3-Trichlorobenzene	110		120		70-130	9	20	
1,2,4-Trichlorobenzene	100		110		70-130	10	20	
1,3,5-Trimethylbenzene	110		110		64-130	0	20	
1,3,5-Trichlorobenzene	100		100		70-130	0	20	
1,2,4-Trimethylbenzene	110		110		70-130	0	20	
trans-1,4-Dichloro-2-butene	98		100		70-130	2	20	
Halothane	110		110		70-130	0	20	
Ethyl ether	100		100		59-134	0	20	
Methyl Acetate	100		100		70-130	0	20	
Ethyl Acetate	110		120		70-130	9	20	
Isopropyl Ether	100		110		70-130	10	20	
Cyclohexane	120		110		70-130	9	20	
Tert-Butyl Alcohol	166	Q	164	Q	70-130	1	20	
Ethyl-Tert-Butyl-Ether	99		100		70-130	1	20	
Tertiary-Amyl Methyl Ether	100		100		66-130	0	20	
1,4-Dioxane	144		146		56-162	1	20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	120		110		70-130	9	20	
Methyl cyclohexane	120		110		70-130	9	20	
p-Diethylbenzene	120		110		70-130	9	20	
4-Ethyltoluene	110		110		70-130	0	20	
1,2,4,5-Tetramethylbenzene	110		110		70-130	0	20	

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	03 Batch: WG1	094780-3	WG1094780-4				

Surrogate	LCS %Recovery Qual	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	103	102	70-130
Toluene-d8	94	94	70-130
4-Bromofluorobenzene	99	100	70-130
Dibromofluoromethane	106	103	70-130

SEMIVOLATILES

		Serial_No:03091814:39
Project Name:	BELFAST WATER DISTRICT	Lab Number: L1807395
Project Number:	171.05027.003	Report Date: 03/09/18
	SAMPLE RESULTS	
Lab ID:	L1807395-03	Date Collected: 02/27/18 15:45
Client ID:	GWW-101	Date Received: 03/02/18
Sample Location: Sample Depth:	BELFAST, ME	Field Prep: Field Filtered (Dissolved Metals and phosphorus)
Matrix:	Water	Extraction Method: EPA 3510C
Analytical Method:	1,8270D	Extraction Date: 03/06/18 00:05
Analytical Date:	03/08/18 22:44	
Analyst:	PS	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	ND		ug/l	2.0		1
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Hexachlorobenzene	ND		ug/l	2.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
2-Chloronaphthalene	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
Fluoranthene	ND		ug/l	2.0		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorobutadiene	ND		ug/l	2.0		1
Hexachlorocyclopentadiene	ND		ug/l	20		1
Hexachloroethane	ND		ug/l	2.0		1
Isophorone	ND		ug/l	5.0		1
Naphthalene	ND		ug/l	2.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA	ND		ug/l	2.0		1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1

Project Name: BELFAST WATER DISTRICT Lab Number: Lab Number: Lab Number: Lab Number: Name Number: Bail Collextors Lab N395-03 Sample Descalion Savent Descalion Saven							Serial_N	o:03091814:39
Ample Results Date Collected: Date Collected: Sample Location: BELFAST, ME Date Collected: Date Collected: Sample Location: BELFAST, ME Date Collected: Date Coll	Project Name:	BELFAST WATER DI	STRICT			Lab Nu	mber:	L1807395
Ample Results Date Collected: Date Collected: Sample Location: BELFAST, ME Date Collected: Date Collected: Sample Location: BELFAST, ME Date Collected: Date Coll	Project Number:	171.05027.003				Report	Date:	03/09/18
Client ID: Sample Lacation: GWW-10 BLFAST, ME Data Result Data Result Display Subscription Panater Result Qualifier Units RL MD Display Subscription Panater Result Qualifier Units RL MD Display Subscription Din-budy phthalate ND Ug1 S.0 - 1 Benzo(a) (Juoranthone ND Ug1 2.0 - 1 Benzo(b) (Juoranthone ND Ug1 2.0 - 1 Accanaphtylen ND Ug1 2.0 - 1 Parace (A) (Juoranthone ND Ug1 2.0 - 1 Accanaphtylen ND Ug1 2.0 - 1 Phenorthree	-		SAMPI	LE RESULTS	5	•		
Semivolatile Organics by GC/MS - Westborough Lab Di-n-butylphthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 1 Dientyl phthalate ND ug/l 5.0 1 Benzo(a)anthracene ND ug/l 2.0 1 Benzo(a)pyrere ND ug/l 2.0 1 Benzo(b)fluoranthene ND ug/l 2.0 1 Chrysene ND ug/l 2.0 1 Acanaphthylene ND ug/l 2.0 <td>Client ID: Sample Location:</td> <td>GWW-101</td> <td></td> <td></td> <td></td> <td>Date Red</td> <td>ceived:</td> <td>03/02/18 Field Filtered (Dissolved</td>	Client ID: Sample Location:	GWW-101				Date Red	ceived:	03/02/18 Field Filtered (Dissolved
Di-n-buylphthalate ND ug/l 5.0 1 Di-n-cytylphthalate ND ug/l 5.0 1 Di-n-cytylphthalate ND ug/l 5.0 1 Diethyl phthalate ND ug/l 5.0 1 Benzo(a)anthracene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(A)fluoranthene ND ug/l 2.0 1 Chrysene ND ug/l 2.0 1 Artracene ND ug/l 2.0 1 Protenthrene ND ug/l 2.0 1 Dibenzo(a,H)anthracene ND ug/l 2.0 1 Pyrene	Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Di-noctypinphalate ND ug/l 5.0 1 Diethyl phthalate ND ug/l 5.0 1 Diethyl phthalate ND ug/l 5.0 1 Benzo(a)anthracene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(b)fluoranthene ND ug/l 2.0 1 Chrysene ND ug/l 2.0 1 Acenaphthylene ND ug/l 2.0 1 Akenaphthylene ND ug/l 2.0 1 Benzo(g/h)perylene ND ug/l 2.0 1 Fluorene ND ug/l 2.0 1 Dibenzo(a,h)anthracene	Semivolatile Organ	nics by GC/MS - Westbo	rough Lab					
Di-noctypinphalate ND ug/l 5.0 1 Diethyl phthalate ND ug/l 5.0 1 Diethyl phthalate ND ug/l 5.0 1 Benzo(a)anthracene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(b)fluoranthene ND ug/l 2.0 1 Chrysene ND ug/l 2.0 1 Acenaphthylene ND ug/l 2.0 1 Akenaphthylene ND ug/l 2.0 1 Benzo(g/h)perylene ND ug/l 2.0 1 Fluorene ND ug/l 2.0 1 Dibenzo(a,h)anthracene	Di a kutulakthalata		ND			5.0		4
Diethyl phthalate ND ug/l 5.0 1 Dimethyl phthalate ND ug/l 5.0 1 Benzo(a)anthracene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(k)fluoranthene ND ug/l 2.0 1 Chrysene ND ug/l 2.0 1 Acenaphthylene ND ug/l 2.0 1 Anthracene ND ug/l 2.0 1 Fluorene ND ug/l 2.0 1 Fluorene ND ug/l 2.0 1 Dibenzo(a,hanthracene ND ug/l 2.0 1 Pyrene ND					-			
Implify phthalate ND ug/l 5.0 1 Benzo(a)anthracene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(b)fluoranthene ND ug/l 2.0 1 Benzo(k)fluoranthene ND ug/l 2.0 1 Chrysene ND ug/l 2.0 1 Acenaphthylene ND ug/l 2.0 1 Anthracene ND ug/l 2.0 1 Benzo(k)herylene ND ug/l 2.0 1 Fluorene ND ug/l 2.0 1 Plonenthrene ND ug/l 2.0 1 Dibenzo(a,h)anthracene ND ug/l 2.0 1 Pyrene ND ug/l 2.0 1 Biphenyl ND <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>					-			
Benzo(a)apthracene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(a)pyrene ND ug/l 2.0 1 Benzo(a)fluoranthene ND ug/l 2.0 1 Chrysene ND ug/l 2.0 1 Acenaphthylene ND ug/l 2.0 1 Anthracene ND ug/l 2.0 1 Benzo(a)hiperylene ND ug/l 2.0 1 Fluorene ND ug/l 2.0 1 Dibenzo(a,h)anthracene ND ug/l 2.0 1 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 1 Biphenyl ND ug/l 2.0 1 Ariline N								
Benzo(a)prene ND ugrl 2.0 1 Benzo(b)fluoranthene ND ugrl 2.0 1 Benzo(k)fluoranthene ND ugrl 2.0 1 Chrysene ND ugrl 2.0 1 Acenaphthylene ND ugrl 2.0 1 Acenaphthylene ND ugrl 2.0 1 Anthracene ND ugrl 2.0 1 Benzo(ghi)perylene ND ugrl 2.0 1 Fluorene ND ugrl 2.0 1 Dibenzo(a,h)anthracene ND ugrl 2.0 1 Dibenzo(a,h)anthracene ND ugrl 2.0 1 Biphenyl ND ugrl 2.0 1 Antine ND ugrl 2.0 1 Antine ND					-			
Benzo(b)fluoranthene ND ug/l 2.0 1 Benzo(k)fluoranthene ND ug/l 2.0 1 Chrysene ND ug/l 2.0 1 Acenaphthylene ND ug/l 2.0 1 Anthracene ND ug/l 2.0 1 Benzo(ghi)perylene ND ug/l 2.0 1 Fluorene ND ug/l 2.0 1 Phenanthrene ND ug/l 2.0 1 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 1 Pyrene ND ug/l 2.0 1 Biphenyl ND ug/l 2.0 1 Antilre ND ug/l 2.0 1 Antilre ND ug/l 2.0 1 Anthiline ND ug/l					-			
Benzo(k)lluoranthene ND ug/l 2.0 1 Chrysene ND ug/l 2.0 1 Acenaphthylene ND ug/l 2.0 1 Anthracene ND ug/l 2.0 1 Benzo(ghi)perylene ND ug/l 2.0 1 Fluorene ND ug/l 2.0 1 Phenanthrene ND ug/l 2.0 1 Dibenzo(a,h)anthracene ND ug/l 2.0 1 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 1 Pyrene ND ug/l 2.0 1 Biphenyl ND ug/l 2.0 1 4-Chloroaniline ND ug/l 5.0 1 4-Chloroaniline ND ug/l 5.0 1 4-Nitroaniline ND <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>					-			
Chrysene ND ug/l 2.0 1 Acenaphthylene ND ug/l 2.0 1 Anthracene ND ug/l 2.0 1 Benzo(ghi)perylene ND ug/l 2.0 1 Fluorene ND ug/l 2.0 1 Phenanthrene ND ug/l 2.0 1 Dibenzo(a,h)anthracene ND ug/l 2.0 1 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 1 Pyrene ND ug/l 2.0 1 Biphenyl ND ug/l 2.0 1 Aniline ND ug/l 2.0 1 4-Chloroaniline ND ug/l 2.0 1 1-Methylnaphthalene ND ug/l 5.0 1 3-Nitroaniline ND								
Acenaphthylene ND ug/l 2.0 1 Anthracene ND ug/l 2.0 1 Benzo(ghi)perylene ND ug/l 2.0 1 Fluorene ND ug/l 2.0 1 Phenanthrene ND ug/l 2.0 1 Dibenzo(a,h)anthracene ND ug/l 2.0 1 Indeno(1,2,3-od)pyrene ND ug/l 2.0 1 Pyrene ND ug/l 2.0 1 Aniline ND ug/l 2.0 1 Ariline ND ug/l 2.0 1 Ariline ND ug/l 2.0 1 Ariline ND ug/l 5.0 1 Ariline ND ug/l 5.0 1 AriNtroaniline ND ug/l					-			
Anthracene ND ug/l 2.0 1 Benzo(ghi)perylene ND ug/l 2.0 1 Fluorene ND ug/l 2.0 1 Phenanthrene ND ug/l 2.0 1 Dibenzo(a,h)anthracene ND ug/l 2.0 1 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 1 Pyrene ND ug/l 2.0 1 Biphenyl ND ug/l 2.0 1 Antline ND ug/l 2.0 1 Arbitine ND ug/l 2.0 1 Arbitine ND ug/l 2.0 1 Arbitine ND ug/l 2.0 1 4-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l					-			
Benzo(ghi)perylene ND ug/l 2.0 1 Fluorene ND ug/l 2.0 1 Phenanthrene ND ug/l 2.0 1 Dibenzo(a,h)anthracene ND ug/l 2.0 1 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 1 Pyrene ND ug/l 2.0 1 Biphenyl ND ug/l 2.0 1 Aniline ND ug/l 2.0 1 4-Chloroaniline ND ug/l 2.0 1 4-Chloroaniline ND ug/l 2.0 1 2-Nitroaniline ND ug/l 5.0 1 3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 <tr td=""> Dibenzofuran</tr>					-			
Fluorene ND ug/l 2.0 1 Phenanthrene ND ug/l 2.0 1 Dibenzo(a,h)anthracene ND ug/l 2.0 1 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 1 Pyrene ND ug/l 2.0 1 Biphenyl ND ug/l 2.0 1 Aniline ND ug/l 2.0 1 4-Chloroaniline ND ug/l 2.0 1 2-Nitroaniline ND ug/l 5.0 1 2-Nitroaniline ND ug/l 5.0 1 3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 Dibenzofuran ND ug/l 5.0 1 Dibenzofuran ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Phenanthrene ND ug/l 2.0 1 Dibenzo(a,h)anthracene ND ug/l 2.0 1 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 1 Pyrene ND ug/l 2.0 1 Biphenyl ND ug/l 2.0 1 Aniline ND ug/l 2.0 1 4-Choroaniline ND ug/l 2.0 1 1-Methylnaphthalene ND ug/l 5.0 1 2-Nitroaniline ND ug/l 5.0 1 3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 Dibenzofuran ND <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>					-			
Dibenzo(a,h)anthracene ND ug/l 2.0 1 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 1 Pyrene ND ug/l 2.0 1 Biphenyl ND ug/l 2.0 1 Aniline ND ug/l 2.0 1 4-Chloroaniline ND ug/l 2.0 1 1-Methylnaphthalene ND ug/l 5.0 1 2-Nitroaniline ND ug/l 5.0 1 3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 Dibenzofuran ND ug/l 2.0 1 2-Methylnaphthalene <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>					-			
Indeno(1,2,3-od)pyrene ND ug/l 2.0 1 Pyrene ND ug/l 2.0 1 Biphenyl ND ug/l 2.0 1 Aniline ND ug/l 2.0 1 4-Chloroaniline ND ug/l 5.0 1 1-Methylnaphthalene ND ug/l 5.0 1 2-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 2-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 10benzofuran ND ug/l 2.0 1 2-Methylnaphthalene ND ug/l 2.0 1					-			
Pyrene ND ug/l 2.0 1 Biphenyl ND ug/l 2.0 1 Aniline ND ug/l 2.0 1 Aniline ND ug/l 2.0 1 4-Chloroaniline ND ug/l 5.0 1 1-Methylnaphthalene ND ug/l 5.0 1 2-Nitroaniline ND ug/l 5.0 1 3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 Dibenzofuran ND ug/l 2.0 1 2-Methylnaphthalene ND ug/l 2.0 1								
Biphenyl ND ug/l 2.0 1 Aniline ND ug/l 2.0 1 4-Chloroaniline ND ug/l 5.0 1 1-Methylnaphthalene ND ug/l 5.0 1 2-Nitroaniline ND ug/l 5.0 1 3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 Dibenzofuran ND ug/l 5.0 1 2-Methylnaphthalene ND ug/l 2.0 1								
Aniline ND ug/l 2.0 1 4-Chloroaniline ND ug/l 5.0 1 1-Methylnaphthalene ND ug/l 2.0 1 2-Nitroaniline ND ug/l 5.0 1 3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 1-Nitroaniline ND ug/l 5.0 1 Dibenzofuran ND ug/l 2.0 1 2-Methylnaphthalene ND ug/l 2.0 1								
4-Chloroaniline ND ug/l 5.0 1 1-Methylnaphthalene ND ug/l 2.0 1 2-Nitroaniline ND ug/l 5.0 1 3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 Dibenzofuran ND ug/l 5.0 1 2-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 2-Nethylnaphthalene ND ug/l 2.0 1								
1-Methylnaphthalene ND ug/l 2.0 1 2-Nitroaniline ND ug/l 5.0 1 3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 Dibenzofuran ND ug/l 5.0 1 2-Methylnaphthalene ND ug/l 2.0 1								
2-Nitroaniline ND ug/l 5.0 1 3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 Dibenzofuran ND ug/l 2.0 1 2-Methylnaphthalene ND ug/l 2.0 1					-			
3-Nitroaniline ND ug/l 5.0 1 4-Nitroaniline ND ug/l 5.0 1 Dibenzofuran ND ug/l 2.0 1 2-Methylnaphthalene ND ug/l 2.0 1					-			
4-NitroanilineNDug/l5.01DibenzofuranNDug/l2.012-MethylnaphthaleneNDug/l2.01								
DibenzofuranNDug/l2.012-MethylnaphthaleneNDug/l2.01					-			
2-Methylnaphthalene ND ug/l 2.0 1					-			
					-			
					-			
2,4,6-Trichlorophenol ND ug/l 5.0 1					-			
2,4,6-Trichlorophenol ND ug/l 5.0 1 p-Chloro-m-cresol ND ug/l 2.0 1					-			

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

2.0

5.0

5.0

10

10

20

10

10

ND

ND

ND

ND

ND

ND

ND

ND

1

1

1

1

1

1

1

1

2-Chlorophenol

2-Nitrophenol

4-Nitrophenol

2,4-Dinitrophenol

4,6-Dinitro-o-cresol

Pentachlorophenol

2,4-Dichlorophenol

2,4-Dimethylphenol

						0:03091814:39	
Project Name:	BELFAST WATER D	ISTRICT			Lab Nu	umber:	L1807395
Project Number:	171.05027.003				Report	t Date:	03/09/18
		SAMP	LE RESULT	5			
Lab ID:	L1807395-03				Date Co	llected:	02/27/18 15:45
Client ID:	GWW-101				Date Re	ceived:	03/02/18
Sample Location:	BELFAST, ME				Field Pre	ep:	Field Filtered (Dissolved
Sample Depth:							Metals and phosphorus)
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	nics by GC/MS - Westbo	brough Lab					
Phenol		ND		ug/l	5.0		1
2-Methylphenol		ND		ug/l	5.0		1
3-Methylphenol/4-Methyl	phenol	ND		ug/l	5.0		1

ND

ND

ND

ND

ND

ug/l

ug/l

ug/l

ug/l

ug/l

% Recovery

122

84

153

170

170

184

--

Acceptance Criteria

21-120

10-120

23-120

15-120

10-120

41-149

1

1

1

1

1

5.0

50

2.0

2.0

3.5

Qualifier

Q

Q

Q

Q

Q

	1_		
	LP	Hi/	٩.
	LYT	10	

2,4,5-Trichlorophenol

Surrogate

Phenol-d6

2-Fluorophenol

Nitrobenzene-d5

2-Fluorobiphenyl

4-Terphenyl-d14

2,4,6-Tribromophenol

Benzoic Acid

Benzyl Alcohol

Carbazole

Pyridine

		Serial_No:03091814:39
Project Name:	BELFAST WATER DISTRICT	Lab Number: L1807395
Project Number:	171.05027.003	Report Date: 03/09/18
	SAMPLE RESULTS	
Lab ID:	L1807395-03	Date Collected: 02/27/18 15:45
Client ID:	GWW-101	Date Received: 03/02/18
Sample Location: Sample Depth:	BELFAST, ME	Field Prep: Field Filtered (Dissolved Metals and phosphorus)
Matrix:	Water	Extraction Method:EPA 3510C
Analytical Method:	1,8270D-SIM	Extraction Date: 03/06/18 00:09
Analytical Date:	03/07/18 14:58	
Analyst:	KL	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	S-SIM - Westborough La	ıb				
Acenaphthene	ND		ug/l	0.10		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.10		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
1-Methylnaphthalene	ND		ug/l	0.10		1
2-Methylnaphthalene	ND		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

					Ser	ial_N	0:03091814:39
Project Name:	BELFAST WATER DIS	TRICT			Lab Numb	er:	L1807395
Project Number:	171.05027.003				Report Da	te:	03/09/18
		SAMP		5			
Lab ID:	L1807395-03				Date Collect	ted:	02/27/18 15:45
Client ID:	GWW-101				Date Receiv	ved:	03/02/18
Sample Location:	BELFAST, ME				Field Prep:		Field Filtered (Dissolved
Sample Depth:							Metals and phosphorus)
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	122	Q	21-120
Phenol-d6	96		10-120
Nitrobenzene-d5	210	Q	23-120
2-Fluorobiphenyl	171	Q	15-120
2,4,6-Tribromophenol	162	Q	10-120
4-Terphenyl-d14	164	Q	41-149

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1807395
Project Number:	171.05027.003	Report Date:	03/09/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D
Analytical Date:	03/08/18 10:58
Analyst:	PS

Extraction Method: EPA 3510C Extraction Date: 03/06/18 00:05

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	6 - Westboroug	h Lab for s	ample(s):	03	Batch:	WG1094694-1
Acenaphthene	ND		ug/l		2.0	
Benzidine	ND		ug/l		20	
1,2,4-Trichlorobenzene	ND		ug/l		5.0	
Hexachlorobenzene	ND		ug/l		2.0	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	
2-Chloronaphthalene	ND		ug/l		2.0	
1,2-Dichlorobenzene	ND		ug/l		2.0	
1,3-Dichlorobenzene	ND		ug/l		2.0	
1,4-Dichlorobenzene	ND		ug/l		2.0	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	
2,4-Dinitrotoluene	ND		ug/l		5.0	
2,6-Dinitrotoluene	ND		ug/l		5.0	
Azobenzene	ND		ug/l		2.0	
Fluoranthene	ND		ug/l		2.0	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	
Hexachlorobutadiene	ND		ug/l		2.0	
Hexachlorocyclopentadiene	ND		ug/l		20	
Hexachloroethane	ND		ug/l		2.0	
Isophorone	ND		ug/l		5.0	
Naphthalene	ND		ug/l		2.0	
Nitrobenzene	ND		ug/l		2.0	
NDPA/DPA	ND		ug/l		2.0	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	
Butyl benzyl phthalate	ND		ug/l		5.0	
Di-n-butylphthalate	ND		ug/l		5.0	

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1807395
Project Number:	171.05027.003	Report Date:	03/09/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D
Analytical Date:	03/08/18 10:58
Analyst:	PS

Extraction Method: EPA 3510C Extraction Date: 03/06/18 00:05

emivolatile Organics by GC/MS - Westborough Lab for sample(s): 03 Batch: WG1094694-1 Din-octylphthalate ND ug/l 5.0 Diethyl phthalate ND ug/l 5.0 Benzo(a)anthracene ND ug/l 2.0 Benzo(a)pyrene ND ug/l 2.0 Benzo(a)pyrene ND ug/l 2.0 Benzo(a)pyrene ND ug/l 2.0 Benzo(a)pyrene ND ug/l 2.0 Benzo(k)fluoranthene ND ug/l 2.0 Chrysene ND ug/l 2.0 Acenaphthylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Fluorene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 <td< th=""><th>arameter</th><th>Result</th><th>Qualifier</th><th>Units</th><th></th><th>RL</th><th>MDL</th></td<>	arameter	Result	Qualifier	Units		RL	MDL
Diethyl phthalate ND ug/l 5.0 Dimethyl phthalate ND ug/l 5.0 Benzo(a)anthracene ND ug/l 2.0 Benzo(a)anthracene ND ug/l 2.0 Benzo(b)fluoranthene ND ug/l 2.0 Benzo(k)fluoranthene ND ug/l 2.0 Chrysene ND ug/l 2.0 Acenaphthylene ND ug/l 2.0 Anthracene ND ug/l 2.0 Benzo(k)fluoranthene ND ug/l 2.0 Romaphthylene ND ug/l 2.0 Anthracene ND ug/l 2.0 Fluorene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 A	emivolatile Organics by GC/I	MS - Westborough	Lab for s	ample(s):	03	Batch:	WG1094694-1
Dimethyl phthalate ND ug/l 5.0 Benzo(a)anthracene ND ug/l 2.0 Benzo(a)pyrene ND ug/l 2.0 Benzo(b)fluoranthene ND ug/l 2.0 Benzo(k)fluoranthene ND ug/l 2.0 Chrysene ND ug/l 2.0 Acenaphthylene ND ug/l 2.0 Anthracene ND ug/l 2.0 Benzo(ghi)perylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Anilne ND ug/l 2.0	Di-n-octylphthalate	ND		ug/l		5.0	
Benzo(a)anthracene ND ug/l 2.0 Benzo(a)pyrene ND ug/l 2.0 Benzo(b)fluoranthene ND ug/l 2.0 Benzo(k)fluoranthene ND ug/l 2.0 Chrysene ND ug/l 2.0 Acenaphthylene ND ug/l 2.0 Anthracene ND ug/l 2.0 Benzo(ghi)perylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 Aniline ND ug/l 5.0 2-Nitroaniline <td< td=""><td>Diethyl phthalate</td><td>ND</td><td></td><td>ug/l</td><td></td><td>5.0</td><td></td></td<>	Diethyl phthalate	ND		ug/l		5.0	
Benzo(a)pyrene ND ug/l 2.0 Benzo(b)/fluoranthene ND ug/l 2.0 Benzo(k)/fluoranthene ND ug/l 2.0 Chrysene ND ug/l 2.0 Acenaphthylene ND ug/l 2.0 Anthracene ND ug/l 2.0 Benzo(ghi)perylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Archoroaniline ND ug/l 2.0 Avellonoaniline ND ug/l 5.0 Avellonoaniline ND ug/l 5.0 A	Dimethyl phthalate	ND		ug/l		5.0	
Benzo(b)fluorantheneNDug/l2.0Benzo(k)fluorantheneNDug/l2.0ChryseneNDug/l2.0AcenaphthyleneNDug/l2.0AnthraceneNDug/l2.0Benzo(ghi)peryleneNDug/l2.0FluoreneNDug/l2.0PhenanthreneNDug/l2.0Dibenzo(a,h)anthraceneNDug/l2.0Indeno(1,2,3-cd)pyreneNDug/l2.0PyreneNDug/l2.0BiphenylNDug/l2.0AnilineNDug/l2.0AnilineNDug/l2.0SiphenylNDug/l2.0AnilineNDug/l2.04-ChloroanilineNDug/l5.03-NitroanilineNDug/l5.02-NitroanilineNDug/l5.02-NitroanilineNDug/l2.02-NethylnaphthaleneNDug/l2.02-NethylnaphthaleneNDug/l2.02-NethylnaphthaleneNDug/l2.02-NethylnaphthaleneNDug/l2.02-NethylnaphthaleneNDug/l2.02-NethylnaphthaleneNDug/l2.0<	Benzo(a)anthracene	ND		ug/l		2.0	
Benzo(k)fluorantheneNDug/l2.0ChryseneNDug/l2.0AcenaphthyleneNDug/l2.0AnthraceneNDug/l2.0Benzo(ghi)peryleneNDug/l2.0FluoreneNDug/l2.0PhenanthreneNDug/l2.0Dibenzo(a,h)anthraceneNDug/l2.0Indeno(1,2,3-cd)pyreneNDug/l2.0BiphenylNDug/l2.0AnilineNDug/l2.0AnilineNDug/l2.0SiphenylNDug/l2.0AnilineNDug/l2.0SiphenylNDug/l2.04-ChloroanilineNDug/l5.01-MethylnaphthaleneNDug/l5.02-NitroanilineNDug/l5.02-NitroanilineNDug/l5.02-NethylnaphthaleneNDug/l2.02-NethylnaphthaleneNDug/l2.02-NethylnaphthaleneNDug/l2.02-NethylnaphthaleneNDug/l2.02-NethylnaphthaleneNDug/l2.02-NethylnaphthaleneNDug/l2.02-NethylnaphthaleneNDug/l <t< td=""><td>Benzo(a)pyrene</td><td>ND</td><td></td><td>ug/l</td><td></td><td>2.0</td><td></td></t<>	Benzo(a)pyrene	ND		ug/l		2.0	
Chrysene ND ug/l 2.0 Acenaphthylene ND ug/l 2.0 Anthracene ND ug/l 2.0 Benzo(ghi)perylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 Aniline ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND	Benzo(b)fluoranthene	ND		ug/l		2.0	
Acenaphthylene ND ug/l 2.0 Anthracene ND ug/l 2.0 Benzo(ghi)perylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 Aniline ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 Dibenzofuran ND ug/l 2.0 2-Methylnaphthalene	Benzo(k)fluoranthene	ND		ug/l		2.0	
Anthracene ND ug/l 2.0 Benzo(ghi)perylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Antine ND ug/l 2.0 Antine ND ug/l 2.0 Biphenyl ND ug/l 2.0 4-Chloroaniline ND ug/l 2.0 1-Methylnaphthalene ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 2.0 Dibenzofuran ND <td>Chrysene</td> <td>ND</td> <td></td> <td>ug/l</td> <td></td> <td>2.0</td> <td></td>	Chrysene	ND		ug/l		2.0	
Benzo(ghi)perylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 2.0 1-Methylnaphthalene ND ug/l 2.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 2-Methylnaphthalene ND ug/l 5.0 2-Methylnaphthalene ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 N	Acenaphthylene	ND		ug/l		2.0	
Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 2.0 1-Methylnaphthalene ND ug/l 2.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 2-Methylnaphthalene ND ug/l 2.0 2-Nitroaniline ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 2-Methylna	Anthracene	ND		ug/l		2.0	
Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 2.0 1-Methylnaphthalene ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 2-Methylnaphthalene ND ug/l 5.0 Dibenzofuran ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 2	Benzo(ghi)perylene	ND		ug/l		2.0	
Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 2.0 1-Methylnaphthalene ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 1-Nitrosodimethylamine ND ug/l 2.0	Fluorene	ND		ug/l		2.0	
Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 2.0 1-Methylnaphthalene ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 Dibenzofuran ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Tri	Phenanthrene	ND		ug/l		2.0	
Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 5.0 1-Methylnaphthalene ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 2-Nitroaniline ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 1-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 2.0 p-Chloro-m	Dibenzo(a,h)anthracene	ND		ug/l		2.0	
Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 5.0 1-Methylnaphthalene ND ug/l 2.0 2-Nitroaniline ND ug/l 2.0 3-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 2-Methylnaphthalene ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 n-Nitrosodimethylamine ND ug/l 5.0 2,4,6-Trichlorophenol ND ug/l 5.0 p-Chloro-m-cresol ND ug/l 2.0	Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	
Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 5.0 1-Methylnaphthalene ND ug/l 2.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 2-Methylnaphthalene ND ug/l 2.0 Dibenzofuran ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 5.0 p-Chloro-m-cresol ND ug/l 2.0	Pyrene	ND		ug/l		2.0	
4-Chloroaniline ND ug/l 5.0 1-Methylnaphthalene ND ug/l 2.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 1-Methylnaphthalene ND ug/l 5.0 2-Nitroaniline ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 2.0 p-Chloro-m-cresol ND ug/l 2.0	Biphenyl	ND		ug/l		2.0	
1-Methylnaphthalene ND ug/l 2.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 1-Nitroaniline ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 1-Nitroaniline ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 2.0 p-Chloro-m-cresol ND ug/l 2.0	Aniline	ND		ug/l		2.0	
2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 Dibenzofuran ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 5.0 p-Chloro-m-cresol ND ug/l 2.0	4-Chloroaniline	ND		ug/l		5.0	
3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 Dibenzofuran ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 5.0 p-Chloro-m-cresol ND ug/l 2.0	1-Methylnaphthalene	ND		ug/l		2.0	
4-Nitroaniline ND ug/l 5.0 Dibenzofuran ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 5.0 p-Chloro-m-cresol ND ug/l 2.0	2-Nitroaniline	ND		ug/l		5.0	
DibenzofuranNDug/l2.02-MethylnaphthaleneNDug/l2.0n-NitrosodimethylamineNDug/l2.02,4,6-TrichlorophenolNDug/l5.0p-Chloro-m-cresolNDug/l2.0	3-Nitroaniline	ND		ug/l		5.0	
2-MethylnaphthaleneNDug/l2.0n-NitrosodimethylamineNDug/l2.02,4,6-TrichlorophenolNDug/l5.0p-Chloro-m-cresolNDug/l2.0	4-Nitroaniline	ND		ug/l		5.0	
n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 5.0 p-Chloro-m-cresol ND ug/l 2.0	Dibenzofuran	ND		ug/l		2.0	
2,4,6-Trichlorophenol ND ug/l 5.0 p-Chloro-m-cresol ND ug/l 2.0	2-Methylnaphthalene	ND		ug/l		2.0	
p-Chloro-m-cresol ND ug/l 2.0	n-Nitrosodimethylamine	ND		ug/l		2.0	
	2,4,6-Trichlorophenol	ND		ug/l		5.0	
2-Chlorophenol ND ug/l 2.0	p-Chloro-m-cresol	ND		ug/l		2.0	
	2-Chlorophenol	ND		ug/l		2.0	

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1807395
Project Number:	171.05027.003	Report Date:	03/09/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D	Extractio
Analytical Date:	03/08/18 10:58	Extractio
Analyst:	PS	

Extraction Method:EPA 3510CExtraction Date:03/06/18 00:05

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS -	Westboroug	h Lab for s	ample(s):	03	Batch:	WG1094694-1
2,4-Dichlorophenol	ND		ug/l		5.0	
2,4-Dimethylphenol	ND		ug/l		5.0	
2-Nitrophenol	ND		ug/l		10	
4-Nitrophenol	ND		ug/l		10	
2,4-Dinitrophenol	ND		ug/l		20	
4,6-Dinitro-o-cresol	ND		ug/l		10	
Pentachlorophenol	ND		ug/l		10	
Phenol	ND		ug/l		5.0	
2-Methylphenol	ND		ug/l		5.0	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	
2,4,5-Trichlorophenol	ND		ug/l		5.0	
Benzoic Acid	ND		ug/l		50	
Benzyl Alcohol	ND		ug/l		2.0	
Carbazole	ND		ug/l		2.0	
Pyridine	ND		ug/l		3.5	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	21-120
Phenol-d6	36	10-120
Nitrobenzene-d5	73	23-120
2-Fluorobiphenyl	79	15-120
2,4,6-Tribromophenol	69	10-120
4-Terphenyl-d14	86	41-149

Project Name:	BELFAST WATER DISTRICT	Lab Number:
Project Number:	171.05027.003	Report Date:

 Lab Number:
 L1807395

 Report Date:
 03/09/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D-SIM	Extraction Me
Analytical Date:	03/07/18 12:53	Extraction Da
Analyst:	DV	

Extraction Method: EPA 3510C Extraction Date: 03/06/18 00:09

arameter	Result	Qualifier U	nits	RL	Ν	I DL
emivolatile Organics by GC	MS-SIM - Westbo	brough Lab for	· sample	e(s): 03	Batch:	WG1094697-1
Acenaphthene	ND		ug/l	0.10		
2-Chloronaphthalene	ND		ug/l	0.20		
Fluoranthene	ND		ug/l	0.10		
Hexachlorobutadiene	ND		ug/l	0.50		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
1-Methylnaphthalene	ND		ug/l	0.10		
2-Methylnaphthalene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	0.80		
Hexachlorobenzene	ND		ug/l	0.80		
Hexachloroethane	ND		ug/l	0.80		

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1807395
Project Number:	171.05027.003	Report Date:	03/09/18
	Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	03/07/18 12:53	Extraction Date:	03/06/18 00:09
Analyst:	DV		

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	IM - West	orough Lab	for sampl	e(s): 03	Batch: WG1094697-1

Surrogate	%Recovery G	Acceptance Qualifier Criteria
2-Fluorophenol	57	21-120
Phenol-d6	43	10-120
Nitrobenzene-d5	96	23-120
2-Fluorobiphenyl	98	15-120
2,4,6-Tribromophenol	72	10-120
4-Terphenyl-d14	78	41-149

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limit	
Semivolatile Organics by GC/MS - Westbo	prough Lab Assoc	ated sample(s):	03 Batch:	WG1094694-2 WG1094694	-3		
Acenaphthene	81		80	37-111	1	30	
Benzidine	37		39	10-75	5	30	
1,2,4-Trichlorobenzene	64		65	39-98	2	30	
Hexachlorobenzene	83		84	40-140	1	30	
Bis(2-chloroethyl)ether	73		74	40-140	1	30	
2-Chloronaphthalene	81		80	40-140	1	30	
1,2-Dichlorobenzene	63		63	40-140	0	30	
1,3-Dichlorobenzene	61		60	40-140	2	30	
1,4-Dichlorobenzene	61		61	36-97	0	30	
3,3'-Dichlorobenzidine	78		81	40-140	4	30	
2,4-Dinitrotoluene	90		89	48-143	1	30	
2,6-Dinitrotoluene	89		88	40-140	1	30	
Azobenzene	86		85	40-140	1	30	
Fluoranthene	87		87	40-140	0	30	
4-Chlorophenyl phenyl ether	84		82	40-140	2	30	
4-Bromophenyl phenyl ether	82		82	40-140	0	30	
Bis(2-chloroisopropyl)ether	72		71	40-140	1	30	
Bis(2-chloroethoxy)methane	75		75	40-140	0	30	
Hexachlorobutadiene	63		63	40-140	0	30	
Hexachlorocyclopentadiene	58		42	40-140	32	Q 30	
Hexachloroethane	60		59	40-140	2	30	
Isophorone	76		76	40-140	0	30	
Naphthalene	72		73	40-140	1	30	

Project Number: 171.05027.003

arameter	LCS %Recovery		LCSD ecovery	% Qual	6Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - V	Nestborough Lab Associate	d sample(s): 03	Batch:	WG1094694-2	WG1094694-3			
Nitrobenzene	75		75		40-140	0		30
NDPA/DPA	86		85		40-140	1		30
n-Nitrosodi-n-propylamine	75		76		29-132	1		30
Bis(2-ethylhexyl)phthalate	88		87		40-140	1		30
Butyl benzyl phthalate	94		94		40-140	0		30
Di-n-butylphthalate	85		85		40-140	0		30
Di-n-octylphthalate	91		90		40-140	1		30
Diethyl phthalate	88		86		40-140	2		30
Dimethyl phthalate	85		84		40-140	1		30
Benzo(a)anthracene	85		85		40-140	0		30
Benzo(a)pyrene	94		94		40-140	0		30
Benzo(b)fluoranthene	92		93		40-140	1		30
Benzo(k)fluoranthene	91		91		40-140	0		30
Chrysene	86		84		40-140	2		30
Acenaphthylene	83		83		45-123	0		30
Anthracene	82		83		40-140	1		30
Benzo(ghi)perylene	90		90		40-140	0		30
Fluorene	85		84		40-140	1		30
Phenanthrene	81		82		40-140	1		30
Dibenzo(a,h)anthracene	88		88		40-140	0		30
Indeno(1,2,3-cd)pyrene	88		88		40-140	0		30
Pyrene	85		86		26-127	1		30
Biphenyl	84		85		40-140	1		30

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	ated sample(s):	03 Batch:	WG1094694-2	2 WG1094694-3		
Aniline	39	Q	38	Q	40-140	3	30
4-Chloroaniline	62		62		40-140	0	30
1-Methylnaphthalene	75		76		41-103	1	30
2-Nitroaniline	88		88		52-143	0	30
3-Nitroaniline	70		70		25-145	0	30
4-Nitroaniline	87		88		51-143	1	30
Dibenzofuran	83		83		40-140	0	30
2-Methylnaphthalene	74		74		40-140	0	30
n-Nitrosodimethylamine	45		44		22-74	2	30
2,4,6-Trichlorophenol	83		83		30-130	0	30
p-Chloro-m-cresol	84		84		23-97	0	30
2-Chlorophenol	76		77		27-123	1	30
2,4-Dichlorophenol	81		81		30-130	0	30
2,4-Dimethylphenol	77		77		30-130	0	30
2-Nitrophenol	78		79		30-130	1	30
4-Nitrophenol	61		61		10-80	0	30
2,4-Dinitrophenol	76		76		20-130	0	30
4,6-Dinitro-o-cresol	89		89		20-164	0	30
Pentachlorophenol	76		78		9-103	3	30
Phenol	43		43		12-110	0	30
2-Methylphenol	72		72		30-130	0	30
3-Methylphenol/4-Methylphenol	68		69		30-130	1	30
2,4,5-Trichlorophenol	88		87		30-130	1	30

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

Parameter	LCS %Recovery	Qual %I	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - V	Vestborough Lab Associa	ited sample(s): 0	3 Batch:	WG1094694-2	2 WG1094694-3				
Benzoic Acid	26		22		10-164	17		30	
Benzyl Alcohol	64		63		26-116	2		30	
Carbazole	87		86		55-144	1		30	
Pyridine	29		27		10-66	7		30	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2-Fluorophenol	60	61	21-120
Phenol-d6	44	45	10-120
Nitrobenzene-d5	79	80	23-120
2-Fluorobiphenyl	86	87	15-120
2,4,6-Tribromophenol	89	89	10-120
4-Terphenyl-d14	87	90	41-149

Project Number: 171.05027.003

arameter	LCS %Recovery G	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS-SI	M - Westborough Lab Assoc	iated sample(s): 03 Bate	ch: WG1094697-2 WG1094	697-3	
Acenaphthene	57	61	40-140	7	40
2-Chloronaphthalene	60	62	40-140	3	40
Fluoranthene	84	80	40-140	5	40
Hexachlorobutadiene	64	78	40-140	20	40
Naphthalene	64	65	40-140	2	40
Benzo(a)anthracene	73	80	40-140	9	40
Benzo(a)pyrene	83	89	40-140	7	40
Benzo(b)fluoranthene	82	88	40-140	7	40
Benzo(k)fluoranthene	78	81	40-140	4	40
Chrysene	66	73	40-140	10	40
Acenaphthylene	68	72	40-140	6	40
Anthracene	79	74	40-140	7	40
Benzo(ghi)perylene	62	82	40-140	28	40
Fluorene	68	79	40-140	15	40
Phenanthrene	66	67	40-140	2	40
Dibenzo(a,h)anthracene	65	87	40-140	29	40
Indeno(1,2,3-cd)pyrene	66	90	40-140	31	40
Pyrene	81	77	40-140	5	40
1-Methylnaphthalene	65	67	40-140	3	40
2-Methylnaphthalene	68	67	40-140	1	40
Pentachlorophenol	57	59	40-140	3	40
Hexachlorobenzene	62	64	40-140	3	40
Hexachloroethane	72	67	40-140	7	40

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

~ · · ·	A / B				RPD		
Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
		14/0400		07.0			
	quui						

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	54	56	21-120
Phenol-d6	45	46	10-120
Nitrobenzene-d5	95	102	23-120
2-Fluorobiphenyl	76	79	15-120
2,4,6-Tribromophenol	84	90	10-120
4-Terphenyl-d14	100	95	41-149

METALS

Serial_No:03091814:39

								Ocha	_10.00001	514.00	
Project Name:	BELFAST WATER DISTRICT					Lab Number: L1807395					
Project Number:	171.0	5027.003					Report	Date:	03/09/1	8	
				SAMPL	E RES	ULTS					
Lab ID: Client ID: Sample Location: Sample Depth: Matrix:	ient ID: GWW-101 ample Location: BELFAST, ME ample Depth:							ollected: eceived: ep:	02/27/18 03/02/18 Field Fil (Dissolv Metals a phospho	8 tered red and	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Total Metals - Mansf	field Lab										
Aluminum, Total	0.188		mg/l	0.100		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Antimony, Total	ND		mg/l	0.00400		1	03/07/18 07:3	0 03/07/18 12:51	EPA 3005A	1,6020A	AM
Arsenic, Total	0.006		mg/l	0.005		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Barium, Total	ND		mg/l	0.010		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Beryllium, Total	ND		mg/l	0.00050		1	03/07/18 07:3	0 03/07/18 12:51	EPA 3005A	1,6020A	AM
Boron, Total	ND		mg/l	0.030		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Cadmium, Total	ND		mg/l	0.00020		1	03/07/18 07:3	0 03/07/18 12:51	EPA 3005A	1,6020A	AM
Calcium, Total	8.35		mg/l	0.100		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Chromium, Total	ND		mg/l	0.010		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Cobalt, Total	ND		mg/l	0.020		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Copper, Total	ND		mg/l	0.010		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Iron, Total	2.49		mg/l	0.050		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Lead, Total	ND		mg/l	0.010		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Magnesium, Total	3.93		mg/l	0.100		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Manganese, Total	0.030		mg/l	0.010		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Mercury, Total	ND		mg/l	0.00020		1	03/05/18 11:03	3 03/05/18 14:33	EPA 7470A	1,7470A	MG
Molybdenum, Total	ND		mg/l	0.050		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Nickel, Total	ND		mg/l	0.025		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Potassium, Total	ND		mg/l	2.50		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Selenium, Total	ND		mg/l	0.010		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Silicon, Total	10.3		mg/l	0.500		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Silver, Total	ND		mg/l	0.007		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Sodium, Total	14.7		mg/l	2.00		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Strontium, Total	0.041		mg/l	0.010		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Sulfur, Total	38.7		mg/l	2.50		10	03/05/18 10:1	5 03/06/18 09:29	EPA 3015A	1,6010C	PS
Thallium, Total	ND		mg/l	0.00050		1	03/07/18 07:3	0 03/07/18 12:51	EPA 3005A	1,6020A	AM
Titanium, Total	ND		mg/l	0.010		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Vanadium, Total	ND		mg/l	0.010		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS
Zinc, Total	ND		mg/l	0.050		1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS

Serial_No:03091814:39

Project Name:	BELF	AST WATE	R DIST	RICT			Lab Nu	ımber:	L18073	95		
Project Number:	171.0	5027.003					Report	Date:	03/09/1	8		
				SAMPL	E RES	ULTS						
Lab ID:	L1807	395-03					Date C	ollected:	02/27/1	8 15:45		
Client ID:	GWW	-101					Date R	eceived:	03/02/1	03/02/18		
Sample Location:	BELF	AST, ME					Field P	rep:	Field Fi	Field Filtered		
Sample Depth:									(Dissolv			
Matrix:	Water								Metals a phosph			
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
Total Hardness by S	SM 2340E	3 - Mansfiel	d Lab									
Hardness	37.0		mg/l	0.660	NA	1	03/07/18 07:3	0 03/07/18 16:47	EPA 3005A	1,6010C	PS	

Dissolved Metals - N	lansfield Lab							
Aluminum, Dissolved	ND	mg/l	0.100	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Antimony, Dissolved	ND	mg/l	0.00400	 1	03/03/18 13:30 03/06/18 09:26	EPA 3005A	1,6020A	AM
Arsenic, Dissolved	ND	mg/l	0.005	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Arsenic, Dissolved	0.005	mg/l	0.005	 1	03/03/18 13:30 03/09/18 09:57	EPA 3005A	1,6010C	AB
Barium, Dissolved	ND	mg/l	0.010	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Beryllium, Dissolved	ND	mg/l	0.00050	 1	03/03/18 13:30 03/06/18 09:26	EPA 3005A	1,6020A	AM
Boron, Dissolved	ND	mg/l	0.030	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Cadmium, Dissolved	ND	mg/l	0.00020	 1	03/03/18 13:30 03/06/18 09:26	EPA 3005A	1,6020A	AM
Calcium, Dissolved	8.97	mg/l	0.100	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Chromium, Dissolved	ND	mg/l	0.010	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Cobalt, Dissolved	ND	mg/l	0.020	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Copper, Dissolved	ND	mg/l	0.010	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Iron, Dissolved	2.05	mg/l	0.050	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Lead, Dissolved	ND	mg/l	0.010	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Magnesium, Dissolved	3.99	mg/l	0.100	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Manganese, Dissolved	0.028	mg/l	0.010	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Mercury, Dissolved	ND	mg/l	0.00020	 1	03/07/18 14:07 03/08/18 14:41	EPA 7470A	1,7470A	MG
Molybdenum, Dissolved	ND	mg/l	0.050	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Nickel, Dissolved	ND	mg/l	0.025	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Potassium, Dissolved	ND	mg/l	2.50	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Selenium, Dissolved	ND	mg/l	0.010	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Silicon, Dissolved	10.5	mg/l	0.500	 1	03/09/18 07:35 03/09/18 12:22	EPA 3005A	1,6010C	AB
Silver, Dissolved	ND	mg/l	0.007	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Sodium, Dissolved	15.2	mg/l	2.00	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB
Strontium, Dissolved	0.041	mg/l	0.010	 1	03/03/18 13:30 03/08/18 20:51	EPA 3005A	1,6010C	AB

Serial_No:03091814:39

Project Name:	BELF	AST WATE	R DIST	RICT			Lab Nu	mber:	L18073	95	
Project Number:	171.0	5027.003					Report	Date:	03/09/1	8	
				SAMPL	E RES	ULTS					
Lab ID:	L1807	7395-03					Date Co	ollected:	02/27/1	8 15:45	
Client ID:	GWW	/-101					Date Re	ceived:	03/02/1	8	
Sample Location: Sample Depth:	BELF	AST, ME					Field Pr	ep:	Field Fi (Dissolv	/ed	
Matrix:	Water								Metals a phosph		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Thallium, Dissolved	ND		mg/l	0.00050		1	03/03/18 13:30) 03/06/18 09:26	EPA 3005A	1,6020A	АМ
Titanium, Dissolved	ND		mg/l	0.010		1				1,6010C	AB
Vanadium, Dissolved	ND		mg/l	0.010		1	03/03/18 13:30) 03/08/18 20:51	EPA 3005A	1,6010C	AB
Zinc, Dissolved	ND		mg/l	0.050		1	03/03/18 13:30) 03/08/18 20:51	EPA 3005A	1,6010C	AB

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qual	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals - Mar	nsfield Lab for s	ample(s): 03	Batch: \	NG1094	1245-1				
Aluminum, Dissolved	ND	mg/l	0.100		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Arsenic, Dissolved	ND	mg/l	0.005		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Arsenic, Dissolved	ND	mg/l	0.005		1	03/03/18 13:30	03/09/18 10:26	1,6010C	AB
Barium, Dissolved	ND	mg/l	0.010		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Boron, Dissolved	ND	mg/l	0.030		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Calcium, Dissolved	ND	mg/l	0.100		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Chromium, Dissolved	ND	mg/l	0.010		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Cobalt, Dissolved	ND	mg/l	0.020		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Copper, Dissolved	ND	mg/l	0.010		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Iron, Dissolved	ND	mg/l	0.050		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Lead, Dissolved	ND	mg/l	0.010		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Magnesium, Dissolved	ND	mg/l	0.100		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Manganese, Dissolved	ND	mg/l	0.010		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Molybdenum, Dissolved	ND	mg/l	0.050		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Nickel, Dissolved	ND	mg/l	0.025		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Potassium, Dissolved	ND	mg/l	2.50		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Selenium, Dissolved	ND	mg/l	0.010		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Silver, Dissolved	ND	mg/l	0.007		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Sodium, Dissolved	ND	mg/l	2.00		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Strontium, Dissolved	ND	mg/l	0.010		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Titanium, Dissolved	ND	mg/l	0.010		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Vanadium, Dissolved	ND	mg/l	0.010		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB
Zinc, Dissolved	ND	mg/l	0.050		1	03/03/18 13:30	03/08/18 20:18	1,6010C	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Dissolved Metals - Ma	insfield Lab for sample	e(s): 03	Batch: V	/G1094	1248-1				
Antimony, Dissolved	ND	mg/l	0.00400		1	03/03/18 13:30	03/06/18 08:59) 1,6020A	AM
Beryllium, Dissolved	ND	mg/l	0.00050		1	03/03/18 13:30	03/06/18 08:59) 1,6020A	AM
Cadmium, Dissolved	ND	mg/l	0.00020		1	03/03/18 13:30	03/06/18 08:59) 1,6020A	AM

Project Name:	BELFAST WATER DISTRICT
Project Number:	171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

Method Blank Analysis Batch Quality Control

Thallium, Dissolved	ND	mg/l	0.00050		1	03/03/18 13:30	03/06/18 08:59	1,6020A	AM
			Prep Info	ormatio	on				
		Digestior	n Method:	EPA	3005A				
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	ld Lab for sample(s):	03 Bato	h: WG10	94454-	-1				
Sulfur, Total	0.254	mg/l	0.250		1	03/05/18 10:15	03/06/18 08:47	1,6010C	PS
		0							
			Prep Info	ormatio	on				
		Digestior	Method:	EPA	3015A				
						_	_		
Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
			:h: WG10		1	•	•		,
Total Metals - Mansfie	ND			94499		02/05/40 44:02	02/05/49 44:02	1 7 4 7 0 4	MC
Mercury, Total	ND	mg/l	0.00020		1	03/05/18 11:03	03/05/18 14:03	1,7470A	MG
			Prep Info	ormatio	on				
		Digestion	n Method:		7470A				
		Digestion	i metrioù.		(1410)(
-					Dilution	Date		Analytical	
Parameter	Result Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
Total Metals - Mansfie	Id Lab for sample(s):	03 Bato	h: WG10	95168-	-1				
Aluminum, Total	ND	mg/l	0.100		1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Arsenic, Total	ND	mg/l	0.005		1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Barium, Total	ND	mg/l	0.010		1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Boron, Total	ND	mg/l	0.030		1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Calcium, Total	ND	mg/l	0.100		1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Chromium, Total	ND	mg/l	0.010		1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Cobalt, Total	ND	mg/l	0.020		1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Copper, Total	ND	mg/l	0.010		1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Iron, Total	ND	mg/l	0.050		1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Lead, Total	ND	mg/l	0.010		1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

Method Blank Analysis Batch Quality Control

Magnesium, Total	ND	mg/l	0.100	 1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Manganese, Total	ND	mg/l	0.010	 1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Molybdenum, Total	ND	mg/l	0.050	 1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Nickel, Total	ND	mg/l	0.025	 1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Potassium, Total	ND	mg/l	2.50	 1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Selenium, Total	ND	mg/l	0.010	 1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Silver, Total	ND	mg/l	0.007	 1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Sodium, Total	ND	mg/l	2.00	 1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Strontium, Total	ND	mg/l	0.010	 1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Titanium, Total	ND	mg/l	0.010	 1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Vanadium, Total	ND	mg/l	0.010	 1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS
Zinc, Total	ND	mg/l	0.050	 1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	340B - Mansfield Lal	o for sam	ple(s): 0	3 Batc	h: WG109	5168-1			
Hardness	ND	mg/l	0.660	NA	1	03/07/18 07:30	03/07/18 16:10	1,6010C	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sample(s):	03 Batc	h: WG10)95170·	-1				
Antimony, Total	ND	mg/l	0.00400		1	03/07/18 07:30	03/07/18 12:39	1,6020A	AM
Beryllium, Total	ND	mg/l	0.00050		1	03/07/18 07:30	03/07/18 12:39	1,6020A	AM
Cadmium, Total	ND	mg/l	0.00020		1	03/07/18 07:30	03/07/18 12:39	1,6020A	AM
Thallium, Total	ND	mg/l	0.00050		1	03/07/18 07:30	03/07/18 12:39	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Man	sfield Lab	for sample	e(s): 03	Batch: V	VG1095	363-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	03/07/18 14:07	03/08/18 14:32	2 1,7470A	MG

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	nsfield Lab for sampl	e(s): 03	Batch: N	NG1095	5792-1				
Aluminum, Dissolved	ND	mg/l	0.100		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Arsenic, Dissolved	ND	mg/l	0.005		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Barium, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Boron, Dissolved	ND	mg/l	0.030		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Calcium, Dissolved	ND	mg/l	0.100		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Chromium, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Cobalt, Dissolved	ND	mg/l	0.020		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Copper, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Iron, Dissolved	ND	mg/l	0.050		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Lead, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Magnesium, Dissolved	ND	mg/l	0.100		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Manganese, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Molybdenum, Dissolved	ND	mg/l	0.050		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Nickel, Dissolved	ND	mg/l	0.025		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Potassium, Dissolved	ND	mg/l	2.50		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Selenium, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Silicon, Dissolved	ND	mg/l	0.500		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Silver, Dissolved	ND	mg/l	0.007		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Sodium, Dissolved	ND	mg/l	2.00		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Strontium, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Titanium, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Vanadium, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Zinc, Dissolved	ND	mg/l	0.050		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Lab Number: L1807395 Report Date: 03/09/18

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Dissolved Metals - Mansfield Lab Associated s	ample(s): 03 Ba	atch: WG1094245-2				
Aluminum, Dissolved	110	-	80-120	-		
Arsenic, Dissolved	111	-	80-120	-		
Arsenic, Dissolved	112	-	80-120	-		
Barium, Dissolved	96	-	80-120	-		
Boron, Dissolved	113	-	80-120	-		
Calcium, Dissolved	106	-	80-120	-		
Chromium, Dissolved	98	-	80-120	-		
Cobalt, Dissolved	100	-	80-120	-		
Copper, Dissolved	102	-	80-120	-		
Iron, Dissolved	113	-	80-120	-		
Lead, Dissolved	104	-	80-120	-		
Magnesium, Dissolved	100	-	80-120	-		
Manganese, Dissolved	99	-	80-120	-		
Molybdenum, Dissolved	99	-	80-120	-		
Nickel, Dissolved	100	-	80-120	-		
Potassium, Dissolved	105	-	80-120	-		
Selenium, Dissolved	113	-	80-120	-		
Silver, Dissolved	109	-	80-120	-		
Sodium, Dissolved	104	-	80-120	-		
Strontium, Dissolved	100	-	80-120	-		
Titanium, Dissolved	103	-	80-120	-		

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated	sample(s): 03 Batch: V	NG1094245-2			
Vanadium, Dissolved	103	-	80-120	-	
Zinc, Dissolved	107	-	80-120	-	
Dissolved Metals - Mansfield Lab Associated	sample(s): 03 Batch:	NG1094248-2			
Antimony, Dissolved	116	-	80-120	-	
Beryllium, Dissolved	97	-	80-120	-	
Cadmium, Dissolved	113	-	80-120	-	
Thallium, Dissolved	104	-	80-120	-	
Total Metals - Mansfield Lab Associated sam	ple(s): 03 Batch: WG1	094454-2			
Sulfur, Total	93	-	80-120	-	
Total Metals - Mansfield Lab Associated sam	ple(s): 03 Batch: WG1	094499-2			
Mercury, Total	110	-	80-120	-	

Lab Control Sample Analysis

Batch Quality Control

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

LCS LCSD %Recovery %Recovery %Recovery Limits RPD **RPD** Limits Parameter Total Metals - Mansfield Lab Associated sample(s): 03 Batch: WG1095168-2 Aluminum, Total 116 80-120 -Arsenic, Total 111 80-120 --Barium, Total 101 80-120 --112 80-120 Boron, Total --Calcium, Total 105 80-120 --Chromium, Total 102 80-120 --Cobalt. Total 99 80-120 --Copper, Total 80-120 101 --Iron, Total 80-120 99 --Lead, Total 105 80-120 --Magnesium, Total 104 80-120 --Manganese, Total 95 80-120 --Molybdenum, Total 102 80-120 --Nickel, Total 80-120 100 -Potassium, Total 110 80-120 --Selenium, Total 102 80-120 --Silver, Total 107 80-120 --Sodium, Total 106 80-120 --Strontium, Total 105 80-120 --Titanium, Total 106 80-120 --Vanadium, Total 105 80-120 -

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits RPD		RPD Limits	
Total Metals - Mansfield Lab Associated sample(s): 03 Batch: '	WG1095168-2				
Zinc, Total	103	-	80-120	-		
Total Hardness by SM 2340B - Mansfield Lab As	sociated sample	e(s): 03 Batch: WG1095168-2				
Hardness	105	-	80-120	-		
Total Metals - Mansfield Lab Associated sample(WG1095170-2				
Antimony, Total	120	-	80-120	-		
Beryllium, Total	97	-	80-120	-		
Cadmium, Total	112	-	80-120	-		
Thallium, Total	103	-	80-120	-		
Dissolved Metals - Mansfield Lab Associated san	nple(s): 03 Ba	atch: WG1095363-2				
Mercury, Dissolved	93	-	80-120	-		

Lab Control Sample Analysis

Batch Quality Control

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

LCS LCSD %Recovery **RPD** Limits %Recovery %Recovery Limits RPD Parameter Dissolved Metals - Mansfield Lab Associated sample(s): 03 Batch: WG1095792-2 Aluminum, Dissolved 110 80-120 -Arsenic, Dissolved 111 80-120 --Barium, Dissolved 103 80-120 --Boron, Dissolved 80-120 114 --Calcium, Dissolved 104 80-120 --Chromium, Dissolved 106 80-120 --Cobalt. Dissolved 101 80-120 --Copper, Dissolved 80-120 107 -Iron, Dissolved 80-120 106 --Lead. Dissolved 106 80-120 --Magnesium, Dissolved 102 80-120 --Manganese, Dissolved 102 80-120 --Molybdenum, Dissolved 103 80-120 --Nickel, Dissolved 80-120 102 -Potassium, Dissolved 104 80-120 --Selenium, Dissolved 113 80-120 --Silicon, Dissolved 92 80-120 --Silver, Dissolved 108 80-120 -Sodium, Dissolved 108 80-120 --Strontium, Dissolved 102 80-120 --Titanium, Dissolved 107 80-120 -

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Assoc	ciated sample(s): 03 Batch: W	VG1095792-2			
Vanadium, Dissolved	107	-	80-120	-	
Zinc, Dissolved	105	-	80-120	-	

Matrix Spike Analysis

Batch Quality Control

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

MS RPD Native MS MS MSD MSD Recovery Sample %Recovery Limits Added Found Found Qual %Recovery Qual Limits **RPD** Qual Parameter Dissolved Metals - Mansfield Lab Associated sample(s): 03 QC Batch ID: WG1094245-3 QC Sample: L1807395-03 Client ID: GWW-101 Aluminum, Dissolved ND 2 2.17 108 75-125 20 -Arsenic. Dissolved 0.005 0.12 0.136 109 75-125 20 ---Arsenic. Dissolved ND 0.12 0.132 110 75-125 20 _ --Barium. Dissolved ND 2 1.91 96 75-125 20 -_ _ Boron. Dissolved ND 1 1.13 113 -75-125 20 --Calcium, Dissolved 8.97 10 18.9 99 75-125 20 ---Chromium, Dissolved ND 0.2 0.195 98 75-125 20 ---Cobalt, Dissolved ND 0.5 0.491 98 75-125 20 _ --Copper, Dissolved ND 0.25 0.253 101 75-125 20 -_ -Iron, Dissolved 2.05 1 3.00 95 -75-125 20 --Lead, Dissolved ND 0.51 0.517 101 75-125 20 ---10 13.5 Magnesium, Dissolved 3.99 95 -75-125 _ 20 _ Manganese, Dissolved 0.513 97 75-125 0.028 0.5 --_ 20 Molybdenum, Dissolved ND 1 0.986 99 -75-125 20 --Nickel, Dissolved ND 0.5 0.490 98 -75-125 20 --Potassium, Dissolved 10 12.5 ND 125 -75-125 _ 20 _ Selenium, Dissolved 0.12 0.133 111 75-125 ND -_ 20 _ Silver, Dissolved ND 0.05 0.054 75-125 107 ---20 Sodium, Dissolved 15.2 10 25.0 20 98 -75-125 _ _ Strontium, Dissolved 0.041 1 1.02 98 -75-125 _ 20 _ Titanium, Dissolved ND 1 1.02 102 75-125 20 _ --

Matrix Spike Analysis Batch Quality Control

Project Number: 171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield	Lab Associated	sample(s): 0)3 QC B	atch ID: WG1094245-	3 QC Sa	mple: L1807395-03	Client ID:	GWW-101	
Vanadium, Dissolved	ND	0.5	0.509	102	-	-	75-125	-	20
Zinc, Dissolved	ND	0.5	0.527	105	-	-	75-125	-	20
Dissolved Metals - Mansfield	Lab Associated	sample(s): 0)3 QC B	atch ID: WG1094248-	3 QC Sa	mple: L1807395-03	Client ID:	GWW-101	
Antimony, Dissolved	ND	0.5	0.6037	121	-	-	75-125	-	20
Beryllium, Dissolved	ND	0.05	0.04971	99	-	-	75-125	-	20
Cadmium, Dissolved	ND	0.051	0.05453	107	-	-	75-125	-	20
Thallium, Dissolved	ND	0.12	0.1231	102	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: BELFAST WATER DISTRICT

Lab Number: Report Date:

L1807395 03/09/18

Project Number: 171.05027.003

arameter	Na	ative Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
issolved Metals - Mansfield Lab	Associated sample(s): 03	QC Batch ID:	WG1094245-4 QC Sample	: L1807395-0	3 Client ID	: GWW-10	01
Aluminum, Dissolved		ND	ND	mg/l	NC		20
Arsenic, Dissolved		ND	ND	mg/l	NC		20
Barium, Dissolved		ND	ND	mg/l	NC		20
Boron, Dissolved		ND	ND	mg/l	NC		20
Calcium, Dissolved		8.97	9.12	mg/l	2		20
Chromium, Dissolved		ND	ND	mg/l	NC		20
Cobalt, Dissolved		ND	ND	mg/l	NC		20
Copper, Dissolved		ND	ND	mg/l	NC		20
Iron, Dissolved		2.05	2.08	mg/l	1		20
Lead, Dissolved		ND	ND	mg/l	NC		20
Magnesium, Dissolved		3.99	4.08	mg/l	2		20
Manganese, Dissolved		0.028	0.028	mg/l	1		20
Molybdenum, Dissolved		ND	ND	mg/l	NC		20
Nickel, Dissolved		ND	ND	mg/l	NC		20
Potassium, Dissolved		ND	ND	mg/l	NC		20
Selenium, Dissolved		ND	ND	mg/l	NC		20
Silver, Dissolved		ND	ND	mg/l	NC		20
Sodium, Dissolved		15.2	15.6	mg/l	3		20
Strontium, Dissolved		0.041	0.042	mg/l	2		20

Lab Duplicate Analysis Batch Quality Control

Project Name: BELFAST WATER DISTRICT

Lab Number: L1807395 Report Date: 03/09/18

Project Number: 171.05027.003

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sample(s):	03 QC Batch ID:	WG1094245-4 QC Sample:	L1807395-03	Client ID:	GWW-101
Titanium, Dissolved	ND	ND	mg/l	NC	20
Vanadium, Dissolved	ND	ND	mg/l	NC	20
Zinc, Dissolved	ND	ND	mg/l	NC	20
Dissolved Metals - Mansfield Lab Associated sample(s):	03 QC Batch ID:	WG1094245-4 QC Sample:	L1807395-03	Client ID:	GWW-101
Arsenic, Dissolved	0.005	0.005	mg/l	8	20
Dissolved Metals - Mansfield Lab Associated sample(s):	03 QC Batch ID:	WG1094248-4 QC Sample:	L1807395-03	Client ID:	GWW-101
Antimony, Dissolved	ND	ND	mg/l	NC	20
Beryllium, Dissolved	ND	ND	mg/l	NC	20
Cadmium, Dissolved	ND	ND	mg/l	NC	20
Thallium, Dissolved	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Serial	No:03091814:39
o o nan_	

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1807395
Project Number:	171.05027.003	Report Date:	03/09/18
	SAMPLE RESULTS		
Lab ID:	L1807395-03	Date Collected:	02/27/18 15:45
Client ID:	GWW-101	Date Received:	03/02/18

Sample Location: Sample Depth: Matrix:	BELFAST, N	ME			Field Prep:			Field Filtered (Dissolved Metals and phosphorus)		
Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
General Chemistry - We	stborough Lal	b								
Alkalinity, Total	57.9	mg CaCO3/L	2.00	NA	1	-	03/05/18 09:20	121,2320B	BR	
Phosphorus, Total	0.071	mg/l	0.010		1	03/06/18 12:20	03/07/18 09:29	121,4500P-E	SD	
Phosphorus, Soluble	0.035	mg/l	0.010		1	03/06/18 12:20	03/07/18 09:36	121,4500P-E	SD	

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qual	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab fo	r sample(s): 03	Batch:	WG10)94488-1				
Alkalinity, Total	ND	mg CaCO3/L	2.00	NA	1	-	03/05/18 09:20	121,2320B	BR
General Chemistry -	Westborough Lab fo	r sample(s): 03	Batch:	WG10)94909-1				
Phosphorus, Total	ND	mg/l	0.010		1	03/06/18 12:20	03/07/18 09:06	121,4500P-E	SD
General Chemistry -	Westborough Lab fo	r sample(s): 03	Batch:	WG10)94945-1				
Phosphorus, Soluble	ND	mg/l	0.010		1	03/06/18 12:20	03/07/18 09:33	121,4500P-E	SD

Lab Control Sample Analysis Batch Quality Control

Lab Number:

Report Date: 03/09/18

Parameter	LCS %Recovery Q	LCSD ual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 03	Batch: WG1094488-	-2				
Alkalinity, Total	102	-		90-110	-		10
General Chemistry - Westborough Lab	Associated sample(s): 03	Batch: WG1094909-	-2				
Phosphorus, Total	110	-		80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 03	Batch: WG1094945	-2				
Phosphorus, Soluble	102	-		80-120	-		

Project Name:

Project Number:

BELFAST WATER DISTRICT

171.05027.003

		Matrix Spike Analysis Batch Quality Control		
Project Name:	BELFAST WATER DISTRICT	Batch Quanty Control	Lab Number:	L1807395
Project Number:	171.05027.003		Report Date:	03/09/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Q	Recovery ual Limits R	RPD RPD Qual Limits
General Chemistry - Westborou	ugh Lab Asso	ciated samp	le(s): 03	QC Batch ID: V	VG1094945-3	QC Sample: L1807	395-03 Client ID	: GWW-101
Phosphorus, Soluble	0.035	0.5	0.546	102	-	-	75-125	- 20

Project Name: Project Number:	BELFAST WATER DISTRICT 171.05027.003	L	ab Duplicate Analy Batch Quality Control	La			
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits

General Chemistry - Westborough Lab Associated sample	e(s): 03 QC Batch IL	D: WG1094945-4 (QC Sample: L18073	395-03 CI	lent ID: GVVV-101
Phosphorus, Soluble	0.035	0.034	mg/l	3	20

Project Name: BELFAST WATER DISTRICT Project Number: 171.05027.003

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
А	Absent
В	Absent
С	Absent
D	Absent

Container Information

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН		Pres	Seal	Date/Time	Analysis(*)
L1807395-01A	Vial HCI preserved	А	NA		2.9	Y	Absent		HOLD-8260(14)
L1807395-01B	Vial HCI preserved	А	NA		2.9	Y	Absent		HOLD-8260(14)
L1807395-01C	Vial HCI preserved	А	NA		2.9	Y	Absent		HOLD-8260(14)
L1807395-01D	Plastic 250ml HNO3 preserved	А	<2	<2	2.9	Y	Absent		HOLD-METAL-DISSOLVED(180)
L1807395-01E	Plastic 250ml HNO3 preserved	А	<2	<2	2.9	Y	Absent		HOLD-METAL-TOTAL(180)
L1807395-01F	Plastic 250ml HNO3 preserved	А	<2	<2	2.9	Y	Absent		HOLD-METAL-TOTAL(180)
L1807395-01G	Plastic 120ml unpreserved	А	7	7	2.9	Y	Absent		HOLD-WETCHEM()
L1807395-01H	Plastic 250ml unpreserved/No Headspace	А	NA		2.9	Y	Absent		HOLD-WETCHEM()
L1807395-01J	Amber 120ml unpreserved	А	7	7	2.9	Y	Absent		HOLD-WETCHEM()
L1807395-01K	Plastic 250ml H2SO4 preserved	А	<2	<2	2.9	Y	Absent		HOLD-WETCHEM()
L1807395-01L	Plastic 250ml H2SO4 preserved	А	<2	<2	2.9	Y	Absent		HOLD-WETCHEM()
L1807395-01M	Plastic 950ml unpreserved	А	7	7	2.9	Y	Absent		HOLD-WETCHEM()
L1807395-01N	Amber 1000ml unpreserved	А	7	7	2.9	Y	Absent		HOLD-8270(7)
L1807395-01P	Amber 1000ml unpreserved	А	7	7	2.9	Y	Absent		HOLD-8270(7)
L1807395-01Q	Amber 1000ml unpreserved	А	7	7	2.9	Y	Absent		HOLD-8270(7)
L1807395-01R	Amber 1000ml unpreserved	А	7	7	2.9	Y	Absent		HOLD-8270(7)
L1807395-02A	Vial HCI preserved	В	NA		5.1	Y	Absent		HOLD-8260(14)
L1807395-02B	Vial HCI preserved	В	NA		5.1	Y	Absent		HOLD-8260(14)
L1807395-02C	Vial HCI preserved	В	NA		5.1	Y	Absent		HOLD-8260(14)
L1807395-02D	Plastic 250ml HNO3 preserved	В	<2	<2	5.1	Y	Absent		HOLD-METAL-DISSOLVED(180)

Project Name: BELFAST WATER DISTRICT Project Number: 171.05027.003

Container Information				Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	pН	pН		Pres	Seal	Date/Time	Analysis(*)
	L1807395-02E	Plastic 250ml HNO3 preserved	В	<2	<2	5.1	Y	Absent		HOLD-METAL-TOTAL(180)
	L1807395-02F	Plastic 250ml HNO3 preserved	В	<2	<2	5.1	Y	Absent		HOLD-METAL-TOTAL(180)
	L1807395-02G	Plastic 120ml unpreserved	В	7	7	5.1	Y	Absent		HOLD-WETCHEM()
	L1807395-02H	Plastic 250ml unpreserved/No Headspace	В	NA		5.1	Y	Absent		HOLD-WETCHEM()
	L1807395-02J	Amber 120ml unpreserved	В	7	7	5.1	Y	Absent		HOLD-WETCHEM()
	L1807395-02K	Plastic 250ml H2SO4 preserved	В	<2	<2	5.1	Y	Absent		HOLD-WETCHEM()
	L1807395-02L	Plastic 250ml H2SO4 preserved	В	<2	<2	5.1	Y	Absent		HOLD-WETCHEM()
	L1807395-02M	Plastic 950ml unpreserved	В	7	7	5.1	Y	Absent		HOLD-WETCHEM()
	L1807395-02N	Amber 1000ml unpreserved	В	7	7	5.1	Y	Absent		HOLD-8270(7)
	L1807395-02P	Amber 1000ml unpreserved	В	7	7	5.1	Y	Absent		HOLD-8270(7)
	L1807395-02Q	Amber 1000ml unpreserved	В	7	7	5.1	Y	Absent		HOLD-8270(7)
	L1807395-02R	Amber 1000ml unpreserved	В	7	7	5.1	Y	Absent		HOLD-8270(7)
	L1807395-03A	Vial HCl preserved	С	NA		2.6	Y	Absent		ME-8260(14)
	L1807395-03B	Vial HCI preserved	С	NA		2.6	Y	Absent		ME-8260(14)
	L1807395-03C	Vial HCl preserved	С	NA		2.6	Y	Absent		ME-8260(14)
	L1807395-03D	Plastic 250ml unpreserved/No Headspace	С	NA		2.6	Y	Absent		ALK-T-2320(14)
	L1807395-03E	Plastic 250ml H2SO4 preserved	С	<2	<2	2.6	Y	Absent		TPHOS-4500(28)
	L1807395-03F	Plastic 250ml HNO3 preserved	С	<2	<2	2.6	Y	Absent		B-SI(180),PB-SI(180),FE-SI(180),BA- SI(180),BE-6020S(180),TI-SI(180),AG- SI(180),AS-SI(180),CU-SI(180),MN- SI(180),NA-SI(180),NI-SI(180),AL-SI(180),CO- SI(180),SI-SI(180),SR-SI(180),TL- 6020S(180),CR-SI(180),K-SI(180),MG- SI(180),MO-SI(180),SB-6020S(180),CA- SI(180),CD-6020S(180),HG-S(28),SE- SI(180),V-SI(180),ZN-SI(180)
	L1807395-03G	Plastic 250ml HNO3 preserved	С	<2	<2	2.6	Y	Absent		TL-6020T(180),AS-TI(180),BA-TI(180),AG- TI(180),SI-TI(180),AL-TI(180),B-TI(180),CR- TI(180),MO-TI(180),NI-TI(180),S-TI(180),BE- 6020T(180),CU-TI(180),PB-TI(180),SE- TI(180),TI-TI(180),ZN-TI(180),CO-TI(180),SB- 6020T(180),V-TI(180),CD-6020T(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),SR- TI(180),CA-TI(180),HARDT(180),K-TI(180),NA- TI(180)

Project Name: BELFAST WATER DISTRICT Project Number: 171.05027.003

Serial_No:03091814:39 *Lab Number:* L1807395 *Report Date:* 03/09/18

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1807395-03H	Plastic 250ml HNO3 preserved	С	<2	<2	2.6	Υ	Absent		TL-6020T(180),AS-TI(180),BA-TI(180),AG- TI(180),SI-TI(180),AL-TI(180),B-TI(180),CR- TI(180),MO-TI(180),NI-TI(180),S-TI(180),BE- 6020T(180),CU-TI(180),PB-TI(180),SE- TI(180),TI-TI(180),ZN-TI(180),CO-TI(180),SB- 6020T(180),V-TI(180),CD-6020T(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),SR- TI(180),CA-TI(180),HARDT(180),K-TI(180),NA- TI(180)
L1807395-03J	Amber 1000ml unpreserved	С	7	7	2.6	Y	Absent		8270TCL(7)
L1807395-03K	Amber 1000ml unpreserved	С	7	7	2.6	Y	Absent		8270TCL(7)
L1807395-03L	Amber 1000ml unpreserved	С	7	7	2.6	Y	Absent		8270TCL-SIM(7)
L1807395-03M	Amber 1000ml unpreserved	С	7	7	2.6	Y	Absent		8270TCL-SIM(7)
L1807395-03N	Plastic 120ml unpreserved	С	7	7	2.6	Y	Absent		HOLD-WETCHEM()
L1807395-03P	Amber 120ml unpreserved	С	7	7	2.6	Y	Absent		HOLD-WETCHEM()
L1807395-03Q	Plastic 250ml H2SO4 preserved	С	<2	<2	2.6	Y	Absent		SPHOS-4500(28)
L1807395-03R	Plastic 950ml unpreserved	С	7	7	2.6	Y	Absent		HOLD-WETCHEM()
L1807395-04A	Vial HCI preserved	D	NA		2.8	Y	Absent		HOLD-8260(14)
L1807395-04B	Vial HCl preserved	D	NA		2.8	Y	Absent		HOLD-8260(14)
L1807395-04C	Vial HCl preserved	D	NA		2.8	Y	Absent		HOLD-8260(14)
L1807395-04D	Plastic 250ml HNO3 preserved	D	<2	<2	2.8	Y	Absent		HOLD-METAL-DISSOLVED(180)
L1807395-04E	Plastic 250ml HNO3 preserved	D	<2	<2	2.8	Y	Absent		HOLD-METAL-TOTAL(180)
L1807395-04F	Plastic 250ml HNO3 preserved	D	<2	<2	2.8	Y	Absent		HOLD-METAL-TOTAL(180)
L1807395-04G	Plastic 120ml unpreserved	D	7	7	2.8	Y	Absent		HOLD-WETCHEM()
L1807395-04H	Plastic 250ml unpreserved/No Headspace	D	NA		2.8	Y	Absent		HOLD-WETCHEM()
L1807395-04J	Amber 120ml unpreserved	D	7	7	2.8	Y	Absent		HOLD-WETCHEM()
L1807395-04K	Plastic 250ml H2SO4 preserved	D	<2	<2	2.8	Y	Absent		HOLD-WETCHEM()
L1807395-04L	Plastic 250ml H2SO4 preserved	D	<2	<2	2.8	Y	Absent		HOLD-WETCHEM()
L1807395-04M	Plastic 950ml unpreserved	D	7	7	2.8	Υ	Absent		HOLD-WETCHEM()
L1807395-04N	Amber 1000ml unpreserved	D	7	7	2.8	Y	Absent		HOLD-8270(7)
L1807395-04P	Amber 1000ml unpreserved	D	7	7	2.8	Y	Absent		HOLD-8270(7)
L1807395-04Q	Amber 1000ml unpreserved	D	7	7	2.8	Y	Absent		HOLD-8270(7)

Project Name: BELFAST WATER DISTRICT Project Number: 171.05027.003

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1807395-04R	Amber 1000ml unpreserved	D	7	7	2.8	Y	Absent		HOLD-8270(7)
L1807395-05A	Vial HCl preserved	D	NA		2.8	Y	Absent		HOLD-8260(14)
L1807395-05A1	Vial HCl preserved	D	NA		2.8	Y	Absent		HOLD-8260(14)
L1807395-05B	Vial HCl preserved	D	NA		2.8	Y	Absent		HOLD-8260(14)
L1807395-05B1	Vial HCl preserved	D	NA		2.8	Y	Absent		HOLD-8260(14)
L1807395-05C	Vial HCl preserved	D	NA		2.8	Y	Absent		HOLD-8260(14)
L1807395-05C1	Vial HCI preserved	D	NA		2.8	Y	Absent		HOLD-8260(14)

Serial_No:03091814:39

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Lab Number: L1807395

Report Date: 03/09/18

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after

adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH. Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Lab Number:	L1807395
Report Date:	03/09/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

 Lab Number:
 L1807395

 Report Date:
 03/09/18

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 300: DW: Bromide
EPA 6860: SCM: Perchlorate
EPA 9010: NPW and SCM: Amenable Cyanide Distillation
SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	RANISOM																S	Seria	al_No	o:0309181	4:39	
ALPHA	CHAIN C	F CU	ISTO	DY P		of	Dat	e Red	c'd in	Lab:	03	10	2	18		AL	.PH	A Jo	ob #:	T18	0739	5
A PELSYICAL		Projec	t Informat	ion	- 10		Re	port	Infor	matio	on - D	ata D	elive	rabl	s	Bi	illing	j Infe	ormat	tion		
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92		Project I	Name: Bel	GSt Wa	they Dis	trict	9	ADE>	<	15	EMA	JL					Same	as C	Client i	nfo PO #:	1075	4
Client Informatio	ALINE AND ANALY STORES AND A		Location: B	1 0 A 1 A 4			Re	gula	tory I	Requi	reme	nts	&	Proje	ect li	nfor	mati	on F	Requi	rements		
lient: Pansa	m Consulting In	YS 32 12	#: 171.0					es 🖸	No M	A MC	P Anal	ytical	Metho ed on	ds this S	DG?					CT RCP Anal Inorganics)	lytical Metho	ods
11.	aroorate Drive		Manager:			nçam	DY	es 🗅	No G	W1 St	andar	ds (Ini	fo Rec	uired	for N	letals	s & E	PH v	with Ta	irgets)		
Portsmenin			A Quote #:	wouldo	Vic Iowi	And			No N State		rogra				-			Crite	iria			
	436-1490	Turn-	Around Tir	ne		- 113			/	1	15	2	»/	./	/	1	57	7	1 Cm	X.II		٦
	the imsom @ vansome	MV. Com	udard [RUSH (only)				0	/ /	a.	DRCP	de les	Ranges O.		1	R	1	To	Mart.	Phur		
cc: drow, tu	chs@vansimenv.am roject Information:			1 NOSH (MIL	сологина и рис-ар	(onoveory	ANALVO	10-10	AH 0	DMCP 14	EPH. DRanges & DRCRAB CRCP 15	D Rang	D Rang	UQuant Only Co.	"gerprin	Hardness,	(pal)	2 Solue	Ten &	3 SA	MPLE INF	0
121	N drew, fucis@ra	1 CALONI	chen w	An main	auport	luc	AN	624	14	19	10	VPH: DRanges a Largets D +	rgets	12			R	Mar S W	The Party	S / Fitt	ration	
rolated to 4	hese samples,	Somenv	can w	in ung	questi	5 101		91	1	CI PCP 13	CRAS	1	DPEST	Nino	intra	10/S	15	dem	Phosphine		Field Lab to do	
icana to p	most surges,						1	10260	P.ABN	5 0	Sange	Pange	10	Quant	lim	Alen	ler	in all	Pho	Pre	servation	
ALPHA Lab ID			Colle	ection	Sample	Sampler	Voc:	1 .	METALS:	METALS: CIPC 13	10 :	II I	TPH.		A.	E :	Ima	E.	a		Lab to do	
(Lab Use Only)	Sample ID		Date	Time	Matrix	Initials	12	6	1	14	₩ /	\$ / 2	9/B	1	7-	TH	B	7-	7	and the second se	Comment	1.0
07395-01	NTB-102		2-26-18	16:15	GW	DAF		_		_	_	-	_	-	_					HOLI		11
02	NTB-103		3-1-18	15:30	GW	TBN														HOLL)	10
02	6WW-101		2-27-18	15:45	GW	DAF	X	X						X	X	X	X	X				1
04	GWW-102		3-1-18	13:00	GW	DAF														HOLI	D	16
05	Trop Blank						X													HOL	D	11
	trip viena																					
																						T
																						T
													1									T
			1							-	1	1	1	1								T
Container Type	Preservative			Г	Conts	ainer Type	V	A				-		P	P	P	P	P				+
P= Plastic A= Amber glass V= Vial	A= None B= HCI C= HNOs				0.00	eservative	R	A		-	-	+	+	C	L	L	L	D	+			+
G= Glass B= Bacteria cup C= Cube	D= H ₂ SO ₄ E= NaOH	Reling	uished By:			e/Time	0		Re	ceived	d By:	-	-	1	Date	/Tim	e	T				- And
O= Other E= Encore	F= MeOH G= NaHSO4 H = Na ₂ S ₂ O ₃	VARA			16:00	13/2/18	1	Ø	A	5	A	HL,		3/	2/1	8	16	og	ll samp Ipha's	ples submitte Terms and C	d are subje conditions.	ct to
D= BOD Bottle age 69 of 69	I= Ascorbic Acid J = NH ₄ Cl K= Zn Acetate	the	-4	96	3/2	118	7	ta	62	lik	Uper la	14	43	12/	18	137	30	Se	ee revi	erse side. 0.01-01 (rev. 12-1		
	O= Other	Ros A	aesto	AR	3/2//8	-1900	A	m	and a	-11	e	VV	0	10.1	- 0	1.1.1	00	1				

. .

```
JOB: L1812057
                 REPORT STYLE: Data Usability Report
0010: Alpha Analytical Report Cover Page - OK
0015: Sample Cross Reference Summary - OK
0060: Case Narrative - OK
0100: Volatiles Cover Page - OK
0110: Volatiles Sample Results - OK
0120: Volatiles Method Blank Report - OK
0130: Volatiles LCS Report - OK
0180: Semivolatiles Cover Page - OK
0190: Semivolatiles Sample Results - OK
0200: Semivolatiles Method Blank Report - OK
0210: Semivolatiles LCS Report - OK
0900: Pesticides Cover Page - OK
0910: Pesticides Sample Results - OK
0920: Pesticides Method Blank Report - OK
0930: Pesticides LCS Report - OK
1005: Metals Sample Results - OK
1010: Metals Method Blank Report - OK
1020: Metals LCS Report - OK
1040: Metals Matrix Spike Report - OK
1050: Metals Duplicate Report - OK
1180: Inorganics Cover Page - OK
1200: Wet Chemistry Sample Results - OK
1210: Wet Chemistry Method Blank Report - OK
1220: Wet Chemistry LCS Report - OK
1250: Wet Chemistry Duplicate Report - OK
5100: Sample Receipt & Container Information Report - OK
5200: Glossary - OK
5400: References - OK
    _____
```


ANALYTICAL REPORT

Lab Number:	L1812057
Client:	Ransom Consulting, Inc.
	400 Commercial Street
	Suite 404
	Portland, ME 04101-4660
ATTN:	Brian Pettingill
Phone:	(207) 772-2891
Project Name:	BELFAST WATER DISTRICT
Project Number:	171.05027.003
Report Date:	04/13/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:04131816:08

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

Lab Number:	L1812057
Report Date:	04/13/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1812057-01	GWW-101	WATER	BELFAST, ME	04/05/18 08:15	04/06/18
L1812057-02	GWW-101	WATER	BELFAST, ME	04/05/18 08:15	04/06/18
L1812057-03	GWW-103	WATER	BELFAST, ME	04/05/18 08:45	04/06/18
L1812057-04	GWW-103	WATER	BELFAST, ME	04/05/18 08:45	04/06/18
L1812057-05	SS-1	SOIL	BELFAST, ME	04/05/18 09:15	04/06/18
L1812057-06	SS-2	SOIL	BELFAST, ME	04/05/18 11:30	04/06/18
L1812057-07	GWW-101	WATER	BELFAST, ME	04/04/18 08:30	04/06/18
L1812057-08	GWW-103	WATER	BELFAST, ME	04/04/18 09:15	04/06/18
L1812057-09	TRIP BLANK	WATER	BELFAST, ME	04/04/18 00:00	04/06/18

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

Lab Number: L1812057 Report Date: 04/13/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: BELFAST WATER DISTRICT Project Number: 171.05027.003
 Lab Number:
 L1812057

 Report Date:
 04/13/18

Case Narrative (continued)

Report Submission

April 13, 2018: This is a preliminary report.

Sample Receipt

L1812057-06 and -07: The analysis of Pesticides was performed at the client's request.

Semivolatile Organics

The WG1104633-2/-3 LCS/LCSD recoveries, associated with L1812057-01 and -03, are below the acceptance criteria for benzidine (9%/6%); however, it has been identified as a "difficult" analyte. The results of the associated samples are reported.

Total Metals

The WG1105166-1 Method Blank, associated with L1812057-01 and -03, has a concentration above the reporting limit for iron. Since the associated sample concentrations are greater than 10x the blank concentration for this analyte, no corrective action is required.

The WG1105166-2 LCS recovery, associated with L1812057-01 and -03, is above the acceptance criteria for selenium (123%); however, the associated samples are non-detect to the RL for this target analyte. The results of the original analysis are reported.

The WG1105073-3 MS recovery for sulfur (20%), performed on L1812057-03, does not apply because the sample concentration is greater than four times the spike amount added.

Phosphorus, Soluble

The samples were field filtered; a filter blank was not received.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

604 Sendow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 04/13/18

ORGANICS

VOLATILES

		Serial_N	0:04131816:08
Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18
	SAMPLE RESULTS		
Lab ID:	L1812057-01	Date Collected:	04/05/18 08:15
Client ID:	GWW-101	Date Received:	04/06/18
Sample Location:	BELFAST, ME	Field Prep:	Field Filtered (Dissolved Metals & Phosphorus)
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	04/11/18 21:21		
Analyst:	NLK		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	1.0		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	0.20		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1

					ç	Serial_No	o:04131816:08
Project Name:	BELFAST WATER	DISTRICT			Lab Nu	mber:	L1812057
Project Number:	171.05027.003				Report	Date:	04/13/18
•		SAMPL	LE RESULTS	6	•		
Lab ID: Client ID: Sample Location: Sample Depth:	L1812057-01 GWW-101 BELFAST, ME				Date Collected: Date Received: Field Prep:		04/05/18 08:15 04/06/18 Field Filtered (Dissolved Metals & Phosphorus)
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborou	ugh Lab					
1,2-Dichloroethene, Tota	I	ND		ug/l	0.50		1
Trichloroethene		ND		ug/l	0.50		1
1,2-Dichlorobenzene		ND		ug/l	1.0		1
1,3-Dichlorobenzene		ND		ug/l	1.0		1
1,4-Dichlorobenzene		ND		ug/l	1.0		1
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
Xylenes, Total		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	1.0		1
1,4-Dichlorobutane		ND		ug/l	5.0		1
1,2,3-Trichloropropane		ND		ug/l	1.0		1
Styrene		ND		ug/l	1.0		1
Dichlorodifluoromethane		ND		ug/l	2.0		1
Acetone		ND		ug/l	5.0		1
Carbon disulfide		ND		ug/l	1.0		1
2-Butanone		ND		ug/l	5.0		1
Vinyl acetate		ND		ug/l	5.0		1
4-Methyl-2-pentanone		ND		ug/l	5.0		1
2-Hexanone		ND		ug/l	5.0		1
Ethyl methacrylate		ND		ug/l	5.0		1
Acrylonitrile		ND		ug/l	5.0		1
Bromochloromethane		ND		ug/l	1.0		1
Tetrahydrofuran		ND		ug/l	2.0		1
2,2-Dichloropropane		ND		ug/l	1.0		1
1,2-Dibromoethane		ND		ug/l	1.0		1
1,3-Dichloropropane		ND		ug/l	1.0		1
1,1,1,2-Tetrachloroethan	9	ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	1.0		1
n-Butylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	1.0		1
o-Chlorotoluene		ND		ug/l	1.0		1
p-Chlorotoluene		ND		ug/l	1.0		1
1,2-Dibromo-3-chloropro	bane	ND		ug/l	1.0		1
Hexachlorobutadiene		ND		ug/l	0.50		1

					Serial_No:04131816:08				
Project Name:	BELFAST WATER DI	STRICT			Lab Nu	mber:	L1812057		
Project Number:	171.05027.003				Report	Date:	04/13/18		
		SAMP		6					
Lab ID:	L1812057-01				Date Col	lected:	04/05/18 08:15		
Client ID:	GWW-101				Date Red	ceived:	04/06/18		
Sample Location:	BELFAST, ME				Field Pre	ep:	Field Filtered (Dissolved Metals & Phosphorus)		
Sample Depth:							· ,		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	y GC/MS - Westboroug	h Lab							
Isopropylbenzene		ND		ug/l	0.50		1		
p-Isopropyltoluene		ND		ug/l	0.50		1		
Naphthalene		ND		ug/l	1.0		1		
n-Propylbenzene		ND		ug/l	0.50		1		
1,2,3-Trichlorobenzene		ND		ug/l	1.0		1		
1,2,4-Trichlorobenzene		ND		ug/l	1.0		1		
1,3,5-Trimethylbenzene		ND		ug/l	1.0		1		

Ethyl ether	ND	ug/l	1.0		1
Surrogate		% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4		104		70-130	
Toluene-d8		103		70-130	
4-Bromofluorobenzene		101		70-130	
Dibromofluoromethane		92		70-130	

ND

ND

1

1

1.0

2.5

--

ug/l

ug/l

1,2,4-Trimethylbenzene

trans-1,4-Dichloro-2-butene

		Serial_N	0:04131816:08
Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18
	SAMPLE RESULTS		
Lab ID:	L1812057-03	Date Collected:	04/05/18 08:45
Client ID:	GWW-103	Date Received:	04/06/18
Sample Location:	BELFAST, ME	Field Prep:	Field Filtered (Dissolved Metals & Phosphorus)
Sample Depth:			, ,
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	04/11/18 21:49		
Analyst:	NLK		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	1.0		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	0.20		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1

					,	Serial_No	p:04131816:08
Project Name:	BELFAST WATER	DISTRICT			Lab Nu	mber:	L1812057
Project Number:	171.05027.003				Report	Date:	04/13/18
•		SAMPL	E RESULTS	5	•		
Lab ID: Client ID: Sample Location: Sample Depth:	L1812057-03 GWW-103 BELFAST, ME				Date Col Date Rec Field Pre	ceived:	04/05/18 08:45 04/06/18 Field Filtered (Dissolved Metals & Phosphorus)
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westboro	ugh Lab					
1.2 Disbloresthese Total		ND			0.50		1
1,2-Dichloroethene, Total		ND		ug/l			
				ug/l	0.50		1
1,2-Dichlorobenzene		ND		ug/l	1.0		1
1,3-Dichlorobenzene		ND		ug/l	1.0		1
1,4-Dichlorobenzene		ND		ug/l	1.0		1
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
Xylenes, Total		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	1.0		1
1,4-Dichlorobutane		ND		ug/l	5.0		1
1,2,3-Trichloropropane		ND		ug/l	1.0		1
Styrene		ND		ug/l	1.0		1
Dichlorodifluoromethane		ND		ug/l	2.0		1
Acetone		ND		ug/l	5.0		1
Carbon disulfide		ND		ug/l	1.0		1
2-Butanone		ND		ug/l	5.0		1
Vinyl acetate		ND		ug/l	5.0		1
4-Methyl-2-pentanone		ND		ug/l	5.0		1
2-Hexanone		ND		ug/l	5.0		1
Ethyl methacrylate		ND		ug/l	5.0		1
Acrylonitrile		ND		ug/l	5.0		1
Bromochloromethane		ND		ug/l	1.0		1
Tetrahydrofuran		ND		ug/l	2.0		1
2,2-Dichloropropane		ND		ug/l	1.0		1
1,2-Dibromoethane		ND		ug/l	1.0		1
1,3-Dichloropropane		ND		ug/l	1.0		1
1,1,1,2-Tetrachloroethan	9	ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	1.0		1
n-Butylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	1.0		1
o-Chlorotoluene		ND		ug/l	1.0		1
p-Chlorotoluene		ND		ug/l	1.0		1
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	1.0		1
Hexachlorobutadiene		ND		ug/l	0.50		1

					ç	Serial_No	p:04131816:08
Project Name:	BELFAST WATER DI	STRICT			Lab Nu	mber:	L1812057
Project Number:	171.05027.003				Report	Date:	04/13/18
		SAMPI		6			
Lab ID: Client ID:	L1812057-03 GWW-103				Date Col Date Rec		04/05/18 08:45 04/06/18
Sample Location:	BELFAST, ME				Field Pre	p:	Field Filtered (Dissolved Metals & Phosphorus)
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westboroug	ıh Lab					
Isopropylbenzene		ND		ug/l	0.50		1
p-Isopropyltoluene		ND		ug/l	0.50		1
Naphthalene		ND		ug/l	1.0		1
n-Propylbenzene		ND		ug/l	0.50		1
1,2,3-Trichlorobenzene		ND		ug/l	1.0		1
1,2,4-Trichlorobenzene		ND		ug/l	1.0		1
1,3,5-Trimethylbenzene		ND		ug/l	1.0		1

s-1,4-Dichloro-2-butene	ND	ug/l	2.5		1
/l ether ND	ug/l	1.0		1	
Surrogate		% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4		104		70-130	
Toluene-d8		103		70-130	
4-Bromofluorobenzene		102		70-130	

ug/l

1.0

--

ND

	100
4-Bromofluorobenzene	102
Dibromofluoromethane	94

1

70-130

1,2,4-Trimethylbenzene

			Serial_N	0:04131816:08
Project Name:	BELFAST WATER DIST	RICT	Lab Number:	L1812057
Project Number:	171.05027.003		Report Date:	04/13/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1812057-05 SS-1 BELFAST, ME		Date Collected: Date Received: Field Prep:	04/05/18 09:15 04/06/18 Not Specified
Sample Depth:				
Matrix: Analytical Method: Analytical Date: Analyst:	Soil 1,8260C 04/11/18 09:26 JC			

78%

Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035	5 - Westborough Lab					
Methylene chloride	ND		ug/kg	14		1
1,1-Dichloroethane	ND		ug/kg	2.1		1
Chloroform	ND		ug/kg	2.1		1
Carbon tetrachloride	ND		ug/kg	1.4		1
1,2-Dichloropropane	ND		ug/kg	5.0		1
Dibromochloromethane	ND		ug/kg	1.4		1
1,1,2-Trichloroethane	ND		ug/kg	2.1		1
Tetrachloroethene	ND		ug/kg	1.4		1
Chlorobenzene	ND		ug/kg	1.4		1
Trichlorofluoromethane	ND		ug/kg	7.1		1
1,2-Dichloroethane	ND		ug/kg	1.4		1
1,1,1-Trichloroethane	ND	I	ug/kg	1.4		1
Bromodichloromethane	ND		ug/kg	1.4		1
trans-1,3-Dichloropropene	ND		ug/kg	1.4		1
cis-1,3-Dichloropropene	ND		ug/kg	1.4		1
1,3-Dichloropropene, Total	ND		ug/kg	1.4		1
1,1-Dichloropropene	ND		ug/kg	7.1		1
Bromoform	ND		ug/kg	5.7		1
1,1,2,2-Tetrachloroethane	ND	I	ug/kg	1.4		1
Benzene	ND	I	ug/kg	1.4		1
Toluene	ND	I	ug/kg	2.1		1
Ethylbenzene	ND		ug/kg	1.4		1
Chloromethane	ND		ug/kg	7.1		1
Bromomethane	ND		ug/kg	2.8		1
Vinyl chloride	ND		ug/kg	2.8		1
Chloroethane	ND		ug/kg	2.8		1
1,1-Dichloroethene	ND		ug/kg	1.4		1
trans-1,2-Dichloroethene	ND		ug/kg	2.1		1

					Serial_N	o:04131816:08
Project Name:	BELFAST WATER D	ISTRICT			Lab Number:	L1812057
Project Number:	171.05027.003				Report Date:	04/13/18
		SAMP		5		
Lab ID:	L1812057-05				Date Collected:	04/05/18 09:15
Client ID:	SS-1				Date Received:	04/06/18
Sample Location:	BELFAST, ME				Field Prep:	Not Specified
Sample Depth:						
Paramotor		Result	Qualifier	Units	RI MDI	Dilution Factor

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 -	Westborough Lab				
	-				
Trichloroethene	ND	ug/kg	1.4		1
1,2-Dichlorobenzene	ND	ug/kg	7.1		1
1,3-Dichlorobenzene	ND	ug/kg	7.1		1
1,4-Dichlorobenzene	ND	ug/kg	7.1		1
Methyl tert butyl ether	ND	ug/kg	2.8		1
p/m-Xylene	ND	ug/kg	2.8		1
o-Xylene	ND	ug/kg	2.8		1
Xylenes, Total	ND	ug/kg	2.8		1
cis-1,2-Dichloroethene	ND	ug/kg	1.4		1
1,2-Dichloroethene, Total	ND	ug/kg	1.4		1
Dibromomethane	ND	ug/kg	14		1
1,4-Dichlorobutane	ND	ug/kg	14		1
1,2,3-Trichloropropane	ND	ug/kg	14		1
Styrene	ND	ug/kg	2.8		1
Dichlorodifluoromethane	ND	ug/kg	14		1
Acetone	ND	ug/kg	51		1
Carbon disulfide	ND	ug/kg	14		1
2-Butanone	ND	ug/kg	14		1
Vinyl acetate	ND	ug/kg	14		1
4-Methyl-2-pentanone	ND	ug/kg	14		1
2-Hexanone	ND	ug/kg	14		1
Ethyl methacrylate	ND	ug/kg	14		1
Acrylonitrile	ND	ug/kg	5.7		1
Bromochloromethane	ND	ug/kg	7.1		1
Tetrahydrofuran	ND	ug/kg	28		1
2,2-Dichloropropane	ND	ug/kg	7.1		1
1,2-Dibromoethane	ND	ug/kg	5.7		1
1,3-Dichloropropane	ND	ug/kg	7.1		1
1,1,1,2-Tetrachloroethane	ND	ug/kg	1.4		1
Bromobenzene	ND	ug/kg	7.1		1
n-Butylbenzene	ND	ug/kg	1.4		1
sec-Butylbenzene	ND	ug/kg	1.4		1
tert-Butylbenzene	ND	ug/kg	7.1		1
o-Chlorotoluene	ND	ug/kg	7.1		1
p-Chlorotoluene	ND	ug/kg	7.1		1
1,2-Dibromo-3-chloropropane	ND	ug/kg	7.1		1
Hexachlorobutadiene	ND	ug/kg	7.1		1
		uy/ky			•

		Serial_No:04131816:08
Project Name:	BELFAST WATER DISTRICT	Lab Number: L1812057
Project Number:	171.05027.003	Report Date: 04/13/18
	SAMPLE RESULTS	
Lab ID:	L1812057-05	Date Collected: 04/05/18 09:15
Client ID:	SS-1	Date Received: 04/06/18
Sample Location:	BELFAST, ME	Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS-5035 - Westborough Lab								
Isopropylbenzene	ND		ug/kg	1.4		1		
p-lsopropyltoluene	ND		ug/kg	1.4		1		
Naphthalene	ND		ug/kg	7.1		1		
n-Propylbenzene	ND		ug/kg	1.4		1		
1,2,3-Trichlorobenzene	ND		ug/kg	7.1		1		
1,2,4-Trichlorobenzene	ND		ug/kg	7.1		1		
1,3,5-Trimethylbenzene	ND		ug/kg	7.1		1		
1,2,4-Trimethylbenzene	ND		ug/kg	7.1		1		
trans-1,4-Dichloro-2-butene	ND		ug/kg	7.1		1		
Ethyl ether	ND		ug/kg	7.1		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	82	70-130	
Dibromofluoromethane	110	70-130	

04/13/18

Lab Number:

Report Date:

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:04/11/18 09:00Analyst:JC

arameter	Result	Qualifier	Units	F	RL	MDL
platile Organics by GC/MS-50	035 - Westborou	igh Lab for	sample(s):	05	Batch:	WG1105519-5
Methylene chloride	ND		ug/kg	1	0	
1,1-Dichloroethane	ND		ug/kg	1	.5	
Chloroform	ND		ug/kg	1	.5	
Carbon tetrachloride	ND		ug/kg	1	.0	
1,2-Dichloropropane	ND		ug/kg	3	.5	
Dibromochloromethane	ND		ug/kg	1	.0	
1,1,2-Trichloroethane	ND		ug/kg	1	.5	
2-Chloroethylvinyl ether	ND		ug/kg	2	20	
Tetrachloroethene	ND		ug/kg	1	.0	
Chlorobenzene	ND		ug/kg	1	.0	
Trichlorofluoromethane	ND		ug/kg	5	.0	
1,2-Dichloroethane	ND		ug/kg	1	.0	
1,1,1-Trichloroethane	ND		ug/kg	1	.0	
Bromodichloromethane	ND		ug/kg	1	.0	
trans-1,3-Dichloropropene	ND		ug/kg	1	.0	
cis-1,3-Dichloropropene	ND		ug/kg	1	.0	
1,3-Dichloropropene, Total	ND		ug/kg	1	.0	
1,1-Dichloropropene	ND		ug/kg	5	.0	
Bromoform	ND		ug/kg	4	.0	
1,1,2,2-Tetrachloroethane	ND		ug/kg	1	.0	
Benzene	ND		ug/kg	1	.0	
Toluene	ND		ug/kg	1	.5	
Ethylbenzene	ND		ug/kg	1	.0	
Chloromethane	ND		ug/kg	5	.0	
Bromomethane	ND		ug/kg	2	.0	
Vinyl chloride	ND		ug/kg	2	.0	
Chloroethane	ND		ug/kg	2	.0	
1,1-Dichloroethene	ND		ug/kg	1	.0	
trans-1,2-Dichloroethene	ND		ug/kg	1	.5	

04/13/18

Lab Number:

Report Date:

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:04/11/18 09:00Analyst:JC

arameter	Result	Qualifier	Units	F	RL	MDL
platile Organics by GC/MS-5	035 - Westborou	igh Lab for	sample(s):	05	Batch:	WG1105519-5
Trichloroethene	ND		ug/kg	1	.0	
1,2-Dichlorobenzene	ND		ug/kg	5	.0	
1,3-Dichlorobenzene	ND		ug/kg	5	.0	
1,4-Dichlorobenzene	ND		ug/kg	5	.0	
Methyl tert butyl ether	ND		ug/kg	2	.0	
p/m-Xylene	ND		ug/kg	2	.0	
o-Xylene	ND		ug/kg	2	.0	
Xylenes, Total	ND		ug/kg	2	.0	
cis-1,2-Dichloroethene	ND		ug/kg	1	.0	
1,2-Dichloroethene, Total	ND		ug/kg	1	.0	
Dibromomethane	ND		ug/kg	1	0	
1,4-Dichlorobutane	ND		ug/kg	1	0	
1,2,3-Trichloropropane	ND		ug/kg	1	0	
Styrene	ND		ug/kg	2	.0	
Dichlorodifluoromethane	ND		ug/kg	1	0	
Acetone	ND		ug/kg	3	36	
Carbon disulfide	ND		ug/kg	1	0	
2-Butanone	ND		ug/kg	1	0	
Vinyl acetate	ND		ug/kg	1	0	
4-Methyl-2-pentanone	ND		ug/kg	1	0	
2-Hexanone	ND		ug/kg	1	0	
Ethyl methacrylate	ND		ug/kg	1	0	
Acrolein	ND		ug/kg	2	25	
Acrylonitrile	ND		ug/kg	4	.0	
Bromochloromethane	ND		ug/kg	5	.0	
Tetrahydrofuran	ND		ug/kg	2	20	
2,2-Dichloropropane	ND		ug/kg	5	.0	
1,2-Dibromoethane	ND		ug/kg	4	.0	
1,3-Dichloropropane	ND		ug/kg	5	.0	

04/13/18

Lab Number:

Report Date:

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:04/11/18 09:00Analyst:JC

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS-503	35 - Westborou	igh Lab for	sample(s):	05 Batc	h: WG1105519-5
1,1,1,2-Tetrachloroethane	ND		ug/kg	1.0	
Bromobenzene	ND		ug/kg	5.0	
n-Butylbenzene	ND		ug/kg	1.0	
sec-Butylbenzene	ND		ug/kg	1.0	
tert-Butylbenzene	ND		ug/kg	5.0	
1,3,5-Trichlorobenzene	ND		ug/kg	4.0	
o-Chlorotoluene	ND		ug/kg	5.0	
p-Chlorotoluene	ND		ug/kg	5.0	
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0	
Hexachlorobutadiene	ND		ug/kg	5.0	
Isopropylbenzene	ND		ug/kg	1.0	
p-Isopropyltoluene	ND		ug/kg	1.0	
Naphthalene	ND		ug/kg	5.0	
n-Propylbenzene	ND		ug/kg	1.0	
1,2,3-Trichlorobenzene	ND		ug/kg	5.0	
1,2,4-Trichlorobenzene	ND		ug/kg	5.0	
1,3,5-Trimethylbenzene	ND		ug/kg	5.0	
1,2,4-Trimethylbenzene	ND		ug/kg	5.0	
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0	
Ethyl ether	ND		ug/kg	5.0	
Methyl Acetate	ND		ug/kg	20	
Ethyl Acetate	ND		ug/kg	20	
Isopropyl Ether	ND		ug/kg	4.0	
Cyclohexane	ND		ug/kg	20	
Tert-Butyl Alcohol	ND		ug/kg	100	
Ethyl-Tert-Butyl-Ether	ND		ug/kg	4.0	
Tertiary-Amyl Methyl Ether	ND		ug/kg	4.0	
1,4-Dioxane	ND		ug/kg	40	
Methyl cyclohexane	ND		ug/kg	4.0	

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	04/11/18 09:00
Analyst:	JC

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS-5035	- Westboroug	h Lab for	sample(s):	05 Bat	ch: WG1105519-5
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	20	

		Acc	ceptance
Surrogate	%Recovery	Qualifier C	riteria
1.2-Dichloroethane-d4	87		70-130
Toluene-d8	91		70-130
4-Bromofluorobenzene	81		70-130
Dibromofluoromethane	105		70-130

04/13/18

Lab Number:

Report Date:

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:04/11/18 19:58Analyst:AD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	o for sample(s): 01,0	03 Batch:	WG1105890-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.0	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
2-Chloroethylvinyl ether	ND	ug/l	10	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
1,3-Dichloropropene, Total	ND	ug/l	0.50	
1,1-Dichloropropene	ND	ug/l	1.0	
Bromoform	ND	ug/l	1.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.0	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	0.20	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Lab Number: L1812057 Report Date: 04/13/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	04/11/18 19:58
Analyst:	AD

arameter	Result	Qualifier Uni	ts RL	MDL
olatile Organics by GC/MS - V	/estborough La	b for sample(s):	01,03 Batch:	WG1105890-5
1,2-Dichloroethene, Total	ND	uį	y/l 0.50	
Trichloroethene	ND	uç	ı/l 0.50	
1,2-Dichlorobenzene	ND	uç	ı/l 1.0	
1,3-Dichlorobenzene	ND	uç	j/l 1.0	
1,4-Dichlorobenzene	ND	uç	j/l 1.0	
Methyl tert butyl ether	ND	uç	j/l 1.0	
p/m-Xylene	ND	uç	j/l 1.0	
o-Xylene	ND	uç	ı/l 1.0	
Xylenes, Total	ND	uç	ı/l 1.0	
cis-1,2-Dichloroethene	ND	uç	ı/l 0.50	
Dibromomethane	ND	uç	ı/l 1.0	
1,4-Dichlorobutane	ND	uç	j/l 5.0	
lodomethane	ND	uç	j/l 5.0	
1,2,3-Trichloropropane	ND	uç	ı/l 1.0	
Styrene	ND	uç	j/l 1.0	
Dichlorodifluoromethane	ND	uç	j/l 2.0	
Acetone	ND	uç	y/l 5.0	
Carbon disulfide	ND	uç	ı/l 1.0	
2-Butanone	ND	uç	y/l 5.0	
Vinyl acetate	ND	uç	y/l 5.0	
4-Methyl-2-pentanone	ND	uç	y/l 5.0	
2-Hexanone	ND	uç	j/l 5.0	
Ethyl methacrylate	ND	uç	j/l 5.0	
Acrolein	ND	uç	j/l 5.0	
Acrylonitrile	ND	uç	j/l 5.0	
Bromochloromethane	ND	uç	j/l 1.0	
Tetrahydrofuran	ND	uç	y/l 2.0	
2,2-Dichloropropane	ND	uç	ı/l 1.0	
1,2-Dibromoethane	ND	uç	ı/l 1.0	

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Lab N Bapai

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Analytical Method:	1,8260C
Analytical Date:	04/11/18 19:58
Analyst:	AD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	/estborough La	b for sample(s): 01,03	Batch:	WG1105890-5
1,3-Dichloropropane	ND	ug/l	1.0	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	
Bromobenzene	ND	ug/l	1.0	
n-Butylbenzene	ND	ug/l	0.50	
sec-Butylbenzene	ND	ug/l	0.50	
tert-Butylbenzene	ND	ug/l	1.0	
o-Chlorotoluene	ND	ug/l	1.0	
p-Chlorotoluene	ND	ug/l	1.0	
1,2-Dibromo-3-chloropropane	ND	ug/l	1.0	
Hexachlorobutadiene	ND	ug/l	0.50	
Isopropylbenzene	ND	ug/l	0.50	
p-Isopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	1.0	
n-Propylbenzene	ND	ug/l	0.50	
1,2,3-Trichlorobenzene	ND	ug/l	1.0	
1,2,4-Trichlorobenzene	ND	ug/l	1.0	
1,3,5-Trimethylbenzene	ND	ug/l	1.0	
1,3,5-Trichlorobenzene	ND	ug/l	1.0	
1,2,4-Trimethylbenzene	ND	ug/l	1.0	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	
Halothane	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	1.0	
Methyl Acetate	ND	ug/l	10	
Ethyl Acetate	ND	ug/l	10	
Isopropyl Ether	ND	ug/l	1.0	
Cyclohexane	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	10	
Ethyl-Tert-Butyl-Ether	ND	ug/l	1.0	
Tertiary-Amyl Methyl Ether	ND	ug/l	1.0	

L1812057

04/13/18

Lab Number:

Report Date:

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Analytical Method:	1,8260C
Analytical Date:	04/11/18 19:58
Analyst:	AD

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough La	b for sample(s): 01,0	03 Batch:	WG1105890-5	
1,4-Dioxane	ND	ug/l	250		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ug/l	10		
Methyl cyclohexane	ND	ug/l	10		
p-Diethylbenzene	ND	ug/l	2.0		
4-Ethyltoluene	ND	ug/l	2.0		
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0		

		Acceptance
Surrogate	%Recovery Qualif	ier Criteria
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	104	70-130
Dibromofluoromethane	95	70-130

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS-5035 - Westbord	ough Lab Asso	ciated sample(s): 05 Batch:	WG1105519-3 WG1105519-	-4	
Methylene chloride	92		92	70-130	0	30
1,1-Dichloroethane	96		94	70-130	2	30
Chloroform	83		81	70-130	2	30
Carbon tetrachloride	88		83	70-130	6	30
1,2-Dichloropropane	106		104	70-130	2	30
Dibromochloromethane	80		83	70-130	4	30
1,1,2-Trichloroethane	83		83	70-130	0	30
2-Chloroethylvinyl ether	87		85	70-130	2	30
Tetrachloroethene	98		93	70-130	5	30
Chlorobenzene	92		89	70-130	3	30
Trichlorofluoromethane	80		76	70-139	5	30
1,2-Dichloroethane	84		82	70-130	2	30
1,1,1-Trichloroethane	80		76	70-130	5	30
Bromodichloromethane	83		83	70-130	0	30
trans-1,3-Dichloropropene	71		70	70-130	1	30
cis-1,3-Dichloropropene	92		90	70-130	2	30
1,1-Dichloropropene	84		79	70-130	6	30
Bromoform	75		77	70-130	3	30
1,1,2,2-Tetrachloroethane	84		86	70-130	2	30
Benzene	90		86	70-130	5	30
Toluene	82		79	70-130	4	30
Ethylbenzene	78		75	70-130	4	30
Chloromethane	107		104	52-130	3	30

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
Volatile Organics by GC/MS-5035 - Westbore	ough Lab Asso	ciated sample(s): 05 Batch:	WG1105519	9-3 WG1105519-	4	
Bromomethane	94		93		57-147	1	30
Vinyl chloride	99		93		67-130	6	30
Chloroethane	92		90		50-151	2	30
1,1-Dichloroethene	91		84		65-135	8	30
trans-1,2-Dichloroethene	91		87		70-130	4	30
Trichloroethene	86		82		70-130	5	30
1,2-Dichlorobenzene	96		97		70-130	1	30
1,3-Dichlorobenzene	95		96		70-130	1	30
1,4-Dichlorobenzene	94		96		70-130	2	30
Methyl tert butyl ether	83		83		66-130	0	30
p/m-Xylene	94		90		70-130	4	30
o-Xylene	93		90		70-130	3	30
cis-1,2-Dichloroethene	93		90		70-130	3	30
Dibromomethane	91		92		70-130	1	30
1,4-Dichlorobutane	91		93		70-130	2	30
1,2,3-Trichloropropane	74		75		68-130	1	30
Styrene	94		92		70-130	2	30
Dichlorodifluoromethane	62		58		30-146	7	30
Acetone	154	Q	151	Q	54-140	2	30
Carbon disulfide	90		84		59-130	7	30
2-Butanone	114		109		70-130	4	30
Vinyl acetate	100		97		70-130	3	30
4-Methyl-2-pentanone	85		80		70-130	6	30

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RP Qual Lim	
Volatile Organics by GC/MS-5035 - Westbor	rough Lab Asso	ciated sample(s): 05 Batch:	WG11055	19-3 WG1105519-	4		
2-Hexanone	79		81		70-130	3	30)
Ethyl methacrylate	68	Q	67	Q	70-130	1	30)
Acrolein	108		110		70-130	2	30)
Acrylonitrile	104		106		70-130	2	30)
Bromochloromethane	112		112		70-130	0	30)
Tetrahydrofuran	108		110		66-130	2	30)
2,2-Dichloropropane	87		82		70-130	6	30)
1,2-Dibromoethane	90		90		70-130	0	30)
1,3-Dichloropropane	81		80		69-130	1	30)
1,1,1,2-Tetrachloroethane	90		88		70-130	2	30)
Bromobenzene	87		88		70-130	1	30)
n-Butylbenzene	77		75		70-130	3	30)
sec-Butylbenzene	84		83		70-130	1	30)
tert-Butylbenzene	84		82		70-130	2	30)
1,3,5-Trichlorobenzene	96		96		70-139	0	30)
o-Chlorotoluene	75		74		70-130	1	30)
p-Chlorotoluene	74		75		70-130	1	30)
1,2-Dibromo-3-chloropropane	82		84		68-130	2	30)
Hexachlorobutadiene	82		81		67-130	1	30)
Isopropylbenzene	81		79		70-130	3	30)
p-Isopropyltoluene	87		84		70-130	4	30)
Naphthalene	86		87		70-130	1	30)
n-Propylbenzene	75		74		70-130	1	30)

Project Number: 171.05027.003

remeter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
arameter	/anecovery	Quai	/intecovery	Quai	Liiiits	RPD	Qudi Linins
platile Organics by GC/MS-5035 - West	borough Lab Associa	ated sample(s	s): 05 Batch:	WG11055	19-3 WG1105519-	4	
1,2,3-Trichlorobenzene	95		97		70-130	2	30
1,2,4-Trichlorobenzene	93		94		70-130	1	30
1,3,5-Trimethylbenzene	83		82		70-130	1	30
1,2,4-Trimethylbenzene	85		84		70-130	1	30
trans-1,4-Dichloro-2-butene	76		72		70-130	5	30
Ethyl ether	85		86		67-130	1	30
Methyl Acetate	100		98		65-130	2	30
Ethyl Acetate	94		92		70-130	2	30
Isopropyl Ether	101		101		66-130	0	30
Cyclohexane	105		98		70-130	7	30
Tert-Butyl Alcohol	87		87		70-130	0	30
Ethyl-Tert-Butyl-Ether	96		96		70-130	0	30
Tertiary-Amyl Methyl Ether	86		85		70-130	1	30
1,4-Dioxane	133		132		65-136	1	30
Methyl cyclohexane	90		82		70-130	9	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	92		86		70-130	7	30

Surrogate	LCS %Recovery Qu	LCSD al %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	87	87	70-130
Toluene-d8	90	91	70-130
4-Bromofluorobenzene	82	81	70-130
Dibromofluoromethane	107	107	70-130

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01,03 Batch	: WG1105890-3	WG1105890-4			
Methylene chloride	100		100		70-130	0		20
1,1-Dichloroethane	110		110		70-130	0		20
Chloroform	97		99		70-130	2		20
Carbon tetrachloride	86		89		63-132	3		20
1,2-Dichloropropane	110		110		70-130	0		20
Dibromochloromethane	91		92		63-130	1		20
1,1,2-Trichloroethane	110		110		70-130	0		20
2-Chloroethylvinyl ether	90		90		70-130	0		20
Tetrachloroethene	86		89		70-130	3		20
Chlorobenzene	96		98		75-130	2		25
Trichlorofluoromethane	91		96		62-150	5		20
1,2-Dichloroethane	100		100		70-130	0		20
1,1,1-Trichloroethane	91		95		67-130	4		20
Bromodichloromethane	93		94		67-130	1		20
trans-1,3-Dichloropropene	100		100		70-130	0		20
cis-1,3-Dichloropropene	99		100		70-130	1		20
1,1-Dichloropropene	97		100		70-130	3		20
Bromoform	87		87		54-136	0		20
1,1,2,2-Tetrachloroethane	110		110		67-130	0		20
Benzene	94		97		70-130	3		25
Toluene	98		100		70-130	2		25
Ethylbenzene	97		100		70-130	3		20
Chloromethane	120		130		64-130	8		20

Project Number: 171.05027.003

Volatile Organics by GC/MS - Westborough L Bromomethane Vinyl chloride Chloroethane 1,1-Dichloroethene	Associated 73 110 93 94 88 93	sample(s):	01,03 Batch 78 120 120 120 96 99	: WG1105890-3	WG1105890-4 39-139 55-140 55-138 61-145	7 9 9 3	20 20 20 20	
Vinyl chloride Chloroethane 1,1-Dichloroethene	110 110 93 94 88		120 120 96		55-140 55-138	9 9	20	
Chloroethane 1,1-Dichloroethene	110 93 94 88		120 96		55-138	9	20	
1,1-Dichloroethene	93 94 88		96					
,	94 88				61-145	3	25	
	88		99				20	
trans-1,2-Dichloroethene					70-130	5	20	
Trichloroethene	93		91		70-130	3	25	
1,2-Dichlorobenzene			96		70-130	3	20	
1,3-Dichlorobenzene	94		96		70-130	2	20	
1,4-Dichlorobenzene	94		96		70-130	2	20	
Methyl tert butyl ether	100		100		63-130	0	20	
p/m-Xylene	95		100		70-130	5	20	
o-Xylene	95		100		70-130	5	20	
cis-1,2-Dichloroethene	94		96		70-130	2	20	
Dibromomethane	93		94		70-130	1	20	
1,4-Dichlorobutane	120		120		70-130	0	20	
lodomethane	37	Q	42	Q	70-130	13	20	
1,2,3-Trichloropropane	110		110		64-130	0	20	
Styrene	125		130		70-130	4	20	
Dichlorodifluoromethane	110		110		36-147	0	20	
Acetone	96		100		58-148	4	20	
Carbon disulfide	100		100		51-130	0	20	
2-Butanone	120		120		63-138	0	20	
Vinyl acetate	110		110		70-130	0	20	

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD imits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01,03 Batch:	WG1105890-3	WG1105890-4		
4-Methyl-2-pentanone	110		110		59-130	0	20
2-Hexanone	110		110		57-130	0	20
Ethyl methacrylate	94		93		70-130	1	20
Acrolein	280	Q	280	Q	70-130	0	20
Acrylonitrile	110		120		70-130	9	20
Bromochloromethane	90		91		70-130	1	20
Tetrahydrofuran	130		130		58-130	0	20
2,2-Dichloropropane	100		100		63-133	0	20
1,2-Dibromoethane	98		96		70-130	2	20
1,3-Dichloropropane	110		110		70-130	0	20
1,1,1,2-Tetrachloroethane	92		94		64-130	2	20
Bromobenzene	90		94		70-130	4	20
n-Butylbenzene	100		110		53-136	10	20
sec-Butylbenzene	99		100		70-130	1	20
tert-Butylbenzene	95		100		70-130	5	20
o-Chlorotoluene	100		100		70-130	0	20
p-Chlorotoluene	100		100		70-130	0	20
1,2-Dibromo-3-chloropropane	90		90		41-144	0	20
Hexachlorobutadiene	66		71		63-130	7	20
Isopropylbenzene	99		100		70-130	1	20
p-lsopropyltoluene	97		100		70-130	3	20
Naphthalene	91		91		70-130	0	20
n-Propylbenzene	100		110		69-130	10	20

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01,03	Batch:	WG1105890-3	WG1105890-4			
1,2,3-Trichlorobenzene	80			82		70-130	2		20
1,2,4-Trichlorobenzene	81			83		70-130	2		20
1,3,5-Trimethylbenzene	99			100		64-130	1		20
1,3,5-Trichlorobenzene	83			85		70-130	2		20
1,2,4-Trimethylbenzene	90			95		70-130	5		20
trans-1,4-Dichloro-2-butene	110			100		70-130	10		20
Halothane	84			87		70-130	4		20
Ethyl ether	110			110		59-134	0		20
Methyl Acetate	140	Q		130		70-130	7		20
Ethyl Acetate	120			120		70-130	0		20
Isopropyl Ether	120			120		70-130	0		20
Cyclohexane	110			120		70-130	9		20
Tert-Butyl Alcohol	86			92		70-130	7		20
Ethyl-Tert-Butyl-Ether	110			110		70-130	0		20
Tertiary-Amyl Methyl Ether	99			100		66-130	1		20
1,4-Dioxane	48	Q		60		56-162	22	Q	20
1,1,2-Trichloro-1,2,2-Trifluoroethane	93			99		70-130	6		20
Methyl cyclohexane	94			100		70-130	6		20
p-Diethylbenzene	95			98		70-130	3		20
4-Ethyltoluene	100			100		70-130	0		20
1,2,4,5-Tetramethylbenzene	90			93		70-130	3		20

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01,03 Batch:	WG1105890-3	WG1105890-4				

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	103	102	70-130
Toluene-d8	102	102	70-130
4-Bromofluorobenzene	102	101	70-130
Dibromofluoromethane	93	94	70-130

SEMIVOLATILES

		Serial_No:04131816:08
Project Name:	BELFAST WATER DISTRICT	Lab Number: L1812057
Project Number:	171.05027.003	Report Date: 04/13/18
	SAMPLE RESULTS	
Lab ID:	L1812057-01	Date Collected: 04/05/18 08:15
Client ID:	GWW-101	Date Received: 04/06/18
Sample Location:	BELFAST, ME	Field Prep: Field Filtered (Dissolved Metals & Phosphorus)
Sample Depth:		
Matrix:	Water	Extraction Method: EPA 3510C
Analytical Method:	1,8270D	Extraction Date: 04/08/18 23:42
Analytical Date:	04/10/18 16:30	
Analyst:	EK	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorocyclopentadiene	ND		ug/l	20		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA	ND		ug/l	2.0		1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1

					Serial_No:04131816:08			
Project Name:	BELFAST WATER D	ISTRICT			Lab Nu	umber:	L1812057	
Project Number:	171.05027.003				Report	Date:	04/13/18	
-		SAMP		6				
Lab ID: Client ID: Sample Location: Sample Depth:	L1812057-01 GWW-101 BELFAST, ME				Date Co Date Re Field Pre	ceived:	04/05/18 08:15 04/06/18 Field Filtered (Dissolved Metals & Phosphorus)	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	nics by GC/MS - Westb	orough Lab						
	,	-						
2-Nitroaniline		ND		ug/l	5.0		1	
3-Nitroaniline		ND		ug/l	5.0		1	
4-Nitroaniline		ND		ug/l	5.0		1	
Dibenzofuran		ND		ug/l	2.0		1	
n-Nitrosodimethylamine		ND		ug/l	2.0		1	
2,4,6-Trichlorophenol		ND		ug/l	5.0		1	
p-Chloro-m-cresol		ND		ug/l	2.0		1	
2-Chlorophenol		ND		ug/l	2.0		1	
2,4-Dichlorophenol		ND		ug/l	5.0		1	
2,4-Dimethylphenol		ND		ug/l	5.0		1	
2-Nitrophenol		ND		ug/l	10		1	
4-Nitrophenol		ND		ug/l	10		1	
2,4-Dinitrophenol		ND		ug/l	20		1	
4,6-Dinitro-o-cresol		ND		ug/l	10		1	
Phenol		ND		ug/l	5.0		1	
2-Methylphenol		ND		ug/l	5.0		1	
3-Methylphenol/4-Methyl	phenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol		ND		ug/l	5.0		1	
Benzoic Acid		ND		ug/l	50		1	

dine	ND	ug/l	3.5		1
Surrogate		% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol		68		21-120	
Phenol-d6		47		10-120	
Nitrobenzene-d5		84		23-120	
2-Fluorobiphenyl		85		15-120	
2,4,6-Tribromophenol		97		10-120	
4-Terphenyl-d14		91		41-149	

ug/l

ug/l

2.0

2.0

ND

ND

1

1

Benzyl Alcohol

Carbazole

		Serial_No	:04131816:08
Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18
	SAMPLE RESULTS		
Lab ID:	L1812057-01	Date Collected:	04/05/18 08:15
Client ID:	GWW-101	Date Received:	04/06/18
Sample Location:	BELFAST, ME	Field Prep:	Field Filtered (Dissolved Metals & Phosphorus)
Sample Depth:			. ,
Matrix:	Water	Extraction Method	: EPA 3510C
Analytical Method:	1,8270D-SIM	Extraction Date:	04/09/18 07:16
Analytical Date:	04/10/18 17:23		
Analyst:	СВ		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough La	ıb				
Acenaphthene	ND		ug/l	0.10		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.10		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
1-Methylnaphthalene	ND		ug/l	0.10		1
2-Methylnaphthalene	0.13		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

							p:04131816:08
Project Name:	BELFAST WATER DIS	STRICT			Lab Nu	umber:	L1812057
Project Number:	171.05027.003				Report	t Date:	04/13/18
		SAMP	LE RESULTS	5			
Lab ID:	L1812057-01				Date Co	llected:	04/05/18 08:15
Client ID:	GWW-101	GWW-101			Date Received:		04/06/18
Sample Location:	BELFAST, ME				Field Pre	ep:	Field Filtered (Dissolved Metals & Phosphorus)
Sample Depth:							1 /
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS-SIM - We	stborough La	ab				

% Recovery	Acceptance Qualifier Criteria
57	21-120
40	10-120
77	23-120
89	15-120
73	10-120
96	41-149
	57 40 77 89 73

		Serial_No	:04131816:08
Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18
	SAMPLE RESULTS		
Lab ID:	L1812057-03	Date Collected:	04/05/18 08:45
Client ID:	GWW-103	Date Received:	04/06/18
Sample Location:	BELFAST, ME	Field Prep:	Field Filtered (Dissolved Metals & Phosphorus)
Sample Depth:			. ,
Matrix:	Water	Extraction Method	: EPA 3510C
Analytical Method:	1,8270D	Extraction Date:	04/08/18 23:42
Analytical Date:	04/10/18 18:39		
Analyst:	EK		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Benzidine	ND		ug/l	20		1		
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1		
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1		
1,2-Dichlorobenzene	ND		ug/l	2.0		1		
1,3-Dichlorobenzene	ND		ug/l	2.0		1		
1,4-Dichlorobenzene	ND		ug/l	2.0		1		
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1		
2,4-Dinitrotoluene	ND		ug/l	5.0		1		
2,6-Dinitrotoluene	ND		ug/l	5.0		1		
Azobenzene	ND		ug/l	2.0		1		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1		
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1		
Hexachlorocyclopentadiene	ND		ug/l	20		1		
Isophorone	ND		ug/l	5.0		1		
Nitrobenzene	ND		ug/l	2.0		1		
NDPA/DPA	ND		ug/l	2.0		1		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1		
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1		
Butyl benzyl phthalate	ND		ug/l	5.0		1		
Di-n-butylphthalate	ND		ug/l	5.0		1		
Di-n-octylphthalate	ND		ug/l	5.0		1		
Diethyl phthalate	ND		ug/l	5.0		1		
Dimethyl phthalate	ND		ug/l	5.0		1		
Biphenyl	ND		ug/l	2.0		1		
Aniline	ND		ug/l	2.0		1		
4-Chloroaniline	ND		ug/l	5.0		1		

				Serial_No:04131816:08				
Project Name:	BELFAST WATER D	DISTRICT			Lab Nu	umber:	L1812057	
Project Number:	171.05027.003				Report	Date:	04/13/18	
-		SAMP		S				
Lab ID: Client ID: Sample Location: Sample Depth:	L1812057-03 GWW-103 BELFAST, ME				Date Collected: Date Received: Field Prep:		04/05/18 08:45 04/06/18 Field Filtered (Dissolved Metals & Phosphorus)	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Orga	nics by GC/MS - Westb	orough Lab						
0 Nitre e silie e		ND			5.0			
2-Nitroaniline		ND		ug/l	5.0		1	
3-Nitroaniline 4-Nitroaniline		ND		ug/l	5.0		1	
Dibenzofuran		ND		ug/l	2.0		1	
n-Nitrosodimethylamine		ND		ug/l	2.0		1	
2,4,6-Trichlorophenol		ND		ug/l	5.0		1	
p-Chloro-m-cresol		ND		ug/l	2.0		1	
2-Chlorophenol		ND		ug/l ug/l	2.0		1	
2,4-Dichlorophenol		ND		ug/l	5.0		1	
2,4-Dimethylphenol		ND		ug/l	5.0		1	
2-Nitrophenol		ND		ug/l	10		1	
4-Nitrophenol		ND		ug/l	10		1	
2,4-Dinitrophenol		ND		ug/l	20		1	
4,6-Dinitro-o-cresol		ND		ug/l	10		1	
Phenol		ND		ug/l	5.0		1	
2-Methylphenol		ND		ug/l	5.0		1	
3-Methylphenol/4-Methyl	Inhenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	. .	ND		ug/l	5.0		1	
Benzoic Acid		ND		ug/l	50		1	
Benzyl Alcohol		ND		ug/l	2.0		1	
				49/1			•	

% Recovery	Acceptar Qualifier Criteria
67	21-12
48	10-12
90	23-12
86	15-12
97	10-12
91	41-14
	67 48 90 86 97

2.0

3.5

--

ug/l

ug/l

ND

ND

1

1

Carbazole

Pyridine

		Serial_No:04131816:08
Project Name:	BELFAST WATER DISTRICT	Lab Number: L1812057
Project Number:	171.05027.003	Report Date: 04/13/18
	SAMPLE RESULTS	
Lab ID:	L1812057-03	Date Collected: 04/05/18 08:45
Client ID:	GWW-103	Date Received: 04/06/18
Sample Location:	BELFAST, ME	Field Prep: Field Filtered (Dissolved Metals & Phosphorus)
Sample Depth:		
Matrix:	Water	Extraction Method: EPA 3510C
Analytical Method:	1,8270D-SIM	Extraction Date: 04/09/18 07:16
Analytical Date:	04/10/18 17:48	
Analyst:	CB	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.10		1		
2-Chloronaphthalene	ND		ug/l	0.20		1		
Fluoranthene	ND		ug/l	0.10		1		
Hexachlorobutadiene	ND		ug/l	0.50		1		
Naphthalene	ND		ug/l	0.10		1		
Benzo(a)anthracene	ND		ug/l	0.10		1		
Benzo(a)pyrene	ND		ug/l	0.10		1		
Benzo(b)fluoranthene	ND		ug/l	0.10		1		
Benzo(k)fluoranthene	ND		ug/l	0.10		1		
Chrysene	ND		ug/l	0.10		1		
Acenaphthylene	ND		ug/l	0.10		1		
Anthracene	ND		ug/l	0.10		1		
Benzo(ghi)perylene	ND		ug/l	0.10		1		
Fluorene	ND		ug/l	0.10		1		
Phenanthrene	ND		ug/l	0.10		1		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1		
Pyrene	ND		ug/l	0.10		1		
1-Methylnaphthalene	ND		ug/l	0.10		1		
2-Methylnaphthalene	ND		ug/l	0.10		1		
Pentachlorophenol	ND		ug/l	0.80		1		
Hexachlorobenzene	ND		ug/l	0.80		1		
Hexachloroethane	ND		ug/l	0.80		1		

	Serial_No:04131816:08						0:04131816:08
Project Name:	BELFAST WATER DIS	STRICT			Lab Nu	umber:	L1812057
Project Number:	171.05027.003			Report	Date:	04/13/18	
		SAMP	LE RESULTS	5			
Lab ID:	L1812057-03				Date Co	llected:	04/05/18 08:45
Client ID:	GWW-103				Date Received:		04/06/18
Sample Location:	BELFAST, ME			Field Prep:		Field Filtered (Dissolved Metals & Phosphorus)	
Sample Depth:							, ,
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab							

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	54	21-120
Phenol-d6	42	10-120
Nitrobenzene-d5	78	23-120
2-Fluorobiphenyl	81	15-120
2,4,6-Tribromophenol	64	10-120
4-Terphenyl-d14	121	41-149

			Serial_No	0:04131816:08
Project Name:	BELFAST WATER DISTRIC	т	Lab Number:	L1812057
Project Number:	171.05027.003		Report Date:	04/13/18
		SAMPLE RESULTS		
Lab ID:	L1812057-05		Date Collected:	04/05/18 09:15
Client ID:	SS-1		Date Received:	04/06/18
Sample Location:	BELFAST, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	l: EPA 3546
Analytical Method:	1,8270D		Extraction Date:	04/08/18 01:29
Analytical Date:	04/12/18 02:11			
Analyst:	СВ			
Percent Solids:	78%			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	ND	ug/kg	170		1			
Benzidine	ND	ug/kg	700		1			
1,2,4-Trichlorobenzene	ND	ug/kg	210		1			
Hexachlorobenzene	ND	ug/kg	130		1			
Bis(2-chloroethyl)ether	ND	ug/kg	190		1			
2-Chloronaphthalene	ND	ug/kg	210		1			
1,2-Dichlorobenzene	ND	ug/kg	210		1			
1,3-Dichlorobenzene	ND	ug/kg	210		1			
1,4-Dichlorobenzene	ND	ug/kg	210		1			
3,3'-Dichlorobenzidine	ND	ug/kg	210		1			
2,4-Dinitrotoluene	ND	ug/kg	210		1			
2,6-Dinitrotoluene	ND	ug/kg	210		1			
Azobenzene	ND	ug/kg	210		1			
Fluoranthene	330	ug/kg	130		1			
4-Chlorophenyl phenyl ether	ND	ug/kg	210		1			
4-Bromophenyl phenyl ether	ND	ug/kg	210		1			
Bis(2-chloroisopropyl)ether	ND	ug/kg	260		1			
Bis(2-chloroethoxy)methane	ND	ug/kg	230		1			
Hexachlorobutadiene	ND	ug/kg	210		1			
Hexachlorocyclopentadiene	ND	ug/kg	610		1			
Hexachloroethane	ND	ug/kg	170		1			
Isophorone	ND	ug/kg	190		1			
Naphthalene	ND	ug/kg	210		1			
Nitrobenzene	ND	ug/kg	190		1			
NDPA/DPA	ND	ug/kg	170		1			
n-Nitrosodi-n-propylamine	ND	ug/kg	210		1			
Bis(2-ethylhexyl)phthalate	ND	ug/kg	210		1			
Butyl benzyl phthalate	ND	ug/kg	210		1			

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18
	SAMPLE RESUL	TS	
Lab ID:	L1812057-05	Date Collected:	04/05/18 09:15
Client ID:	SS-1	Date Received:	04/06/18
Sample Location:	BELFAST, ME	Field Prep:	Not Specified
Sample Depth:			

Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS - Westborough Lab									
ND		ua/ka	210		1				
ND			210		1				
ND		ug/kg	210		1				
ND		ug/kg	210		1				
240		ug/kg	130		1				
230		ug/kg	170		1				
340		ug/kg	130		1				
ND		ug/kg	130		1				
250		ug/kg	130		1				
ND		ug/kg	170		1				
ND		ug/kg	130		1				
ND		ug/kg	170		1				
ND		ug/kg	210		1				
ND		ug/kg	130		1				
ND		ug/kg	130		1				
ND		ug/kg	170		1				
320		ug/kg	130		1				
ND		ug/kg	260		1				
ND		ug/kg	210		1				
ND		ug/kg	210		1				
ND		ug/kg	210		1				
ND		ug/kg	210		1				
ND		ug/kg	210		1				
ND		ug/kg	210		1				
ND		ug/kg	260		1				
	tborough Lab ND ND ND 240 230 240 230 340 250 0 ND 250 ND 0 ND	ND ND ND ND 240 230 340 ND 250 ND ND ND 340 ND 250 ND ND	ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg 240 ug/kg 230 ug/kg 340 ug/kg 250 ug/kg ND ug/kg	ND ug/kg 210 240 ug/kg 130 230 ug/kg 130 230 ug/kg 130 250 ug/kg 130 ND ug/kg 130 ND ug/kg 130 ND ug/kg 130 ND ug/kg 170 ND ug/kg 130 ND ug/kg 210 ND ug/kg 210 ND ug/kg </td <td>ND ug/kg 210 ND ug/kg 210 240 ug/kg 130 230 ug/kg 130 340 ug/kg 130 ND ug/kg 130 250 ug/kg 130 ND ug/kg 210 <t< td=""></t<></td>	ND ug/kg 210 240 ug/kg 130 230 ug/kg 130 340 ug/kg 130 ND ug/kg 130 250 ug/kg 130 ND ug/kg 210 <t< td=""></t<>				

ND	ug/kg	260		1	
ND	ug/kg	430		1	
ND	ug/kg	130		1	
ND	ug/kg	210		1	
ND	ug/kg	210		1	
ND	ug/kg	190		1	
ND	ug/kg	210		1	
ND	ug/kg	460		1	
ND	ug/kg	300		1	
ND	ug/kg	1000		1	
ND	ug/kg	550		1	
ND	ug/kg	170		1	
ND	ug/kg	210		1	
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kg	ND ug/kg 430 ND ug/kg 130 ND ug/kg 210 ND ug/kg 190 ND ug/kg 300 ND ug/kg 300 ND ug/kg 1000 ND ug/kg 550 ND ug/kg 170	ND ug/kg 430 ND ug/kg 130 ND ug/kg 210 ND ug/kg 210 ND ug/kg 210 ND ug/kg 210 ND ug/kg 190 ND ug/kg 210 ND ug/kg 300 ND ug/kg 300 ND ug/kg 1000 ND ug/kg 1000 ND ug/kg 1000 ND ug/kg 1000 ND ug/kg 170	ND ug/kg 430 1 ND ug/kg 130 1 ND ug/kg 210 1 ND ug/kg 210 1 ND ug/kg 210 1 ND ug/kg 190 1 ND ug/kg 100 1 ND ug/kg 300 1 ND ug/kg 300 1 ND ug/kg 1000 1 ND ug/kg 550 1 ND ug/kg 170 1

Serial_No:04131816:08

		Serial_N	o:04131816:08
Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18
	SAMPLE RESULTS		
Lab ID:	L1812057-05	Date Collected:	04/05/18 09:15
Client ID:	SS-1	Date Received:	04/06/18
Sample Location:	BELFAST, ME	Field Prep:	Not Specified
Sample Depth:			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
2-Methylphenol	ND		ug/kg	210		1	
3-Methylphenol/4-Methylphenol	ND		ug/kg	310		1	
2,4,5-Trichlorophenol	ND		ug/kg	210		1	
Benzoic Acid	ND		ug/kg	690		1	
Benzyl Alcohol	ND		ug/kg	210		1	
Carbazole	ND		ug/kg	210		1	
Pyridine	ND		ug/kg	230		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	36	25-120
Phenol-d6	50	10-120
Nitrobenzene-d5	99	23-120
2-Fluorobiphenyl	84	30-120
2,4,6-Tribromophenol	88	10-136
4-Terphenyl-d14	71	18-120

			Serial_No	0:04131816:08
Project Name:	BELFAST WATER DISTRIC	Т	Lab Number:	L1812057
Project Number:	171.05027.003		Report Date:	04/13/18
		SAMPLE RESULTS		
Lab ID:	L1812057-06		Date Collected:	04/05/18 11:30
Client ID:	SS-2		Date Received:	04/06/18
Sample Location:	BELFAST, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	l: EPA 3546
Analytical Method:	1,8270D		Extraction Date:	04/11/18 14:53
Analytical Date:	04/12/18 08:44			
Analyst:	TT			
Percent Solids:	73%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthene	12000	E	ug/kg	180		1	
2-Chloronaphthalene	ND		ug/kg	220		1	
Fluoranthene	78000	E	ug/kg	140		1	
Naphthalene	9900	E	ug/kg	220		1	
Benzo(a)anthracene	57000	E	ug/kg	140		1	
Benzo(a)pyrene	48000	E	ug/kg	180		1	
Benzo(b)fluoranthene	76000	E	ug/kg	140		1	
Benzo(k)fluoranthene	11000	E	ug/kg	140		1	
Chrysene	34000	E	ug/kg	140		1	
Acenaphthylene	1100		ug/kg	180		1	
Anthracene	22000	E	ug/kg	140		1	
Benzo(ghi)perylene	28000	E	ug/kg	180		1	
Fluorene	15000	E	ug/kg	220		1	
Phenanthrene	66000	E	ug/kg	140		1	
Dibenzo(a,h)anthracene	6300		ug/kg	140		1	
Indeno(1,2,3-cd)pyrene	35000	E	ug/kg	180		1	
Pyrene	61000	E	ug/kg	140		1	
1-Methylnaphthalene	3200		ug/kg	220		1	
2-Methylnaphthalene	4100		ug/kg	270		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	95		23-120	
2-Fluorobiphenyl	72		30-120	
4-Terphenyl-d14	56		18-120	

				Serial_No	0:04131816:08
Project Name:	BELFAST WATER	DISTRI	т	Lab Number:	L1812057
Project Number:	171.05027.003			Report Date:	04/13/18
			SAMPLE RESULTS		
Lab ID:	L1812057-06	D		Date Collected:	04/05/18 11:30
Client ID:	SS-2			Date Received:	04/06/18
Sample Location:	BELFAST, ME			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Soil			Extraction Method	d: EPA 3546
Analytical Method:	1,8270D			Extraction Date:	04/11/18 14:53
Analytical Date:	04/13/18 04:51				
Analyst:	PS				
Percent Solids:	73%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthene	10000		ug/kg	3600		20	
Fluoranthene	90000		ug/kg	2700		20	
Naphthalene	8200		ug/kg	4500		20	
Benzo(a)anthracene	45000		ug/kg	2700		20	
Benzo(a)pyrene	35000		ug/kg	3600		20	
Benzo(b)fluoranthene	50000		ug/kg	2700		20	
Benzo(k)fluoranthene	15000		ug/kg	2700		20	
Chrysene	41000		ug/kg	2700		20	
Anthracene	23000		ug/kg	2700		20	
Benzo(ghi)perylene	20000		ug/kg	3600		20	
Fluorene	14000		ug/kg	4500		20	
Phenanthrene	82000		ug/kg	2700		20	
Indeno(1,2,3-cd)pyrene	24000		ug/kg	3600		20	
Pyrene	70000		ug/kg	2700		20	

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18

Analytical Method:	1,8270D	Extractio
Analytical Date:	04/10/18 15:07	Extractio
Analyst:	СВ	

Extraction Method: EPA 3546 Extraction Date: 04/08/18 01:14

arameter	Result	Qualifier Units	F	RL	MDL
emivolatile Organics by GC/M	S - Westborough	Lab for sample(s):	05	Batch:	WG1104559-1
Acenaphthene	ND	ug/kg	1	30	
Benzidine	ND	ug/kg	5	40	
1,2,4-Trichlorobenzene	ND	ug/kg	1	60	
Hexachlorobenzene	ND	ug/kg	ę	98	
Bis(2-chloroethyl)ether	ND	ug/kg	1	50	
2-Chloronaphthalene	ND	ug/kg	1	60	
1,2-Dichlorobenzene	ND	ug/kg	1	60	
1,3-Dichlorobenzene	ND	ug/kg	1	60	
1,4-Dichlorobenzene	ND	ug/kg	1	60	
3,3'-Dichlorobenzidine	ND	ug/kg	1	60	
2,4-Dinitrotoluene	ND	ug/kg	1	60	
2,6-Dinitrotoluene	ND	ug/kg	1	60	
Azobenzene	ND	ug/kg	1	60	
Fluoranthene	ND	ug/kg	ę	98	
4-Chlorophenyl phenyl ether	ND	ug/kg	1	60	
4-Bromophenyl phenyl ether	ND	ug/kg	1	60	
Bis(2-chloroisopropyl)ether	ND	ug/kg	2	00	
Bis(2-chloroethoxy)methane	ND	ug/kg	1	80	
Hexachlorobutadiene	ND	ug/kg	1	60	
Hexachlorocyclopentadiene	ND	ug/kg	4	70	
Hexachloroethane	ND	ug/kg	1	30	
Isophorone	ND	ug/kg	1	50	
Naphthalene	ND	ug/kg	1	60	
Nitrobenzene	ND	ug/kg	1	50	
NDPA/DPA	ND	ug/kg	1	30	
n-Nitrosodi-n-propylamine	ND	ug/kg	1	60	
Bis(2-ethylhexyl)phthalate	ND	ug/kg	1	60	
Butyl benzyl phthalate	ND	ug/kg	1	60	
Di-n-butylphthalate	ND	ug/kg	1	60	

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18

Analytical Method:	1,8270D	Extraction
Analytical Date:	04/10/18 15:07	Extraction
Analyst:	СВ	

Extraction Method: EPA 3546 Extraction Date: 04/08/18 01:14

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	6 - Westborough	Lab for s	ample(s):	05	Batch:	WG1104559-1
Di-n-octylphthalate	ND		ug/kg		160	
Diethyl phthalate	ND		ug/kg		160	
Dimethyl phthalate	ND		ug/kg		160	
Benzo(a)anthracene	ND		ug/kg		98	
Benzo(a)pyrene	ND		ug/kg		130	
Benzo(b)fluoranthene	ND		ug/kg		98	
Benzo(k)fluoranthene	ND		ug/kg		98	
Chrysene	ND		ug/kg		98	
Acenaphthylene	ND		ug/kg		130	
Anthracene	ND		ug/kg		98	
Benzo(ghi)perylene	ND		ug/kg		130	
Fluorene	ND		ug/kg		160	
Phenanthrene	ND		ug/kg		98	
Dibenzo(a,h)anthracene	ND		ug/kg		98	
Indeno(1,2,3-cd)pyrene	ND		ug/kg		130	
Pyrene	ND		ug/kg		98	
Biphenyl	ND		ug/kg		370	
Aniline	ND		ug/kg		200	
4-Chloroaniline	ND		ug/kg		160	
1-Methylnaphthalene	ND		ug/kg		160	
2-Nitroaniline	ND		ug/kg		160	
3-Nitroaniline	ND		ug/kg		160	
4-Nitroaniline	ND		ug/kg		160	
Dibenzofuran	ND		ug/kg		160	
2-Methylnaphthalene	ND		ug/kg		200	
n-Nitrosodimethylamine	ND		ug/kg		330	
2,4,6-Trichlorophenol	ND		ug/kg		98	
p-Chloro-m-cresol	ND		ug/kg		160	
2-Chlorophenol	ND		ug/kg		160	

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18

Analytical Method:	1,8270D	Extraction Method:	EPA 3546
Analytical Date:	04/10/18 15:07	Extraction Date:	04/08/18 01:14
Analyst:	CB		

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/MS	6 - Westboroug	h Lab for s	ample(s):	05 B	atch: WG1104559-1	
2,4-Dichlorophenol	ND		ug/kg	150		
2,4-Dimethylphenol	ND		ug/kg	160		
2-Nitrophenol	ND		ug/kg	350		
4-Nitrophenol	ND		ug/kg	230		
2,4-Dinitrophenol	ND		ug/kg	780		
4,6-Dinitro-o-cresol	ND		ug/kg	420		
Pentachlorophenol	ND		ug/kg	130		
Phenol	ND		ug/kg	160		
2-Methylphenol	ND		ug/kg	160		
3-Methylphenol/4-Methylphenol	ND		ug/kg	240		
2,4,5-Trichlorophenol	ND		ug/kg	160		
Benzoic Acid	ND		ug/kg	530		
Benzyl Alcohol	ND		ug/kg	160		
Carbazole	ND		ug/kg	160		
Pyridine	ND		ug/kg	180		

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	96	25-120
Phenol-d6	105	10-120
Nitrobenzene-d5	87	23-120
2-Fluorobiphenyl	86	30-120
2,4,6-Tribromophenol	100	10-136
4-Terphenyl-d14	93	18-120

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	04/10/18 15:12	Extraction Date:	04/08/18 23:42
Analyst:	EK		

rameter	Result	Qualifier	Units	RL		MDL
mivolatile Organics by GC/M	1S - Westborough	Lab for a	sample(s):	01,03	Batch:	WG1104633-1
Acenaphthene	ND		ug/l	2.0		
Benzidine	ND		ug/l	20		
1,2,4-Trichlorobenzene	ND		ug/l	5.0		
Hexachlorobenzene	ND		ug/l	2.0		
Bis(2-chloroethyl)ether	ND		ug/l	2.0		
2-Chloronaphthalene	ND		ug/l	2.0		
1,2-Dichlorobenzene	ND		ug/l	2.0		
1,3-Dichlorobenzene	ND		ug/l	2.0		
1,4-Dichlorobenzene	ND		ug/l	2.0		
3,3'-Dichlorobenzidine	ND		ug/l	5.0		
2,4-Dinitrotoluene	ND		ug/l	5.0		
2,6-Dinitrotoluene	ND		ug/l	5.0		
Azobenzene	ND		ug/l	2.0		
Fluoranthene	ND		ug/l	2.0		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		
4-Bromophenyl phenyl ether	ND		ug/l	2.0		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		
Hexachlorobutadiene	ND		ug/l	2.0		
Hexachlorocyclopentadiene	ND		ug/l	20		
Hexachloroethane	ND		ug/l	2.0		
Isophorone	ND		ug/l	5.0		
Naphthalene	ND		ug/l	2.0		
Nitrobenzene	ND		ug/l	2.0		
NDPA/DPA	ND		ug/l	2.0		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		
Butyl benzyl phthalate	ND		ug/l	5.0		
Di-n-butylphthalate	ND		ug/l	5.0		

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	04/10/18 15:12	Extraction Date:	04/08/18 23:42
Analyst:	EK		

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS -	- Westborough	Lab for s	ample(s):	01,03	Batch:	WG1104633-1
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		
Dimethyl phthalate	ND		ug/l	5.0		
Benzo(a)anthracene	ND		ug/l	2.0		
Benzo(a)pyrene	ND		ug/l	2.0		
Benzo(b)fluoranthene	ND		ug/l	2.0		
Benzo(k)fluoranthene	ND		ug/l	2.0		
Chrysene	ND		ug/l	2.0		-
Acenaphthylene	ND		ug/l	2.0		
Anthracene	ND		ug/l	2.0		
Benzo(ghi)perylene	ND		ug/l	2.0		
Fluorene	ND		ug/l	2.0		
Phenanthrene	ND		ug/l	2.0		
Dibenzo(a,h)anthracene	ND		ug/l	2.0		
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		
Pyrene	ND		ug/l	2.0		
Biphenyl	ND		ug/l	2.0		
Aniline	ND		ug/l	2.0		
4-Chloroaniline	ND		ug/l	5.0		
1-Methylnaphthalene	ND		ug/l	2.0		
2-Nitroaniline	ND		ug/l	5.0		
3-Nitroaniline	ND		ug/l	5.0		
4-Nitroaniline	ND		ug/l	5.0		
Dibenzofuran	ND		ug/l	2.0		
2-Methylnaphthalene	ND		ug/l	2.0		
n-Nitrosodimethylamine	ND		ug/l	2.0		
2,4,6-Trichlorophenol	ND		ug/l	5.0		
p-Chloro-m-cresol	ND		ug/l	2.0		
2-Chlorophenol	ND		ug/l	2.0		

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057		
Project Number:	171.05027.003	Report Date:	04/13/18		
Mathed Plank Analysis					

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	04/10/18 15:12	Extraction Date:	04/08/18 23:42
Analyst:	EK		

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	6 - Westboroug	gh Lab for s	ample(s):	01,03	Batch:	WG1104633-1
2,4-Dichlorophenol	ND		ug/l	5.0		
2,4-Dimethylphenol	ND		ug/l	5.0		
2-Nitrophenol	ND		ug/l	10		
4-Nitrophenol	ND		ug/l	10		
2,4-Dinitrophenol	ND		ug/l	20		
4,6-Dinitro-o-cresol	ND		ug/l	10		
Pentachlorophenol	ND		ug/l	10		
Phenol	ND		ug/l	5.0		
2-Methylphenol	ND		ug/l	5.0		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		
2,4,5-Trichlorophenol	ND		ug/l	5.0		
Benzoic Acid	ND		ug/l	50		
Benzyl Alcohol	ND		ug/l	2.0		
Carbazole	ND		ug/l	2.0		
Pyridine	ND		ug/l	3.5		

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057		
Project Number:	171.05027.003	Report Date:	04/13/18		
Method Blank Analysis Batch Quality Control					
	4 00700				

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	04/10/18 15:12	Extraction Date:	04/08/18 23:42
Analyst:	EK		

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS -	Westborough	h Lab for s	ample(s):	01,03	Batch:	WG1104633-1	

Surrogate	%Recovery Q	Acceptance ualifier Criteria
2-Fluorophenol	54	21-120
Phenol-d6	40	10-120
Nitrobenzene-d5	68	23-120
2-Fluorobiphenyl	72	15-120
2,4,6-Tribromophenol	83	10-120
4-Terphenyl-d14	84	41-149

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	04/10/18 09:56	Extraction Date:	04/08/18 23:49
Analyst:	CB		

arameter	Result	Qualifier Units	RL	MDL	
emivolatile Organics by GC	/MS-SIM - Westb	orough Lab for sample	e(s): 01,03	Batch:	WG1104635-1
Acenaphthene	ND	ug/l	0.10		
2-Chloronaphthalene	ND	ug/l	0.20		
Fluoranthene	ND	ug/l	0.10		
Hexachlorobutadiene	ND	ug/l	0.50		
Naphthalene	ND	ug/l	0.10		
Benzo(a)anthracene	ND	ug/l	0.10		
Benzo(a)pyrene	ND	ug/l	0.10		
Benzo(b)fluoranthene	ND	ug/l	0.10		
Benzo(k)fluoranthene	ND	ug/l	0.10		
Chrysene	ND	ug/l	0.10		
Acenaphthylene	ND	ug/l	0.10		
Anthracene	ND	ug/l	0.10		
Benzo(ghi)perylene	ND	ug/l	0.10		
Fluorene	ND	ug/l	0.10		
Phenanthrene	ND	ug/l	0.10		
Dibenzo(a,h)anthracene	ND	ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10		
Pyrene	ND	ug/l	0.10		
1-Methylnaphthalene	ND	ug/l	0.10		
2-Methylnaphthalene	ND	ug/l	0.10		
Pentachlorophenol	ND	ug/l	0.80		
Hexachlorobenzene	ND	ug/l	0.80		
Hexachloroethane	ND	ug/l	0.80		

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057		
Project Number:	171.05027.003	Report Date:	04/13/18		
Method Blank Analysis Batch Quality Control					
Analytical Method: Analytical Date:	1,8270D-SIM 04/10/18 09:56	Extraction Method: Extraction Date:	EPA 3510C 04/08/18 23:49		

Р	arameter	Result	Qualifier	Units	RL	MDL

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-S	IM - West	orough Lab	for sampl	e(s): 01,03	Batch: \	WG1104635-1

Surrogate	%Recovery Qu	Acceptance alifier Criteria
2-Fluorophenol	45	21-120
Phenol-d6	35	10-120
Nitrobenzene-d5	64	23-120
2-Fluorobiphenyl	68	15-120
2,4,6-Tribromophenol	64	10-120
4-Terphenyl-d14	82	41-149

Analyst:

СВ

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18

Analytical Method:	1,8270D	Extractio
Analytical Date:	04/11/18 22:56	Extractio
Analyst:	TT	

Extraction Method: EPA 3546 Extraction Date: 04/10/18 17:49

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/N	/IS - Westboroug	n Lab for s	ample(s):	06	Batch:	WG1105283-1	
Acenaphthene	ND		ug/kg		130		
2-Chloronaphthalene	ND		ug/kg		160		
Fluoranthene	ND		ug/kg		97		
Naphthalene	ND		ug/kg		160		
Benzo(a)anthracene	ND		ug/kg		97		
Benzo(a)pyrene	ND		ug/kg		130		
Benzo(b)fluoranthene	ND		ug/kg		97		
Benzo(k)fluoranthene	ND		ug/kg		97		
Chrysene	ND		ug/kg		97		
Acenaphthylene	ND		ug/kg		130		
Anthracene	ND		ug/kg		97		
Benzo(ghi)perylene	ND		ug/kg		130		
Fluorene	ND		ug/kg		160		
Phenanthrene	ND		ug/kg		97		
Dibenzo(a,h)anthracene	ND		ug/kg		97		
Indeno(1,2,3-cd)pyrene	ND		ug/kg		130		
Pyrene	ND		ug/kg		97		
1-Methylnaphthalene	ND		ug/kg		160		
2-Methylnaphthalene	ND		ug/kg		190		

Tentatively Identified Compounds

No Tentatively Identified Compounds

ug/kg

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18
	Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270D 04/11/18 22:56 TT	Extraction Method: Extraction Date:	EPA 3546 04/10/18 17:49

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for sa	ample(s):	06	Batch:	WG1105283-1	

	Acceptance				
Surrogate	%Recovery	Qualifier Criteria			
Nitrobenzene-d5	72	23-120			
2-Fluorobiphenyl	71	30-120			
4-Terphenyl-d14	76	18-120			

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Wes	tborough Lab Associa	ted sample(s):	05 Batch:	WG1104559-2 WG11045	59-3		
Acenaphthene	96		99	31-137	3	50	
Benzidine	21		23	10-66	9	50	
1,2,4-Trichlorobenzene	96		97	38-107	1	50	
Hexachlorobenzene	96		102	40-140	6	50	
Bis(2-chloroethyl)ether	88		94	40-140	7	50	
2-Chloronaphthalene	99		102	40-140	3	50	
1,2-Dichlorobenzene	91		94	40-140	3	50	
1,3-Dichlorobenzene	91		94	40-140	3	50	
1,4-Dichlorobenzene	91		94	28-104	3	50	
3,3'-Dichlorobenzidine	61		70	40-140	14	50	
2,4-Dinitrotoluene	104		109	40-132	5	50	
2,6-Dinitrotoluene	108		106	40-140	2	50	
Azobenzene	122		130	40-140	6	50	
Fluoranthene	100		104	40-140	4	50	
4-Chlorophenyl phenyl ether	94		100	40-140	6	50	
4-Bromophenyl phenyl ether	99		103	40-140	4	50	
Bis(2-chloroisopropyl)ether	105		106	40-140	1	50	
Bis(2-chloroethoxy)methane	99		96	40-117	3	50	
Hexachlorobutadiene	101		108	40-140	7	50	
Hexachlorocyclopentadiene	81		77	40-140	5	50	
Hexachloroethane	102		105	40-140	3	50	
Isophorone	99		98	40-140	1	50	
Naphthalene	96		94	40-140	2	50	

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD mits
Semivolatile Organics by GC/MS - Westbor	ough Lab Assoc	ated sample(s):	05 Batch:	WG1104559-2	WG1104559-3		
Nitrobenzene	102		102		40-140	0	50
NDPA/DPA	100		105		36-157	5	50
n-Nitrosodi-n-propylamine	103		103		32-121	0	50
Bis(2-ethylhexyl)phthalate	112		120		40-140	7	50
Butyl benzyl phthalate	112		119		40-140	6	50
Di-n-butylphthalate	108		112		40-140	4	50
Di-n-octylphthalate	109		117		40-140	7	50
Diethyl phthalate	104		108		40-140	4	50
Dimethyl phthalate	103		100		40-140	3	50
Benzo(a)anthracene	100		107		40-140	7	50
Benzo(a)pyrene	103		111		40-140	7	50
Benzo(b)fluoranthene	103		110		40-140	7	50
Benzo(k)fluoranthene	99		109		40-140	10	50
Chrysene	100		105		40-140	5	50
Acenaphthylene	102		102		40-140	0	50
Anthracene	100		103		40-140	3	50
Benzo(ghi)perylene	103		110		40-140	7	50
Fluorene	100		103		40-140	3	50
Phenanthrene	100		103		40-140	3	50
Dibenzo(a,h)anthracene	101		107		40-140	6	50
Indeno(1,2,3-cd)pyrene	106		113		40-140	6	50
Pyrene	98		101		35-142	3	50
Biphenyl	100		102		54-104	2	50

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Wes	tborough Lab Associ	ated sample(s):	05 Batch:	WG1104559-	2 WG1104559-3	3		
Aniline	56		56		40-140	0	50	
4-Chloroaniline	104		99		40-140	5	50	
1-Methylnaphthalene	108		107		26-130	1	50	
2-Nitroaniline	109		106		47-134	3	50	
3-Nitroaniline	56		58		26-129	4	50	
4-Nitroaniline	90		94		41-125	4	50	
Dibenzofuran	97		101		40-140	4	50	
2-Methylnaphthalene	95		95		40-140	0	50	
n-Nitrosodimethylamine	98		92		22-100	6	50	
2,4,6-Trichlorophenol	105		104		30-130	1	50	
p-Chloro-m-cresol	114	Q	110	Q	26-103	4	50	
2-Chlorophenol	101		103	Q	25-102	2	50	
2,4-Dichlorophenol	113		111		30-130	2	50	
2,4-Dimethylphenol	111		105		30-130	6	50	
2-Nitrophenol	105		108		30-130	3	50	
4-Nitrophenol	111		119	Q	11-114	7	50	
2,4-Dinitrophenol	87		90		4-130	3	50	
4,6-Dinitro-o-cresol	105		116		10-130	10	50	
Pentachlorophenol	89		94		17-109	5	50	
Phenol	98	Q	98	Q	26-90	0	50	
2-Methylphenol	106		109		30-130.	3	50	
3-Methylphenol/4-Methylphenol	112		112		30-130	0	50	
2,4,5-Trichlorophenol	119		115		30-130	3	50	

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Par	ameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Sei	nivolatile Organics by GC/MS -	Westborough Lab Assoc	iated sample(s):	05 Batch:	WG1104559-2	2 WG1104559-3				
	Benzoic Acid	60		54		10-110	11		50	
	Benzyl Alcohol	111		109		40-140	2		50	
	Carbazole	101		104		54-128	3		50	
	Pyridine	80		80		10-93	0		50	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	96	100	25-120
Phenol-d6	105	107	10-120
Nitrobenzene-d5	87	89	23-120
2-Fluorobiphenyl	88	89	30-120
2,4,6-Tribromophenol	100	110	10-136
4-Terphenyl-d14	87	90	18-120

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	brough Lab Assoc	iated sample(s)	: 01,03 Batch	n: WG1104	633-2 WG11046	33-3		
Acenaphthene	85		78		37-111	9		30
Benzidine	9	Q	6	Q	10-75	40	Q	30
1,2,4-Trichlorobenzene	76		69		39-98	10		30
Hexachlorobenzene	96		90		40-140	6		30
Bis(2-chloroethyl)ether	93		83		40-140	11		30
2-Chloronaphthalene	82		76		40-140	8		30
1,2-Dichlorobenzene	73		64		40-140	13		30
1,3-Dichlorobenzene	70		61		40-140	14		30
1,4-Dichlorobenzene	70		62		36-97	12		30
3,3'-Dichlorobenzidine	63		65		40-140	3		30
2,4-Dinitrotoluene	98		92		48-143	6		30
2,6-Dinitrotoluene	110		104		40-140	6		30
Azobenzene	103		96		40-140	7		30
Fluoranthene	92		86		40-140	7		30
4-Chlorophenyl phenyl ether	88		81		40-140	8		30
4-Bromophenyl phenyl ether	86		80		40-140	7		30
Bis(2-chloroisopropyl)ether	97		87		40-140	11		30
Bis(2-chloroethoxy)methane	98		91		40-140	7		30
Hexachlorobutadiene	68		61		40-140	11		30
Hexachlorocyclopentadiene	51		48		40-140	6		30
Hexachloroethane	73		65		40-140	12		30
Isophorone	110		102		40-140	8		30
Naphthalene	76		69		40-140	10		30

Project Number: 171.05027.003

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,03 Batch: WG1104633-2 WG1104633-2 Nirobonzone 98 90 40-140 9 30 NDPA/DPA 90 64 40-140 7 30 n-Nirosodi-n-propylamine 107 99 29-132 8 30 Bis/2-ethylhexylphthalate 106 99 40-140 7 30 Bis/2-ethylhexylphthalate 106 99 40-140 6 30 Di-n-otylphthalate 95 90 40-140 6 30 Di-n-otylphthalate 98 92 40-140 6 30 Di-n-otylphthalate 98 90 40-140 6 30 Benzo(a)nthracene 96 93 40-140 7 30 Benzo(a)pyrone 96 88 40-140 8 30 Benzo(a)fluoranthene 95 89 40-140 8 30 Benzo(b)fluoranthene 96 88 40-140 7 30	Parameter	LCS %Recovery		CSD covery Qua	%Recovery al Limits	RPD	RP Qual Lim	
NDPA/DPA 90 84 40-140 7 90 n-Ntrosodi-n-propylamine 107 99 29-132 8 30 Bis/2-ethylhexylphthalate 106 99 40-140 7 30 Bity/ benzyl phthalate 102 96 40-140 6 30 Di-n-butylphthalate 95 90 40-140 6 30 Di-n-butylphthalate 95 90 40-140 6 30 Di-n-butylphthalate 95 90 40-140 6 30 Di-n-butylphthalate 96 90 40-140 6 30 Dientyl phthalate 96 90 40-140 6 30 Benzo(a)antriacene 96 93 40-140 8 30 Benzo(b/luoranthene 95 88 40-140 8 30 Chrysene 96 89 40-140 8 30 Chrysene 96 84 40-140 5 30 </th <th>Semivolatile Organics by GC/MS - W</th> <th>estborough Lab Associ</th> <th>ated sample(s): 01,</th> <th>03 Batch: WG</th> <th>1104633-2 WG110463</th> <th>33-3</th> <th></th> <th></th>	Semivolatile Organics by GC/MS - W	estborough Lab Associ	ated sample(s): 01,	03 Batch: WG	1104633-2 WG110463	33-3		
n-Nitrosodi-n-propylamine 107 99 29-132 8 30 Bis(2-ethylhexyl)phthalate 106 99 40-140 7 30 Buyl benzyl phthalate 102 96 40-140 6 30 Di-n-butylphthalate 95 90 40-140 6 30 Di-n-octylphthalate 98 92 40-140 6 30 Di-n-octylphthalate 98 92 40-140 6 30 Di-n-octylphthalate 98 92 40-140 6 30 Dientyl phthalate 98 92 40-140 6 30 Benzo(a)anthracene 94 88 40-140 7 30 Benzo(a)anthracene 96 89 40-140 8 30 Benzo(a)anthracene 96 89 40-140 8 30 Benzo(a)anthracene 96 89 40-140 8 30 Chysene 96 89 40-140 8	Nitrobenzene	98		90	40-140	9	3	0
Bis(2-ethylhexyl)phthalate 106 99 40-140 7 30 Butyl benzyl phthalate 102 96 40-140 6 30 Di-n-butylphthalate 95 90 40-140 6 30 Di-n-butylphthalate 98 92 40-140 6 30 Di-n-octylphthalate 98 92 40-140 6 30 Di-n-octylphthalate 98 92 40-140 6 30 Di-n-octylphthalate 96 90 40-140 6 30 Dientyl phthalate 96 93 40-140 3 30 Benzo(a)pyrene 96 89 40-140 8 30 Benzo(k)fluoranthene 95 88 40-140 8 30 Benzo(k)fluoranthene 96 89 40-140 8 30 Chysene 96 89 40-140 8 30 Acenaphthylene 98 84 40-140 5 30 <td>NDPA/DPA</td> <td>90</td> <td></td> <td>84</td> <td>40-140</td> <td>7</td> <td>3</td> <td>0</td>	NDPA/DPA	90		84	40-140	7	3	0
Butyl berzyl phthalate 102 96 40-140 6 30 Di-n-butylphthalate 95 90 40-140 5 30 Di-n-octylphthalate 98 92 40-140 6 30 Di-n-octylphthalate 96 90 40-140 6 30 Diethyl phthalate 96 90 40-140 6 30 Dimethyl phthalate 96 93 40-140 3 30 Berzo(a)anthracene 94 88 40-140 7 30 Berzo(b)fluoranthene 96 89 40-140 8 30 Berzo(k)fluoranthene 95 88 40-140 8 30 Berzo(k)fluoranthene 95 89 40-140 8 30 Anthracene 96 84 40-140 8 30 Anthracene 98 40-140 8 30 30 Berzo(h)perylene 98 84 40-140 5 30	n-Nitrosodi-n-propylamine	107		99	29-132	8	3	0
Di-n-butylphthalate 95 90 40-140 5 30 Di-n-ocylphthalate 98 92 40-140 6 30 Di-n-ocylphthalate 96 90 40-140 6 30 Diethyl phthalate 96 90 40-140 6 30 Dimethyl phthalate 96 93 40-140 3 30 Benzo(a)anthracene 94 88 40-140 7 30 Benzo(a)pyrene 96 89 40-140 8 30 Benzo(b)fluoranthene 95 88 40-140 8 30 Benzo(k)fluoranthene 95 89 40-140 8 30 Chrysene 96 89 40-140 8 30 Acenaphthylene 90 84 45-123 7 30 Anthracene 88 84 40-140 5 30 Fluorene 89 82 40-140 6 30 D	Bis(2-ethylhexyl)phthalate	106		99	40-140	7	3	0
Dir-oct 98 92 40-140 6 30 Dirbhyl phthalate 96 90 40-140 6 30 Dimethyl phthalate 96 93 40-140 6 30 Berzo(a)anthracene 94 88 40-140 7 30 Berzo(a)pyrene 96 89 40-140 8 30 Berzo(b)fluoranthene 95 88 40-140 8 30 Berzo(k)fluoranthene 95 89 40-140 8 30 Chrysene 96 89 40-140 8 30 Chrysene 96 89 40-140 8 30 Acenaphthylene 90 84 45-123 7 30 Antracene 88 84 40-140 5 30 Fluorene 98 93 40-140 5 30 Phenanthrene 87 82 40-140 6 30 Dibenzo(a,h)anthracene	Butyl benzyl phthalate	102		96	40-140	6	3	0
Diethyl phhalate 96 90 40-140 6 30 Diethyl phhalate 96 93 40-140 3 30 Benzo(a)anthracene 94 88 40-140 7 30 Benzo(a)pyrene 96 89 40-140 8 30 Benzo(b)fluoranthene 96 89 40-140 8 30 Benzo(b)fluoranthene 95 88 40-140 8 30 Benzo(b)fluoranthene 95 89 40-140 8 30 Chrysene 96 89 40-140 8 30 Chrysene 96 89 40-140 8 30 Acenaphthylene 90 84 45-123 7 30 Benzo(ghi)perylene 98 93 40-140 5 30 Benzo(ghi)perylene 98 82 40-140 5 30 Fluorene 88 82 40-140 6 30 Diben	Di-n-butylphthalate	95		90	40-140	5	3	0
Dimethyl phhalate 96 93 40-140 3 90 Benzo(a)anthracene 94 88 40-140 7 30 Benzo(a)pyrene 96 89 40-140 8 30 Benzo(b)fluoranthene 96 89 40-140 8 30 Benzo(b)fluoranthene 95 88 40-140 8 30 Chrysene 96 89 40-140 8 30 Chrysene 96 89 40-140 8 30 Acenaphthylene 96 89 40-140 8 30 Anthracene 96 89 40-140 8 30 Anthracene 96 89 40-140 8 30 Benzo(ghi)perylene 98 93 40-140 5 30 Fluorene 89 82 40-140 6 30 Phenanthrene 87 82 40-140 6 30 Dibenzo(a,h)anthracene <td>Di-n-octylphthalate</td> <td>98</td> <td></td> <td>92</td> <td>40-140</td> <td>6</td> <td>3</td> <td>0</td>	Di-n-octylphthalate	98		92	40-140	6	3	0
Benzo(a)anthracene 94 88 40-140 7 30 Benzo(a)pyrene 96 89 40-140 8 30 Benzo(b)fluoranthene 95 88 40-140 8 30 Benzo(k)fluoranthene 95 88 40-140 8 30 Benzo(k)fluoranthene 95 89 40-140 8 30 Chrysene 96 89 40-140 8 30 Acenaphthylene 96 89 40-140 8 30 Anthracene 96 84 45-123 7 30 Benzo(ghi)perylene 98 93 40-140 5 30 Fluorene 88 84 40-140 5 30 Fluorene 89 82 40-140 5 30 Dibenzo(a,h)anthracene 87 82 40-140 6 30 Dibenzo(a,h)anthracene 95 91 40-140 4 30 I	Diethyl phthalate	96		90	40-140	6	3	0
Benzo(a)pyrene 96 89 40-140 8 30 Benzo(b)fluoranthene 95 88 40-140 8 30 Benzo(k)fluoranthene 95 88 40-140 8 30 Benzo(k)fluoranthene 95 89 40-140 7 30 Chrysene 96 89 40-140 8 30 Acenaphthylene 96 89 40-140 8 30 Acenaphthylene 90 84 45-123 7 30 Anthracene 88 93 40-140 5 30 Benzo(ghi)perylene 98 93 40-140 5 30 Benzo(ghi)perylene 98 82 40-140 6 30 Fluorene 87 82 40-140 6 30 Dibenzo(a,h)anthracene 95 91 40-140 4 30 Dibenzo(1,2,3-cd)pyrene 98 92 40-140 6 30	Dimethyl phthalate	96		93	40-140	3	3	0
Kurr Kurr <th< td=""><td>Benzo(a)anthracene</td><td>94</td><td></td><td>88</td><td>40-140</td><td>7</td><td>3</td><td>0</td></th<>	Benzo(a)anthracene	94		88	40-140	7	3	0
Benzo(k)fluoranthene 95 89 40-140 7 30 Chrysene 96 89 40-140 8 30 Acenaphthylene 90 84 45-123 7 30 Anthracene 88 84 40-140 5 30 Benzo(ghi)perylene 98 84 40-140 5 30 Fluorene 88 93 40-140 5 30 Phenanthrene 89 82 40-140 8 30 Dibenzo(a,h)anthracene 87 82 40-140 6 30 Dibenzo(a, h)anthracene 95 91 40-140 4 30 Indeno(1,2,3-cd)pyrene 98 92 40-140 6 30 Pyrene 90 86 26-127 5 30	Benzo(a)pyrene	96		89	40-140	8	3	0
Chrysene 96 89 40-140 8 30 Acenaphthylene 90 84 45-123 7 30 Anthracene 88 84 40-140 5 30 Benzo(ghi)perylene 98 93 40-140 5 30 Fluorene 98 93 40-140 5 30 Phenanthrene 89 82 40-140 8 30 Dibenzo(a,h)anthracene 87 82 40-140 6 30 Dibenzo(a,h)anthracene 95 91 40-140 4 30 Indeno(1,2,3-cd)pyrene 98 92 40-140 6 30 Pyrene 90 86 26-127 5 30	Benzo(b)fluoranthene	95		88	40-140	8	3	0
Acenaphthylene 90 84 45-123 7 30 Anthracene 88 84 40-140 5 30 Benzo(ghi)perylene 98 93 40-140 5 30 Fluorene 89 82 40-140 8 30 Phenanthrene 89 82 40-140 8 30 Dibenzo(a,h)anthracene 87 82 40-140 6 30 Indeno(1,2,3-cd)pyrene 95 91 40-140 4 30 Pyrene 98 92 40-140 6 30	Benzo(k)fluoranthene	95		89	40-140	7	3	0
Anthracene 88 84 40-140 5 30 Benzo(ghi)perylene 98 93 40-140 5 30 Fluorene 89 82 40-140 5 30 Phenanthrene 89 82 40-140 8 30 Dibenzo(a,h)anthracene 95 82 40-140 6 30 Indeno(1,2,3-cd)pyrene 98 91 40-140 6 30 Pyrene 98 92 40-140 6 30	Chrysene	96		89	40-140	8	3	0
Benzo(ghi)perylene 98 93 40-140 5 30 Fluorene 89 82 40-140 8 30 Phenanthrene 87 82 40-140 6 30 Dibenzo(a,h)anthracene 95 91 40-140 4 30 Indeno(1,2,3-cd)pyrene 98 92 40-140 6 30 Pyrene 90 86 26-127 5 30	Acenaphthylene	90		84	45-123	7	3	0
Fluorene 89 82 40-140 8 30 Phenanthrene 87 82 40-140 6 30 Dibenzo(a,h)anthracene 95 91 40-140 4 30 Indeno(1,2,3-cd)pyrene 98 92 40-140 6 30 Pyrene 90 86 26-127 5 30	Anthracene	88		84	40-140	5	3	0
Phenanthrene 87 82 40-140 6 30 Dibenzo(a,h)anthracene 95 91 40-140 4 30 Indeno(1,2,3-cd)pyrene 98 92 40-140 6 30 Pyrene 90 86 26-127 5 30	Benzo(ghi)perylene	98		93	40-140	5	3	0
Dibenzo(a,h)anthracene 95 91 40-140 4 30 Indeno(1,2,3-cd)pyrene 98 92 40-140 6 30 Pyrene 90 86 26-127 5 30	Fluorene	89		82	40-140	8	3	0
Indeno(1,2,3-cd)pyrene 98 92 40-140 6 30 Pyrene 90 86 26-127 5 30	Phenanthrene	87		82	40-140	6	3	0
Pyrene 90 86 26-127 5 30	Dibenzo(a,h)anthracene	95		91	40-140	4	3	0
· · · · · · · · · · · · · · · · · · ·	Indeno(1,2,3-cd)pyrene	98		92	40-140	6	3	0
	Pyrene	90		86	26-127	5	3	0
Biphenyl 83 77 40-140 8 30	Biphenyl	83		77	40-140	8	3	0

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Wes	tborough Lab Assoc	iated sample(s)	: 01,03 Batch	h: WG1104	4633-2 WG110463	33-3		
Aniline	39	Q	33	Q	40-140	17	30	
4-Chloroaniline	86		70		40-140	21	30	
1-Methylnaphthalene	87		80		41-103	8	30	
2-Nitroaniline	99		94		52-143	5	30	
3-Nitroaniline	50		48		25-145	4	30	
4-Nitroaniline	78		79		51-143	1	30	
Dibenzofuran	86		79		40-140	8	30	
2-Methylnaphthalene	77		71		40-140	8	30	
n-Nitrosodimethylamine	62		52		22-74	18	30	
2,4,6-Trichlorophenol	95		91		30-130	4	30	
p-Chloro-m-cresol	98	Q	94		23-97	4	30	
2-Chlorophenol	89		79		27-123	12	30	
2,4-Dichlorophenol	96		87		30-130	10	30	
2,4-Dimethylphenol	88		76		30-130	15	30	
2-Nitrophenol	100		89		30-130	12	30	
4-Nitrophenol	62		60		10-80	3	30	
2,4-Dinitrophenol	72		70		20-130	3	30	
4,6-Dinitro-o-cresol	94		92		20-164	2	30	
Pentachlorophenol	74		70		9-103	6	30	
Phenol	49		43		12-110	13	30	
2-Methylphenol	87		80		30-130	8	30	
3-Methylphenol/4-Methylphenol	90		82		30-130	9	30	
2,4,5-Trichlorophenol	100		97		30-130	3	30	

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associ	ated sample(s)	: 01,03 Batch	: WG1104	633-2 WG11046	33-3			
Benzoic Acid	28		22		10-164	24		30	
Benzyl Alcohol	82		74		26-116	10		30	
Carbazole	89		84		55-144	6		30	
Pyridine	46		32		10-66	36	Q	30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	73	64	21-120
Phenol-d6	59	52	10-120
Nitrobenzene-d5	101	89	23-120
2-Fluorobiphenyl	90	84	15-120
2,4,6-Tribromophenol	117	107	10-120
4-Terphenyl-d14	94	87	41-149

Project Number: 171.05027.003

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM	- Westborough Lab Asso	ociated sample(s): 01,03	Batch: WG1104635-2 WG	1104635-3	
Acenaphthene	76	85	40-140	11	40
2-Chloronaphthalene	72	81	40-140	12	40
Fluoranthene	82	73	40-140	12	40
Hexachlorobutadiene	58	63	40-140	8	40
Naphthalene	71	78	40-140	9	40
Benzo(a)anthracene	75	83	40-140	10	40
Benzo(a)pyrene	76	85	40-140	11	40
Benzo(b)fluoranthene	81	92	40-140	13	40
Benzo(k)fluoranthene	72	81	40-140	12	40
Chrysene	73	80	40-140	9	40
Acenaphthylene	70	78	40-140	11	40
Anthracene	79	85	40-140	7	40
Benzo(ghi)perylene	78	76	40-140	3	40
Fluorene	82	89	40-140	8	40
Phenanthrene	77	84	40-140	9	40
Dibenzo(a,h)anthracene	80	78	40-140	3	40
Indeno(1,2,3-cd)pyrene	79	76	40-140	4	40
Pyrene	78	86	40-140	10	40
1-Methylnaphthalene	69	77	40-140	11	40
2-Methylnaphthalene	70	80	40-140	13	40
Pentachlorophenol	98	104	40-140	6	40
Hexachlorobenzene	70	77	40-140	10	40
Hexachloroethane	59	64	40-140	8	40

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1812057

 Report Date:
 04/13/18

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
				-					
Semivolatile Organics by GC/	MS-SIM - Westborough Lab As	sociated sa	ample(s): 01,03	Batch: WG	61104635-2 WG1	104635-3			

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	51	62	21-120
Phenol-d6	38	44	10-120
Nitrobenzene-d5	69	75	23-120
2-Fluorobiphenyl	73	79	15-120
2,4,6-Tribromophenol	63	76	10-120
4-Terphenyl-d14	80	88	41-149

Project Number: 171.05027.003

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Westbo	brough Lab Associ	ated sample(s):	06 Batch:	WG1105283-2	2 WG1105283-3			
Acenaphthene	69		67		31-137	3		50
2-Chloronaphthalene	71		69		40-140	3		50
Fluoranthene	68		66		40-140	3		50
Naphthalene	67		67		40-140	0		50
Benzo(a)anthracene	72		70		40-140	3		50
Benzo(a)pyrene	73		71		40-140	3		50
Benzo(b)fluoranthene	72		70		40-140	3		50
Benzo(k)fluoranthene	69		68		40-140	1		50
Chrysene	71		70		40-140	1		50
Acenaphthylene	76		75		40-140	1		50
Anthracene	67		67		40-140	0		50
Benzo(ghi)perylene	72		72		40-140	0		50
Fluorene	69		67		40-140	3		50
Phenanthrene	66		65		40-140	2		50
Dibenzo(a,h)anthracene	71		71		40-140	0		50
Indeno(1,2,3-cd)pyrene	74		72		40-140	3		50
Pyrene	67		66		35-142	2		50
1-Methylnaphthalene	77		77		26-130	0		50
2-Methylnaphthalene	71		69		40-140	3		50

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associa	ted sample(s)	: 06 Batch	WG1105283-2	WG1105283-3				

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	72	71	23-120
2-Fluorobiphenyl	65	64	30-120
4-Terphenyl-d14	64	61	18-120

PESTICIDES

		Serial_No:	:04131816:08
Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18
	SAMPLE RESUL	TS	
Lab ID:	L1812057-07	Date Collected:	04/04/18 08:30
Client ID:	GWW-101	Date Received:	04/06/18
Sample Location:	BELFAST, ME	Field Prep:	Field Filtered (Dissolved Metals & Phosphorus)
Sample Depth:			
Matrix:	Water	Extraction Method:	: EPA 3510C
Analytical Method:	1,8081B	Extraction Date:	04/11/18 00:31
Analytical Date:	04/12/18 08:08		
Analyst:	SL		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Pesticides by GC - Westborough Lab							
Delta-BHC	ND		ug/l	0.020		1	А
Lindane	ND		ug/l	0.020		1	А
Alpha-BHC	ND		ug/l	0.020		1	А
Beta-BHC	ND		ug/l	0.020		1	А
Heptachlor	ND		ug/l	0.020		1	А
Aldrin	ND		ug/l	0.020		1	А
Heptachlor epoxide	ND		ug/l	0.020		1	А
Endrin	ND		ug/l	0.040		1	А
Endrin aldehyde	ND		ug/l	0.040		1	А
Endrin ketone	ND		ug/l	0.040		1	А
Dieldrin	ND		ug/l	0.040		1	А
4,4'-DDE	ND		ug/l	0.040		1	А
4,4'-DDD	ND		ug/l	0.040		1	А
4,4'-DDT	ND		ug/l	0.040		1	А
Endosulfan I	ND		ug/l	0.020		1	А
Endosulfan II	ND		ug/l	0.040		1	А
Endosulfan sulfate	ND		ug/l	0.040		1	А
Methoxychlor	ND		ug/l	0.200		1	А
Toxaphene	ND		ug/l	0.200		1	А
Chlordane	ND		ug/l	0.200		1	А
cis-Chlordane	ND		ug/l	0.020		1	А
trans-Chlordane	ND		ug/l	0.020		1	А

						Serial_No:04131816:08				
Project Name:	BELFAST WATER DI	STRICT			Lab Nu	umber:	L1812057			
Project Number:	171.05027.003				Repor	t Date:	e: 04/13/18			
		SAMP		6						
Lab ID:	L1812057-07				Date Co	Date Collected: 04/04/18 08:30)		
Client ID:	GWW-101				Date Re	ceived:	04/06/18			
Sample Location:	BELFAST, ME				Field Pre	ep:	Field Filtered (I	(Dissolved		
							Metals & Phos	phorus)		
Sample Depth:										
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Pesticides by GC -	Westborough Lab									

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	136		30-150	А
Decachlorobiphenyl	117		30-150	А
2,4,5,6-Tetrachloro-m-xylene	133		30-150	В
Decachlorobiphenyl	124		30-150	В

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057				
Project Number:	171.05027.003	Report Date:	04/13/18				
Method Blank Analysis							

Batch Quality Control

Analytical Method:	1,8081B	Extraction Method:	EPA 3510C
Analytical Date:	04/12/18 07:29	Extraction Date:	04/11/18 00:31
Analyst:	SL		

arameter	Result 0	Qualifier	Units	RL	MDL	Colum
esticides by GC - Westbor	ough Lab for sample(s): 07	Batch:	WG1105367-1		
Delta-BHC	ND		ug/l	0.020		А
Lindane	ND		ug/l	0.020		А
Alpha-BHC	ND		ug/l	0.020		А
Beta-BHC	ND		ug/l	0.020		А
Heptachlor	ND		ug/l	0.020		А
Aldrin	ND		ug/l	0.020		А
Heptachlor epoxide	ND		ug/l	0.020		А
Endrin	ND		ug/l	0.040		А
Endrin aldehyde	ND		ug/l	0.040		А
Endrin ketone	ND		ug/l	0.040		А
Dieldrin	ND		ug/l	0.040		А
4,4'-DDE	ND		ug/l	0.040		А
4,4'-DDD	ND		ug/l	0.040		А
4,4'-DDT	ND		ug/l	0.040		А
Endosulfan I	ND		ug/l	0.020		А
Endosulfan II	ND		ug/l	0.040		А
Endosulfan sulfate	ND		ug/l	0.040		А
Methoxychlor	ND		ug/l	0.200		А
Toxaphene	ND		ug/l	0.200		А
Chlordane	ND		ug/l	0.200		А
cis-Chlordane	ND		ug/l	0.020		А
trans-Chlordane	ND		ug/l	0.020		А

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18
	Method Blank Analysis Batch Quality Control		
Analytical Method:	1,8081B	Extraction Metho	od: EPA 3510C

Analytical Method:	1,8081B	Extraction Method:	EPA 3510C
Analytical Date:	04/12/18 07:29	Extraction Date:	04/11/18 00:31
Analyst:	SL		

Parameter	Result	Qualifier	Units	RL	MDL	Column
Pesticides by GC - Westborough L	ab for samp	ole(s): 07	Batch:	WG1105367-1		

		A		e
Surrogate	%Recovery Q	ualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	116		30-150	А
Decachlorobiphenyl	98		30-150	А
2,4,5,6-Tetrachloro-m-xylene	113		30-150	В
Decachlorobiphenyl	108		30-150	В

Project Number: 171.05027.003

	LCS		LCSD	%Re	covery			RPD	
Parameter	%Recovery	Qual	%Recovery		imits	RPD	Qual	Limits	Column
Pesticides by GC - Westborough Lab	Associated sample(s):	07 Batch:	WG1105367-2	WG1105367-3					
Delta-BHC	147		147	30)-150	0		20	А
Lindane	132		131	30)-150	1		20	А
Alpha-BHC	145		144	30)-150	1		20	А
Beta-BHC	122		122	30)-150	0		20	А
Heptachlor	124		123	30)-150	1		20	А
Aldrin	126		125	30)-150	1		20	А
Heptachlor epoxide	123		123	30)-150	0		20	А
Endrin	123		124	30)-150	1		20	А
Endrin aldehyde	121		124	30)-150	2		20	А
Endrin ketone	130		132	30)-150	2		20	А
Dieldrin	132		133	30)-150	1		20	А
4,4'-DDE	134		135	30)-150	1		20	А
4,4'-DDD	128		130	30)-150	2		20	А
4,4'-DDT	129		130	30)-150	1		20	А
Endosulfan I	125		126	30)-150	1		20	А
Endosulfan II	125		126	30)-150	1		20	А
Endosulfan sulfate	131		134	30)-150	2		20	А
Methoxychlor	116		120	30)-150	3		20	А
cis-Chlordane	109		110	30)-150	1		20	А
trans-Chlordane	123		123	30)-150	0		20	А

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Pesticides by GC - Westborough Lab As	ssociated sample(s):	07 Batch:	WG1105367-2	WG1105367	7-3				

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria Column
2,4,5,6-Tetrachloro-m-xylene	134	130	30-150 A
Decachlorobiphenyl	105	110	30-150 A
2,4,5,6-Tetrachloro-m-xylene	128	127	30-150 B
Decachlorobiphenyl	106	115	30-150 B

METALS

L1812057

Project Name: BELFA	AST WATER DISTRICT
---------------------	--------------------

Project Number:

171.05027.003

SAMPLE RESULTS

Lab ID:L1812057-01Client ID:GWW-101Sample Location:BELFAST, ME

Sample Depth:

Matrix:

Water

	Report Date:	04/13/18
RESULTS		
	Date Collected:	04/05/18 08:15
	Date Received:	04/06/18
	Field Prep:	Field Filtered (Dissolved Metals & Phosphorus)

Lab Number:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	ND		mg/l	0.100		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Antimony, Total	ND		mg/l	0.00400		1	04/09/18 15:30	04/10/18 10:18	EPA 3005A	1,6020A	AM
Arsenic, Total	0.007		mg/l	0.005		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Barium, Total	ND		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Beryllium, Total	ND		mg/l	0.00050		1	04/09/18 15:30	04/10/18 10:18	EPA 3005A	1,6020A	AM
Boron, Total	ND		mg/l	0.030		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Cadmium, Total	ND		mg/l	0.00020		1	04/09/18 15:30	04/10/18 10:18	EPA 3005A	1,6020A	AM
Calcium, Total	10.8		mg/l	0.100		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Chromium, Total	ND		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Cobalt, Total	ND		mg/l	0.020		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Copper, Total	ND		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Iron, Total	3.20		mg/l	0.050		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Lead, Total	ND		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Magnesium, Total	4.72		mg/l	0.100		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Manganese, Total	0.035		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Mercury, Total	ND		mg/l	0.00020		1	04/09/18 11:15	04/10/18 20:33	EPA 7470A	1,7470A	EA
Molybdenum, Total	ND		mg/l	0.050		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Nickel, Total	ND		mg/l	0.025		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Potassium, Total	ND		mg/l	2.50		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Selenium, Total	ND		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Silicon, Total	11.4		mg/l	0.500		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Silver, Total	ND		mg/l	0.007		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Sodium, Total	12.6		mg/l	2.00		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Strontium, Total	0.048		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Sulfur, Total	4.51		mg/l	0.250		1	04/10/18 12:55	04/10/18 19:29	EPA 3015A	1,6010C	AB
Thallium, Total	ND		mg/l	0.00050		1	04/09/18 15:30	04/10/18 10:18	EPA 3005A	1,6020A	AM
Titanium, Total	ND		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Vanadium, Total	ND		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC
Zinc, Total	ND		mg/l	0.050		1	04/09/18 15:30	04/11/18 19:00	EPA 3005A	1,6010C	LC

								Serial	_No:041318	316:08	
Project Name:	BELF	AST WATE	R DIST	RICT			Lab Nu	mber:	L18120	57	
Project Number:	171.0	5027.003					Report	Date:	04/13/1	8	
				SAMPL	E RES	ULTS					
Lab ID:		057-01					Date Co	llected:	04/05/18	08:15	
Client ID:	GWW						Date Re		04/06/18		
Sample Location:	BELF	AST, ME					Field Pr	ep:		ered (Disso Phosphore	
Sample Depth:									Metalo G	i noopnon	10)
Matrix:	Water										
						Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Hardness by S	SM 2340F	8 - Mansfiel	dlab								
Hardness	46.5		mg/l	0.660	NA	1	04/09/18 15:30) 04/11/18 19:00	EPA 3005A	1,6010C	LC
	+0.0		iiig/i	0.000	11/4		04/03/10 13.30	, , , , , , , , , , , , , , , , , , , ,	EI A 3003A	1,00100	
Dissolved Metals - N	lansfield	Lab									
Aluminum, Dissolved	ND		mg/l	0.100		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Antimony, Dissolved	ND		mg/l	0.00400		1	04/09/18 14:20	04/10/18 11:18	EPA 3005A	1,6020A	AM
Arsenic, Dissolved	0.008		mg/l	0.005		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Barium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Beryllium, Dissolved	ND		mg/l	0.00050		1	04/09/18 14:20	04/10/18 11:18	EPA 3005A	1,6020A	AM
Boron, Dissolved	ND		mg/l	0.030		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Cadmium, Dissolved	ND		mg/l	0.00020		1	04/09/18 14:20	04/10/18 11:18	EPA 3005A	1,6020A	AM
Calcium, Dissolved	10.1		mg/l	0.100		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Chromium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Cobalt, Dissolved	ND		mg/l	0.020		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Copper, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Iron, Dissolved	3.00		mg/l	0.050		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Lead, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Magnesium, Dissolved	4.20		mg/l	0.100		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Manganese, Dissolved	0.033		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Mercury, Dissolved	ND		mg/l	0.00020		1	04/11/18 12:20	04/11/18 17:34	EPA 7470A	1,7470A	MG
Molybdenum, Dissolved	ND		mg/l	0.050		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Nickel, Dissolved	ND		mg/l	0.025		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Potassium, Dissolved	ND		mg/l	2.50		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Selenium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Silicon, Dissolved	10.7		mg/l	0.500		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Silver, Dissolved	ND		mg/l	0.007		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Sodium, Dissolved	12.1		mg/l	2.00		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Strontium, Dissolved	0.051		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Thallium, Dissolved	ND		mg/l	0.00050		1	04/09/18 14:20) 04/10/18 11:18	EPA 3005A	1,6020A	AM

Project Name: Project Number:		AST WATE 5027.003	R DISTI	RICT			Lab Nui Report		L18120		
				SAMPL	E RES	ULTS					
Lab ID: Client ID: Sample Location:	GWW	2057-01 -101 AST, ME					Date Co Date Re Field Pre	ceived:			
Sample Depth: Matrix:	Water								Wetais a	i nosphor	us <i>)</i>
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Titanium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Vanadium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC
Zinc, Dissolved	ND		mg/l	0.050		1	04/09/18 14:20	04/10/18 09:55	EPA 3005A	1,6010C	LC

L1812057

Project Name: BEL	FAST WATER DISTRICT
-------------------	---------------------

Project Number:

171.05027.003

SAMPLE RESULTS

Lab ID:L1812057-03Client ID:GWW-103Sample Location:BELFAST, ME

Sample Depth: Matrix:

Water

	Report Date:	04/13/18
RESULTS		
	Date Collected:	04/05/18 08:45
	Date Received:	04/06/18
	Field Prep:	Field Filtered (Dissolved Metals & Phosphorus)

Lab Number:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	ND		mg/l	0.100		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Antimony, Total	ND		mg/l	0.00400		1	04/09/18 15:30	04/10/18 10:22	EPA 3005A	1,6020A	AM
Arsenic, Total	0.005		mg/l	0.005		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Barium, Total	0.023		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Beryllium, Total	ND		mg/l	0.00050		1	04/09/18 15:30	04/10/18 10:22	EPA 3005A	1,6020A	AM
Boron, Total	0.087		mg/l	0.030		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Cadmium, Total	ND		mg/l	0.00020		1	04/09/18 15:30	04/10/18 10:22	EPA 3005A	1,6020A	AM
Calcium, Total	21.0		mg/l	0.100		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Chromium, Total	ND		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Cobalt, Total	ND		mg/l	0.020		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Copper, Total	ND		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Iron, Total	1.51		mg/l	0.050		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Lead, Total	ND		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Magnesium, Total	10.2		mg/l	0.100		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Manganese, Total	0.029		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Mercury, Total	ND		mg/l	0.00020		1	04/09/18 11:15	04/10/18 20:35	EPA 7470A	1,7470A	EA
Molybdenum, Total	ND		mg/l	0.050		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Nickel, Total	ND		mg/l	0.025		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Potassium, Total	6.58		mg/l	2.50		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Selenium, Total	ND		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Silicon, Total	9.04		mg/l	0.500		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Silver, Total	ND		mg/l	0.007		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Sodium, Total	135		mg/l	2.00		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Strontium, Total	0.195		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Sulfur, Total	23.2		mg/l	0.250		1	04/10/18 12:55	04/10/18 18:43	EPA 3015A	1,6010C	AB
Thallium, Total	ND		mg/l	0.00050		1	04/09/18 15:30	04/10/18 10:22	EPA 3005A	1,6020A	AM
Titanium, Total	ND		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Vanadium, Total	ND		mg/l	0.010		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC
Zinc, Total	0.059		mg/l	0.050		1	04/09/18 15:30	04/11/18 19:05	EPA 3005A	1,6010C	LC

							Serial_No:04131816:08						
Project Name:	BELF	AST WATE	R DIST	RICT			Lab Nu	mber:	L18120	57			
Project Number:	171.0	5027.003					Report	Date:	04/13/13	8			
Lab ID: Client ID: Sample Location:	ient ID: GWW-103						Date Co Date Re Field Pr	eceived:	04/05/18 04/06/18 Field Filte				
Sample Depth: Matrix:	Water								Metals &	Phosphor	us)		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst		
Fotal Hardness by S	M 2340E	3 - Mansfiel	ld Lab										
Hardness	94.5		mg/l	0.660	NA	1	04/09/18 15:30) 04/11/18 19:05	EPA 3005A	1,6010C	LC		
Dissolved Metals - M	lansfield	Lab											
Aluminum, Dissolved	ND		mg/l	0.100		1	04/09/18 14:20) 04/10/18 11:14	EPA 3005A	1,6010C	LC		
Antimony, Dissolved	ND		mg/l	0.00400		1	04/09/18 14:20) 04/10/18 11:22	EPA 3005A	1,6020A	AM		
Arsenic, Dissolved	ND		mg/l	0.005		1	04/09/18 14:20) 04/10/18 11:14	EPA 3005A	1,6010C	LC		
Barium, Dissolved	0.026		mg/l	0.010		1	04/09/18 14:20) 04/10/18 11:14	EPA 3005A	1,6010C	LC		
Beryllium, Dissolved	ND		mg/l	0.00050		1	04/09/18 14:20) 04/10/18 11:22	EPA 3005A	1,6020A	AM		
Boron, Dissolved	0.081		mg/l	0.030		1	04/09/18 14:20	04/10/18 11:14	EPA 3005A	1,6010C	LC		
Cadmium, Dissolved	ND		mg/l	0.00020		1	04/09/18 14:20) 04/10/18 11:22	EPA 3005A	1,6020A	AM		
Calcium, Dissolved	20.5		mg/l	0.100		1	04/09/18 14:20	04/10/18 11:14	EPA 3005A	1,6010C	LC		
Chromium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 11:14	EPA 3005A	1,6010C	LC		
Cobalt, Dissolved	ND		mg/l	0.020		1	04/09/18 14:20	04/10/18 11:14	EPA 3005A	1,6010C	LC		
Copper, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 11:14	EPA 3005A	1,6010C	LC		
Iron, Dissolved	1.45		mg/l	0.050		1	04/09/18 14:20	04/10/18 11:14	EPA 3005A	1,6010C	LC		
Lead, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 11:14	EPA 3005A	1,6010C	LC		
Magnesium, Dissolved	9.36		mg/l	0.100		1	04/09/18 14:20	04/10/18 11:14	EPA 3005A	1,6010C	LC		
Manganese, Dissolved	0.030		mg/l	0.010		1	04/09/18 14:20	04/10/18 11:14	EPA 3005A	1,6010C	LC		
Mercury, Dissolved	ND		mg/l	0.00020		1	04/11/18 12:20	04/11/18 17:39	EPA 7470A	1,7470A	MG		
Molybdenum, Dissolved	ND		mg/l	0.050		1	04/09/18 14:20) 04/10/18 11:14	EPA 3005A	1,6010C	LC		
Nickel, Dissolved	ND		mg/l	0.025		1	04/09/18 14:20) 04/10/18 11:14	EPA 3005A	1,6010C	LC		
Potassium, Dissolved	6.25		mg/l	2.50		1	04/09/18 14:20) 04/10/18 11:14	EPA 3005A	1,6010C	LC		
Selenium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20) 04/10/18 11:14	EPA 3005A	1,6010C	LC		
Silicon, Dissolved	8.65		mg/l	0.500		1	04/09/18 14:20) 04/10/18 11:14	EPA 3005A	1,6010C	LC		
Silver, Dissolved	ND		mg/l	0.007		1	04/09/18 14:20) 04/10/18 11:14	EPA 3005A	1,6010C	LC		
Sodium, Dissolved	134		mg/l	2.00		1	04/09/18 14:20) 04/10/18 11:14	EPA 3005A	1,6010C	LC		
Strontium, Dissolved	0.218		mg/l	0.010		1	04/09/18 14:20) 04/10/18 11:14	EPA 3005A	1,6010C	LC		

Project Name: Project Number:		AST WATE 5027.003	R DISTR	RICT			Lab Nu Report		L18120 04/13/1		
				SAMPL	E RES	ULTS			0 11 107 1	•	
Lab ID:	L1812	2057-03					Date Co	ollected:	04/05/18	08:45	
Client ID:	GWW	-103					Date Re	eceived:	04/06/18		
Sample Location:	BELF	AST, ME					Field Pr	ep:		ered (Disso Phosphor	
Sample Depth:										•	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Titanium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	0 04/10/18 11:14	EPA 3005A	1,6010C	LC
Vanadium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	0 04/10/18 11:14	EPA 3005A	1,6010C	LC
Zinc, Dissolved	0.055		mg/l	0.050		1		0 04/10/18 11:14		1,6010C	LC

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18
	SAMPLE RESULTS		
Lab ID:	L1812057-05	Date Collected:	04/05/18 09:15
Client ID:	SS-1	Date Received:	04/06/18
Sample Location:	BELFAST, ME	Field Prep:	Not Specified

Sample Depth:

Matrix: Percent Solids Soil

Middink.	0011										
Percent Solids:	78%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/kg	2.48		1	04/07/18 07:20	04/07/18 13:18	EPA 3050B	1,6010C	PE
Arsenic, Total	13.9		mg/kg	0.496		1	04/07/18 07:20	04/07/18 13:18	EPA 3050B	1,6010C	PE
Beryllium, Total	0.293		mg/kg	0.248		1	04/07/18 07:20	04/07/18 13:18	EPA 3050B	1,6010C	PE
Cadmium, Total	0.700		mg/kg	0.496		1	04/07/18 07:20	04/07/18 13:18	EPA 3050B	1,6010C	PE
Chromium, Total	15.7		mg/kg	0.496		1	04/07/18 07:20	04/07/18 13:18	EPA 3050B	1,6010C	PE
Copper, Total	36.3		mg/kg	0.496		1	04/07/18 07:20	04/07/18 13:18	EPA 3050B	1,6010C	PE
Lead, Total	263		mg/kg	2.48		1	04/07/18 07:20	04/07/18 13:18	EPA 3050B	1,6010C	PE
Mercury, Total	0.204		mg/kg	0.081		1	04/07/18 09:00	04/09/18 16:04	EPA 7471B	1,7471B	EA
Nickel, Total	22.8		mg/kg	1.24		1	04/07/18 07:20	04/07/18 13:18	EPA 3050B	1,6010C	PE
Selenium, Total	4.29		mg/kg	0.992		1	04/07/18 07:20	04/07/18 13:18	EPA 3050B	1,6010C	PE
Silver, Total	ND		mg/kg	0.496		1	04/07/18 07:20	04/07/18 13:18	EPA 3050B	1,6010C	PE
Thallium, Total	11.8		mg/kg	0.992		1	04/07/18 07:20	04/07/18 13:18	EPA 3050B	1,6010C	PE
Zinc, Total	66.5		mg/kg	2.48		1	04/07/18 07:20	04/07/18 13:18	EPA 3050B	1,6010C	PE

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	05 Batch	: WG1′	104409-	1				
Antimony, Total	ND	mg/kg	2.00		1	04/07/18 07:20	04/07/18 11:34	1,6010C	PE
Arsenic, Total	ND	mg/kg	0.400		1	04/07/18 07:20	04/07/18 11:34	1,6010C	PE
Beryllium, Total	ND	mg/kg	0.200		1	04/07/18 07:20	04/07/18 11:34	1,6010C	PE
Cadmium, Total	ND	mg/kg	0.400		1	04/07/18 07:20	04/07/18 11:34	1,6010C	PE
Chromium, Total	ND	mg/kg	0.400		1	04/07/18 07:20	04/07/18 11:34	1,6010C	PE
Copper, Total	ND	mg/kg	0.400		1	04/07/18 07:20	04/07/18 11:34	1,6010C	PE
Lead, Total	ND	mg/kg	2.00		1	04/07/18 07:20	04/07/18 11:34	1,6010C	PE
Nickel, Total	ND	mg/kg	1.00		1	04/07/18 07:20	04/07/18 11:34	1,6010C	PE
Selenium, Total	ND	mg/kg	0.800		1	04/07/18 07:20	04/07/18 11:34	1,6010C	PE
Silver, Total	ND	mg/kg	0.400		1	04/07/18 07:20	04/07/18 11:34	1,6010C	PE
Thallium, Total	ND	mg/kg	0.800		1	04/07/18 07:20	04/07/18 11:34	1,6010C	PE
Zinc, Total	ND	mg/kg	2.00		1	04/07/18 07:20	04/07/18 11:34	1,6010C	PE

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	Id Lab for sample(s):	05 Batch	: WG1′	104410-	1				
Mercury, Total	ND	mg/kg	0.083		1	04/07/18 09:00	04/09/18 15:27	′ 1,7471B	EA

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	d Lab for sample(s)	: 01,03 E	Batch: WG	G11047	56-1				
Mercury, Total	ND	mg/l	0.00020		1	04/09/18 11:15	04/10/18 20:11	I 1,7470A	EA

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Q	aulifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals - Mar	nsfield Lab f	or sample	(s): 01,03	Batch:	WG1	104824-1				
Aluminum, Dissolved	ND		mg/l	0.100		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Arsenic, Dissolved	ND		mg/l	0.005		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Barium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Boron, Dissolved	ND		mg/l	0.030		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Calcium, Dissolved	ND		mg/l	0.100		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Chromium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Cobalt, Dissolved	ND		mg/l	0.020		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Copper, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Iron, Dissolved	ND		mg/l	0.050		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Lead, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Magnesium, Dissolved	ND		mg/l	0.100		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Manganese, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Molybdenum, Dissolved	ND		mg/l	0.050		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Nickel, Dissolved	ND		mg/l	0.025		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Potassium, Dissolved	ND		mg/l	2.50		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Selenium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Silicon, Dissolved	ND		mg/l	0.500		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Silver, Dissolved	ND		mg/l	0.007		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Sodium, Dissolved	ND		mg/l	2.00		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Strontium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Titanium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Vanadium, Dissolved	ND		mg/l	0.010		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC
Zinc, Dissolved	ND		mg/l	0.050		1	04/09/18 14:20	04/10/18 09:46	1,6010C	LC

Prep Information

Digestion Method: EPA 3005A

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	nsfield Lab for	sample(s): 01,0	3 Batch:	WG1	104839-1				
Antimony, Dissolved	ND	mg/l	0.00400		1	04/09/18 14:20	04/10/18 10:54	1,6020A	AM
Beryllium, Dissolved	ND	mg/l	0.00050		1	04/09/18 14:20	04/10/18 10:54	1,6020A	AM
Cadmium, Dissolved	ND	mg/l	0.00020		1	04/09/18 14:20	04/10/18 10:54	1,6020A	AM
Thallium, Dissolved	ND	mg/l	0.00050		1	04/09/18 14:20	04/10/18 10:54	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - N	Mansfield Lab for sample(s):	01,03	Batch: V	VG11048	43-1				
Antimony, Total	ND	mg/l	0.0040	0	1	04/09/18 15:30	04/10/18 09:17	7 1,6020A	AM
Beryllium, Total	ND	mg/l	0.0005	0	1	04/09/18 15:30	04/10/18 09:17	7 1,6020A	AM
Cadmium, Total	ND	mg/l	0.0002	0	1	04/09/18 15:30	04/10/18 09:17	7 1,6020A	AM
Thallium, Total	ND	mg/l	0.0005	0	1	04/09/18 15:30	04/10/18 09:17	7 1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01,03 B	atch: Wo	G11050	73-1				
Sulfur, Total	ND	mg/l	0.250		1	04/10/18 12:55	04/10/18 18:39	1,6010C	AB

Prep Information

Digestion Method: EPA 3015A

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield Lab for sample(s): 01,03 Batch: WG1105166-1									
Aluminum, Total	ND	mg/l	0.100		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Arsenic, Total	ND	mg/l	0.005		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Barium, Total	ND	mg/l	0.010		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Boron, Total	ND	mg/l	0.030		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Calcium, Total	ND	mg/l	0.100		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Chromium, Total	ND	mg/l	0.010		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Cobalt, Total	ND	mg/l	0.020		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Copper, Total	ND	mg/l	0.010		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Iron, Total	0.081	mg/l	0.050		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Lead, Total	ND	mg/l	0.010		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Magnesium, Total	ND	mg/l	0.100		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Manganese, Total	ND	mg/l	0.010		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Molybdenum, Total	ND	mg/l	0.050		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Nickel, Total	ND	mg/l	0.025		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Potassium, Total	ND	mg/l	2.50		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Selenium, Total	ND	mg/l	0.010		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Silicon, Total	ND	mg/l	0.500		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Silver, Total	ND	mg/l	0.007		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Sodium, Total	ND	mg/l	2.00		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Strontium, Total	ND	mg/l	0.010		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Titanium, Total	ND	mg/l	0.010		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Vanadium, Total	ND	mg/l	0.010		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC
Zinc, Total	ND	mg/l	0.050		1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	2340B - Mansfield La	b for sam	ple(s):	01,03 I	Batch: WG1	105166-1			
Hardness	ND	mg/l	0.660	NA	1	04/09/18 15:30	04/11/18 17:50	1,6010C	LC

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Dissolved Metals - Mans	field Lab	for sample	(s): 01,03	B Batch:	WG1	105586-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	04/11/18 12:20	04/11/18 17:30	0 1,7470A	MG

Prep Information

Digestion Method: EPA 7470A

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Parameter	LCS %Recovery Qual	LCSD %Recovery Qua	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 05 Batch: WG1104	409-2 SRM Lot Number	: D098-540			
Antimony, Total	140	-	6-194	-		
Arsenic, Total	93	-	83-117	-		
Beryllium, Total	87	-	83-117	-		
Cadmium, Total	90	-	82-117	-		
Chromium, Total	89	-	83-119	-		
Copper, Total	89	-	84-116	-		
Lead, Total	85	-	82-117	-		
Nickel, Total	88	-	82-117	-		
Selenium, Total	92	-	78-121	-		
Silver, Total	97	-	80-120	-		
Thallium, Total	89	-	80-119	-		
Zinc, Total	87	-	81-119	-		
otal Metals - Mansfield Lab Associated sample	e(s): 05 Batch: WG1104	410-2 SRM Lot Number	: D098-540			
Mercury, Total	115	-	50-149	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01,03 Batch: WG11	04756-2				
Mercury, Total	90	-	80-120	-		

Lab Control Sample Analysis

Batch Quality Control

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1812057

 Report Date:
 04/13/18

LCS LCSD %Recovery **RPD** Limits %Recovery %Recovery Limits RPD Parameter Dissolved Metals - Mansfield Lab Associated sample(s): 01,03 Batch: WG1104824-2 Aluminum, Dissolved 104 80-120 -Arsenic, Dissolved 106 80-120 --Barium, Dissolved 80-120 98 --Boron, Dissolved 80-120 103 --Calcium, Dissolved 100 80-120 --Chromium, Dissolved 102 80-120 --Cobalt. Dissolved 95 80-120 --Copper, Dissolved 80-120 99 --Iron, Dissolved 80-120 101 --Lead. Dissolved 101 80-120 --Magnesium, Dissolved 95 80-120 --Manganese, Dissolved 80-120 99 --Molybdenum, Dissolved 94 80-120 --Nickel, Dissolved 80-120 96 -Potassium, Dissolved 95 80-120 --Selenium, Dissolved 112 80-120 --Silicon, Dissolved 105 80-120 --Silver, Dissolved 100 80-120 -Sodium, Dissolved 101 80-120 --Strontium, Dissolved 104 80-120 --Titanium, Dissolved 99 80-120 -

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01,03	Batch: WG1104824-2			
Vanadium, Dissolved	103	-	80-120	-	
Zinc, Dissolved	100	-	80-120	-	
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01,03	Batch: WG1104839-2			
Antimony, Dissolved	99	-	80-120	-	
Beryllium, Dissolved	105	-	80-120	-	
Cadmium, Dissolved	108	-	80-120	-	
Thallium, Dissolved	99	-	80-120	-	
Total Metals - Mansfield Lab Associated sample	(s): 01,03 Bate	ch: WG1104843-2			
Antimony, Total	108	-	80-120	-	
Beryllium, Total	107		80-120	-	
Cadmium, Total	112	•	80-120	-	
Thallium, Total	104	-	80-120	-	
Total Metals - Mansfield Lab Associated sample	(s): 01,03 Bate	ch: WG1105073-2			
Sulfur, Total	115	-	80-120	-	

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

	LCS	LCSD	%Recovery							
Parameter	%Recovery	%Recovery	Limits	RPD	RPD Limits					
otal Metals - Mansfield Lab Associated sample(s): 01,03 Batch: WG1105166-2										
Aluminum, Total	114		80-120	-						
Arsenic, Total	115	-	80-120	-						
Barium, Total	102	-	80-120	-						
Boron, Total	110	-	80-120	-						
Calcium, Total	109	-	80-120	-						
Chromium, Total	106	-	80-120	-						
Cobalt, Total	104	-	80-120	-						
Copper, Total	102	-	80-120	-						
Iron, Total	111	-	80-120	-						
Lead, Total	98	-	80-120	-						
Magnesium, Total	108	-	80-120	-						
Manganese, Total	104	-	80-120	-						
Molybdenum, Total	90	-	80-120	-						
Nickel, Total	104	-	80-120	-						
Potassium, Total	104	-	80-120	-						
Selenium, Total	123	<u>-</u>	80-120	-						
Silicon, Total	84	-	80-120	-						
Silver, Total	107	-	80-120	-						
Sodium, Total	107	-	80-120	-						
Strontium, Total	100	-	80-120	-						
Titanium, Total	104	-	80-120	-						

Lab Control Sample Analysis Batch Quality Control

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003 Lab Number: L1812057 Report Date: 04/13/18

Parameter	LCS LCSD %Recovery %Recovery		%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01,03 Batch: \	VG1105166-2			
Vanadium, Total	105	-	80-120	-	
Zinc, Total	109	-	80-120	-	
Total Hardness by SM 2340B - Mansfield Lab As	ssociated sample(s)	: 01,03 Batch: WG1105166-2			
Hardness	108	-	80-120	-	
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01,03 Ba	ch: WG1105586-2			
Mercury, Dissolved	102	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qual	Recovery Limits	RPD Qual	RPD Limits
Dissolved Metals - Mansfield	Lab Associated	d sample(s):	01,03 Q	C Batch ID: WG	G1104824	4-3 QC	Sample: L1812057-07	1 Client ID:	GWW-101	
Aluminum, Dissolved	ND	2	2.12	106		-	-	75-125	-	20
Arsenic, Dissolved	0.008	0.12	0.132	103		-	-	75-125	-	20
Barium, Dissolved	ND	2	1.97	98		-	-	75-125	-	20
Boron, Dissolved	ND	1	1.05	105		-	-	75-125	-	20
Calcium, Dissolved	10.1	10	19.8	97		-	-	75-125	-	20
Chromium, Dissolved	ND	0.2	0.204	102		-	-	75-125	-	20
Cobalt, Dissolved	ND	0.5	0.476	95		-	-	75-125	-	20
Copper, Dissolved	ND	0.25	0.252	101		-	-	75-125	-	20
Iron, Dissolved	3.00	1	3.95	95		-	-	75-125	-	20
Lead, Dissolved	ND	0.51	0.514	101		-	-	75-125	-	20
Magnesium, Dissolved	4.20	10	13.6	94		-	-	75-125	-	20
Manganese, Dissolved	0.033	0.5	0.526	98		-	-	75-125	-	20
Molybdenum, Dissolved	ND	1	0.940	94		-	-	75-125	-	20
Nickel, Dissolved	ND	0.5	0.477	95		-	-	75-125	-	20
Potassium, Dissolved	ND	10	11.6	116		-	-	75-125	-	20
Selenium, Dissolved	ND	0.12	0.131	109		-	-	75-125	-	20
Silicon, Dissolved	10.7	1	11.5	80		-	-	75-125	-	20
Silver, Dissolved	ND	0.05	0.050	100		-	-	75-125	-	20
Sodium, Dissolved	12.1	10	22.0	99		-	-	75-125	-	20
Strontium, Dissolved	0.051	1	1.09	104		-	-	75-125	-	20
Titanium, Dissolved	ND	1	0.991	99		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Number: 171.05027.003

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield	Lab Associated	sample(s):	01,03 Q	C Batch ID: WG110	4824-3 QC	Sample: L1812057-0	1 Client ID:	GWW-101	
Vanadium, Dissolved	ND	0.5	0.519	104	-	-	75-125	-	20
Zinc, Dissolved	ND	0.5	0.532	106	-	-	75-125	-	20
Dissolved Metals - Mansfield	Lab Associated	sample(s):	01,03 Q	C Batch ID: WG110	4839-3 QC	Sample: L1812057-0	1 Client ID:	GWW-101	
Antimony, Dissolved	ND	0.5	0.5680	114	-	-	75-125	-	20
Beryllium, Dissolved	ND	0.05	0.05356	107	-	-	75-125	-	20
Cadmium, Dissolved	ND	0.051	0.05627	110	-	-	75-125	-	20
Thallium, Dissolved	ND	0.12	0.1210	101	-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01,0	3 QC Ba	tch ID: WG1105073	-3 QC San	nple: L1812057-03 C	lient ID: GW	/W-103	
Sulfur, Total	23.2	0.5	23.3	20	Q -	-	75-125	-	20
Dissolved Metals - Mansfield	Lab Associated	sample(s):	01,03 Q	C Batch ID: WG110	5586-3 QC	Sample: L1812057-0	1 Client ID:	GWW-101	
Mercury, Dissolved	ND	0.005	0.00480	96	_	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: BELFAST WATER DISTRICT

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Project Number: 171.05027.003

arameter	Native Sample	Duplicate Sam	nple Units	RPD	Qual RPD Limits
issolved Metals - Mansfield Lab Associated	d sample(s): 01,03 QC Batch ID	: WG1104824-4 G	QC Sample: L181205	7-01 Clie	nt ID: GWW-101
Aluminum, Dissolved	ND	ND	mg/l	NC	20
Arsenic, Dissolved	0.008	0.008	mg/l	2	20
Barium, Dissolved	ND	ND	mg/l	NC	20
Boron, Dissolved	ND	ND	mg/l	NC	20
Calcium, Dissolved	10.1	10.1	mg/l	0	20
Chromium, Dissolved	ND	ND	mg/l	NC	20
Cobalt, Dissolved	ND	ND	mg/l	NC	20
Copper, Dissolved	ND	ND	mg/l	NC	20
Iron, Dissolved	3.00	3.01	mg/l	0	20
Lead, Dissolved	ND	ND	mg/l	NC	20
Magnesium, Dissolved	4.20	4.25	mg/l	1	20
Manganese, Dissolved	0.033	0.034	mg/l	2	20
Molybdenum, Dissolved	ND	ND	mg/l	NC	20
Nickel, Dissolved	ND	ND	mg/l	NC	20
Potassium, Dissolved	ND	ND	mg/l	NC	20
Selenium, Dissolved	ND	ND	mg/l	NC	20
Silicon, Dissolved	10.7	10.7	mg/l	0	20
Silver, Dissolved	ND	ND	mg/l	NC	20
Sodium, Dissolved	12.1	12.1	mg/l	0	20

Lab Duplicate Analysis Batch Quality Control

Project Name: BELFAST WATER DISTRICT

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Project Number: 171.05027.003

Parameter	Native Sample	Duplicate Sample	e Units	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associate	ed sample(s): 01,03 QC Batch ID: V	VG1104824-4 QC \$	Sample: L1812057	7-01 Clien	t ID: GWW-101
Strontium, Dissolved	0.051	0.051	mg/l	0	20
Titanium, Dissolved	ND	ND	mg/l	NC	20
Vanadium, Dissolved	ND	ND	mg/l	NC	20
Zinc, Dissolved	ND	ND	mg/l	NC	20
Dissolved Metals - Mansfield Lab Associate	ed sample(s): 01,03 QC Batch ID: V	VG1104839-4 QC \$	Sample: L1812057	7-01 Clien	t ID: GWW-101
Antimony, Dissolved	ND	ND	mg/l	NC	20
Beryllium, Dissolved	ND	ND	mg/l	NC	20
Cadmium, Dissolved	ND	ND	mg/l	NC	20
Thallium, Dissolved	ND	ND	mg/l	NC	20
otal Metals - Mansfield Lab Associated sa	mple(s): 01,03 QC Batch ID: WG11	105073-4 QC Samp	ole: L1812057-03	Client ID:	GWW-103
Sulfur, Total	23.2	23.2	mg/l	0	20
Dissolved Metals - Mansfield Lab Associate	ed sample(s): 01,03 QC Batch ID: V	VG1105586-4 QC \$	Sample: L1812057	7-01 Clien	t ID: GWW-101
Mercury, Dissolved	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18
	SAMPLE RESULTS		
Lab ID:	L1812057-01	Date Collected:	04/05/18 08:15

Client ID:	GWW-101	GWW-101 BELFAST, ME					Received: (04/06/18 Field Filtered (Dissolved Metals &		
Sample Location:	BELFAST, N						lop.			
Sample Depth:	\\/otor						ſ	Phosphorus)		
Matrix:	Water				Dilution	Date	Date	Analytical		
Parameter	Result	Qualifier Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analys	
General Chemistry - We	stborough Lat	0								
UV Absorbance @ 254nm	0.023	Abs/cm	0.005	NA	1	-	04/07/18 06:10) 121,5910B	GD	
Alkalinity, Total	54.9	mg CaCO3/L	2.00	NA	1	-	04/10/18 09:33	3 121,2320B	BR	
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	04/09/18 13:45	5 121,2540D	DW	
Phosphorus, Total	0.122	mg/l	0.010		1	04/09/18 12:40	04/10/18 09:37	7 121,4500P-E	SD	
Phosphorus, Soluble	0.125	mg/l	0.010		1	04/11/18 11:45	04/12/18 11:10) 121,4500P-E	SD	

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1812057
Project Number:	171.05027.003	Report Date:	04/13/18
	SAMPLE RESULTS		
Lab ID:	L1812057-03	Date Collected:	04/05/18 08:45
Client ID:	GWW-103	Date Received:	04/06/18

Date Received: 04/06/18 Field Prep: Field Filtered (Dissolved Metals & Phosphorus)

Sample Depth: Matrix:

Water

Sample Location: BELFAST, ME

Parameter	Result Qua	alifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab								
UV Absorbance @ 254nm	0.011	Abs/cm	0.005	NA	1	-	04/07/18 06:10	121,5910B	GD
Alkalinity, Total	116.	mg CaCO3/L	2.00	NA	1	-	04/10/18 09:33	121,2320B	BR
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	04/09/18 13:45	121,2540D	DW
Phosphorus, Total	0.048	mg/l	0.010		1	04/09/18 12:40	04/10/18 09:38	121,4500P-E	SD
Phosphorus, Soluble	0.049	mg/l	0.010		1	04/11/18 11:45	04/12/18 11:11	121,4500P-E	SD

Project Name: Project Number:	BELFAST WATER DISTRICT 171.05027.003							L1812057 04/13/18	
			SAMPLE	RESUL	TS				
Lab ID:	L1812057-05					Date	Collected:	04/05/18 09:15	5
Client ID:	SS-1					Date I	Received:	04/06/18	
Sample Location:	BELFAST, ME					Field	Prep:	Not Specified	
Sample Depth: Matrix:	Soil								
Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lab								
olids, Total	78.1	%	0.100	NA	1	-	04/07/18 13:5	3 121,2540G	RI

Project Name: Project Number:		BELFAST WATER DISTRICT 171.05027.003							L1812057 04/13/18	
				SAMPLE	RESUL	TS				
Lab ID:	L1812057-06	6					Date (Collected:	04/05/18 11:30)
Client ID:	SS-2						Date I	Received:	04/06/18	
Sample Location:	BELFAST, N	1E					Field	Prep:	Not Specified	
Sample Depth:										
Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab									
olids, Total	73.2		%	0.100	NA	1	-	04/11/18 11:1	0 121,2540G	RI

 Lab Number:
 L1812057

 Report Date:
 04/13/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for s	sample(s): 0'	I,03 Ba	tch: W	G1104402-1	1			
UV Absorbance @ 254nm	ND	Abs/cm	0.005	NA	1	-	04/07/18 06:10	121,5910B	GD
General Chemistry - V	Vestborough Lab for s	sample(s): 0'	I,03 Ba	tch: W	G1104700-1	1			
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	04/09/18 13:45	121,2540D	DW
General Chemistry - V	Vestborough Lab for s	sample(s): 0'	I,03 Ba	tch: W	G1104782-1	1			
Phosphorus, Total	ND	mg/l	0.010		1	04/09/18 12:40	04/10/18 09:11	121,4500P-E	SD
General Chemistry - V	Vestborough Lab for s	sample(s): 0'	I,03 Ba	tch: W0	G 1105083- 1	1			
Alkalinity, Total	ND	mg CaCO3/	L 2.00	NA	1	-	04/10/18 09:33	121,2320B	BR
General Chemistry - V	Vestborough Lab for s	sample(s): 0'	I,03 Ba	tch: W	G 1105479- 1	1			
Phosphorus, Soluble	ND	mg/l	0.010		1	04/11/18 11:45	04/12/18 10:58	121,4500P-E	SD

Lab Control Sample Analysis Batch Quality Control

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003 Lab Number: L1812057 Report Date: 04/13/18

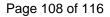
Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,03	Batch: WG110440	2-2				
UV Absorbance @ 254nm	100	-			-		
General Chemistry - Westborough Lab	Associated sample(s): 01,03	Batch: WG110478	2-2				
Phosphorus, Total	99	-		80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 01,03	Batch: WG110508	3-2				
Alkalinity, Total	103	-		90-110	-		10
General Chemistry - Westborough Lab	Associated sample(s): 01,03	Batch: WG110547	9-2				
Phosphorus, Soluble	102	-		80-120	-		

Project Name:	BELFAST WATER DISTRICT	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L1812057
Project Number:	171.05027.003		Report Date:	04/13/18

- -

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,03 QC Batch	n ID: WG1104402-3 C	QC Sample:	L1812057-03	Client ID: GWW-103
UV Absorbance @ 254nm	0.011	0.010	Abs/cm	10	
General Chemistry - Westborough Lab	Associated sample(s): 05 QC Batch ID	: WG1104512-1 QC	Sample: L18	312057-05 CI	ient ID: SS-1
Solids, Total	78.1	79.0	%	1	20

Sample Receipt and Container Information

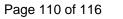

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent
В	Absent
С	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1812057-01A	Vial HCI preserved	А	NA		2.8	Y	Absent		ME-8260(14)
L1812057-01B	Vial HCI preserved	А	NA		2.8	Y	Absent		ME-8260(14)
L1812057-01C	Vial HCI preserved	А	NA		2.8	Y	Absent		ME-8260(14)
L1812057-01D	Plastic 250ml unpreserved/No Headspace	А	NA		2.8	Y	Absent		ALK-T-2320(14)
L1812057-01E	Plastic 250ml H2SO4 preserved	А	<2	<2	2.8	Y	Absent		SPHOS-4500(28)
L1812057-01F	Plastic 250ml H2SO4 preserved	А	<2	<2	2.8	Y	Absent		TPHOS-4500(28)
L1812057-01G L1812057-01H	Plastic 250ml HNO3 preserved Plastic 250ml HNO3 preserved	A	<2 <2	<2 <2	2.8	Y	Absent		B-SI(180),PB-SI(180),FE-SI(180),BA- SI(180),BE-6020S(180),TI-SI(180),AG- SI(180),AS-SI(180),CU-SI(180),MN- SI(180),NA-SI(180),NI-SI(180),AL-SI(180),CO- SI(180),SI-SI(180),SR-SI(180),TL- 6020S(180),CR-SI(180),K-SI(180),MG- SI(180),MO-SI(180),SB-6020S(180),CA- SI(180),CD-6020S(180),HG-S(28),SE- SI(180),V-SI(180),ZN-SI(180) TL-6020T(180),AS-TI(180),BA-TI(180),AG- TI(180),SI-TI(180),AL-TI(180),B-TI(180),CR- TI(180),MO TI(490),NET(1490),BE
									TI(180),MO-TI(180),NI-TI(180),S-TI(180),BE- 6020T(180),CU-TI(180),PB-TI(180),SE- TI(180),TI-TI(180),ZN-TI(180),CO-TI(180),SB- 6020T(180),V-TI(180),CD-6020T(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),SR- TI(180),CA-TI(180),HARDT(180),K-TI(180),NA- TI(180)
L1812057-01I	Amber 500ml unpreserved	А	7	7	2.8	Y	Absent		UV-254(2)
L1812057-01J	Plastic 950ml unpreserved	А	7	7	2.8	Y	Absent		TSS-2540(7)
L1812057-01K	Amber 1000ml unpreserved	А	7	7	2.8	Y	Absent		8270TCL(7),8270TCL-SIM(7)
L1812057-01L	Amber 1000ml unpreserved	А	7	7	2.8	Y	Absent		8270TCL(7),8270TCL-SIM(7)
L1812057-02A	Plastic 250ml unpreserved/No Headspace	А	NA		2.8	Y	Absent		HOLD-WETCHEM()



Serial_No:04131816:08 *Lab Number:* L1812057 *Report Date:* 04/13/18

Container Info	Container Information		Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler		pН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L1812057-03A	Vial HCI preserved	А	NA		2.8	Y	Absent		ME-8260(14)		
L1812057-03B	Vial HCI preserved	А	NA		2.8	Y	Absent		ME-8260(14)		
L1812057-03C	Vial HCl preserved	А	NA		2.8	Y	Absent		ME-8260(14)		
L1812057-03D	Plastic 250ml unpreserved/No Headspace	А	NA		2.8	Y	Absent		ALK-T-2320(14)		
L1812057-03E	Plastic 250ml H2SO4 preserved	А	<2	<2	2.8	Y	Absent		SPHOS-4500(28)		
L1812057-03F	Plastic 250ml H2SO4 preserved	А	<2	<2	2.8	Y	Absent		TPHOS-4500(28)		
L1812057-03G	Plastic 250ml HNO3 preserved	A	<2	<2	2.8	Y	Absent		B-SI(180),PB-SI(180),FE-SI(180),BA- SI(180),BE-6020S(180),TI-SI(180),AG- SI(180),AS-SI(180),CU-SI(180),MN- SI(180),NA-SI(180),NI-SI(180),AL-SI(180),CO- SI(180),SI-SI(180),SR-SI(180),AL-SI(180),MG- SI(180),MO-SI(180),SB-6020S(180),CA- SI(180),CD-6020S(180),HG-S(28),SE- SI(180),V-SI(180),ZN-SI(180)		
L1812057-03H	Plastic 250ml HNO3 preserved	A	<2	<2	2.8	Y	Absent		TL-6020T(180),AS-TI(180),BA-TI(180),AG- TI(180),SI-TI(180),AL-TI(180),B-TI(180),CR- TI(180),MO-TI(180),NI-TI(180),S-TI(180),BE- 6020T(180),CU-TI(180),PB-TI(180),SE- TI(180),TI-TI(180),ZN-TI(180),CO-TI(180),SB- 6020T(180),V-TI(180),CD-6020T(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),SR- TI(180),CA-TI(180),HARDT(180),K-TI(180),NA- TI(180)		
L1812057-03I	Amber 500ml unpreserved	А	7	7	2.8	Υ	Absent		UV-254(2)		
L1812057-03J	Plastic 950ml unpreserved	А	7	7	2.8	Υ	Absent		TSS-2540(7)		
L1812057-03K	Amber 1000ml unpreserved	А	7	7	2.8	Y	Absent		8270TCL(7),8270TCL-SIM(7)		
L1812057-03L	Amber 1000ml unpreserved	А	7	7	2.8	Y	Absent		8270TCL(7),8270TCL-SIM(7)		
L1812057-04A	Plastic 250ml unpreserved/No Headspace	А	NA		2.8	Y	Absent		HOLD-WETCHEM()		
L1812057-05A	Vial MeOH preserved	С	NA		4.2	Y	Absent		8260HLW(14)		
L1812057-05B	Vial water preserved	С	NA		4.2	Y	Absent	06-APR-18 12:00	8260HLW(14)		
L1812057-05C	Vial water preserved	С	NA		4.2	Y	Absent	06-APR-18 12:00	8260HLW(14)		
L1812057-05D	Plastic 2oz unpreserved for TS	С	NA		4.2	Y	Absent		ME-TS-2540(7)		
L1812057-05E	Metals Only-Glass 60mL/2oz unpreserved	С	NA		4.2	Y	Absent		BE-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),NI-TI(180),TL-TI(180),CU-TI(180),PB- TI(180),SB-TI(180),SE-TI(180),ZN-TI(180),HG- T(28),CD-TI(180)		
L1812057-05F	Glass 250ml/8oz unpreserved	С	NA		4.2	Y	Absent		8270TCL(14)		

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1812057-06A	Vial MeOH preserved	С	NA		4.2	Y	Absent		HOLD-8260HLW(14)
L1812057-06B	Vial water preserved	С	NA		4.2	Y	Absent	06-APR-18 12:00	HOLD-8260HLW(14)
L1812057-06C	Vial water preserved	С	NA		4.2	Y	Absent	06-APR-18 12:00	HOLD-8260HLW(14)
L1812057-06D	Plastic 2oz unpreserved for TS	С	NA		4.2	Y	Absent		HOLD-WETCHEM(),ME-TS-2540(7)
L1812057-06E	Glass 60mL/2oz unpreserved	С	NA		4.2	Y	Absent		HOLD-METAL(180)
L1812057-06F	Glass 250ml/8oz unpreserved	С	NA		4.2	Y	Absent		8270TCL-PAH(14)
L1812057-07A	Vial HCI preserved	В	NA		2.4	Y	Absent		HOLD-8260(14)
L1812057-07B	Vial HCI preserved	В	NA		2.4	Y	Absent		HOLD-8260(14)
L1812057-07C	Vial HCI preserved	В	NA		2.4	Y	Absent		HOLD-8260(14)
L1812057-07D	Plastic 250ml unpreserved/No Headspace	В	NA		2.4	Y	Absent		HOLD-WETCHEM()
L1812057-07E	Plastic 250ml unpreserved/No Headspace	В	NA		2.4	Y	Absent		HOLD-WETCHEM()
L1812057-07F	Plastic 250ml H2SO4 preserved	В	<2	<2	2.4	Y	Absent		HOLD-WETCHEM()
L1812057-07G	Plastic 250ml H2SO4 preserved	В	<2	<2	2.4	Y	Absent		HOLD-WETCHEM()
L1812057-07H	Plastic 250ml HNO3 preserved	В	<2	<2	2.4	Y	Absent		HOLD-METAL-DISSOLVED(180)
L1812057-07I	Plastic 250ml HNO3 preserved	В	<2	<2	2.4	Y	Absent		HOLD-METAL-TOTAL(180)
L1812057-07J	Amber 500ml unpreserved	В	7	7	2.4	Y	Absent		HOLD-WETCHEM(),PEST-8081(7)
L1812057-07K	Plastic 950ml unpreserved	В	7	7	2.4	Y	Absent		HOLD-WETCHEM()
L1812057-07L	Amber 1000ml unpreserved	В	7	7	2.4	Y	Absent		HOLD-8270(7)
L1812057-07M	Amber 1000ml unpreserved	В	7	7	2.4	Y	Absent		HOLD-8270(7)
L1812057-08A	Vial HCI preserved	В	NA		2.4	Y	Absent		HOLD-8260(14)
L1812057-08B	Vial HCI preserved	В	NA		2.4	Y	Absent		HOLD-8260(14)
L1812057-08C	Vial HCI preserved	В	NA		2.4	Y	Absent		HOLD-8260(14)
L1812057-08D	Plastic 250ml unpreserved/No Headspace	В	NA		2.4	Y	Absent		HOLD-WETCHEM()
L1812057-08E	Plastic 250ml unpreserved/No Headspace	В	NA		2.4	Y	Absent		HOLD-WETCHEM()
L1812057-08F	Plastic 250ml H2SO4 preserved	В	<2	<2	2.4	Y	Absent		HOLD-WETCHEM()
L1812057-08G	Plastic 250ml H2SO4 preserved	В	<2	<2	2.4	Y	Absent		HOLD-WETCHEM()
L1812057-08H	Plastic 250ml HNO3 preserved	В	<2	<2	2.4	Y	Absent		HOLD-METAL-DISSOLVED(180)
L1812057-08I	Plastic 250ml HNO3 preserved	В	<2	<2	2.4	Y	Absent		HOLD-METAL-TOTAL(180)

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L1812057-08J	Amber 500ml unpreserved	В	7	7	2.4	Y	Absent		HOLD-WETCHEM()	
L1812057-08K	Plastic 950ml unpreserved	В	7	7	2.4	Y	Absent		HOLD-WETCHEM()	
L1812057-08L	Amber 1000ml unpreserved	В	7	7	2.4	Y	Absent		HOLD-8270(7)	
L1812057-08M	Amber 1000ml unpreserved	В	7	7	2.4	Y	Absent		HOLD-8270(7)	
L1812057-09A	Vial HCl preserved	В	NA		2.4	Y	Absent		HOLD-8260(14)	
L1812057-09B	Vial HCl preserved	В	NA		2.4	Y	Absent		HOLD-8260(14)	
L1812057-09C	Vial HCI preserved	А	NA		2.8	Y	Absent		HOLD-8260(14)	
L1812057-09D	Vial HCI preserved	А	NA		2.8	Y	Absent		HOLD-8260(14)	

Serial_No:04131816:08

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Lab Number: L1812057

Report Date: 04/13/18

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after

adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH. Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Lab Number:	L1812057
Report Date:	04/13/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

 Lab Number:
 L1812057

 Report Date:
 04/13/18

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine. EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate EPA 9010: <u>NPW</u> and SCM: Amenable Cyanide Distillation SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. **Mansfield Facility**

SM 2540D: TSS EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: AI, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

					1						30	odi	in	5			Ser	ial_N	lo:04131816:08	
ALPHA	CHAIN O	F CUS	STO	DY,	AGE_/	OF	Da	ate Re	c'd in	Lab		4/6	118			ALP	HA J	ob #	: L 181205	7
		Project	Informat	ion	-		R	eport	Info	rmat	ion - I	Data D	elive	rable	s	State of Lot of	ng In		THE OWNER AND ADDRESS OF TAXABLE PARTY.	Í
8 Walkup Drive Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Project Na	me: Bel	fast	Varor	Distric	4 0	ADE	×		KEM	AIL				🗆 Sa	me as	Client	info PO#: 1075	54
lient Informati	on		and the second sec	elfast	and the second	Divition	and the second s	egula	itory	Req	uirem	ents	&	Proje	ct In				irements	
lient: Runs	on Consulting Inc.	Project #:	and the second se		7.003							alytical					Yes Z	No	CT RCP Analytical Meth	lods
ddress: MA	oporate price	Project Ma			thRan														P Inorganics) argets)	
PAVTSMAN	with NH 03801	ALPHA Q		IT DUNC	rycom	sory					S RGI		44	2 les			Crite	əria		
	136-1490	Turn-Ar	ound Tin	ne		Lade	-		7	7 \$	1 12	AS X		1.	1	12-	17	/	111	
	th, vansom @vansome	the second se					١.		()	R	TH	E	17	1/3	/	The sea	3	/	197	
a draw +	uchs @ronsomenu, com	Standa	rd 🗆	RUSH (anty	confirmed if pre-ap	proved!)		SISTIN	3/	3/	PX.	3	11	3	Tint	EY.	a la	1	all all	
Additional F	Project Information:	Date Du			1000			2/2	- 524.2	1	31	34	1	R	dian.	34	Sel	2/	SAMPLE INF	:0
Dissolved	metals & dissolved of samples for 55-1 &	phosp.	horis	Wone	Had	Alteral	\$	13	1 6	1	\$ 13		1. The	6	Inna	ad	- B	200	Filtration	
, low level VI	OC samples for 55-1 &	55-2 w	one fro	70n 41	6/1801	2:00		D 624	(1	D		[/]	奉	Aimo	the star	Ezh	2-1	A	Lab to do	1
			20201048		C.			R 8260	A ABN	THE A		//		ment	s¥.	New S	2 6		Preservation	6
ALPHA Lab ID			Colle	ection	Sample	Camples		~		Y	3			2 2	14	a a	A	E.	Lab to do	
Lab Use Only)	Sample ID		Date	Time	Matrix	Sampler Initials	/ icos	SU				5	E E	Be	74	Fig.	3/1	2/3	Sample Comment	is S
2057 - 01	GWW-101 DAF WE	419 4	45/18	8:15	GW	DAP	X	X	X	X		X	$\langle $	X	X	XX	<		Field Altonal dissolut metals + Sphos	11
-02	GWI GWI	W-101 4	15/18	8:15	GW	DAF												X	HOLD	2
- 03	GWW-103		15/18	8:45	GW	DAF	X	X	X	X		X	1	X	N	XV	1		Field fibrered drisoli metals + SPiros	e 11
-04	6ww-103		1/5/18	8:45	GW	DAP	1	\cap	~	\cap	-	1	+	V	1			V	HAI D	2
	5S-1		1/1/10	0	000	W/F	V	V	-	- 1	-	+	+	\vdash	+	-	V	1	IOW level VOCS EVOLA	
-05	00-1 DAP 4/0/14		1/5/18	9:15	2011	MAR	~	~	_	_		-	-			-	X		4/6/18@13100	E
	All 2		HELLS	215	Soll	Ber	-		_			-	-		-					Str
- 06	55-2		1/5/18	11:30	Sall	DAF	-		_	_	_	_			_	-	-	-	HOLD ALL	- 6
-07	GWW-101		4/18		61	DAF	-		_	-	_	_	-		-	_	-	-	HOLD ALL	
-08	GWW-103	4	14/18	9715	GW	DAF					_				_				HOLDALL	13
-09	Trop Blank						X												HOLD	2
ontainer Type • Plastic	Preservative A= None				Conta	iner Type	V	A	P	P	P	P		8	P	PP	A	P/A		
= Amber glass = Vial = Glass	B= HCI C= HNO ₃				Pre	servative	BAF	A	4	D	C	C		C	A	AA	N	A		
= Bacteria cup = Cube = Other	D= H ₂ SO ₄ E= NaOH F= MeOH	Relinquis	hed By:		Date	/Time			Be	ceive	d By:			D	ate/1	Time		-		
= Other = Encore = BOD Bottle	G= NaHSO4 H = N825/03 I= Ascorbic Acid J = NH ₄ Cl	U LUA	2-	A.a.	4/6/8	16:20	1	A	9	2	A	gh.		4/6	11	816	100	pha's	oles submitted are subje Terms and Conditions	ct to
age 116 of 116	M- To Acceleta	ale	Tubish	Ani	716/12	\$ 1930	1	M	1X	sul .	A	PA		419	15	12 in			erse side. 01-01 (rev. 12-Mar-2012)	
					110110	1770		vi	V		V	-	0	-11	ul	(1)	N			

ANALYTICAL REPORT

Lab Number:	L1807820
Client:	Ransom Consulting, Inc.
	400 Commercial Street
	Suite 404
	Portland, ME 04101-4660
ATTN:	Elizabeth Ransom
Phone:	(207) 772-2891
Project Name:	BELFAST WATER DISTRICT
Project Number:	171.05027.003
Report Date:	03/15/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:03151816:07

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1807820-01	GWW-103	WATER	BELFAST, ME	03/06/18 13:30	03/07/18
L1807820-02	TRIP BLANK	WATER	BELFAST, ME	03/06/18 00:00	03/07/18

 Lab Number:
 L1807820

 Report Date:
 03/15/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Lab Number:
 L1807820

 Report Date:
 03/15/18

Case Narrative (continued)

Dissolved Metals

The WG1095792-3 MS recovery for sodium (10%), performed on L1807820-01, does not apply because the sample concentration is greater than four times the spike amount added.

Total Metals

The WG1096871-3 MS recovery for silicon (244%), performed on L1807820-01, does not apply because the sample concentration is greater than four times the spike amount added.

Phosphorus, Soluble

The samples were field filtered; a filter blank was not received.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Standow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 03/15/18

ORGANICS

VOLATILES

		Serial_No:03151816:07
Project Name:	BELFAST WATER DISTRICT	Lab Number: L1807820
Project Number:	171.05027.003	Report Date: 03/15/18
	SAMPLE RESULTS	6
Lab ID:	L1807820-01	Date Collected: 03/06/18 13:30
Client ID:	GWW-103	Date Received: 03/07/18
Sample Location:	BELFAST, ME	Field Prep: Field Filtered (Dissolved
Sample Depth:		Metals and SPhos)
Matrix:	Water	
Analytical Method:	1,8260C	
Analytical Date:	03/12/18 09:33	
Analyst:	PD	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	1.0		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	0.20		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1

					S	Serial_N	0:03151816:07
Project Name:	BELFAST WATER D	DISTRICT			Lab Nu		L1807820
Project Number:	171.05027.003				Report	Date:	03/15/18
··· , ·····	1111000211000	SAMPI	LE RESULTS	6			00/10/10
Lab ID: Client ID: Sample Location: Sample Depth:	L1807820-01 GWW-103 BELFAST, ME				Date Coll Date Rec Field Pre	eived:	03/06/18 13:30 03/07/18 Field Filtered (Dissolved Metals and SPhos)
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborou	gh Lab					
1,2-Dichloroethene, Tota	I	ND		ug/l	0.50		1
Trichloroethene	·	ND		ug/l	0.50		1
1,2-Dichlorobenzene		ND		ug/l	1.0		1
1,3-Dichlorobenzene		ND		ug/l	1.0		1
1,4-Dichlorobenzene		ND		ug/l	1.0		1
Methyl tert butyl ether		ND		ug/l	1.0		1
p/m-Xylene		ND		ug/l	1.0		1
o-Xylene		ND		ug/l	1.0		1
Xylenes, Total		ND		ug/l	1.0		1
cis-1,2-Dichloroethene		ND		ug/l	0.50		1
Dibromomethane		ND		ug/l	1.0		1
1,4-Dichlorobutane		ND		ug/l	5.0		1
1,2,3-Trichloropropane		ND		ug/l	1.0		1
Styrene		ND		ug/l	1.0		1
Dichlorodifluoromethane		ND		ug/l	2.0		1
Acetone		ND		ug/l	5.0		1
Carbon disulfide		ND		ug/l	1.0		1
2-Butanone		ND		ug/l	5.0		1
Vinyl acetate		ND		ug/l	5.0		1
4-Methyl-2-pentanone		ND		ug/l	5.0		1
2-Hexanone		ND		ug/l	5.0		1
Ethyl methacrylate		ND		ug/l	5.0		1
Acrylonitrile		ND		ug/l	5.0		1
Bromochloromethane		ND		ug/l	1.0		1
Tetrahydrofuran		ND		ug/l	2.0		1
2,2-Dichloropropane		ND		ug/l	1.0		1
1,2-Dibromoethane		ND		ug/l	1.0		1
1,3-Dichloropropane		ND		ug/l	1.0		1
1,1,1,2-Tetrachloroethan	e	ND		ug/l	0.50		1
Bromobenzene		ND		ug/l	1.0		1
n-Butylbenzene		ND		ug/l	0.50		1
sec-Butylbenzene		ND		ug/l	0.50		1
tert-Butylbenzene		ND		ug/l	1.0		1
o-Chlorotoluene		ND		ug/l	1.0		1
p-Chlorotoluene		ND		ug/l	1.0		1
1,2-Dibromo-3-chloropro	pane	ND		ug/l	1.0		1
Hexachlorobutadiene		ND		ug/l	0.50		1

						Serial_No:03151816:07					
Project Name:	BELFAST WATER D	ISTRICT			Lab Nu	Imber:	L1807820				
Project Number:	171.05027.003				Report	Date:	03/15/18				
		SAMP	LE RESULTS	5							
Lab ID: Client ID: Sample Location: Sample Depth:	L1807820-01 GWW-103 BELFAST, ME				Date Co Date Re Field Pre	ceived:	03/06/18 13:30 03/07/18 Field Filtered (Dissolved Metals and SPhos)				
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics b	oy GC/MS - Westboroug	gh Lab									
Isopropylbenzene		ND		ug/l	0.50		1				
p-lsopropyltoluene		ND		ug/l	0.50		1				
Naphthalene		ND		ug/l	1.0		1				
n-Propylbenzene		ND		ug/l	0.50		1				

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

1.0

1.0

1.0

1.0

2.5

1.0

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	95	70-130	

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Ethyl ether

trans-1,4-Dichloro-2-butene

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

L1807820 Report Date: 03/15/18

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	03/12/18 09:05
Analyst:	PD

arameter	Result	Result Qualifier Units		RL	MDL	
olatile Organics by GC/MS - \	Nestborough La	b for samp	e(s): 01	Batch:	WG1096515-5	
Methylene chloride	ND		ug/l	3.0		
1,1-Dichloroethane	ND		ug/l	0.75		
Chloroform	ND		ug/l	0.75		
Carbon tetrachloride	ND		ug/l	0.50		
1,2-Dichloropropane	ND		ug/l	1.0		
Dibromochloromethane	ND		ug/l	0.50		
1,1,2-Trichloroethane	ND		ug/l	0.75		
2-Chloroethylvinyl ether	ND		ug/l	10		
Tetrachloroethene	ND		ug/l	0.50		
Chlorobenzene	ND		ug/l	0.50		
Trichlorofluoromethane	ND		ug/l	1.0		
1,2-Dichloroethane	ND		ug/l	0.50		
1,1,1-Trichloroethane	ND		ug/l	0.50		
Bromodichloromethane	ND		ug/l	0.50		
trans-1,3-Dichloropropene	ND		ug/l	0.50		
cis-1,3-Dichloropropene	ND		ug/l	0.50		
1,3-Dichloropropene, Total	ND		ug/l	0.50		
1,1-Dichloropropene	ND		ug/l	1.0		
Bromoform	ND		ug/l	1.0		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		
Benzene	ND		ug/l	0.50		
Toluene	ND		ug/l	0.75		
Ethylbenzene	ND		ug/l	0.50		
Chloromethane	ND		ug/l	2.0		
Bromomethane	ND		ug/l	1.0		
Vinyl chloride	ND		ug/l	0.20		
Chloroethane	ND		ug/l	1.0		
1,1-Dichloroethene	ND		ug/l	0.50		
trans-1,2-Dichloroethene	ND		ug/l	0.75		

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Report Date:

 Lab Number:
 L1807820

 Report Date:
 03/15/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	03/12/18 09:05
Analyst:	PD

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - W	Vestborough Lal	o for sampl	e(s): 01	Batch:	WG1096515-5
1,2-Dichloroethene, Total	ND		ug/l	0.50	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	1.0	
1,3-Dichlorobenzene	ND		ug/l	1.0	
1,4-Dichlorobenzene	ND		ug/l	1.0	
Methyl tert butyl ether	ND		ug/l	1.0	
p/m-Xylene	ND		ug/l	1.0	
o-Xylene	ND		ug/l	1.0	
Xylenes, Total	ND		ug/l	1.0	
cis-1,2-Dichloroethene	ND		ug/l	0.50	
Dibromomethane	ND		ug/l	1.0	
1,4-Dichlorobutane	ND		ug/l	5.0	
lodomethane	ND		ug/l	5.0	
1,2,3-Trichloropropane	ND		ug/l	1.0	
Styrene	ND		ug/l	1.0	
Dichlorodifluoromethane	ND		ug/l	2.0	
Acetone	ND		ug/l	5.0	
Carbon disulfide	ND		ug/l	1.0	
2-Butanone	ND		ug/l	5.0	
Vinyl acetate	ND		ug/l	5.0	
4-Methyl-2-pentanone	ND		ug/l	5.0	
2-Hexanone	ND		ug/l	5.0	
Ethyl methacrylate	ND		ug/l	5.0	
Acrolein	ND		ug/l	5.0	
Acrylonitrile	ND		ug/l	5.0	
Bromochloromethane	ND		ug/l	1.0	
Tetrahydrofuran	ND		ug/l	2.0	
2,2-Dichloropropane	ND		ug/l	1.0	
1,2-Dibromoethane	ND		ug/l	1.0	

L1807820

03/15/18

Lab Number:

Report Date:

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:03/12/18 09:05Analyst:PD

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 0	1 Batch:	WG1096515-5	
1,3-Dichloropropane	ND	ug/l	1.0		
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
Bromobenzene	ND	ug/l	1.0		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	1.0		
o-Chlorotoluene	ND	ug/l	1.0	-	
p-Chlorotoluene	ND	ug/l	1.0	-	
1,2-Dibromo-3-chloropropane	ND	ug/l	1.0	-	
Hexachlorobutadiene	ND	ug/l	0.50		
Isopropylbenzene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		
Naphthalene	ND	ug/l	1.0		
n-Propylbenzene	ND	ug/l	0.50		
1,2,3-Trichlorobenzene	ND	ug/l	1.0	-	
1,2,4-Trichlorobenzene	ND	ug/l	1.0		
1,3,5-Trimethylbenzene	ND	ug/l	1.0		
1,3,5-Trichlorobenzene	ND	ug/l	1.0		
1,2,4-Trimethylbenzene	ND	ug/l	1.0		
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5		
Halothane	ND	ug/l	2.5		
Ethyl ether	ND	ug/l	1.0		
Methyl Acetate	ND	ug/l	10		
Ethyl Acetate	ND	ug/l	10		
Isopropyl Ether	ND	ug/l	1.0		
Cyclohexane	ND	ug/l	10		
Tert-Butyl Alcohol	ND	ug/l	10		
Ethyl-Tert-Butyl-Ether	ND	ug/l	1.0		
Tertiary-Amyl Methyl Ether	ND	ug/l	1.0		

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Lab Number: L1807820 Report Date: 03/15/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	03/12/18 09:05
Analyst:	PD

Parameter	Result	Qualifier	Units	RL	MDL	
/olatile Organics by GC/MS - West	borough La	b for sampl	e(s): 01	Batch:	WG1096515-5	
1,4-Dioxane	ND		ug/l	250		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/l	10		
Methyl cyclohexane	ND		ug/l	10		
p-Diethylbenzene	ND		ug/l	2.0		
4-Ethyltoluene	ND		ug/l	2.0		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0		

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	89		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	95		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Number: 171.05027.003 Lab Number: L1807820 Report Date: 03/15/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG	1096515-3	WG1096515-4			
Methylene chloride	100		100		70-130	0	20	
1,1-Dichloroethane	100		95		70-130	5	20	
Chloroform	95		92		70-130	3	20	
Carbon tetrachloride	88		84		63-132	5	20	
1,2-Dichloropropane	98		94		70-130	4	20	
Dibromochloromethane	92		92		63-130	0	20	
1,1,2-Trichloroethane	97		97		70-130	0	20	
2-Chloroethylvinyl ether	93		91		70-130	2	20	
Tetrachloroethene	88		86		70-130	2	20	
Chlorobenzene	95		93		75-130	2	25	
Trichlorofluoromethane	94		88		62-150	7	20	
1,2-Dichloroethane	93		88		70-130	6	20	
1,1,1-Trichloroethane	92		88		67-130	4	20	
Bromodichloromethane	91		87		67-130	4	20	
trans-1,3-Dichloropropene	95		93		70-130	2	20	
cis-1,3-Dichloropropene	94		92		70-130	2	20	
1,1-Dichloropropene	95		90		70-130	5	20	
Bromoform	88		84		54-136	5	20	
1,1,2,2-Tetrachloroethane	100		98		67-130	2	20	
Benzene	93		90		70-130	3	25	
Toluene	95		92		70-130	3	25	
Ethylbenzene	94		91		70-130	3	20	
Chloromethane	98		92		64-130	6	20	

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01	Batch: WG	1096515-3	WG1096515-4			
Bromomethane	120		110		39-139	9	20	
Vinyl chloride	120		110		55-140	9	20	
Chloroethane	120		110		55-138	9	20	
1,1-Dichloroethene	96		91		61-145	5	25	
trans-1,2-Dichloroethene	99		93		70-130	6	20	
Trichloroethene	90		84		70-130	7	25	
1,2-Dichlorobenzene	95		92		70-130	3	20	
1,3-Dichlorobenzene	95		92		70-130	3	20	
1,4-Dichlorobenzene	96		92		70-130	4	20	
Methyl tert butyl ether	96		93		63-130	3	20	
p/m-Xylene	95		95		70-130	0	20	
o-Xylene	95		95		70-130	0	20	
cis-1,2-Dichloroethene	97		91		70-130	6	20	
Dibromomethane	92		91		70-130	1	20	
1,4-Dichlorobutane	93		91		70-130	2	20	
lodomethane	54	Q	55	Q	70-130	2	20	
1,2,3-Trichloropropane	99		93		64-130	6	20	
Styrene	115		110		70-130	4	20	
Dichlorodifluoromethane	89		83		36-147	7	20	
Acetone	77		78		58-148	1	20	
Carbon disulfide	100		96		51-130	4	20	
2-Butanone	92		92		63-138	0	20	
Vinyl acetate	86		84		70-130	2	20	

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 0	1 Batch: WG	1096515-3	WG1096515-4			
4-Methyl-2-pentanone	90		94		59-130	4	20	
2-Hexanone	74		76		57-130	3	20	
Ethyl methacrylate	80		80		70-130	0	20	
Acrolein	230	Q	220	Q	70-130	4	20	
Acrylonitrile	99		99		70-130	0	20	
Bromochloromethane	96		91		70-130	5	20	
Tetrahydrofuran	99		98		58-130	1	20	
2,2-Dichloropropane	98		91		63-133	7	20	
1,2-Dibromoethane	92		90		70-130	2	20	
1,3-Dichloropropane	98		96		70-130	2	20	
1,1,1,2-Tetrachloroethane	92		92		64-130	0	20	
Bromobenzene	93		90		70-130	3	20	
n-Butylbenzene	97		92		53-136	5	20	
sec-Butylbenzene	97		92		70-130	5	20	
tert-Butylbenzene	96		90		70-130	6	20	
o-Chlorotoluene	95		92		70-130	3	20	
p-Chlorotoluene	95		90		70-130	5	20	
1,2-Dibromo-3-chloropropane	86		90		41-144	5	20	
Hexachlorobutadiene	80		75		63-130	6	20	
Isopropylbenzene	96		91		70-130	5	20	
p-Isopropyltoluene	97		92		70-130	5	20	
Naphthalene	89		86		70-130	3	20	
n-Propylbenzene	97		93		69-130	4	20	

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	I Batch: WG ²	1096515-3	WG1096515-4			
1,2,3-Trichlorobenzene	88		86		70-130	2		20
1,2,4-Trichlorobenzene	88		84		70-130	5		20
1,3,5-Trimethylbenzene	95		91		64-130	4		20
1,3,5-Trichlorobenzene	91		88		70-130	3		20
1,2,4-Trimethylbenzene	93		89		70-130	4		20
trans-1,4-Dichloro-2-butene	90		86		70-130	5		20
Halothane	90		84		70-130	7		20
Ethyl ether	100		98		59-134	2		20
Methyl Acetate	110		100		70-130	10		20
Ethyl Acetate	93		91		70-130	2		20
Isopropyl Ether	93		92		70-130	1		20
Cyclohexane	97		92		70-130	5		20
Tert-Butyl Alcohol	118		114		70-130	3		20
Ethyl-Tert-Butyl-Ether	96		93		70-130	3		20
Tertiary-Amyl Methyl Ether	93		90		66-130	3		20
1,4-Dioxane	140		122		56-162	14		20
1,1,2-Trichloro-1,2,2-Trifluoroethane	97		90		70-130	7		20
Methyl cyclohexane	96		89		70-130	8		20
p-Diethylbenzene	96		90		70-130	6		20
4-Ethyltoluene	99		95		70-130	4		20
1,2,4,5-Tetramethylbenzene	91		88		70-130	3		20

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

	LCS	_	LCSD	_	%Recovery		_	RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough	h Lab Associated	sample(s):	01 Batch: WG1	096515-3	WG1096515-4				

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	91	93	70-130
Toluene-d8	99	99	70-130
4-Bromofluorobenzene	93	92	70-130
Dibromofluoromethane	96	97	70-130

SEMIVOLATILES

		Serial_No:03151816:07
Project Name:	BELFAST WATER DISTRICT	Lab Number: L1807820
Project Number:	171.05027.003	Report Date: 03/15/18
	SAMPLE RESULT	S
Lab ID:	L1807820-01	Date Collected: 03/06/18 13:30
Client ID:	GWW-103	Date Received: 03/07/18
Sample Location: Sample Depth:	BELFAST, ME	Field Prep: Field Filtered (Dissolved Metals and SPhos)
Matrix:	Water	Extraction Method:EPA 3510C
Analytical Method:	1,8270D	Extraction Date: 03/08/18 17:18
Analytical Date:	03/13/18 02:50	
Analyst:	EK	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorocyclopentadiene	ND		ug/l	20		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA	ND		ug/l	2.0		1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1

					Serial_No:03151816:07				
Project Name:	BELFAST WATER D	STRICT			Lab Nu	mber:	L1807820		
Project Number:	171.05027.003				Report	Date:	03/15/18		
		SAMPI		6					
Lab ID: Client ID: Sample Location: Sample Depth:	L1807820-01 GWW-103 BELFAST, ME				Date Co Date Re Field Pre	ceived:	03/06/18 13:30 03/07/18 Field Filtered (Dissolved Metals and SPhos)		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Orgar	nics by GC/MS - Westbo	orough Lab							
2-Nitroaniline		ND		ug/l	5.0		1		
3-Nitroaniline		ND		ug/l	5.0		1		
4-Nitroaniline		ND		ug/l	5.0		1		
Dibenzofuran		ND		ug/l	2.0		1		
n-Nitrosodimethylamine		ND		ug/l	2.0		1		
2,4,6-Trichlorophenol		ND		ug/l	5.0		1		
p-Chloro-m-cresol		ND		ug/l	2.0		1		
2-Chlorophenol		ND		ug/l	2.0		1		
2,4-Dichlorophenol		ND		ug/l	5.0		1		
2,4-Dimethylphenol		ND		ug/l	5.0		1		
2-Nitrophenol		ND		ug/l	10		1		

ug/l

% Recovery

55

35

99

89

83

89

10

20

10

5.0

5.0

5.0

5.0

50

2.0

2.0

3.5

Qualifier

--

--

--

--

--

Acceptance Criteria

21-120

10-120

23-120

15-120

10-120

41-149

ND

AUDICA	
ANALYTICAL	

1

1

1

1

1

1

1

1 1

1

1

4-Nitrophenol

Phenol

2,4-Dinitrophenol

2-Methylphenol

Benzoic Acid

Benzyl Alcohol

Carbazole

Pyridine

4,6-Dinitro-o-cresol

2,4,5-Trichlorophenol

Surrogate

Phenol-d6

2-Fluorophenol

Nitrobenzene-d5

2-Fluorobiphenyl

4-Terphenyl-d14

2,4,6-Tribromophenol

3-Methylphenol/4-Methylphenol

		Serial_No:03151816:07
Project Name:	BELFAST WATER DISTRICT	Lab Number: L1807820
Project Number:	171.05027.003	Report Date: 03/15/18
	SAMPLE RESULTS	
Lab ID:	L1807820-01	Date Collected: 03/06/18 13:30
Client ID:	GWW-103	Date Received: 03/07/18
Sample Location: Sample Depth:	BELFAST, ME	Field Prep: Field Filtered (Dissolved Metals and SPhos)
Matrix:	Water	Extraction Method: EPA 3510C
Analytical Method:	1,8270D-SIM	Extraction Date: 03/08/18 17:19
Analytical Date:	03/10/18 16:25	
Analyst:	KL	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough La	b				
Acenaphthene	ND		ug/l	0.10		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.10		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
1-Methylnaphthalene	ND		ug/l	0.10		1
2-Methylnaphthalene	ND		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

Parameter		Result	Qualifier	Units	RL MD	Dilution Factor
Lab ID: Client ID: Sample Location: Sample Depth:	L1807820-01 GWW-103 BELFAST, ME				Date Collected Date Received Field Prep:	
Project Number:	171.05027.003	SAMP	LE RESULTS	5	Report Date:	03/15/18
Project Name:	BELFAST WATER DIS	TRICT			Serial_ Lab Number:	No:03151816:07 L1807820

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	48	21-120
Phenol-d6	33	10-120
Nitrobenzene-d5	87	23-120
2-Fluorobiphenyl	80	15-120
2,4,6-Tribromophenol	104	10-120
4-Terphenyl-d14	88	41-149

L1807820 03/15/18

Project Name:	BELFAST WATER DISTRICT	Lab Number:
Project Number:	171.05027.003	Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:1,8270D-SIMEAnalytical Date:03/09/18 10:03EAnalyst:DV

Extraction Method:EPA 3510CExtraction Date:03/08/18 08:52

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/MS-SI	M - Westbo	rough Lab	for sample(s): 01	Batch: WG1095448-1
Acenaphthene	ND		ug/l	0.10	
2-Chloronaphthalene	ND		ug/l	0.20	
Fluoranthene	ND		ug/l	0.10	
Hexachlorobutadiene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	0.10	
Benzo(a)anthracene	ND		ug/l	0.10	
Benzo(a)pyrene	ND		ug/l	0.10	
Benzo(b)fluoranthene	ND		ug/l	0.10	
Benzo(k)fluoranthene	ND		ug/l	0.10	
Chrysene	ND		ug/l	0.10	
Acenaphthylene	ND		ug/l	0.10	
Anthracene	ND		ug/l	0.10	
Benzo(ghi)perylene	ND		ug/l	0.10	
Fluorene	ND		ug/l	0.10	
Phenanthrene	ND		ug/l	0.10	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	
Pyrene	ND		ug/l	0.10	
1-Methylnaphthalene	ND		ug/l	0.10	
2-Methylnaphthalene	ND		ug/l	0.10	
Pentachlorophenol	ND		ug/l	0.80	
Hexachlorobenzene	ND		ug/l	0.80	
Hexachloroethane	ND		ug/l	0.80	-

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1807820
Project Number:	171.05027.003	Report Date:	03/15/18
	Method Blank Analysis Batch Quality Control	S	
		Eutropticus Mathaalu	

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	03/09/18 10:03	Extraction Date:	03/08/18 08:52
Analyst:	DV		

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	SIM - West	oorough Lab	for sampl	e(s): 01	Batch: WG1095448-1

Surrogate	%Recovery Q	Acceptance ualifier Criteria
2-Fluorophenol	26	21-120
Phenol-d6	26	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	85	15-120
2,4,6-Tribromophenol	48	10-120
4-Terphenyl-d14	100	41-149

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1807820
Project Number:	171.05027.003	Report Date:	03/15/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8270D 03/08/18 22:28 RC Extraction Method: EPA 3510C Extraction Date: 03/08/18 11:00

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/M	S - Westborough	n Lab for s	ample(s):	01	Batch:	WG1095492-1
Acenaphthene	ND		ug/l		2.0	
Benzidine	ND		ug/l		20	
1,2,4-Trichlorobenzene	ND		ug/l		5.0	
Hexachlorobenzene	ND		ug/l		2.0	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	
2-Chloronaphthalene	ND		ug/l		2.0	
1,2-Dichlorobenzene	ND		ug/l		2.0	
1,3-Dichlorobenzene	ND		ug/l		2.0	
1,4-Dichlorobenzene	ND		ug/l		2.0	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	
2,4-Dinitrotoluene	ND		ug/l		5.0	
2,6-Dinitrotoluene	ND		ug/l		5.0	
Azobenzene	ND		ug/l		2.0	
Fluoranthene	ND		ug/l		2.0	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	
Hexachlorobutadiene	ND		ug/l		2.0	
Hexachlorocyclopentadiene	ND		ug/l		20	
Hexachloroethane	ND		ug/l		2.0	
Isophorone	ND		ug/l		5.0	
Naphthalene	ND		ug/l		2.0	
Nitrobenzene	ND		ug/l		2.0	
NDPA/DPA	ND		ug/l		2.0	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	
Butyl benzyl phthalate	ND		ug/l		5.0	
Di-n-butylphthalate	ND		ug/l		5.0	

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1807820
Project Number:	171.05027.003	Report Date:	03/15/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8270D 03/08/18 22:28 RC Extraction Method: EPA 3510C Extraction Date: 03/08/18 11:00

emivolatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1095492-1 Din-octylphthalate ND ug/l 5.0 Diethyl phthalate ND ug/l 5.0 Dinethyl phthalate ND ug/l 5.0 Benzo(a)anthracene ND ug/l 2.0 Benzo(a)pyrene ND ug/l 2.0 Benzo(a)pyrene ND ug/l 2.0 Benzo(a)pyrene ND ug/l 2.0 Benzo(k)fluoranthene ND ug/l 2.0 Benzo(k)fluoranthene ND ug/l 2.0 Acenaphthylene ND ug/l 2.0 Anthracene ND ug/l 2.0 Fluorene ND ug/l 2.0 Pyrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 <	arameter	Result	Qualifier	Units		RL	MDL
Diethyl phthalate ND ug/l 5.0 Dimethyl phthalate ND ug/l 5.0 Benzo(a)anthracene ND ug/l 2.0 Benzo(a)anthracene ND ug/l 2.0 Benzo(b)fluoranthene ND ug/l 2.0 Benzo(k)fluoranthene ND ug/l 2.0 Benzo(k)fluoranthene ND ug/l 2.0 Chrysene ND ug/l 2.0 Acenaphthylene ND ug/l 2.0 Anthracene ND ug/l 2.0 Fluorene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Antime ND ug/l 2.0 Siph	emivolatile Organics by GC/MS	- Westboroug	n Lab for s	ample(s):	01	Batch:	WG1095492-1
Dimethyl phthalate ND ug/l 5.0 Benzo(a)anthracene ND ug/l 2.0 Benzo(a)pyrene ND ug/l 2.0 Benzo(b)fluoranthene ND ug/l 2.0 Benzo(k)fluoranthene ND ug/l 2.0 Chrysene ND ug/l 2.0 Acenapthylene ND ug/l 2.0 Anthracene ND ug/l 2.0 Benzo(ghi)perylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Achloroa	Di-n-octylphthalate	ND		ug/l		5.0	
Benzo(a)anthracene ND ug/l 2.0 Benzo(a)pyrene ND ug/l 2.0 Benzo(k)fluoranthene ND ug/l 2.0 Benzo(k)fluoranthene ND ug/l 2.0 Chrysene ND ug/l 2.0 Acenaphthylene ND ug/l 2.0 Anthracene ND ug/l 2.0 Benzo(ghi)perylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Diberzo(a,h)anthracene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Ariline ND ug/l 2.0 Ariline ND ug/l 2.0 Aniline ND <td>Diethyl phthalate</td> <td>ND</td> <td></td> <td>ug/l</td> <td></td> <td>5.0</td> <td></td>	Diethyl phthalate	ND		ug/l		5.0	
Benzo(a)pyreneNDug/l2.0Benzo(b)fluorantheneNDug/l2.0Benzo(k)fluorantheneNDug/l2.0ChryseneNDug/l2.0AcenaphthyleneNDug/l2.0AnthraceneNDug/l2.0Benzo(ghi)peryleneNDug/l2.0FluoreneNDug/l2.0PhenanthreneNDug/l2.0Dibenzo(a,h)anthraceneNDug/l2.0Inden(1,2,3-cd)pyreneNDug/l2.0PyreneNDug/l2.0BiphenylNDug/l2.0AntlineNDug/l2.0PyreneNDug/l2.0AntlineNDug/l2.0AntlineNDug/l2.0AntlineNDug/l2.0AntlineNDug/l2.0AntlineNDug/l5.0AntlineNDug/l5.0AntlineNDug/l5.0AntlineNDug/l5.0AntlineNDug/l5.0AnticanilineNDug/l5.0AnticanilineNDug/l5.0AnticanilineNDug/l5.0	Dimethyl phthalate	ND		ug/l		5.0	
Benzo(b)Iuoranthene ND ug/l 2.0 Benzo(k)Iluoranthene ND ug/l 2.0 Chrysene ND ug/l 2.0 Acenaphthylene ND ug/l 2.0 Anthracene ND ug/l 2.0 Benzo(ghi)perylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 4-Chloroaniline ND ug/l 2.0 1-Methylnaphthalene ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 1-Methyl	Benzo(a)anthracene	ND		ug/l		2.0	
Benzo(k)fluorantheneNDug/l2.0ChryseneNDug/l2.0AcenaphthyleneNDug/l2.0AnthraceneNDug/l2.0Benzo(ghi)peryleneNDug/l2.0FluoreneNDug/l2.0PhenanthreneNDug/l2.0Dibenzo(a,h)anthraceneNDug/l2.0Indeno(1,2,3-cd)pyreneNDug/l2.0PyreneNDug/l2.0BiphenylNDug/l2.0AntlineNDug/l2.0SiphenylNDug/l2.0AntlineNDug/l2.0SiphenylNDug/l2.04-ChloroanilineNDug/l5.03-NitroanilineNDug/l5.04-NitroanilineNDug/l5.02-MethylnaphthaleneNDug/l2.02-MethylnaphthaleneNDug/l2.02-MethylnaphthaleneNDug/l2.02-MethylnaphthaleneNDug/l2.02-MethylnaphthaleneNDug/l2.02-MethylnaphthaleneNDug/l2.02-MethylnaphthaleneNDug/l2.02-MethylnaphthaleneNDug/l <td< td=""><td>Benzo(a)pyrene</td><td>ND</td><td></td><td>ug/l</td><td></td><td>2.0</td><td></td></td<>	Benzo(a)pyrene	ND		ug/l		2.0	
Chrysene ND ug/l 2.0 Acenaphthylene ND ug/l 2.0 Anthracene ND ug/l 2.0 Benzo(ghi)perylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 2.0 1-Methylnaphthalene ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 2-Methylnaphthalene	Benzo(b)fluoranthene	ND		ug/l		2.0	
Acenaphthylene ND ug/l 2.0 Anthracene ND ug/l 2.0 Benzo(ghi)perylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 2.0 1-Methylnaphthalene ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 2-Nitroaniline ND ug/l 2.0 2-Methylnaphthalene<	Benzo(k)fluoranthene	ND		ug/l		2.0	
Anthracene ND ug/l 2.0 Benzo(ghi)perylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 2.0 1-Methylnaphthalene ND ug/l 2.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 2-Nethylnaphthalene ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 2-Methylna	Chrysene	ND		ug/l		2.0	
Benzo(ghi)perylene ND ug/l 2.0 Fluorene ND ug/l 2.0 Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 2.0 1-Methylnaphthalene ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 2-Nethylnaphthalene ND ug/l 5.0 2-Nitroaniline ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 2-Met	Acenaphthylene	ND		ug/l		2.0	
FluoreneNDug/l2.0PhenanthreneNDug/l2.0Dibenzo(a,h)anthraceneNDug/l2.0Indeno(1,2,3-cd)pyreneNDug/l2.0PyreneNDug/l2.0BiphenylNDug/l2.0AnilineNDug/l2.04-ChloroanilineNDug/l2.01-MethylnaphthaleneNDug/l5.02-NitroanilineNDug/l5.03-NitroanilineNDug/l5.04-NitroanilineNDug/l5.02-MethylnaphthaleneNDug/l5.01-NitroanilineNDug/l2.02-AnthroanilineNDug/l5.02-MethylnaphthaleneNDug/l5.02-MethylnaphthaleneNDug/l2.02-MethylnaphthaleneNDug/l2.02-MethylnaphthaleneNDug/l2.02-AntrosodimethylamineNDug/l2.02-AntrohoronphenolNDug/l2.02-AntrohoronphenolNDug/l2.02-AntrohoronphenolNDug/l2.02-AntrohoronphenolNDug/l2.02-AntrohoronphenolNDug/l2.02-Antroh	Anthracene	ND		ug/l		2.0	
Phenanthrene ND ug/l 2.0 Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 2.0 1-Methylnaphthalene ND ug/l 2.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 Dibenzofuran ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 2,4,6	Benzo(ghi)perylene	ND		ug/l		2.0	
Dibenzo(a,h)anthracene ND ug/l 2.0 Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 2.0 1-Methylnaphthalene ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 Dibenzofuran ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-T	Fluorene	ND		ug/l		2.0	
Indeno(1,2,3-cd)pyrene ND ug/l 2.0 Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 Aniline ND ug/l 2.0 Aniline ND ug/l 2.0 Aniline ND ug/l 2.0 4-Choroaniline ND ug/l 5.0 1-Methylnaphthalene ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 2.0 Dibenzofuran ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 1-Nitrosodimethylamine ND ug/l 5.0 2,4,6-Trichlorophenol	Phenanthrene	ND		ug/l		2.0	
Pyrene ND ug/l 2.0 Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 2.0 1-Methylnaphthalene ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 2-Methylnaphthalene ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 1-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 5.0 2,	Dibenzo(a,h)anthracene	ND		ug/l		2.0	
Biphenyl ND ug/l 2.0 Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 5.0 1-Methylnaphthalene ND ug/l 2.0 2-Nitroaniline ND ug/l 2.0 3-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 2-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 Dibenzofuran ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 5.0 p-Chloro-m-cresol ND ug/l 2.0 <td>Indeno(1,2,3-cd)pyrene</td> <td>ND</td> <td></td> <td>ug/l</td> <td></td> <td>2.0</td> <td></td>	Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	
Aniline ND ug/l 2.0 4-Chloroaniline ND ug/l 5.0 1-Methylnaphthalene ND ug/l 2.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 2-Methylnaphthalene ND ug/l 2.0 Dibenzofuran ND ug/l 2.0 n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 5.0 p-Chloro-m-cresol ND ug/l 2.0	Pyrene	ND		ug/l		2.0	
4-Chloroaniline ND ug/l 5.0 1-Methylnaphthalene ND ug/l 2.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 Dibenzofuran ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 5.0 p-Chloro-m-cresol ND ug/l 2.0	Biphenyl	ND		ug/l		2.0	
1-Methylnaphthalene ND ug/l 2.0 2-Nitroaniline ND ug/l 5.0 3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 Dibenzofuran ND ug/l 5.0 2-Methylnaphthalene ND ug/l 2.0 n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 2.0 p-Chloro-m-cresol ND ug/l 2.0	Aniline	ND		ug/l		2.0	
2-NitroanilineNDug/l5.03-NitroanilineNDug/l5.04-NitroanilineNDug/l5.0DibenzofuranNDug/l2.02-MethylnaphthaleneNDug/l2.0n-NitrosodimethylamineNDug/l2.02,4,6-TrichlorophenolNDug/l5.0p-Chloro-m-cresolNDug/l2.0	4-Chloroaniline	ND		ug/l		5.0	
3-Nitroaniline ND ug/l 5.0 4-Nitroaniline ND ug/l 5.0 Dibenzofuran ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 5.0 p-Chloro-m-cresol ND ug/l 2.0	1-Methylnaphthalene	ND		ug/l		2.0	
4-Nitroaniline ND ug/l 5.0 Dibenzofuran ND ug/l 2.0 2-Methylnaphthalene ND ug/l 2.0 n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 5.0 p-Chloro-m-cresol ND ug/l 2.0	2-Nitroaniline	ND		ug/l		5.0	
DibenzofuranNDug/l2.02-MethylnaphthaleneNDug/l2.0n-NitrosodimethylamineNDug/l2.02,4,6-TrichlorophenolNDug/l5.0p-Chloro-m-cresolNDug/l2.0	3-Nitroaniline	ND		ug/l		5.0	
2-MethylnaphthaleneNDug/l2.0n-NitrosodimethylamineNDug/l2.02,4,6-TrichlorophenolNDug/l5.0p-Chloro-m-cresolNDug/l2.0	4-Nitroaniline	ND		ug/l		5.0	
n-Nitrosodimethylamine ND ug/l 2.0 2,4,6-Trichlorophenol ND ug/l 5.0 p-Chloro-m-cresol ND ug/l 2.0	Dibenzofuran	ND		ug/l		2.0	
2,4,6-Trichlorophenol ND ug/l 5.0 p-Chloro-m-cresol ND ug/l 2.0	2-Methylnaphthalene	ND		ug/l		2.0	
p-Chloro-m-cresol ND ug/l 2.0	n-Nitrosodimethylamine	ND		ug/l		2.0	
	2,4,6-Trichlorophenol	ND		ug/l		5.0	
2-Chlorophenol ND ug/l 2.0	p-Chloro-m-cresol	ND		ug/l		2.0	
	2-Chlorophenol	ND		ug/l		2.0	

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1807820
Project Number:	171.05027.003	Report Date:	03/15/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D	
Analytical Date:	03/08/18 22:28	
Analyst:	RC	

Extraction Method:EPA 3510CExtraction Date:03/08/18 11:00

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	6 - Westboroug	h Lab for s	ample(s):	01	Batch:	WG1095492-1
2,4-Dichlorophenol	ND		ug/l		5.0	
2,4-Dimethylphenol	ND		ug/l		5.0	
2-Nitrophenol	ND		ug/l		10	
4-Nitrophenol	ND		ug/l		10	
2,4-Dinitrophenol	ND		ug/l		20	
4,6-Dinitro-o-cresol	ND		ug/l		10	
Pentachlorophenol	ND		ug/l		10	
Phenol	ND		ug/l		5.0	
2-Methylphenol	ND		ug/l		5.0	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	
2,4,5-Trichlorophenol	ND		ug/l		5.0	
Benzoic Acid	ND		ug/l		50	
Benzyl Alcohol	ND		ug/l		2.0	
Carbazole	ND		ug/l		2.0	
Pyridine	ND		ug/l		3.5	

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1807820
Project Number:	171.05027.003	Report Date:	03/15/18
	Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	03/08/18 22:28	Extraction Date:	03/08/18 11:00
Analyst:	RC		

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westboroug	h Lab for s	ample(s):	01	Batch:	WG1095492-1	

%Recovery Q	Acceptance ualifier Criteria
45	21-120
31	10-120
87	23-120
88	15-120
110	10-120
97	41-149
	45 31 87 88 110

Project Number: 171.05027.003

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS-SIN	и - Westborough Lab Asso	ciated sample(s): 01 Bat	ch: WG1095448-2 WG1095	448-3	
Acenaphthene	65	54	40-140	18	40
2-Chloronaphthalene	76	63	40-140	19	40
Fluoranthene	81	73	40-140	10	40
Hexachlorobutadiene	72	75	40-140	4	40
Naphthalene	68	56	40-140	19	40
Benzo(a)anthracene	82	73	40-140	12	40
Benzo(a)pyrene	92	84	40-140	9	40
Benzo(b)fluoranthene	87	82	40-140	6	40
Benzo(k)fluoranthene	88	75	40-140	16	40
Chrysene	76	68	40-140	11	40
Acenaphthylene	86	72	40-140	18	40
Anthracene	77	69	40-140	11	40
Benzo(ghi)perylene	86	78	40-140	10	40
Fluorene	73	63	40-140	15	40
Phenanthrene	69	61	40-140	12	40
Dibenzo(a,h)anthracene	89	81	40-140	9	40
Indeno(1,2,3-cd)pyrene	92	84	40-140	9	40
Pyrene	78	70	40-140	11	40
1-Methylnaphthalene	77	64	40-140	18	40
2-Methylnaphthalene	76	62	40-140	20	40
Pentachlorophenol	50	44	40-140	13	40
Hexachlorobenzene	70	60	40-140	15	40
Hexachloroethane	72	60	40-140	18	40

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS-SIM - W	estborough Lab As	sociated sa	mple(s): 01 Batc	h: WG10	95448-2 WG1095	448-3			

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	50	42	21-120
Phenol-d6	38	32	10-120
Nitrobenzene-d5	94	76	23-120
2-Fluorobiphenyl	92	76	15-120
2,4,6-Tribromophenol	82	72	10-120
4-Terphenyl-d14	95	86	41-149

Project Number: 171.05027.003

arameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Associa	ated sample(s):	01 Batch:	WG1095492-2	WG1095492-3			
Acenaphthene	79		82		37-111	4		30
Benzidine	33		39		10-75	17		30
1,2,4-Trichlorobenzene	84		85		39-98	1		30
Hexachlorobenzene	98		99		40-140	1		30
Bis(2-chloroethyl)ether	74		74		40-140	0		30
2-Chloronaphthalene	95		96		40-140	1		30
1,2-Dichlorobenzene	75		74		40-140	1		30
1,3-Dichlorobenzene	72		70		40-140	3		30
1,4-Dichlorobenzene	72		72		36-97	0		30
3,3'-Dichlorobenzidine	89		96		40-140	8		30
2,4-Dinitrotoluene	100		106		48-143	6		30
2,6-Dinitrotoluene	106		110		40-140	4		30
Azobenzene	96		99		40-140	3		30
Fluoranthene	88		90		40-140	2		30
4-Chlorophenyl phenyl ether	90		92		40-140	2		30
4-Bromophenyl phenyl ether	95		98		40-140	3		30
Bis(2-chloroisopropyl)ether	50		49		40-140	2		30
Bis(2-chloroethoxy)methane	82		83		40-140	1		30
Hexachlorobutadiene	97		94		40-140	3		30
Hexachlorocyclopentadiene	100		101		40-140	1		30
Hexachloroethane	78		77		40-140	1		30
Isophorone	93		94		40-140	1		30
Naphthalene	81		82		40-140	1		30

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recover Qual Limits	y RPD	RPD Qual Limits				
Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1095492-2 WG1095492-3										
Nitrobenzene	90		90	40-140	0	30				
NDPA/DPA	90		93	40-140	3	30				
n-Nitrosodi-n-propylamine	89		90	29-132	1	30				
Bis(2-ethylhexyl)phthalate	103		108	40-140	5	30				
Butyl benzyl phthalate	103		105	40-140	2	30				
Di-n-butylphthalate	97		101	40-140	4	30				
Di-n-octylphthalate	106		108	40-140	2	30				
Diethyl phthalate	102		106	40-140	4	30				
Dimethyl phthalate	107		107	40-140	0	30				
Benzo(a)anthracene	89		94	40-140	5	30				
Benzo(a)pyrene	89		94	40-140	5	30				
Benzo(b)fluoranthene	89		84	40-140	6	30				
Benzo(k)fluoranthene	85		97	40-140	13	30				
Chrysene	84		86	40-140	2	30				
Acenaphthylene	96		97	45-123	1	30				
Anthracene	85		87	40-140	2	30				
Benzo(ghi)perylene	104		106	40-140	2	30				
Fluorene	87		89	40-140	2	30				
Phenanthrene	81		84	40-140	4	30				
Dibenzo(a,h)anthracene	100		106	40-140	6	30				
Indeno(1,2,3-cd)pyrene	100		105	40-140	5	30				
Pyrene	84		86	26-127	2	30				
Biphenyl	96		97	40-140	1	30				

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	1
Semivolatile Organics by GC/MS - West	tborough Lab Associ	ated sample(s):	: 01 Batch:	WG1095492-	2 WG1095492-3	3		
Aniline	58		59		40-140	2	30	
4-Chloroaniline	80		85		40-140	6	30	
1-Methylnaphthalene	114	Q	115	Q	41-103	1	30	
2-Nitroaniline	100		101		52-143	1	30	
3-Nitroaniline	75		81		25-145	8	30	
4-Nitroaniline	85		88		51-143	3	30	
Dibenzofuran	84		88		40-140	5	30	
2-Methylnaphthalene	84		85		40-140	1	30	
n-Nitrosodimethylamine	42		42		22-74	0	30	
2,4,6-Trichlorophenol	108		109		30-130	1	30	
p-Chloro-m-cresol	105	Q	108	Q	23-97	3	30	
2-Chlorophenol	77		77		27-123	0	30	
2,4-Dichlorophenol	90		93		30-130	3	30	
2,4-Dimethylphenol	101		102		30-130	1	30	
2-Nitrophenol	90		89		30-130	1	30	
4-Nitrophenol	72		72		10-80	0	30	
2,4-Dinitrophenol	89		92		20-130	3	30	
4,6-Dinitro-o-cresol	113		114		20-164	1	30	
Pentachlorophenol	88		90		9-103	2	30	
Phenol	38		37		12-110	3	30	
2-Methylphenol	74		74		30-130	0	30	
3-Methylphenol/4-Methylphenol	76		76		30-130	0	30	
2,4,5-Trichlorophenol	109		110		30-130	1	30	

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associ	ated sample(s):	01 Batch:	WG1095492-2	2 WG1095492-3			
Benzoic Acid	38		33		10-164	14		30
Benzyl Alcohol	89		89		26-116	0		30
Carbazole	85		87		55-144	2		30
Pyridine	31		30		10-66	3		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	54	52	21-120
Phenol-d6	38	38	10-120
Nitrobenzene-d5	98	98	23-120
2-Fluorobiphenyl	95	98	15-120
2,4,6-Tribromophenol	106	112	10-120
4-Terphenyl-d14	88	94	41-149

METALS

	/10.07	_110.051510	Oenai_								
	20	L180782	mber:	Lab Nu			RICT	R DISTI	AST WATE	BELF	Project Name:
	3	03/15/18	Date:	Report					5027.003	171.05	Project Number:
				-	ULTS	E RES	SAMPL				-
	3 tered ed	03/06/18 03/07/18 Field Fil (Dissolv Metals a SPhos)	eceived:	Date Co Date Re Field Pr						L1807 GWW- BELFA Water	Lab ID: Client ID: Sample Location: Sample Depth: Matrix:
Analys	Analytical Method	Prep Method	Date Analyzed	Date Prepared	Dilution Factor	MDL	RL	Units	Qualifier	Result	Parameter
										ield Lab	Fotal Metals - Mansf
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.100	mg/l		0.468	Aluminum, Total
AM	1,6020A	EPA 3005A	5 03/12/18 12:00	03/09/18 11:25	1		0.00400	mg/l		ND	Antimony, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.005	mg/l		ND	Arsenic, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.010	mg/l		0.016	Barium, Total
AM	1,6020A	EPA 3005A	5 03/12/18 12:00	03/09/18 11:25	1		0.00050	mg/l		ND	Beryllium, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.030	mg/l		0.117	Boron, Total
AM	1,6020A	EPA 3005A	5 03/12/18 12:00	03/09/18 11:25	1		0.00020	mg/l		ND	Cadmium, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.100	mg/l		35.4	Calcium, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.010	mg/l		ND	Chromium, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.020	mg/l		ND	Cobalt, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.010	mg/l		ND	Copper, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.050	mg/l		2.08	Iron, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.010	mg/l		ND	Lead, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.100	mg/l		14.1	Magnesium, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.010	mg/l		0.046	Manganese, Total
EA	1,7470A	EPA 7470A	0 03/08/18 20:12	03/08/18 15:20	1		0.00020	mg/l		ND	Mercury, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.050	mg/l		ND	Molybdenum, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.025	mg/l		ND	Nickel, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		2.50	mg/l		9.26	Potassium, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.010	mg/l		ND	Selenium, Total
LC	1,6010C	EPA 3005A	0 03/14/18 15:38	03/14/18 09:30	1		0.500	mg/l		8.26	Silicon, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.007	mg/l		ND	Silver, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		2.00	mg/l		254	Sodium, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.010	mg/l		0.440	Strontium, Total
AB	1,6010C	EPA 3015A	5 03/14/18 18:40	03/14/18 09:45	1		0.250	mg/l		46.2	Sulfur, Total
AM	1,6020A	EPA 3005A	5 03/12/18 12:00	03/09/18 11:25	1		0.00050	mg/l		ND	Thallium, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.010	mg/l		0.016	Titanium, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.010	mg/l		ND	Vanadium, Total
AB	1,6010C	EPA 3005A	5 03/12/18 19:29	03/09/18 11:25	1		0.050	mg/l		ND	Zinc, Total
	1,6010C 1,6010C 1,6010C 1,6010C 1,6020A 1,6010C 1,6010C	EPA 3005A EPA 3005A EPA 3005A EPA 3015A EPA 3005A EPA 3005A	5 03/12/18 19:29 5 03/12/18 19:29 5 03/12/18 19:29 5 03/12/18 19:29 5 03/14/18 18:40 5 03/12/18 12:00 5 03/12/18 19:29 5 03/12/18 19:29	03/09/18 11:25 03/09/18 11:25 03/09/18 11:25 03/14/18 09:45 03/09/18 11:25 03/09/18 11:25	1 1 1 1 1 1 1 1		0.007 2.00 0.010 0.250 0.00050 0.010 0.010	mg/l mg/l mg/l mg/l mg/l mg/l		ND 254 0.440 46.2 ND 0.016 ND	Silicon, Total Silver, Total Sodium, Total Strontium, Total Sulfur, Total Thallium, Total Titanium, Total Vanadium, Total Zinc, Total

Project Name:	BELF/	AST WATE	R DISTI	RICT			Lab Nu	mber:	L18078	20	
Project Number:	171.05	5027.003					Report	Date:	03/15/18	8	
				SAMPL	E RES	ULTS					
Lab ID:	L1807	820-01					Date Co	ollected:	03/06/18	8 13:30	
Client ID:	GWW	103					Date Re	eceived:	03/07/18	8	
Sample Location:	BELFA	AST, ME					Field Pi	rep:	Field Fil	tered	
Sample Depth:									(Dissolv		
Matrix:	Water								Metals a SPhos)	and	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Total Hardness by S	SM 2340E	8 - Mansfiel	d Lab								
Hardness	146		mg/l	0.660	NA	1	03/09/18 11:2	5 03/12/18 19:29	EPA 3005A	1,6010C	AB

	Innafiald Lab					
Dissolved Metals - N						
Aluminum, Dissolved	ND	mg/l	0.100	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Antimony, Dissolved	ND	mg/l	0.00400	 1	03/09/18 07:35 03/12/18 10:48 EPA 3005A 1,6020A	AM
Arsenic, Dissolved	ND	mg/l	0.0050	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Barium, Dissolved	0.015	mg/l	0.010	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Beryllium, Dissolved	ND	mg/l	0.00050	 1	03/09/18 07:35 03/12/18 10:48 EPA 3005A 1,6020A	AM
Boron, Dissolved	0.116	mg/l	0.030	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Cadmium, Dissolved	ND	mg/l	0.00020	 1	03/09/18 07:35 03/12/18 10:48 EPA 3005A 1,6020A	AM
Calcium, Dissolved	36.4	mg/l	0.100	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Chromium, Dissolved	ND	mg/l	0.010	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Cobalt, Dissolved	ND	mg/l	0.020	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Copper, Dissolved	ND	mg/l	0.010	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Iron, Dissolved	0.784	mg/l	0.050	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Lead, Dissolved	ND	mg/l	0.010	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Magnesium, Dissolved	13.9	mg/l	0.100	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Manganese, Dissolved	0.041	mg/l	0.010	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Mercury, Dissolved	ND	mg/l	0.00020	 1	03/08/18 15:20 03/08/18 20:18 EPA 7470A 1,7470A	EA
Molybdenum, Dissolved	ND	mg/l	0.050	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Nickel, Dissolved	ND	mg/l	0.025	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Potassium, Dissolved	8.78	mg/l	2.50	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Selenium, Dissolved	ND	mg/l	0.010	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Silicon, Dissolved	7.97	mg/l	0.500	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Silver, Dissolved	ND	mg/l	0.007	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
Sodium, Dissolved	253	mg/l	2.00	 1	03/09/18 07:35 03/09/18 11:58 EPA 3005A 1,6010C	AB
,						
Strontium, Dissolved	0.422	mg/l	0.010	 1		AB
Thallium, Dissolved	ND	mg/l	0.00050	 1	03/09/18 07:35 03/12/18 10:48 EPA 3005A 1,6020A	AM

Project Name:	BELF	AST WATE	R DIST	RICT			Lab Nu	mber:	L18078	20	
Project Number:	171.0	5027.003					Report	Date:	03/15/1	8	
				SAMPL	E RES	ULTS					
Lab ID:	L1807	7820-01					Date Co	ollected:	03/06/1	8 13:30	
Client ID:	GWW	/-103					Date Re	eceived:	03/07/1	8	
Sample Location:	BELF	AST, ME					Field Pr	ep:	Field Fi	ltered	
Sample Depth:									(Dissolv		
Matrix:	Water								Metals (SPhos)		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Titanium, Dissolved	ND		mg/l	0.010		1	03/09/18 07:3	5 03/09/18 11:58	EPA 3005A	1,6010C	AB
Vanadium, Dissolved	ND		mg/l	0.010		1	03/09/18 07:3	5 03/09/18 11:58	EPA 3005A	1,6010C	AB
Zinc, Dissolved	ND		mg/l	0.050		1	03/09/18 07:3	5 03/09/18 11:58	EPA 3005A	1,6010C	AB

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	eld Lab for sample(s):	01 Batc	h: WG10	95572-	1				
Mercury, Total	ND	mg/l	0.00020		1	03/08/18 15:20	03/08/18 19:53	1,7470A	EA

Prep Information

Digestion Method: EPA 7470A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Dissolved Metals - Mai	nsfield Lab	for sample	e(s): 01	Batch: V	VG1095	574-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	03/08/18 15:20	03/08/18 20:14	1,7470A	EA

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	nsfield Lab for s	sample(s): 01	Batch: \	NG1095	5792-1				
Aluminum, Dissolved	ND	mg/l	0.100		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Arsenic, Dissolved	ND	mg/l	0.005		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Barium, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Boron, Dissolved	ND	mg/l	0.030		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Calcium, Dissolved	ND	mg/l	0.100		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Chromium, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Cobalt, Dissolved	ND	mg/l	0.020		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Copper, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Iron, Dissolved	ND	mg/l	0.050		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Lead, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Magnesium, Dissolved	ND	mg/l	0.100		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Manganese, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Molybdenum, Dissolved	ND	mg/l	0.050		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Nickel, Dissolved	ND	mg/l	0.025		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Potassium, Dissolved	ND	mg/l	2.50		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Selenium, Dissolved	ND	mg/l	0.010		1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

Method Blank Analysis Batch Quality Control

Silicon, Dissolved	ND	mg/l	0.500	 1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Silver, Dissolved	ND	mg/l	0.007	 1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Sodium, Dissolved	ND	mg/l	2.00	 1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Strontium, Dissolved	ND	mg/l	0.010	 1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Titanium, Dissolved	ND	mg/l	0.010	 1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Vanadium, Dissolved	ND	mg/l	0.010	 1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB
Zinc, Dissolved	ND	mg/l	0.050	 1	03/09/18 07:35	03/09/18 11:49	1,6010C	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qı	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	insfield Lab fo	or sample(s): 01	Batch: V	/G1095	5796-1				
Antimony, Dissolved	ND		mg/l	0.00400		1	03/09/18 07:35	03/12/18 11:05	1,6020A	AM
Beryllium, Dissolved	ND		mg/l	0.00050		1	03/09/18 07:35	03/12/18 11:05	1,6020A	AM
Cadmium, Dissolved	ND		mg/l	0.00020		1	03/09/18 07:35	03/12/18 11:05	1,6020A	AM
Thallium, Dissolved	ND		mg/l	0.00050		1	03/09/18 07:35	03/12/18 11:05	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sample(s):	01 Batc	h: WG10)95916·	-1				
Antimony, Total	ND	mg/l	0.00400		1	03/09/18 11:25	03/12/18 10:51	1,6020A	AM
Beryllium, Total	ND	mg/l	0.00050		1	03/09/18 11:25	03/12/18 10:51	1,6020A	AM
Cadmium, Total	ND	mg/l	0.00020		1	03/09/18 11:25	03/12/18 10:51	1,6020A	AM
Thallium, Total	ND	mg/l	0.00050		1	03/09/18 11:25	03/12/18 10:51	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sample(s):	01 Batcl	n: WG10	095917-	1				
Aluminum, Total	ND	mg/l	0.100		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Arsenic, Total	ND	mg/l	0.005		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Barium, Total	ND	mg/l	0.010		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Boron, Total	ND	mg/l	0.030		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Calcium, Total	ND	mg/l	0.100		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Chromium, Total	ND	mg/l	0.010		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Cobalt, Total	ND	mg/l	0.020		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Copper, Total	ND	mg/l	0.010		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Iron, Total	ND	mg/l	0.050		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Lead, Total	ND	mg/l	0.010		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Magnesium, Total	ND	mg/l	0.100		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Manganese, Total	ND	mg/l	0.010		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Molybdenum, Total	ND	mg/l	0.050		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Nickel, Total	ND	mg/l	0.025		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Potassium, Total	ND	mg/l	2.50		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Selenium, Total	ND	mg/l	0.010		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Silicon, Total	ND	mg/l	0.500		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Silver, Total	ND	mg/l	0.007		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Sodium, Total	ND	mg/l	2.00		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Strontium, Total	ND	mg/l	0.010		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Titanium, Total	ND	mg/l	0.010		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Vanadium, Total	ND	mg/l	0.010		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB
Zinc, Total	ND	mg/l	0.050		1	03/09/18 11:25	03/12/18 17:43	1,6010C	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Hardness by SM 2	2340B - Mansfield La	b for sam	ple(s): 0	1 Bate	ch: WG109	5917-1			
Hardness	ND	mg/l	0.660	NA	1	03/09/18 11:25	03/12/18 17:43	3 1,6010C	AB

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG10	096871-	1				
Silicon, Total	ND	mg/l	0.500		1	03/14/18 09:30	03/14/18 14:43	3 1,6010C	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	01 Batch	: WG10)96872-	1				
Sulfur, Total	ND	mg/l	0.250		1	03/14/18 09:45	03/14/18 18:18	1,6010C	AB

Prep Information

Digestion Method: EPA 3015A

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	le(s): 01 Batch:	WG109557	2-2					
Mercury, Total	94		-		80-120	-		
Dissolved Metals - Mansfield Lab Associated s	ample(s): 01 Ba	atch: WG10	95574-2					
Mercury, Dissolved	88		-		80-120	-		

Lab Control Sample Analysis

Batch Quality Control

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

LCS LCSD %Recovery **RPD** Limits %Recovery %Recovery Limits RPD Parameter Dissolved Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1095792-2 Aluminum, Dissolved 110 80-120 -Arsenic, Dissolved 111 80-120 --Barium, Dissolved 103 80-120 --Boron, Dissolved 80-120 114 --Calcium, Dissolved 104 80-120 --Chromium, Dissolved 106 80-120 --Cobalt. Dissolved 101 80-120 --Copper, Dissolved 80-120 107 -Iron, Dissolved 80-120 106 --Lead. Dissolved 106 80-120 --Magnesium, Dissolved 102 80-120 --Manganese, Dissolved 102 80-120 --Molybdenum, Dissolved 103 80-120 --Nickel, Dissolved 80-120 102 -Potassium, Dissolved 104 80-120 --Selenium, Dissolved 113 80-120 --Silicon, Dissolved 92 80-120 --Silver, Dissolved 108 80-120 -Sodium, Dissolved 108 80-120 --Strontium, Dissolved 102 80-120 --Titanium, Dissolved 107 80-120 -

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated s	sample(s): 01 Bat	ch: WG1095792-2			
Vanadium, Dissolved	107	-	80-120	-	
Zinc, Dissolved	105	-	80-120	-	
Dissolved Metals - Mansfield Lab Associated s	sample(s): 01 Bat	ch: WG1095796-2			
Antimony, Dissolved	108	-	80-120	-	
Beryllium, Dissolved	113	-	80-120	-	
Cadmium, Dissolved	115	-	80-120	-	
Thallium, Dissolved	93	-	80-120	-	
Total Metals - Mansfield Lab Associated samp	le(s): 01 Batch: V	/G1095916-2			
Antimony, Total	116	-	80-120	-	
Beryllium, Total	114	-	80-120	-	
Cadmium, Total	117	-	80-120	-	
Thallium, Total	107	-	80-120	-	

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sar	mple(s): 01 Batch: WG1	095917-2			
Aluminum, Total	110	-	80-120		
Arsenic, Total	108	-	80-120	-	
Barium, Total	103	-	80-120	-	
Boron, Total	107	-	80-120	-	
Calcium, Total	97	-	80-120	-	
Chromium, Total	103	-	80-120	-	
Cobalt, Total	98	-	80-120	-	
Copper, Total	104	-	80-120	-	
Iron, Total	102	-	80-120	-	
Lead, Total	103	-	80-120	-	
Magnesium, Total	101	-	80-120	-	
Manganese, Total	97	-	80-120	-	
Molybdenum, Total	93	-	80-120	-	
Nickel, Total	99	-	80-120	-	
Potassium, Total	102	-	80-120	-	
Selenium, Total	110	-	80-120	-	
Silver, Total	107	-	80-120	-	
Sodium, Total	104	-	80-120	-	
Strontium, Total	99	-	80-120	-	
Titanium, Total	102	-	80-120	-	
Vanadium, Total	105	-	80-120	-	

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated samp	le(s): 01 Batch: WG1	095917-2			
Zinc, Total	102	-	80-120	-	
Total Hardness by SM 2340B - Mansfield Lab	Associated sample(s):	01 Batch: WG1095917-2			
Hardness	99	-	80-120	-	
Total Metals - Mansfield Lab Associated samp	le(s): 01 Batch: WG1	096871-2			
Silicon, Total	105	-	80-120	-	
Total Metals - Mansfield Lab Associated samp	le(s): 01 Batch: WG1	096872-2			
Sulfur, Total	119	-	80-120	-	

		Matrix Spike Analysis Batch Quality Control		
Project Name:	BELFAST WATER DISTRICT	Daton Quanty control	Lab Number:	L1807820
Project Number:	171.05027.003		Report Date:	03/15/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recover al Limits	y RPD Qua	RPD Limits
Dissolved Metals - Mansfield La	b Associated	d sample(s): C	1 QC Ba	atch ID: WG10	95574-3	QC Sa	mple: L1807820-01	Client ID:	GWW-103	
Mercury, Dissolved	ND	0.005	0.00464	93		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfiel	d Lab Associated	d sample(s): 01	QC E	Batch ID: WG1095792	-3 QC Sa	mple: L1807820-01	Client ID: G	WW-103	
Aluminum, Dissolved	ND	2	2.17	108	-	-	75-125	-	20
Arsenic, Dissolved	ND	0.12	0.143	119	-	-	75-125	-	20
Barium, Dissolved	0.015	2	2.03	101	-	-	75-125	-	20
Boron, Dissolved	0.116	1	1.26	114	-	-	75-125	-	20
Calcium, Dissolved	36.4	10	45.4	90	-	-	75-125	-	20
Chromium, Dissolved	ND	0.2	0.211	106	-	-	75-125	-	20
Cobalt, Dissolved	ND	0.5	0.491	98	-	-	75-125	-	20
Copper, Dissolved	ND	0.25	0.268	107	-	-	75-125	-	20
Iron, Dissolved	0.784	1	1.80	102	-	-	75-125	-	20
Lead, Dissolved	ND	0.51	0.514	101	-	-	75-125	-	20
Magnesium, Dissolved	13.9	10	22.9	90	-	-	75-125	-	20
Manganese, Dissolved	0.041	0.5	0.539	100	-	-	75-125	-	20
Molybdenum, Dissolved	ND	1	1.04	104	-	-	75-125	-	20
Nickel, Dissolved	ND	0.5	0.493	99	-	-	75-125	-	20
Potassium, Dissolved	8.78	10	18.8	100	-	-	75-125	-	20
Selenium, Dissolved	ND	0.12	0.136	113	-	-	75-125	-	20
Silicon, Dissolved	7.97	1	8.86	89	-	-	75-125	-	20
Silver, Dissolved	ND	0.05	0.054	109	-	-	75-125	-	20
Sodium, Dissolved	253	10	254	10 Q	-	-	75-125	-	20
Strontium, Dissolved	0.422	1	1.42	100	-	-	75-125	-	20
Titanium, Dissolved	ND	1	1.08	108	-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Number: 171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - M	lansfield Lab Associate	d sample(s):	: 01 QC Ba	atch ID: WG10957	92-3 QC Sa	mple: L1807820-0	01 Client ID:	GWW-103	
Vanadium, Dissolved	ND	0.5	0.538	108	-	-	75-125	-	20
Zinc, Dissolved	ND	0.5	0.521	104	-	-	75-125	-	20
Dissolved Metals - M	lansfield Lab Associate	d sample(s):	: 01 QC Ba	atch ID: WG10957	96-3 QC Sa	mple: L1807820-0	01 Client ID:	GWW-103	
Antimony, Dissolved	ND	0.5	0.5568	111	-	-	75-125	-	20
Beryllium, Dissolved	ND	0.05	0.05480	110	-	-	75-125	-	20
Cadmium, Dissolved	ND	0.051	0.05734	112	-	-	75-125	-	20
Thallium, Dissolved	ND	0.12	0.1112	93	-	-	75-125	-	20
otal Metals - Mansfi	ield Lab Associated sa	mple(s): 01	QC Batch I	D: WG1096871-3	QC Sample	e: L1807820-01 (Client ID: GWV	V-103	
Silicon, Total	8.26	1	10.7	244	Q -	-	75-125	-	20

Project Name: Project Number:	BELFAST WATER DISTRICT 171.05027.003		Lab Duplicate Analy Batch Quality Control		o Number: port Date:	L1807820 03/15/18	
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Dissolved Metals - Mans	field Lab Associated sample(s):	01 QC Batch ID:	WG1095574-4 QC Samp	e: L1807820-01	Client ID:	: GWW-10	3
Mercury, Dissolved		ND	ND	mg/l	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: BELFAST WATER DISTRICT

Lab Number: Report Date:

L1807820 03/15/18

Project Number: 171.05027.003

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
issolved Metals - Mansfield Lab Associated sam	ple(s): 01 QC Batch ID	: WG1095792-4 QC Sample:	L1807820-01	Client ID:	: GWW-103
Aluminum, Dissolved	ND	ND	mg/l	NC	20
Arsenic, Dissolved	ND	ND	mg/l	NC	20
Barium, Dissolved	0.015	0.015	mg/l	5	20
Boron, Dissolved	0.116	0.115	mg/l	1	20
Calcium, Dissolved	36.4	36.2	mg/l	1	20
Chromium, Dissolved	ND	ND	mg/l	NC	20
Cobalt, Dissolved	ND	ND	mg/l	NC	20
Copper, Dissolved	ND	ND	mg/l	NC	20
Iron, Dissolved	0.784	0.782	mg/l	0	20
Lead, Dissolved	ND	ND	mg/l	NC	20
Magnesium, Dissolved	13.9	13.7	mg/l	1	20
Manganese, Dissolved	0.041	0.041	mg/l	1	20
Molybdenum, Dissolved	ND	ND	mg/l	NC	20
Nickel, Dissolved	ND	ND	mg/l	NC	20
Potassium, Dissolved	8.78	8.74	mg/l	0	20
Selenium, Dissolved	ND	ND	mg/l	NC	20
Silicon, Dissolved	7.97	7.96	mg/l	0	20
Silver, Dissolved	ND	ND	mg/l	NC	20
Sodium, Dissolved	253	248	mg/l	2	20

Lab Duplicate Analysis Batch Quality Control

Project Name: BELFAST WATER DISTRICT

 Lab Number:
 L1807820

 Report Date:
 03/15/18

Project Number: 171.05027.003

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID:	WG1095792-4 QC Samp	ole: L1807820-01	Client ID:	GWW-103
Strontium, Dissolved	0.422	0.421	mg/l	0	20
Titanium, Dissolved	ND	ND	mg/l	NC	20
Vanadium, Dissolved	ND	ND	mg/l	NC	20
Zinc, Dissolved	ND	ND	mg/l	NC	20
issolved Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID:	WG1095796-4 QC Samp	ole: L1807820-01	Client ID:	GWW-103
Antimony, Dissolved	ND	ND	mg/l	NC	20
Beryllium, Dissolved	ND	ND	mg/l	NC	20
Cadmium, Dissolved	ND	ND	mg/l	NC	20
Thallium, Dissolved	ND	ND	mg/l	NC	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG	1096871-4 QC Sample: I	L1807820-01 Clie	nt ID: GW	/W-103
Silicon, Total	8.26	8.42	mg/l	2	20

INORGANICS & MISCELLANEOUS

Project Name:	BELFAST WATER DISTRICT	Lab Number:	L1807820
Project Number:	171.05027.003	Report Date:	03/15/18
	SAMPLE RESULTS		
Lab ID:	L1807820-01	Date Collected:	03/06/18 13:30
Client ID:	GWW-103	Date Received:	03/07/18

Field Filtered Sample Location: BELFAST, ME Field Prep: (Dissolved Metals and Sample Depth: SPhos) Matrix: Water Analytical Method Dilution Date Date Factor Prepared Analyzed Result Qualifier Units RL MDL Parameter Analyst General Chemistry - Westborough Lab Alkalinity, Total 143. mg CaCO3/L 2.00 NA 1 03/08/18 08:45 121,2320B BR -Phosphorus, Total 0.010 1 03/09/18 12:10 03/12/18 13:01 121,4500P-E SD 0.101 mg/l ---Phosphorus, Soluble 0.010 1 03/09/18 12:10 03/12/18 13:26 121,4500P-E SD 0.018 mg/l --

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for sa	ample(s): 01	Batch:	WG10)95458-1				
Alkalinity, Total	ND	mg CaCO3/L	2.00	NA	1	-	03/08/18 08:45	121,2320B	BR
General Chemistry -	Westborough Lab for sa	ample(s): 01	Batch:	WG10)95938-1				
Phosphorus, Total	ND	mg/l	0.010		1	03/09/18 12:10	03/12/18 12:59	121,4500P-E	SD
General Chemistry -	Westborough Lab for sa	ample(s): 01	Batch:	WG10)95940-1				
Phosphorus, Soluble	ND	mg/l	0.010		1	03/09/18 12:10	03/12/18 13:23	121,4500P-E	SD

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1807820 Report Date: 03/15/18

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Parameter	LCS %Recovery C	LCSD ual %Recovery (%Recovery Qual Limits	RPD	Qual RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG1095458-2				
Alkalinity, Total	103	-	90-110	-	10	
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG1095938-2				
Phosphorus, Total	100	-	80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG1095940-2				
Phosphorus, Soluble	101	-	80-120	-		

Matrix Spike Analysis

	Native	MS	MS	MS	MSD	MSD	Recovery	RPD
Project Number:	171.05027.003						Report Date:	03/15/18
Project Name:	BELFAST WATEF	R DISTRICT		Bate	ch Quality Contro		Lab Number:	L1807820

Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	WG10959	938-3	QC Sample: L18	807820-01	1 Client	ID: GV	VW-103	3
Phosphorus, Total	0.101	0.5	0.584	97		-	-		75-125	-		20
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	WG10959	940-4	QC Sample: L18	807820-01	1 Client	ID: GV	VW-103	3
Phosphorus, Soluble	0.018	0.5	0.567	110		-	-		75-125	-		20

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

Lab Duplicate Analysis Batch Quality Control

 Lab Number:
 L1807820

 Report Date:
 03/15/18

Parameter Native Sample **Duplicate Sample** Units RPD Qual **RPD** Limits General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1095938-4 QC Sample: L1807820-01 Client ID: GWW-103 Phosphorus, Total 0.101 0.089 mg/l 13 20 General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1095940-3 QC Sample: L1807820-01 Client ID: GWW-103 Phosphorus, Soluble 0.018 20 0.016 mg/l 12

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

Serial_No:03151816:07 *Lab Number:* L1807820 *Report Date:* 03/15/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Frozen
Date/Time Analysis(*)
ME-8260(14)
ME-8260(14)
ME-8260(14)
8270TCL(7),8270TCL-SIM(7)
8270TCL(7),8270TCL-SIM(7)
ALK-T-2320(14)
SPHOS-4500(28)
TPHOS-4500(28)
TL-6020T(180),AS-TI(180),BA-TI(180),AG- TI(180),SI-TI(180),AL-TI(180),B-TI(180),CR- TI(180),MO-TI(180),NI-TI(180),STI(180),BE- 6020T(180),CU-TI(180),PB-TI(180),SE- TI(180),TI-TI(180),ZN-TI(180),CO-TI(180),SB- 6020T(180),V-TI(180),CD-6020T(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),SR- TI(180),CA-TI(180),HARDT(180),K-TI(180),NA- TI(180)
-
B-SI(180),PB-SI(180),FE-SI(180),BA- SI(180),BE-6020S(180),TI-SI(180),AG- SI(180),AS-SI(180),CU-SI(180),MN- SI(180),NA-SI(180),NI-SI(180),AL-SI(180),CO- SI(180),SI-SI(180),SR-SI(180),TL- 6020S(180),CR-SI(180),K-SI(180),MG- SI(180),MO-SI(180),SB-6020S(180),CA- SI(180),CD-6020S(180),HG-S(28),SE- SI(180),V-SI(180),ZN-SI(180)
HOLD-WETCHEM()
HOLD-WETCHEM()
HOLD-WETCHEM()
HOLD-8082()

Project Name: BELFAST WATER DISTRICT
Project Number: 171.05027.003

Container Info	Container Information				Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L1807820-01Z	Amber 1000ml unpreserved	А	7	7	5.0	Y	Absent		HOLD-8082()	
L1807820-02A	Vial HCI preserved	А	NA		5.0	Y	Absent		HOLD-8260(14)	
L1807820-02B	Vial HCI preserved	А	NA		5.0	Y	Absent		HOLD-8260(14)	
L1807820-02C	Vial HCI preserved	А	NA		5.0	Υ	Absent		HOLD-8260(14)	
L1807820-02D	Vial HCI preserved	А	NA		5.0	Y	Absent		HOLD-8260(14)	

Serial_No:03151816:07

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Lab Number: L1807820

Report Date: 03/15/18

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after

adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH. Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Serial_No:03151816:07

Project Name: BELFAST WATER DISTRICT

Project Number: 171.05027.003

Lab Number:	L1807820
Report Date:	03/15/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name:BELFAST WATER DISTRICTProject Number:171.05027.003

 Lab Number:
 L1807820

 Report Date:
 03/15/18

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine. EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate EPA 9010: <u>NPW</u> and SCM: Amenable Cyanide Distillation SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. **Mansfield Facility**

SM 2540D: TSS EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: AI, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:03151816:07

ALPHA	CH	AIN OF	CU	ISTO	DY ,			- Da	ate Re	ec'd ir	Lab		3	4	118	2	A	LPH	IA J	ob #	: 2	1807	820
8 Walkup Drive	320 Forbes BI		Projec	t Informa	tion			R	epor	t Info	rmat	tion -	Data	Deliv	erab	les	E	Billin	g Inf	forma	tion		-
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA	02048	Project	Name: Bo	elfast	4/00ror	District	- P	ADE	x		, SER	AIL					Sam	e as i	Client	info	PO# 107	54
Client Information	on		Project I	Location: B	elfaso M	1F	7171.10		egula	atory	Req	uirem	ents	&	Proj	ject	Info	rmat	ion I	Requ	ireme		
Address: 112 Corporate Price Project Manager: Eltrabeth Ransom						Yes C Yes C Yes C	No N	Matrix GW1 NPDE	Spike	Requ ards (I	al Meth ired or info Re	this	SDG d for	? (R Meta	equir	ed for	r MCP with Ta	CT RCI Inorga argets)	P Analytical M nics)	lethods			
Phone: 603-436-1490 Email: elizabeth, van som@ransomonu (CC) drew, fuchs@vansomenu.com Additional Project Information: 1. Dissolved metals & dissolved phos 2. Extra bottle ware has been sub:m on hold ponding resubts of tests listed				Due:	RUSH (only			Ι	A 8260 D 624 CVSIS	KABN US242	METALS. DIACP 13 DIAC 70	EPH. DRANS DRCP 14 DRCP 15	Rann Rangets D Ran DPri3	L PCB LPEST Rangels D Ranges Only	12	Metrol. Chingerprint	Herals (teral)	(Din Disselver)	Contracting Program	Units & Ha Disselvention	(Sulfur ness loca)	SAMPLE Filtration Field Lab to d Preservatio	lo B Drn P
ALPHA Lab ID (Lab Use Only)	Sa	mple ID		Colle	ection Time	Sample Matrix	Sampler	100	SVOC.	METAL	METAL	Has	DH:C	D PCB		₹/i	EL	2 mary		14			L
07820-01	GWW-10	3			10000	GW	DAF	X	V	1			1	-	IV	X	K	X	X	X	/ 58	ample Comm	10
er og	Trip Bla							X				_						~			H	OLD	2
- 10																							
Container Type P= Plastic	Preservative				Г	Conta	iner Type	V	A						P	P	P	P	P	P			
A= Amber glass V= Vial G= Glass	A= None B= HCI C= HNO ₃ D= H ₂ SO ₄					122.67	servative	B	A					1	¢	c	C	C	D	6			_
B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle	E= NaOH F= MeOH G= NaHSOs H = Na ₃ S ₂ O ₃ I= Ascorbic Acid	Brew Hy	Relinqu	ished By:		Date 3-7-18	/Time	1	M	Re	ceive	d By:	141		3	Date	Time					mitted are su nd Condition	
Page 67 of 67	J = NH ₄ Cl K≈ Zn Acetate O= Other	40	tud	the		3/7/	18 134	5	1.	The	All	f-	1-	_	3	17	81	24	Se	e reve	rse sid		

ANALYTICAL REPORT

Lab Number:	L1847957
Client:	Ransom Consulting, Inc.
	112 Corporate Drive
	Pease International Tradeport
	Portsmouth, NH 03801
ATTN:	Elizabeth Ransom
Phone:	(603) 436-1490
Project Name:	NORDIC AQUAFARMS
Project Number:	171.05027.003
Report Date:	11/30/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	NORDIC AQUAFARMS
Project Number:	171.05027.003

Lab Number:	L1847957
Report Date:	11/30/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1847957-01	PSD-101	WATER	BELFAST, ME	11/21/18 08:00	11/21/18
L1847957-02	PSD-102	WATER	BELFAST, ME	11/21/18 07:30	11/21/18
L1847957-03	DRX-101	WATER	BELFAST, ME	11/21/18 08:30	11/21/18
L1847957-04	DRX-102	WATER	BELFAST, ME	11/21/18 08:15	11/21/18
L1847957-05	TRIP BLANK	WATER	BELFAST, ME	11/21/18 00:00	11/21/18

Project Name:NORDIC AQUAFARMSProject Number:171.05027.003

Lab Number: L1847957 Report Date: 11/30/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 11/30/18

ORGANICS

VOLATILES

			Serial_No:11301817:50				
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957			
Project Number:	171.05027.003		Report Date:	11/30/18			
		SAMPLE RESULTS					
Lab ID: Client ID: Sample Location: Sample Depth: Matrix:	L1847957-01 PSD-101 BELFAST, ME Water		Date Collected: Date Received: Field Prep:	11/21/18 08:00 11/21/18 Refer to COC			
Analytical Method: Analytical Date: Analyst:	1,8260C 11/29/18 10:08 NLK						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	1.0		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	1.9		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	0.20		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1

					S	Serial_No	:11301817:50	
Project Name:	NORDIC AQUAFARMS				Lab Nu	mber:	L1847957	
Project Number:	171.05027.003				Report	Date:	11/30/18	
•		SAMPI	LE RESULTS	5	•			
Lab ID:	L1847957-01				Date Coll	ected:	11/21/18 08:00	
Client ID:	PSD-101				Date Rec		11/21/18	
Sample Location:	BELFAST, ME				Field Pre	p:	Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough L	ab						
4.0 Disklamathana, Tatal		ND			0.50			
1,2-Dichloroethene, Total Trichloroethene		ND		ug/l	0.50		1	
1.2-Dichlorobenzene		ND ND		ug/l	0.50		1	
1,2-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylenes, Total		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	0.50		1	
Dibromomethane		ND		ug/l	1.0		1	
1,4-Dichlorobutane		ND		ug/l	5.0		1	
1,2,3-Trichloropropane		ND		ug/l	1.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	1.0		1	
2-Butanone		ND		ug/l	5.0		1	
Vinyl acetate		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Ethyl methacrylate		ND		ug/l	5.0		1	
Acrylonitrile		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	1.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	1.0		1	
1,2-Dibromoethane		ND		ug/l	1.0		1	
1,3-Dichloropropane		ND		ug/l	1.0		1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	0.50		1	
Bromobenzene		ND		ug/l	1.0		1	
n-Butylbenzene		ND		ug/l	0.50		1	
sec-Butylbenzene		ND		ug/l	0.50		1	
tert-Butylbenzene		ND		ug/l	1.0		1	
o-Chlorotoluene		ND		ug/l	1.0		1	
p-Chlorotoluene		ND		ug/l	1.0		1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	1.0		1	
Hexachlorobutadiene		ND		ug/l	0.50		1	

			Serial_No:11301817:50		
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957	
Project Number:	171.05027.003		Report Date:	11/30/18	
		SAMPLE RESULTS			
Lab ID:	L1847957-01		Date Collected:	11/21/18 08:00	
Client ID:	PSD-101		Date Received:	11/21/18	
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC	
Sample Depth:					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
/olatile Organics by GC/MS - Westborough Lab										
Isopropylbenzene	ND		ug/l	0.50		1				
p-Isopropyltoluene	ND		ug/l	0.50		1				
Naphthalene	ND		ug/l	1.0		1				
n-Propylbenzene	ND		ug/l	0.50		1				
1,2,3-Trichlorobenzene	ND		ug/l	1.0		1				
1,2,4-Trichlorobenzene	ND		ug/l	1.0		1				
1,3,5-Trimethylbenzene	ND		ug/l	1.0		1				
1,2,4-Trimethylbenzene	ND		ug/l	1.0		1				
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1				
Ethyl ether	ND		ug/l	1.0		1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	99	70-130	

			Serial_No	o:11301817:50
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957
Project Number:	171.05027.003		Report Date:	11/30/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1847957-02 PSD-102 BELFAST, ME		Date Collected: Date Received: Field Prep:	11/21/18 07:30 11/21/18 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 11/29/18 10:30 NLK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	3.0		1			
1,1-Dichloroethane	ND		ug/l	0.75		1			
Chloroform	ND		ug/l	0.75		1			
Carbon tetrachloride	ND		ug/l	0.50		1			
1,2-Dichloropropane	ND		ug/l	1.0		1			
Dibromochloromethane	ND		ug/l	0.50		1			
1,1,2-Trichloroethane	ND		ug/l	0.75		1			
Tetrachloroethene	ND		ug/l	0.50		1			
Chlorobenzene	ND		ug/l	0.50		1			
Trichlorofluoromethane	ND		ug/l	1.0		1			
1,2-Dichloroethane	ND		ug/l	0.50		1			
1,1,1-Trichloroethane	ND		ug/l	0.50		1			
Bromodichloromethane	ND		ug/l	0.50		1			
trans-1,3-Dichloropropene	ND		ug/l	0.50		1			
cis-1,3-Dichloropropene	ND		ug/l	0.50		1			
1,3-Dichloropropene, Total	ND		ug/l	0.50		1			
1,1-Dichloropropene	ND		ug/l	1.0		1			
Bromoform	ND		ug/l	1.0		1			
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1			
Benzene	ND		ug/l	0.50		1			
Toluene	ND		ug/l	0.75		1			
Ethylbenzene	ND		ug/l	0.50		1			
Chloromethane	ND		ug/l	2.0		1			
Bromomethane	ND		ug/l	1.0		1			
Vinyl chloride	ND		ug/l	0.20		1			
Chloroethane	ND		ug/l	1.0		1			
1,1-Dichloroethene	ND		ug/l	0.50		1			
trans-1,2-Dichloroethene	ND		ug/l	0.75		1			

					Serial_No:11301817:50			
Project Name:	NORDIC AQUAFARMS				Lab Nu	mber:	L1847957	
Project Number:	171.05027.003				Report	Date:	11/30/18	
•		SAMP	LE RESULTS	5	•			
Lab ID:	L1847957-02				Date Coll	ected:	11/21/18 07:30	
Client ID:	PSD-102				Date Rec		11/21/18	
Sample Location:	BELFAST, ME				Field Pre	p:	Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough L	ab						
1,2-Dichloroethene, Total		ND			0.50		1	
Trichloroethene		ND		ug/l ug/l	0.50		1	
1.2-Dichlorobenzene		ND		ug/l	1.0		1	
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylenes, Total		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	0.50		1	
Dibromomethane		ND		ug/l	1.0		1	
1,4-Dichlorobutane		ND		ug/l	5.0		1	
1,2,3-Trichloropropane		ND		ug/l	1.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	1.0		1	
2-Butanone		ND		ug/l	5.0		1	
Vinyl acetate		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Ethyl methacrylate		ND		ug/l	5.0		1	
Acrylonitrile		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	1.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	1.0		1	
1,2-Dibromoethane		ND		ug/l	1.0		1	
1,3-Dichloropropane		ND		ug/l	1.0		1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	0.50		1	
Bromobenzene		ND		ug/l	1.0		1	
n-Butylbenzene		ND		ug/l	0.50		1	
sec-Butylbenzene		ND		ug/l	0.50		1	
tert-Butylbenzene		ND		ug/l	1.0		1	
o-Chlorotoluene		ND		ug/l	1.0		1	
p-Chlorotoluene		ND		ug/l	1.0		1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	1.0		1	
Hexachlorobutadiene		ND		ug/l	0.50		1	

			Serial_No:11301817:50		
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957	
Project Number:	171.05027.003		Report Date:	11/30/18	
		SAMPLE RESULTS			
Lab ID:	L1847957-02		Date Collected:	11/21/18 07:30	
Client ID:	PSD-102		Date Received:	11/21/18	
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC	
Sample Depth:					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
/olatile Organics by GC/MS - Westborough Lab										
Isopropylbenzene	ND		ug/l	0.50		1				
p-Isopropyltoluene	ND		ug/l	0.50		1				
Naphthalene	ND		ug/l	1.0		1				
n-Propylbenzene	ND		ug/l	0.50		1				
1,2,3-Trichlorobenzene	ND		ug/l	1.0		1				
1,2,4-Trichlorobenzene	ND		ug/l	1.0		1				
1,3,5-Trimethylbenzene	ND		ug/l	1.0		1				
1,2,4-Trimethylbenzene	ND		ug/l	1.0		1				
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1				
Ethyl ether	ND		ug/l	1.0		1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	99	70-130	

			Serial_No	p:11301817:50
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957
Project Number:	171.05027.003		Report Date:	11/30/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1847957-04 DRX-102 BELFAST, ME		Date Collected: Date Received: Field Prep:	11/21/18 08:15 11/21/18 Refer to COC
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 11/29/18 10:52 NLK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	3.0		1			
1,1-Dichloroethane	ND		ug/l	0.75		1			
Chloroform	ND		ug/l	0.75		1			
Carbon tetrachloride	ND		ug/l	0.50		1			
1,2-Dichloropropane	ND		ug/l	1.0		1			
Dibromochloromethane	ND		ug/l	0.50		1			
1,1,2-Trichloroethane	ND		ug/l	0.75		1			
Tetrachloroethene	ND		ug/l	0.50		1			
Chlorobenzene	ND		ug/l	0.50		1			
Trichlorofluoromethane	ND		ug/l	1.0		1			
1,2-Dichloroethane	ND		ug/l	0.50		1			
1,1,1-Trichloroethane	ND		ug/l	0.50		1			
Bromodichloromethane	ND		ug/l	0.50		1			
trans-1,3-Dichloropropene	ND		ug/l	0.50		1			
cis-1,3-Dichloropropene	ND		ug/l	0.50		1			
1,3-Dichloropropene, Total	ND		ug/l	0.50		1			
1,1-Dichloropropene	ND		ug/l	1.0		1			
Bromoform	ND		ug/l	1.0		1			
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1			
Benzene	ND		ug/l	0.50		1			
Toluene	ND		ug/l	0.75		1			
Ethylbenzene	ND		ug/l	0.50		1			
Chloromethane	ND		ug/l	2.0		1			
Bromomethane	ND		ug/l	1.0		1			
Vinyl chloride	ND		ug/l	0.20		1			
Chloroethane	ND		ug/l	1.0		1			
1,1-Dichloroethene	ND		ug/l	0.50		1			
trans-1,2-Dichloroethene	ND		ug/l	0.75		1			

					Serial_No:11301817:50			
Project Name:	NORDIC AQUAFARMS				Lab Nu	mber:	L1847957	
Project Number:	171.05027.003				Report	Date:	11/30/18	
•		SAMP	LE RESULTS	6	•			
Lab ID:	L1847957-04				Date Coll	ected:	11/21/18 08:15	
Client ID:	DRX-102				Date Rec	eived:	11/21/18	
Sample Location:	BELFAST, ME				Field Pre	p:	Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough L	ab						
1,2-Dichloroethene, Total		ND		ug/l	0.50		1	
Trichloroethene		ND		ug/l	0.50		1	
1,2-Dichlorobenzene		ND		ug/l	1.0		1	
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylenes, Total		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	0.50		1	
Dibromomethane		ND		ug/l	1.0		1	
1,4-Dichlorobutane		ND		ug/l	5.0		1	
1,2,3-Trichloropropane		ND		ug/l	1.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	1.0		1	
2-Butanone		ND		ug/l	5.0		1	
Vinyl acetate		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Ethyl methacrylate		ND		ug/l	5.0		1	
Acrylonitrile		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	1.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	1.0		1	
1,2-Dibromoethane		ND		ug/l	1.0		1	
1,3-Dichloropropane		ND		ug/l	1.0		1	
1,1,1,2-Tetrachloroethane)	ND		ug/l	0.50		1	
Bromobenzene		ND		ug/l	1.0		1	
n-Butylbenzene		ND		ug/l	0.50		1	
sec-Butylbenzene		ND		ug/l	0.50		1	
tert-Butylbenzene		ND		ug/l	1.0		1	
o-Chlorotoluene		ND		ug/l	1.0		1	
p-Chlorotoluene 1,2-Dibromo-3-chloroprop	ana	ND ND		ug/l	1.0		1	
Hexachlorobutadiene		ND		ug/l			1	
		ND		ug/l	0.50		I	

			Serial_N	o:11301817:50
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957
Project Number:	171.05027.003		Report Date:	11/30/18
		SAMPLE RESULTS		
Lab ID:	L1847957-04		Date Collected:	11/21/18 08:15
Client ID:	DRX-102		Date Received:	11/21/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC
Sample Depth:				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	1.0		1
n-Propylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	1.0		1
1,2,4-Trichlorobenzene	ND		ug/l	1.0		1
1,3,5-Trimethylbenzene	ND		ug/l	1.0		1
1,2,4-Trimethylbenzene	ND		ug/l	1.0		1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1
Ethyl ether	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	98	70-130	

Project Name:	NORDIC AQUAFARMS	Lab Number:	L1847957
Project Number:	171.05027.003	Report Date:	11/30/18

Analytical Method:	1,8260C
Analytical Date:	11/29/18 08:19
Analyst:	PD

arameter	Result	Qualifier	Units	RL		MDL
platile Organics by GC/MS -	Westborough Lal	b for sample	e(s):	01-02,04	Batch:	WG1183891-5
Methylene chloride	ND		ug/l	3.0)	
1,1-Dichloroethane	ND		ug/l	0.7	5	
Chloroform	ND		ug/l	0.7	5	
Carbon tetrachloride	ND		ug/l	0.5	C	
1,2-Dichloropropane	ND		ug/l	1.0)	
Dibromochloromethane	ND		ug/l	0.5	C	
1,1,2-Trichloroethane	ND		ug/l	0.7	5	
2-Chloroethylvinyl ether	ND		ug/l	10		
Tetrachloroethene	ND		ug/l	0.5	C	
Chlorobenzene	ND		ug/l	0.5	C	
Trichlorofluoromethane	ND		ug/l	1.0	1	
1,2-Dichloroethane	ND		ug/l	0.5	C	
1,1,1-Trichloroethane	ND		ug/l	0.5	C	
Bromodichloromethane	ND		ug/l	0.5	C	
trans-1,3-Dichloropropene	ND		ug/l	0.5	C	
cis-1,3-Dichloropropene	ND		ug/l	0.5	C	
1,3-Dichloropropene, Total	ND		ug/l	0.5	C	
1,1-Dichloropropene	ND		ug/l	1.0)	
Bromoform	ND		ug/l	1.0)	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.5	C	
Benzene	ND		ug/l	0.5	C	
Toluene	ND		ug/l	0.7	5	
Ethylbenzene	ND		ug/l	0.5)	
Chloromethane	ND		ug/l	2.0	1	
Bromomethane	ND		ug/l	1.0	1	
Vinyl chloride	ND		ug/l	0.2)	
Chloroethane	ND		ug/l	1.0		
1,1-Dichloroethene	ND		ug/l	0.5	C	
trans-1,2-Dichloroethene	ND		ug/l	0.7	5	

Project Name:	NORDIC AQUAFARMS	Lab Number:	L1847957
Project Number:	171.05027.003	Report Date:	11/30/18

Analytical Method:	1,8260C
Analytical Date:	11/29/18 08:19
Analyst:	PD

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by GC/MS - W	estborough Lat	o for sample	e(s):	01-02,04	Batch:	WG1183891-5
1,2-Dichloroethene, Total	ND		ug/l	0.5	0	
Trichloroethene	ND		ug/l	0.5	0	
1,2-Dichlorobenzene	ND		ug/l	1.0)	
1,3-Dichlorobenzene	ND		ug/l	1.0)	
1,4-Dichlorobenzene	ND		ug/l	1.0)	
Methyl tert butyl ether	ND		ug/l	1.0)	
p/m-Xylene	ND		ug/l	1.0)	
o-Xylene	ND		ug/l	1.0)	
Xylenes, Total	ND		ug/l	1.0)	
cis-1,2-Dichloroethene	ND		ug/l	0.5	0	
Dibromomethane	ND		ug/l	1.0)	
1,4-Dichlorobutane	ND		ug/l	5.0)	
lodomethane	ND		ug/l	5.0)	
1,2,3-Trichloropropane	ND		ug/l	1.0)	
Styrene	ND		ug/l	1.0)	
Dichlorodifluoromethane	ND		ug/l	2.0)	
Acetone	ND		ug/l	5.0)	
Carbon disulfide	ND		ug/l	1.0)	
2-Butanone	ND		ug/l	5.0)	
Vinyl acetate	ND		ug/l	5.0)	
4-Methyl-2-pentanone	ND		ug/l	5.0)	
2-Hexanone	ND		ug/l	5.0)	
Ethyl methacrylate	ND		ug/l	5.0)	
Acrolein	ND		ug/l	5.0)	
Acrylonitrile	ND		ug/l	5.0)	
Bromochloromethane	ND		ug/l	1.0)	
Tetrahydrofuran	ND		ug/l	2.0)	
2,2-Dichloropropane	ND		ug/l	1.0)	
1,2-Dibromoethane	ND		ug/l	1.0)	

Project Name:	NORDIC AQUAFARMS	Lab Number:	L1847957
Project Number:	171.05027.003	Report Date:	11/30/18

Analytical Method:	1,8260C
Analytical Date:	11/29/18 08:19
Analyst:	PD

rameter	Result	Qualifier	Units	RL		MDL
latile Organics by GC/MS - W	/estborough La	b for sample	e(s):	01-02,04 I	Batch:	WG1183891-5
1,3-Dichloropropane	ND		ug/l	1.0		
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		
Bromobenzene	ND		ug/l	1.0		
n-Butylbenzene	ND		ug/l	0.50		
sec-Butylbenzene	ND		ug/l	0.50		
tert-Butylbenzene	ND		ug/l	1.0		
o-Chlorotoluene	ND		ug/l	1.0		
p-Chlorotoluene	ND		ug/l	1.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	1.0		
Hexachlorobutadiene	ND		ug/l	0.50		
Isopropylbenzene	ND		ug/l	0.50		
p-Isopropyltoluene	ND		ug/l	0.50		
Naphthalene	ND		ug/l	1.0		
n-Propylbenzene	ND		ug/l	0.50		
1,2,3-Trichlorobenzene	ND		ug/l	1.0		
1,2,4-Trichlorobenzene	ND		ug/l	1.0		
1,3,5-Trimethylbenzene	ND		ug/l	1.0		
1,3,5-Trichlorobenzene	ND		ug/l	1.0		
1,2,4-Trimethylbenzene	ND		ug/l	1.0		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		
Halothane	ND		ug/l	2.5		
Ethyl ether	ND		ug/l	1.0		
Methyl Acetate	ND		ug/l	10		
Ethyl Acetate	ND		ug/l	10		
Isopropyl Ether	ND		ug/l	1.0		
Cyclohexane	ND		ug/l	10		
Tert-Butyl Alcohol	ND		ug/l	10		
Ethyl-Tert-Butyl-Ether	ND		ug/l	1.0		
Tertiary-Amyl Methyl Ether	ND		ug/l	1.0		

Project Name:	NORDIC AQUAFARMS	Lab Number:	L1847957
Project Number:	171.05027.003	Report Date:	11/30/18

Analytical Method:	1,8260C
Analytical Date:	11/29/18 08:19
Analyst:	PD

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - West	borough Lab	o for sample	e(s): (01-02,04 Batch:	WG1183891-5
1,4-Dioxane	ND		ug/l	250	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/l	10	
Methyl cyclohexane	ND		ug/l	10	
p-Diethylbenzene	ND		ug/l	2.0	
4-Ethyltoluene	ND		ug/l	2.0	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	

		Acceptance
Surrogate	%Recovery Qua	lifier Criteria
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	99	70-130
Dibromofluoromethane	96	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: NORDIC AQUAFARMS

Project Number: 171.05027.003 Lab Number: L1847957 Report Date: 11/30/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): (01-02,04 Batch	: WG1183891-3 WG11838	91-4	
Methylene chloride	100		100	70-130	0	20
1,1-Dichloroethane	100		100	70-130	0	20
Chloroform	98		97	70-130	1	20
Carbon tetrachloride	83		79	63-132	5	20
1,2-Dichloropropane	100		97	70-130	3	20
Dibromochloromethane	92		92	63-130	0	20
1,1,2-Trichloroethane	99		99	70-130	0	20
2-Chloroethylvinyl ether	91		92	70-130	1	20
Tetrachloroethene	82		81	70-130	1	20
Chlorobenzene	96		95	75-130	1	25
Trichlorofluoromethane	86		83	62-150	4	20
1,2-Dichloroethane	100		98	70-130	2	20
1,1,1-Trichloroethane	86		84	67-130	2	20
Bromodichloromethane	97		96	67-130	1	20
trans-1,3-Dichloropropene	90		88	70-130	2	20
cis-1,3-Dichloropropene	91		92	70-130	1	20
1,1-Dichloropropene	90		87	70-130	3	20
Bromoform	90		93	54-136	3	20
1,1,2,2-Tetrachloroethane	100		100	67-130	0	20
Benzene	94		94	70-130	0	25
Toluene	98		95	70-130	3	25
Ethylbenzene	97		96	70-130	1	20
Chloromethane	100		100	64-130	0	20

Project Name: NORDIC AQUAFARMS

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02,04 Batch:	WG11838	91-3 WG1183891	-4		
Bromomethane	81		77		39-139	5		20
Vinyl chloride	96		93		55-140	3		20
Chloroethane	120		120		55-138	0		20
1,1-Dichloroethene	89		85		61-145	5		25
trans-1,2-Dichloroethene	92		92		70-130	0		20
Trichloroethene	93		89		70-130	4		25
1,2-Dichlorobenzene	96		95		70-130	1		20
1,3-Dichlorobenzene	99		97		70-130	2		20
1,4-Dichlorobenzene	97		96		70-130	1		20
Methyl tert butyl ether	88		87		63-130	1		20
p/m-Xylene	95		95		70-130	0		20
o-Xylene	95		95		70-130	0		20
cis-1,2-Dichloroethene	93		94		70-130	1		20
Dibromomethane	92		92		70-130	0		20
1,4-Dichlorobutane	110		110		70-130	0		20
Iodomethane	22	Q	24	Q	70-130	9		20
1,2,3-Trichloropropane	100		100		64-130	0		20
Styrene	100		100		70-130	0		20
Dichlorodifluoromethane	78		74		36-147	5		20
Acetone	90		95		58-148	5		20
Carbon disulfide	96		93		51-130	3		20
2-Butanone	93		92		63-138	1		20
Vinyl acetate	100		100		70-130	0		20

Project Name: NORDIC AQUAFARMS

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 01	-02,04 Batch:	WG118389	1-3 WG1183891	-4		
4-Methyl-2-pentanone	88		92		59-130	4		20
2-Hexanone	87		86		57-130	1		20
Ethyl methacrylate	82		83		70-130	1		20
Acrolein	94		99		70-130	5		20
Acrylonitrile	100		100		70-130	0		20
Bromochloromethane	91		94		70-130	3		20
Tetrahydrofuran	85		88		58-130	3		20
2,2-Dichloropropane	84		82		63-133	2		20
1,2-Dibromoethane	92		93		70-130	1		20
1,3-Dichloropropane	100		100		70-130	0		20
1,1,1,2-Tetrachloroethane	92		90		64-130	2		20
Bromobenzene	94		96		70-130	2		20
n-Butylbenzene	100		100		53-136	0		20
sec-Butylbenzene	100		95		70-130	5		20
tert-Butylbenzene	84		82		70-130	2		20
o-Chlorotoluene	100		100		70-130	0		20
p-Chlorotoluene	100		100		70-130	0		20
1,2-Dibromo-3-chloropropane	81		87		41-144	7		20
Hexachlorobutadiene	83		83		63-130	0		20
Isopropylbenzene	100		96		70-130	4		20
p-IsopropyItoluene	96		95		70-130	1		20
Naphthalene	83		84		70-130	1		20
n-Propylbenzene	100		100		69-130	0		20

Project Name: NORDIC AQUAFARMS

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated s	sample(s):	01-02,04 Batch:	WG118389	91-3 WG1183891	-4		
1,2,3-Trichlorobenzene	88		86		70-130	2		20
1,2,4-Trichlorobenzene	89		88		70-130	1		20
1,3,5-Trimethylbenzene	100		98		64-130	2		20
1,3,5-Trichlorobenzene	92		92		70-130	0		20
1,2,4-Trimethylbenzene	100		98		70-130	2		20
trans-1,4-Dichloro-2-butene	100		96		70-130	4		20
Halothane	88		83		70-130	6		20
Ethyl ether	96		99		59-134	3		20
Methyl Acetate	94		93		70-130	1		20
Ethyl Acetate	98		94		70-130	4		20
Isopropyl Ether	100		100		70-130	0		20
Cyclohexane	90		87		70-130	3		20
Tert-Butyl Alcohol	78		78		70-130	0		20
Ethyl-Tert-Butyl-Ether	92		91		70-130	1		20
Tertiary-Amyl Methyl Ether	83		83		66-130	0		20
1,4-Dioxane	120		108		56-162	11		20
1,1,2-Trichloro-1,2,2-Trifluoroethane	86		82		70-130	5		20
Methyl cyclohexane	86		78		70-130	10		20
p-Diethylbenzene	94		93		70-130	1		20
4-Ethyltoluene	100		99		70-130	1		20
1,2,4,5-Tetramethylbenzene	91		91		70-130	0		20

Project Name: NORDIC AQUAFARMS

Project Number: 171.05027.003

 Lab Number:
 L1847957

 Report Date:
 11/30/18

 LCS
 LCSD
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 Main
 RPD
 Qual

 Volatile Organics by GC/MS - Westborough Lab Associated sample(s):
 01-02,04
 Batch:
 WG1183891-3
 WG1183891-4

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	106	106	70-130
Toluene-d8	104	103	70-130
4-Bromofluorobenzene	98	99	70-130
Dibromofluoromethane	96	93	70-130

SEMIVOLATILES

			Serial_No	o:11301817:50
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957
Project Number:	171.05027.003		Report Date:	11/30/18
		SAMPLE RESULTS		
Lab ID:	L1847957-01		Date Collected:	11/21/18 08:00
Client ID:	PSD-101		Date Received:	11/21/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 3510C
Analytical Method:	1,8270D		Extraction Date:	11/26/18 00:12
Analytical Date:	11/28/18 13:11			
Analyst:	JG			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	ND		ug/l	2.0		1		
Benzidine	ND		ug/l	20		1		
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1		
Hexachlorobenzene	ND		ug/l	2.0		1		
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1		
2-Chloronaphthalene	ND		ug/l	2.0		1		
1,2-Dichlorobenzene	ND		ug/l	2.0		1		
1,3-Dichlorobenzene	ND		ug/l	2.0		1		
1,4-Dichlorobenzene	ND		ug/l	2.0		1		
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1		
2,4-Dinitrotoluene	ND		ug/l	5.0		1		
2,6-Dinitrotoluene	ND		ug/l	5.0		1		
Azobenzene	ND		ug/l	2.0		1		
Fluoranthene	ND		ug/l	2.0		1		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1		
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1		
Hexachlorobutadiene	ND		ug/l	2.0		1		
Hexachlorocyclopentadiene	ND		ug/l	20		1		
Hexachloroethane	ND		ug/l	2.0		1		
Isophorone	ND		ug/l	5.0		1		
Naphthalene	ND		ug/l	2.0		1		
Nitrobenzene	ND		ug/l	2.0		1		
NDPA/DPA	ND		ug/l	2.0		1		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1		
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1		
Butyl benzyl phthalate	ND		ug/l	5.0		1		

					ç	Serial_No	:11301817:50
Project Name:	NORDIC AQUAFARMS				Lab Nu	mber:	L1847957
Project Number:	171.05027.003				Report	Date:	11/30/18
-		SAMPI		6	-		
Lab ID:	L1847957-01				Date Col	lected:	11/21/18 08:00
Client ID:	PSD-101				Date Rec		11/21/18
Sample Location:	BELFAST, ME				Field Pre	p:	Refer to COC
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	nics by GC/MS - Westborou	gh Lab					
		-					
Di-n-butylphthalate		ND		ug/l	5.0		1
Di-n-octylphthalate		ND		ug/l	5.0		1
Diethyl phthalate		ND		ug/l	5.0		1
Dimethyl phthalate		ND		ug/l	5.0		1
Benzo(a)anthracene		ND		ug/l	2.0		1
Benzo(a)pyrene		ND		ug/l	2.0		1
Benzo(b)fluoranthene		ND		ug/l	2.0		1
Benzo(k)fluoranthene		ND		ug/l	2.0		1
Chrysene		ND		ug/l	2.0		1
Acenaphthylene		ND		ug/l	2.0		1
Anthracene		ND		ug/l	2.0		1
Benzo(ghi)perylene		ND		ug/l	2.0		1
Fluorene		ND		ug/l	2.0		1
Phenanthrene		ND		ug/l	2.0		1
Dibenzo(a,h)anthracene		ND		ug/l	2.0		1
Indeno(1,2,3-cd)pyrene		ND		ug/l	2.0		1
Pyrene		ND		ug/l	2.0		1
Biphenyl		ND		ug/l	2.0		1
Aniline		ND		ug/l	2.0		1
4-Chloroaniline		ND		ug/l	5.0		1
1-Methylnaphthalene		ND		ug/l	2.0		1
2-Nitroaniline		ND		ug/l	5.0		1
3-Nitroaniline		ND		ug/l	5.0		1
4-Nitroaniline		ND		ug/l	5.0		1
Dibenzofuran		ND		ug/l	2.0		1
2-Methylnaphthalene		ND		ug/l	2.0		1
n-Nitrosodimethylamine		ND		ug/l	2.0		1
2,4,6-Trichlorophenol		ND ND		ug/l	5.0 2.0		1
p-Chloro-m-cresol				ug/l			
2-Chlorophenol		ND ND		ug/l	2.0		1
2,4-Dichlorophenol 2,4-Dimethylphenol		ND		ug/l	5.0		1
2,4-Dimethylphenol 2-Nitrophenol		ND		ug/l	10		1
·		ND		ug/l	10		
4-Nitrophenol				ug/l			1
2,4-Dinitrophenol		ND ND		ug/l	20		1
4,6-Dinitro-o-cresol				ug/l			
Pentachlorophenol		ND		ug/l	10		1

			Serial_N	0:11301817:50
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957
Project Number:	171.05027.003		Report Date:	11/30/18
		SAMPLE RESULTS		
Lab ID:	L1847957-01		Date Collected:	11/21/18 08:00
Client ID:	PSD-101		Date Received:	11/21/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Phenol	ND		ug/l	5.0		1		
2-Methylphenol	ND		ug/l	5.0		1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1		
2,4,5-Trichlorophenol	ND		ug/l	5.0		1		
Benzoic Acid	ND		ug/l	50		1		
Benzyl Alcohol	ND		ug/l	2.0		1		
Carbazole	ND		ug/l	2.0		1		
Pyridine	ND		ug/l	3.5		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	21-120
Phenol-d6	35	10-120
Nitrobenzene-d5	88	23-120
2-Fluorobiphenyl	92	15-120
2,4,6-Tribromophenol	106	10-120
4-Terphenyl-d14	93	41-149

			Serial_No	p:11301817:50
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957
Project Number:	171.05027.003		Report Date:	11/30/18
		SAMPLE RESULTS		
Lab ID:	L1847957-01		Date Collected:	11/21/18 08:00
Client ID:	PSD-101		Date Received:	11/21/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	11/26/18 00:15
Analytical Date:	11/29/18 15:01			
Analyst:	СВ			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough La	ıb			
Acenaphthene	ND	ug/l	0.10		1
2-Chloronaphthalene	ND	ug/l	0.20		1
Fluoranthene	ND	ug/l	0.10		1
Hexachlorobutadiene	ND	ug/l	0.50		1
Naphthalene	ND	ug/l	0.10		1
Benzo(a)anthracene	ND	ug/l	0.10		1
Benzo(a)pyrene	ND	ug/l	0.10		1
Benzo(b)fluoranthene	ND	ug/l	0.10		1
Benzo(k)fluoranthene	ND	ug/l	0.10		1
Chrysene	ND	ug/l	0.10		1
Acenaphthylene	ND	ug/l	0.10		1
Anthracene	ND	ug/l	0.10		1
Benzo(ghi)perylene	ND	ug/l	0.10		1
Fluorene	ND	ug/l	0.10		1
Phenanthrene	ND	ug/l	0.10		1
Dibenzo(a,h)anthracene	ND	ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10		1
Pyrene	ND	ug/l	0.10		1
1-Methylnaphthalene	ND	ug/l	0.10		1
2-Methylnaphthalene	ND	ug/l	0.10		1
Pentachlorophenol	ND	ug/l	0.80		1
Hexachlorobenzene	ND	ug/l	0.80		1
Hexachloroethane	ND	ug/l	0.80		1

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	BELFAST, ME				Field Pre	p:	Refer to COC
Client ID:	PSD-101				Date Rec		11/21/18
Lab ID:	L1847957-01				Date Coll	ected:	11/21/18 08:00
		SAMP		6			
Project Number:	171.05027.003				Report	Date:	11/30/18
Project Name:	NORDIC AQUAFARMS				Lab Nu	mber:	L1847957
					5	Serial_No	0:11301817:50

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	45	21-120
Phenol-d6	33	10-120
Nitrobenzene-d5	93	23-120
2-Fluorobiphenyl	98	15-120
2,4,6-Tribromophenol	86	10-120
4-Terphenyl-d14	74	41-149

			Serial_No:	:11301817:50
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957
Project Number:	171.05027.003		Report Date:	11/30/18
		SAMPLE RESULTS		
Lab ID:	L1847957-02		Date Collected:	11/21/18 07:30
Client ID:	PSD-102		Date Received:	11/21/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	: EPA 3510C
Analytical Method:	1,8270D		Extraction Date:	11/26/18 00:12
Analytical Date:	11/28/18 13:38			
Analyst:	JG			
•				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	ND		ug/l	2.0		1		
Benzidine	ND		ug/l	20		1		
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1		
Hexachlorobenzene	ND		ug/l	2.0		1		
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1		
2-Chloronaphthalene	ND		ug/l	2.0		1		
1,2-Dichlorobenzene	ND		ug/l	2.0		1		
1,3-Dichlorobenzene	ND		ug/l	2.0		1		
1,4-Dichlorobenzene	ND		ug/l	2.0		1		
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1		
2,4-Dinitrotoluene	ND		ug/l	5.0		1		
2,6-Dinitrotoluene	ND		ug/l	5.0		1		
Azobenzene	ND		ug/l	2.0		1		
Fluoranthene	ND		ug/l	2.0		1		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1		
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1		
Hexachlorobutadiene	ND		ug/l	2.0		1		
Hexachlorocyclopentadiene	ND		ug/l	20		1		
Hexachloroethane	ND		ug/l	2.0		1		
Isophorone	ND		ug/l	5.0		1		
Naphthalene	ND		ug/l	2.0		1		
Nitrobenzene	ND		ug/l	2.0		1		
NDPA/DPA	ND		ug/l	2.0		1		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1		
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1		
Butyl benzyl phthalate	ND		ug/l	5.0		1		

					S	Serial_No	:11301817:50
Project Name:	NORDIC AQUAFARMS				Lab Nu		L1847957
Project Number:	171.05027.003				Report	Date:	11/30/18
-		SAMPL	E RESULTS	5	-		
Lab ID:	L1847957-02				Date Col	lected:	11/21/18 07:30
Client ID:	PSD-102				Date Rec	eived:	11/21/18
Sample Location:	BELFAST, ME				Field Pre	p:	Refer to COC
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	ics by GC/MS - Westborou	gh Lab					
Di-n-butylphthalate		ND		ug/l	5.0		1
Di-n-octylphthalate		ND		ug/l	5.0		1
Diethyl phthalate		ND		ug/l	5.0		1
Dimethyl phthalate		ND		ug/l	5.0		1
Benzo(a)anthracene		ND		ug/l	2.0		1
Benzo(a)pyrene		ND		ug/l	2.0		1
Benzo(b)fluoranthene		ND		ug/l	2.0		1
Benzo(k)fluoranthene		ND		ug/l	2.0		1
Chrysene		ND		ug/l	2.0		1
Acenaphthylene		ND		ug/l	2.0		1
Anthracene		ND		ug/l	2.0		1
Benzo(ghi)perylene		ND		ug/l	2.0		1
Fluorene		ND		ug/l	2.0		1
Phenanthrene		ND		ug/l	2.0		1
Dibenzo(a,h)anthracene		ND		ug/l	2.0		1
Indeno(1,2,3-cd)pyrene		ND		ug/l	2.0		1
Pyrene		ND		ug/l	2.0		1
Biphenyl		ND		ug/l	2.0		1
Aniline		ND		ug/l	2.0		1
4-Chloroaniline		ND		ug/l	5.0		1
1-Methylnaphthalene		ND		ug/l	2.0		1
2-Nitroaniline		ND		ug/l	5.0		1
3-Nitroaniline		ND		ug/l	5.0		1
4-Nitroaniline		ND		ug/l	5.0		1
Dibenzofuran		ND		ug/l	2.0		1
2-Methylnaphthalene		ND		ug/l	2.0		1
n-Nitrosodimethylamine		ND		ug/l	2.0		1
2,4,6-Trichlorophenol		ND		ug/l	5.0		1
p-Chloro-m-cresol		ND		ug/l	2.0		1
2-Chlorophenol		ND		ug/l	2.0		1
2,4-Dichlorophenol		ND		ug/l	5.0		1
2,4-Dimethylphenol		ND		ug/l	5.0		1
2-Nitrophenol		ND		ug/l	10		1
4-Nitrophenol		ND		ug/l	10		1
2,4-Dinitrophenol		ND		ug/l	20		1
4,6-Dinitro-o-cresol		ND		ug/l	10		I

ug/l

10

ND

1

Pentachlorophenol

			Serial_N	o:11301817:50
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957
Project Number:	171.05027.003		Report Date:	11/30/18
		SAMPLE RESULTS		
Lab ID:	L1847957-02		Date Collected:	11/21/18 07:30
Client ID:	PSD-102		Date Received:	11/21/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Phenol	ND		ug/l	5.0		1		
2-Methylphenol	ND		ug/l	5.0		1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1		
2,4,5-Trichlorophenol	ND		ug/l	5.0		1		
Benzoic Acid	ND		ug/l	50		1		
Benzyl Alcohol	ND		ug/l	2.0		1		
Carbazole	ND		ug/l	2.0		1		
Pyridine	ND		ug/l	3.5		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	50	21-120
Phenol-d6	31	10-120
Nitrobenzene-d5	83	23-120
2-Fluorobiphenyl	91	15-120
2,4,6-Tribromophenol	102	10-120
4-Terphenyl-d14	96	41-149

			Serial_No	o:11301817:50
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957
Project Number:	171.05027.003		Report Date:	11/30/18
		SAMPLE RESULTS		
Lab ID:	L1847957-02		Date Collected:	11/21/18 07:30
Client ID:	PSD-102		Date Received:	11/21/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	11/26/18 00:15
Analytical Date:	11/29/18 15:32			
Analyst:	СВ			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND	ug/l	0.10		1			
2-Chloronaphthalene	ND	ug/l	0.20		1			
Fluoranthene	ND	ug/l	0.10		1			
Hexachlorobutadiene	ND	ug/l	0.50		1			
Naphthalene	ND	ug/l	0.10		1			
Benzo(a)anthracene	ND	ug/l	0.10		1			
Benzo(a)pyrene	ND	ug/l	0.10		1			
Benzo(b)fluoranthene	ND	ug/l	0.10		1			
Benzo(k)fluoranthene	ND	ug/l	0.10		1			
Chrysene	ND	ug/l	0.10		1			
Acenaphthylene	ND	ug/l	0.10		1			
Anthracene	ND	ug/l	0.10		1			
Benzo(ghi)perylene	ND	ug/l	0.10		1			
Fluorene	ND	ug/l	0.10		1			
Phenanthrene	ND	ug/l	0.10		1			
Dibenzo(a,h)anthracene	ND	ug/l	0.10		1			
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10		1			
Pyrene	ND	ug/l	0.10		1			
1-Methylnaphthalene	ND	ug/l	0.10		1			
2-Methylnaphthalene	ND	ug/l	0.10		1			
Pentachlorophenol	ND	ug/l	0.80		1			
Hexachlorobenzene	ND	ug/l	0.80		1			
Hexachloroethane	ND	ug/l	0.80		1			

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	BELFAST, ME				Field Pre	p:	Refer to COC
Client ID:	PSD-102				Date Rec		11/21/18
Lab ID:	L1847957-02				Date Coll	ected:	11/21/18 07:30
		SAMP		6			
Project Number:	171.05027.003				Report	Date:	11/30/18
Project Name:	NORDIC AQUAFARMS				Lab Nu	mber:	L1847957
					5	Serial_No	0:11301817:50

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	34	21-120
Phenol-d6	28	10-120
Nitrobenzene-d5	84	23-120
2-Fluorobiphenyl	94	15-120
2,4,6-Tribromophenol	76	10-120
4-Terphenyl-d14	75	41-149

			Serial_No	5:11301817:50
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957
Project Number:	171.05027.003		Report Date:	11/30/18
		SAMPLE RESULTS		
Lab ID:	L1847957-04		Date Collected:	11/21/18 08:15
Client ID:	DRX-102		Date Received:	11/21/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	l: EPA 3510C
Analytical Method:	1,8270D		Extraction Date:	11/26/18 00:12
Analytical Date:	11/28/18 14:04			
Analyst:	JG			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Westborough Lab					
Acenaphthene	ND		ug/l	2.0		1
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Hexachlorobenzene	ND		ug/l	2.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
2-Chloronaphthalene	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
Fluoranthene	ND		ug/l	2.0		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorobutadiene	ND		ug/l	2.0		1
Hexachlorocyclopentadiene	ND		ug/l	20		1
Hexachloroethane	ND		ug/l	2.0		1
Isophorone	ND		ug/l	5.0		1
Naphthalene	ND		ug/l	2.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA	ND		ug/l	2.0		1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1

					S	Serial_No	:11301817:50
Project Name:	NORDIC AQUAFARMS				Lab Nu		L1847957
Project Number:	171.05027.003				Report	Date:	11/30/18
•		SAMP	LE RESULTS	;	•		
Lab ID: Client ID: Sample Location:	L1847957-04 DRX-102 BELFAST, ME				Date Coll Date Rec Field Pre	eived:	11/21/18 08:15 11/21/18 Refer to COC
Sample Depth:		Result	Qualifier	Units	RL	MDL	Dilution Factor
Parameter	ing by CC/MC Monthereu		Quaimer	Units	KL	MDL	Dilution Factor
Sernivolatile Organ	ics by GC/MS - Westborou	gri Lab					
Di-n-butylphthalate		ND		ug/l	5.0		1
Di-n-octylphthalate		ND		ug/l	5.0		1
Diethyl phthalate		ND		ug/l	5.0		1
Dimethyl phthalate		ND		ug/l	5.0		1
Benzo(a)anthracene		ND		ug/l	2.0		1
Benzo(a)pyrene		ND		ug/l	2.0		1
Benzo(b)fluoranthene		ND		ug/l	2.0		1
Benzo(k)fluoranthene		ND		ug/l	2.0		1
Chrysene		ND		ug/l	2.0		1
Acenaphthylene		ND		ug/l	2.0		1
Anthracene		ND		ug/l	2.0		1
Benzo(ghi)perylene		ND		ug/l	2.0		1
Fluorene Phenanthrene		ND ND		ug/l	2.0		1
Dibenzo(a,h)anthracene		ND		ug/l	2.0		1
Indeno(1,2,3-cd)pyrene		ND		ug/l	2.0		1
Pyrene		ND		ug/l ug/l	2.0		1
Biphenyl		ND		ug/l	2.0		1
Aniline		ND		ug/l	2.0		1
4-Chloroaniline		ND		ug/l	5.0		1
1-Methylnaphthalene		ND		ug/l	2.0		1
2-Nitroaniline		ND		ug/l	5.0		1
3-Nitroaniline		ND		ug/l	5.0		1
4-Nitroaniline		ND		ug/l	5.0		1
Dibenzofuran		ND		ug/l	2.0		1
2-Methylnaphthalene		ND		ug/l	2.0		1
n-Nitrosodimethylamine		ND		ug/l	2.0		1
2,4,6-Trichlorophenol		ND		ug/l	5.0		1
p-Chloro-m-cresol		ND		ug/l	2.0		1
2-Chlorophenol		ND		ug/l	2.0		1
2,4-Dichlorophenol		ND		ug/l	5.0		1
2,4-Dimethylphenol		ND		ug/l	5.0		1
2-Nitrophenol		ND		ug/l	10		1
4-Nitrophenol		ND		ug/l	10		1
2,4-Dinitrophenol		ND		ug/l	20		1
4,6-Dinitro-o-cresol		ND		ug/l	10		1
Development and the second second second		ND			10		4

ND

1

10

--

ug/l

Pentachlorophenol

			Serial_No:11301817:50		
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957	
Project Number:	171.05027.003		Report Date:	11/30/18	
		SAMPLE RESULTS			
Lab ID:	L1847957-04		Date Collected:	11/21/18 08:15	
Client ID:	DRX-102		Date Received:	11/21/18	
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC	

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Phenol	ND		ug/l	5.0		1		
2-Methylphenol	ND		ug/l	5.0		1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1		
2,4,5-Trichlorophenol	ND		ug/l	5.0		1		
Benzoic Acid	ND		ug/l	50		1		
Benzyl Alcohol	ND		ug/l	2.0		1		
Carbazole	ND		ug/l	2.0		1		
Pyridine	ND		ug/l	3.5		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	42	10-120
Nitrobenzene-d5	84	23-120
2-Fluorobiphenyl	87	15-120
2,4,6-Tribromophenol	102	10-120
4-Terphenyl-d14	91	41-149

			Serial_No	p:11301817:50
Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957
Project Number:	171.05027.003		Report Date:	11/30/18
		SAMPLE RESULTS		
Lab ID:	L1847957-04		Date Collected:	11/21/18 08:15
Client ID:	DRX-102		Date Received:	11/21/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	11/26/18 00:15
Analytical Date:	11/29/18 16:03			
Analyst:	CB			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough La	ıb				
Acenaphthene	ND		ug/l	0.10		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.10		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
1-Methylnaphthalene	ND		ug/l	0.10		1
2-Methylnaphthalene	ND		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

					S	erial_No	0:11301817:50
Project Name:	NORDIC AQUAFARMS				Lab Nur	nber:	L1847957
Project Number:	171.05027.003				Report I	Date:	11/30/18
		SAMPI		6			
Lab ID:	L1847957-04				Date Colle	ected:	11/21/18 08:15
Client ID:	DRX-102				Date Rece	eived:	11/21/18
Sample Location:	BELFAST, ME				Field Prep	D:	Refer to COC
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	41	21-120
Phenol-d6	31	10-120
Nitrobenzene-d5	87	23-120
2-Fluorobiphenyl	94	15-120
2,4,6-Tribromophenol	82	10-120
4-Terphenyl-d14	73	41-149

Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957	
Project Number:	171.05027.003		Report Date:	11/30/18	
Mathed Diank Analysis					

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	11/27/18 11:36	Extraction Date:	11/25/18 19:33
Analyst:	ALS		

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/MS -	Westborough	Lab for sample(s):	01-02,04	Batch: WG1182353-1
Acenaphthene	ND	ug/l	2.0	
Benzidine	ND	ug/l	20	
1,2,4-Trichlorobenzene	ND	ug/l	5.0	
Hexachlorobenzene	ND	ug/l	2.0	
Bis(2-chloroethyl)ether	ND	ug/l	2.0	
2-Chloronaphthalene	ND	ug/l	2.0	
1,2-Dichlorobenzene	ND	ug/l	2.0	
1,3-Dichlorobenzene	ND	ug/l	2.0	
1,4-Dichlorobenzene	ND	ug/l	2.0	
3,3'-Dichlorobenzidine	ND	ug/l	5.0	
2,4-Dinitrotoluene	ND	ug/l	5.0	
2,6-Dinitrotoluene	ND	ug/l	5.0	
Azobenzene	ND	ug/l	2.0	
Fluoranthene	ND	ug/l	2.0	
4-Chlorophenyl phenyl ether	ND	ug/l	2.0	
4-Bromophenyl phenyl ether	ND	ug/l	2.0	
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	
Hexachlorobutadiene	ND	ug/l	2.0	
Hexachlorocyclopentadiene	ND	ug/l	20	
Hexachloroethane	ND	ug/l	2.0	
Isophorone	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.0	
Nitrobenzene	ND	ug/l	2.0	
NDPA/DPA	ND	ug/l	2.0	
n-Nitrosodi-n-propylamine	ND	ug/l	5.0	
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	
Butyl benzyl phthalate	ND	ug/l	5.0	
Di-n-butylphthalate	ND	ug/l	5.0	

Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957	
Project Number:	171.05027.003		Report Date:	11/30/18	
Mathead Dlank Analysia					

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	11/27/18 11:36	Extraction Date:	11/25/18 19:33
Analyst:	ALS		

arameter	Result	Qualifier	Units	RL	M	DL
emivolatile Organics by GC/MS	- Westborough	n Lab for sa	ample(s):	01-02,04	Batch:	WG1182353-1
Di-n-octylphthalate	ND		ug/l	5.0	-	-
Diethyl phthalate	ND		ug/l	5.0	-	-
Dimethyl phthalate	ND		ug/l	5.0	-	-
Benzo(a)anthracene	ND		ug/l	2.0	-	-
Benzo(a)pyrene	ND		ug/l	2.0	-	-
Benzo(b)fluoranthene	ND		ug/l	2.0	-	-
Benzo(k)fluoranthene	ND		ug/l	2.0	-	-
Chrysene	ND		ug/l	2.0	-	-
Acenaphthylene	ND		ug/l	2.0	-	-
Anthracene	ND		ug/l	2.0	-	-
Benzo(ghi)perylene	ND		ug/l	2.0	-	-
Fluorene	ND		ug/l	2.0	-	-
Phenanthrene	ND		ug/l	2.0	-	-
Dibenzo(a,h)anthracene	ND		ug/l	2.0	-	-
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0	-	-
Pyrene	ND		ug/l	2.0	-	-
Biphenyl	ND		ug/l	2.0	-	-
Aniline	ND		ug/l	2.0	-	-
4-Chloroaniline	ND		ug/l	5.0	-	-
1-Methylnaphthalene	ND		ug/l	2.0	-	-
2-Nitroaniline	ND		ug/l	5.0	-	-
3-Nitroaniline	ND		ug/l	5.0	-	-
4-Nitroaniline	ND		ug/l	5.0	-	-
Dibenzofuran	ND		ug/l	2.0	-	-
2-Methylnaphthalene	ND		ug/l	2.0	-	-
n-Nitrosodimethylamine	ND		ug/l	2.0	-	-
2,4,6-Trichlorophenol	ND		ug/l	5.0	-	-
p-Chloro-m-cresol	ND		ug/l	2.0	-	-
2-Chlorophenol	ND		ug/l	2.0	-	-

Project Name:	NORDIC AQUAFARMS	Lab Number:	L1847957		
Project Number:	171.05027.003	Report Date:	11/30/18		
Mathed Blank Analysia					

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	11/27/18 11:36	Extraction Date:	11/25/18 19:33
Analyst:	ALS		

arameter	Result	Qualifier Units	RL	MDL
Semivolatile Organics by GC/MS	S - Westboroug	h Lab for sample(s):	01-02,04	Batch: WG1182353-1
2,4-Dichlorophenol	ND	ug/l	5.0	
2,4-Dimethylphenol	ND	ug/l	5.0	
2-Nitrophenol	ND	ug/l	10	
4-Nitrophenol	ND	ug/l	10	
2,4-Dinitrophenol	ND	ug/l	20	
4,6-Dinitro-o-cresol	ND	ug/l	10	
Pentachlorophenol	ND	ug/l	10	
Phenol	ND	ug/l	5.0	
2-Methylphenol	ND	ug/l	5.0	
3-Methylphenol/4-Methylphenol	ND	ug/l	5.0	
2,4,5-Trichlorophenol	ND	ug/l	5.0	
Benzoic Acid	ND	ug/l	50	
Benzyl Alcohol	ND	ug/l	2.0	
Carbazole	ND	ug/l	2.0	
Pyridine	ND	ug/l	3.5	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	44	21-120
Phenol-d6	30	10-120
Nitrobenzene-d5	77	23-120
2-Fluorobiphenyl	85	15-120
2,4,6-Tribromophenol	79	10-120
4-Terphenyl-d14	81	41-149

Project Name:	NORDIC AQUAFARMS	Lab Number:	L1847957
Project Number:	171.05027.003	Report Date:	11/30/18
	Mothod Blank Analysis		

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	11/27/18 21:31	Extraction Date:	11/25/18 19:35
Analyst:	CB		

arameter					
emivolatile Organics by GC/ /G1182354-1	MS-SIM - Westbo	orough Lab f	or sampl	e(s): 01-02,04	Batch:
G1102334-1					
Acenaphthene	ND		ug/l	0.10	
2-Chloronaphthalene	ND		ug/l	0.20	
Fluoranthene	ND		ug/l	0.10	
Hexachlorobutadiene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	0.10	
Benzo(a)anthracene	ND		ug/l	0.10	
Benzo(a)pyrene	ND		ug/l	0.10	
Benzo(b)fluoranthene	ND		ug/l	0.10	
Benzo(k)fluoranthene	ND		ug/l	0.10	
Chrysene	ND		ug/l	0.10	
Acenaphthylene	ND		ug/l	0.10	
Anthracene	ND		ug/l	0.10	
Benzo(ghi)perylene	ND		ug/l	0.10	
Fluorene	ND		ug/l	0.10	
Phenanthrene	ND		ug/l	0.10	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	
Pyrene	ND		ug/l	0.10	
1-Methylnaphthalene	ND		ug/l	0.10	
2-Methylnaphthalene	ND		ug/l	0.10	
Pentachlorophenol	ND		ug/l	0.80	
Hexachlorobenzene	ND		ug/l	0.80	
Hexachloroethane	ND		ug/l	0.80	

Project Name: Project Number:	NORDIC AQUAFARMS 171.05027.003	Lab Number: Report Date:	L1847957 11/30/18
	Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270D-SIM 11/27/18 21:31 CB	Extraction Method Extraction Date:	: EPA 3510C 11/25/18 19:35

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-SII WG1182354-1	N - Westbo	rough Lab	for sample(s):	01-02,04	Batch:

Surrogate	%Recovery Q	Acceptance ualifier Criteria
2-Fluorophenol	50	21-120
Phenol-d6	38	10-120
Nitrobenzene-d5	93	23-120
2-Fluorobiphenyl	115	15-120
2,4,6-Tribromophenol	87	10-120
4-Terphenyl-d14	85	41-149

Project Name: NORDIC AQUAFARMS

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - West	tborough Lab Associ	ated sample(s)	: 01-02,04 E	Batch: WG118	2353-2 WG118	32353-3		
Acenaphthene	63		66		37-111	5		30
Benzidine	13		13		10-75	0		30
1,2,4-Trichlorobenzene	66		66		39-98	0		30
Hexachlorobenzene	67		70		40-140	4		30
Bis(2-chloroethyl)ether	61		62		40-140	2		30
2-Chloronaphthalene	74		77		40-140	4		30
1,2-Dichlorobenzene	60		61		40-140	2		30
1,3-Dichlorobenzene	59		59		40-140	0		30
1,4-Dichlorobenzene	58		60		36-97	3		30
3,3'-Dichlorobenzidine	68		74		40-140	8		30
2,4-Dinitrotoluene	78		83		48-143	6		30
2,6-Dinitrotoluene	88		92		40-140	4		30
Azobenzene	64		66		40-140	3		30
Fluoranthene	78		83		40-140	6		30
4-Chlorophenyl phenyl ether	67		71		40-140	6		30
4-Bromophenyl phenyl ether	69		72		40-140	4		30
Bis(2-chloroisopropyl)ether	95		97		40-140	2		30
Bis(2-chloroethoxy)methane	70		71		40-140	1		30
Hexachlorobutadiene	61		63		40-140	3		30
Hexachlorocyclopentadiene	48		50		40-140	4		30
Hexachloroethane	55		56		40-140	2		30
Isophorone	72		74		40-140	3		30
Naphthalene	66		68		40-140	3		30

Project Name: NORDIC AQUAFARMS

Project Number: 171.05027.003

rameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - V	Vestborough Lab Associate	ed sample(s): 01-02,04	Batch: WG1182353-2 WG1	182353-3	
Nitrobenzene	66	68	40-140	3	30
NDPA/DPA	71	74	40-140	4	30
n-Nitrosodi-n-propylamine	71	72	29-132	1	30
Bis(2-ethylhexyl)phthalate	86	89	40-140	3	30
Butyl benzyl phthalate	86	90	40-140	5	30
Di-n-butylphthalate	78	83	40-140	6	30
Di-n-octylphthalate	91	95	40-140	4	30
Diethyl phthalate	72	76	40-140	5	30
Dimethyl phthalate	83	87	40-140	5	30
Benzo(a)anthracene	71	74	40-140	4	30
Benzo(a)pyrene	79	83	40-140	5	30
Benzo(b)fluoranthene	82	86	40-140	5	30
Benzo(k)fluoranthene	73	77	40-140	5	30
Chrysene	71	75	40-140	5	30
Acenaphthylene	78	81	45-123	4	30
Anthracene	73	77	40-140	5	30
Benzo(ghi)perylene	73	76	40-140	4	30
Fluorene	68	71	40-140	4	30
Phenanthrene	70	75	40-140	7	30
Dibenzo(a,h)anthracene	75	78	40-140	4	30
Indeno(1,2,3-cd)pyrene	78	80	40-140	3	30
Pyrene	76	81	26-127	6	30
Biphenyl	77	80	40-140	4	30

Project Name: NORDIC AQUAFARMS

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Assoc	iated sample(s)	: 01-02,04 E	Batch: WG1	182353-2 WG118	32353-3		
Aniline	35	Q	36	Q	40-140	3		30
4-Chloroaniline	60		60		40-140	0		30
1-Methylnaphthalene	68		70		41-103	3		30
2-Nitroaniline	90		94		52-143	4		30
3-Nitroaniline	61		64		25-145	5		30
4-Nitroaniline	73		78		51-143	7		30
Dibenzofuran	65		68		40-140	5		30
2-Methylnaphthalene	69		72		40-140	4		30
n-Nitrosodimethylamine	36		35		22-74	3		30
2,4,6-Trichlorophenol	85		88		30-130	3		30
p-Chloro-m-cresol	80		82		23-97	2		30
2-Chlorophenol	66		67		27-123	2		30
2,4-Dichlorophenol	81		80		30-130	1		30
2,4-Dimethylphenol	75		76		30-130	1		30
2-Nitrophenol	82		85		30-130	4		30
4-Nitrophenol	43		44		10-80	2		30
2,4-Dinitrophenol	77		79		20-130	3		30
4,6-Dinitro-o-cresol	78		82		20-164	5		30
Pentachlorophenol	60		62		9-103	3		30
Phenol	33		33		12-110	0		30
2-Methylphenol	60		60		30-130	0		30
3-Methylphenol/4-Methylphenol	62		63		30-130	2		30
2,4,5-Trichlorophenol	87		89		30-130	2		30

Project Name: NORDIC AQUAFARMS

Project Number: 171.05027.003

 Lab Number:
 L1847957

 Report Date:
 11/30/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbord	ough Lab Associ	ated sample(s)	: 01-02,04 B	atch: WG1	182353-2 WG118	32353-3			
Benzoic Acid	32		30		10-164	6		30	
Benzyl Alcohol	61		62		26-116	2		30	
Carbazole	74		78		55-144	5		30	
Pyridine	15		14		10-66	7		30	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2-Fluorophenol	43	43	21-120
Phenol-d6	30	31	10-120
Nitrobenzene-d5	69	71	23-120
2-Fluorobiphenyl	74	77	15-120
2,4,6-Tribromophenol	71	78	10-120
4-Terphenyl-d14	67	73	41-149

Project Number: 171.05027.003

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - W	estborough Lab Ass	sociated samp	le(s): 01-02,04	Batch:	WG1182354-2	WG1182354-3		
Acenaphthene	88		78		40-140	12		40
2-Chloronaphthalene	71		64		40-140	10		40
Fluoranthene	96		82		40-140	16		40
Hexachlorobutadiene	59		57		40-140	3		40
Naphthalene	62		59		40-140	5		40
Benzo(a)anthracene	93		79		40-140	16		40
Benzo(a)pyrene	105		89		40-140	16		40
Benzo(b)fluoranthene	105		85		40-140	21		40
Benzo(k)fluoranthene	100		91		40-140	9		40
Chrysene	92		80		40-140	14		40
Acenaphthylene	73		65		40-140	12		40
Anthracene	98		85		40-140	14		40
Benzo(ghi)perylene	110		92		40-140	18		40
Fluorene	93		82		40-140	13		40
Phenanthrene	107		92		40-140	15		40
Dibenzo(a,h)anthracene	112		96		40-140	15		40
Indeno(1,2,3-cd)pyrene	111		94		40-140	17		40
Pyrene	97		84		40-140	14		40
1-Methylnaphthalene	67		61		40-140	9		40
2-Methylnaphthalene	67		61		40-140	9		40
Pentachlorophenol	100		85		40-140	16		40
Hexachlorobenzene	90		80		40-140	12		40
Hexachloroethane	69		68		40-140	1		40

Project Name: NORDIC AQUAFARMS

Project Number: 171.05027.003

Lab Number: L1847957

Report Date: 11/30/18

Parameter	LCS %Recoverv	Qual	LCSD %Recoverv	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
	/intecovery	Quai	, interest of y	Quui	Emility	NI D	Quui	Emito	
Semivolatile Organics by GC/MS-SIM -	Westborough Lab As	sociated sa	mple(s): 01-02.04	Batch:	WG1182354-2	WG1182354-3			

Surrogate	LCS %Recovery Qua	LCSD I %Recovery	Acceptance Qual Criteria
2-Fluorophenol	47	46	21-120
Phenol-d6	36	34	10-120
Nitrobenzene-d5	86	79	23-120
2-Fluorobiphenyl	72	64	15-120
2,4,6-Tribromophenol	87	78	10-120
4-Terphenyl-d14	77	70	41-149

METALS

Serial_No:11301817:50

Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957
Project Number:	171.05027.003		Report Date:	11/30/18
		SAMPLE RESULTS		
Lab ID:	L1847957-01		Date Collected:	11/21/18 08:00
Client ID:	PSD-101		Date Received:	11/21/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals -	Mansfield	Lab									
Arsenic, Dissolved	ND		mg/l	0.005		1	11/29/18 12:50 ⁻	1/29/18 18:46	EPA 3005A	1,6010D	MC
Barium, Dissolved	ND		mg/l	0.010		1	11/29/18 12:50	1/29/18 18:46	EPA 3005A	1,6010D	MC
Cadmium, Dissolved	ND		mg/l	0.005		1	11/29/18 12:50 ⁻	1/29/18 18:46	EPA 3005A	1,6010D	MC
Chromium, Dissolved	ND		mg/l	0.010		1	11/29/18 12:50 ⁻	1/29/18 18:46	EPA 3005A	1,6010D	MC
Copper, Dissolved	ND		mg/l	0.010		1	11/29/18 12:50 ⁻	1/29/18 18:46	EPA 3005A	1,6010D	MC
Lead, Dissolved	ND		mg/l	0.010		1	11/29/18 12:50 ⁻	1/29/18 18:46	EPA 3005A	1,6010D	MC
Mercury, Dissolved	ND		mg/l	0.00020		1	11/29/18 11:54	1/30/18 00:28	EPA 7470A	1,7470A	EA
Selenium, Dissolved	ND		mg/l	0.010		1	11/29/18 12:50	1/29/18 18:46	EPA 3005A	1,6010D	MC
Silver, Dissolved	ND		mg/l	0.007		1	11/29/18 12:50 ⁻	1/29/18 18:46	EPA 3005A	1,6010D	MC

Serial_No:11301817:50

Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957
Project Number:	171.05027.003		Report Date:	11/30/18
		SAMPLE RESULTS		
Lab ID:	L1847957-02		Date Collected:	11/21/18 07:30
Client ID:	PSD-102		Date Received:	11/21/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - I	Mansfield	Lah									
	viansneia	Lab									
Arsenic, Dissolved	0.008		mg/l	0.005		1	11/29/18 12:50	11/29/18 20:12	EPA 3005A	1,6010D	MC
Barium, Dissolved	0.010		mg/l	0.010		1	11/29/18 12:50	11/29/18 20:12	EPA 3005A	1,6010D	MC
Cadmium, Dissolved	ND		mg/l	0.005		1	11/29/18 12:50	11/29/18 20:12	EPA 3005A	1,6010D	MC
Chromium, Dissolved	ND		mg/l	0.010		1	11/29/18 12:50	11/29/18 20:12	EPA 3005A	1,6010D	MC
Copper, Dissolved	ND		mg/l	0.010		1	11/29/18 12:50	11/29/18 20:12	EPA 3005A	1,6010D	MC
Lead, Dissolved	ND		mg/l	0.010		1	11/29/18 12:50	11/29/18 20:12	EPA 3005A	1,6010D	MC
Mercury, Dissolved	ND		mg/l	0.00020		1	11/29/18 11:54	11/30/18 00:34	EPA 7470A	1,7470A	EA
Selenium, Dissolved	ND		mg/l	0.010		1	11/29/18 12:50	11/29/18 20:12	EPA 3005A	1,6010D	MC
Silver, Dissolved	ND		mg/l	0.007		1	11/29/18 12:50	11/29/18 20:12	EPA 3005A	1,6010D	MC

Serial_No:11301817:50

Project Name:	NORDIC AQUAFARMS		Lab Number:	L1847957
Project Number:	171.05027.003		Report Date:	11/30/18
		SAMPLE RESULTS		
Lab ID:	L1847957-04		Date Collected:	11/21/18 08:15
Client ID:	DRX-102		Date Received:	11/21/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals -	Mansfield	Lab									
Arsenic, Dissolved	0.011		mg/l	0.005		1	11/29/18 12:50	11/29/18 20:17	EPA 3005A	1,6010D	МС
Barium, Dissolved	ND		mg/l	0.010		1	11/29/18 12:50	11/29/18 20:17	EPA 3005A	1,6010D	MC
Cadmium, Dissolved	ND		mg/l	0.005		1	11/29/18 12:50	11/29/18 20:17	EPA 3005A	1,6010D	MC
Chromium, Dissolved	ND		mg/l	0.010		1	11/29/18 12:50	11/29/18 20:17	EPA 3005A	1,6010D	MC
Copper, Dissolved	ND		mg/l	0.010		1	11/29/18 12:50	11/29/18 20:17	EPA 3005A	1,6010D	MC
Lead, Dissolved	ND		mg/l	0.010		1	11/29/18 12:50	11/29/18 20:17	EPA 3005A	1,6010D	MC
Mercury, Dissolved	ND		mg/l	0.00020		1	11/29/18 11:54	11/30/18 00:36	EPA 7470A	1,7470A	EA
Selenium, Dissolved	ND		mg/l	0.010		1	11/29/18 12:50	11/29/18 20:17	EPA 3005A	1,6010D	MC
Silver, Dissolved	ND		mg/l	0.007		1	11/29/18 12:50	11/29/18 20:17	EPA 3005A	1,6010D	MC

Project Name: NORDIC AQUAFARMS Project Number: 171.05027.003
 Lab Number:
 L1847957

 Report Date:
 11/30/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Mar	nsfield Lab for sample	e(s): 01-0	2,04 Ba	atch: W	G1183816-	1			
Arsenic, Dissolved	ND	mg/l	0.005		1	11/29/18 12:50	11/29/18 18:11	1,6010D	MC
Barium, Dissolved	ND	mg/l	0.010		1	11/29/18 12:50	11/29/18 18:11	1,6010D	MC
Cadmium, Dissolved	ND	mg/l	0.005		1	11/29/18 12:50	11/29/18 18:11	1,6010D	MC
Chromium, Dissolved	ND	mg/l	0.010		1	11/29/18 12:50	11/29/18 18:11	1,6010D	MC
Copper, Dissolved	ND	mg/l	0.010		1	11/29/18 12:50	11/29/18 18:11	1,6010D	MC
Lead, Dissolved	ND	mg/l	0.010		1	11/29/18 12:50	11/29/18 18:11	1,6010D	MC
Selenium, Dissolved	ND	mg/l	0.010		1	11/29/18 12:50	11/29/18 18:11	1,6010D	MC
Silver, Dissolved	ND	mg/l	0.007		1	11/29/18 12:50	11/29/18 18:11	1,6010D	MC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals - Mar	nsfield Lab	for sample	(s): 01-0	2,04 Ba	tch: W	G1183873-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	11/29/18 11:54	11/30/18 00:21	1,7470A	EA

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis Batch Quality Control

Project Name: NORDIC AQUAFARMS

Project Number: 171.05027.003 Lab Number: L1847957 Report Date: 11/30/18

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
ssolved Metals - Mansfield Lab Associated	d sample(s): 01-02,04	Batch:	WG1183816-2					
Arsenic, Dissolved	98				80-120	-		
Barium, Dissolved	100		-		80-120	-		
Cadmium, Dissolved	104		-		80-120	-		
Chromium, Dissolved	101		-		80-120	-		
Copper, Dissolved	102		-		80-120	-		
Lead, Dissolved	94		-		80-120	-		
Selenium, Dissolved	103		-		80-120	-		
Silver, Dissolved	97		-		80-120	-		
ssolved Metals - Mansfield Lab Associated	d sample(s): 01-02,04	Batch:	WG1183873-2					
Mercury, Dissolved	111		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: NORDIC AQUAFARMS

Project Number: 171.05027.003 Lab Number: L1847957 **Report Date:** 11/30/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery al Limits	RPD Qual	RPD Limits
Dissolved Metals - Mansfield	Lab Associate	d sample(s):	01-02,04	QC Batch ID:	WG1183816-3	QC Sample: L18479	957-01 Client	t ID: PSD-101	
Arsenic, Dissolved	ND	0.12	0.119	99	-	-	75-125	-	20
Barium, Dissolved	ND	2	2.01	100	-	-	75-125	-	20
Cadmium, Dissolved	ND	0.051	0.053	103	-	-	75-125	-	20
Chromium, Dissolved	ND	0.2	0.202	101	-	-	75-125	-	20
Copper, Dissolved	ND	0.25	0.254	102	-	-	75-125	-	20
Lead, Dissolved	ND	0.51	0.472	92	-	-	75-125	-	20
Selenium, Dissolved	ND	0.12	0.120	100	-	-	75-125	-	20
Silver, Dissolved	ND	0.05	0.048	95	-	-	75-125	-	20
Dissolved Metals - Mansfield	Lab Associate	d sample(s):	01-02,04	QC Batch ID:	WG1183873-3	QC Sample: L18479	957-01 Client	t ID: PSD-101	
Mercury, Dissolved	ND	0.005	0.00483	97	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: NORDIC AQUAFARMS

 Lab Number:
 L1847957

 Report Date:
 11/30/18

Project Number: 171.05027.003

Native Sa	ample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
01-02,04	QC Batch ID:	WG1183816-4	QC Sample:	L1847957-01	Client ID:	PSD-101
ND		ND	mg/l	NC		20
ND		ND	mg/l	NC		20
ND		ND	mg/l	NC		20
ND		ND	mg/l	NC		20
ND		ND	mg/l	NC		20
ND		ND	mg/l	NC		20
ND		ND	mg/l	NC		20
ND		ND	mg/l	NC		20
01-02,04	QC Batch ID:	WG1183873-4	QC Sample:	L1847957-01	Client ID:	PSD-101
ND		ND	mg/l	NC		20
	01-02,04 ND ND ND ND ND ND 01-02,04	ND QC Batch ID:	01-02,04 QC Batch ID: WG1183816-4 ND ND ND ND	01-02,04 QC Batch ID: WG1183816-4 QC Sample: ND ND mg/l ND QC Batch ID: WG1183873-4<	01-02,04 QC Batch ID: WG1183816-4 QC Sample: L1847957-01 ND ND mg/l NC ND ND mg/l NC <td>01-02,04 QC Batch ID: WG1183816-4 QC Sample: L1847957-01 Client ID: ND Ng/l NC NC 01-02,04 QC Batch ID: WG1183873-4</td>	01-02,04 QC Batch ID: WG1183816-4 QC Sample: L1847957-01 Client ID: ND Ng/l NC NC 01-02,04 QC Batch ID: WG1183873-4

Project Name: NORDIC AQUAFARMS Project Number: 171.05027.003

Serial_No:11301817:50 Lab Number: L1847957 Report Date: 11/30/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1847957-01A	Vial HCI preserved	А	NA		3.6	Y	Absent		ME-8260(14)
L1847957-01B	Vial HCI preserved	А	NA		3.6	Y	Absent		ME-8260(14)
L1847957-01C	Vial HCI preserved	А	NA		3.6	Y	Absent		ME-8260(14)
L1847957-01D	Plastic 250ml HNO3 preserved	A	<2	<2	3.6	Y	Absent		PB-SI(180),BA-SI(180),AG-SI(180),AS- SI(180),CU-SI(180),CD-SI(180),CR- SI(180),HG-S(28),SE-SI(180)
L1847957-01E	Plastic 250ml HNO3 preserved	А	<2	<2	3.6	Y	Absent		HOLD-METAL-TOTAL(180)
L1847957-01F	Amber 1000ml unpreserved	А	7	7	3.6	Y	Absent		8270TCL(7),8270TCL-SIM(7)
L1847957-01G	Amber 1000ml unpreserved	А	7	7	3.6	Y	Absent		8270TCL(7),8270TCL-SIM(7)
L1847957-02A	Vial HCl preserved	А	NA		3.6	Y	Absent		ME-8260(14)
L1847957-02B	Vial HCl preserved	А	NA		3.6	Y	Absent		ME-8260(14)
L1847957-02C	Vial HCl preserved	А	NA		3.6	Y	Absent		ME-8260(14)
L1847957-02D	Plastic 250ml HNO3 preserved	A	<2	<2	3.6	Y	Absent		PB-SI(180),BA-SI(180),AG-SI(180),AS- SI(180),CU-SI(180),CD-SI(180),CR- SI(180),HG-S(28),SE-SI(180)
L1847957-02E	Plastic 250ml HNO3 preserved	А	<2	<2	3.6	Y	Absent		HOLD-METAL-TOTAL(180)
L1847957-02F	Amber 1000ml unpreserved	А	7	7	3.6	Y	Absent		8270TCL(7),8270TCL-SIM(7)
L1847957-02G	Amber 1000ml unpreserved	А	7	7	3.6	Y	Absent		8270TCL(7),8270TCL-SIM(7)
L1847957-03A	Vial HCl preserved	А	NA		3.6	Y	Absent		HOLD-8260(14)
L1847957-03B	Vial HCl preserved	А	NA		3.6	Y	Absent		HOLD-8260(14)
L1847957-03C	Vial HCl preserved	А	NA		3.6	Y	Absent		HOLD-8260(14)
L1847957-03D	Plastic 250ml HNO3 preserved	А	<2	<2	3.6	Y	Absent		HOLD-METAL-DISSOLVED(180)
L1847957-03E	Amber 1000ml unpreserved	А	7	7	3.6	Y	Absent		HOLD-8270(7)
L1847957-03F	Amber 1000ml unpreserved	А	7	7	3.6	Y	Absent		HOLD-8270(7)
L1847957-04A	Vial HCl preserved	А	NA		3.6	Y	Absent		ME-8260(14)

Project Name: NORDIC AQUAFARMS Project Number: 171.05027.003

Serial_No:11301817:50 *Lab Number:* L1847957 *Report Date:* 11/30/18

Container Information			Initial	Final				Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1847957-04B	Vial HCI preserved	А	NA		3.6	Y	Absent		ME-8260(14)
L1847957-04C	Vial HCl preserved	А	NA		3.6	Y	Absent		ME-8260(14)
L1847957-04D	Plastic 250ml HNO3 preserved	A	<2	<2	3.6	Y	Absent		PB-SI(180),BA-SI(180),AG-SI(180),AS- SI(180),CU-SI(180),CD-SI(180),CR- SI(180),HG-S(28),SE-SI(180)
L1847957-04E	Plastic 250ml HNO3 preserved	А	<2	<2	3.6	Y	Absent		HOLD-METAL-TOTAL(180)
L1847957-04F	Amber 1000ml unpreserved	А	7	7	3.6	Y	Absent		8270TCL(7),8270TCL-SIM(7)
L1847957-04G	Amber 1000ml unpreserved	А	7	7	3.6	Y	Absent		8270TCL(7),8270TCL-SIM(7)
L1847957-05A	Vial HCI preserved	А	NA		3.6	Y	Absent		HOLD-8260(14)
L1847957-05B	Vial HCI preserved	А	NA		3.6	Y	Absent		HOLD-8260(14)

Project Name: NORDIC AQUAFARMS

Project Number: 171.05027.003

Lab Number: L1847957

Report Date: 11/30/18

GLOSSARY

Acronyms

EDL	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

- 1 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name: NORDIC AQUAFARMS

Project Number: 171.05027.003

Serial_	No:11301817:50
---------	----------------

Lab Number: L1847957 Report Date: 11/30/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name: NORDIC AQUAFARMS Project Number: 171.05027.003
 Lab Number:
 L1847957

 Report Date:
 11/30/18

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene **EPA 8260C:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270D:** <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:11301817:50

	CHAIN OF C	USTOD	Р РА		OF	Dat	te Rec'	d in Lat	11/2	1/18	he		ALPH	A Job #:	11847957	
8 Walkup Drive	320 Forbes Blvd	ject Informatio	n			Re	port l	nforma	tion - Da	ta Deliv	erabl	es	Billing	Informa	ition	
Westboro, MA (Tel: 508-898-92	21581 Mansfield, MA 02048 Pro 220 Tel: 508-822-9300 Pro	ect Name: NO	dic A	auster	118	¥	ADEX		AEMAI			0	3 Same	as Client	info PO #:	
Client Information	Pro Pro	ect Location: Be	elfass	THE		_						ect Inf			irements	
Client: Panlo	m Consulting Pro	ect #: 171.05	5027.1	1903				No MAN	ACP Analy	tical Meth	nods	SDG2 (Q Ye Require	d for MCP	CT RCP Analytical Metho Inorganics)	ds
Address: MAC	Wanty Dr Pro	ect Manager: 6	mbe	the Rom	non	DY	es Q N	No GW1	Standard					PH with Ta		
Porten	usvely NH AL	PHA Quote #:	Walt	in opini					ES RGP i Program					Criteria		
Phone: 603-	438-1490 т	rn-Around Time	Ð	and a	Star 2-4		/	/	15	n/2/	5	1	/ /	11	1.1.1	
Email: chitalse	the ranson or ansomerning	am				1	. /	/	C Por	- Os	Alwo s	11	3/2			
ceidrew.t	TChseromsom em. com		RUSH (only o	ontimed if pre-ap	proved!)	ANAIN	SIS SIS	1/1	14	Range	8/	Drint	4/N	///	///	т
		ate Due:				AL	D 524 3	F	DRCRAB	0 0		Ingen I	SAT.	/ /		- T
Dissolved	metals were field A	tered				A	D 624	X	10/2	arget	12	19	¥	/ /	Filtration	L
15 153 NO. 573 A	stal RIEAS+Lu metals						0	DMCP	CCRA	1881	hino,	R	J'		Lab to do	
FICEP 10	and man or a manage						X 40.	10	C D P	Dig	Ouant	A Carlo	4 /	/ /	Preservation	B O T
ALPHA Lab ID (Lab Use Only)	Sample ID	Collec	tion Time	Sample Matrix	Sampler Initials	,ioo	SVOC:	METALS: MET.	EPH: DRanges & Tan- University DRCP 14 DRCP 15	DPCB DPEC Ranges & Targets D Ranges O	PH: Douant Only CT	A LEIOL	8 /	//	Sample Comments	LES
47957-01	PSD-WI	11-21-18	8,00	GW	DATE	X	X		ÍÍ		X	X	1		itall total wetals	7
02	PSD-402	и	7,30	и	и	X	X				X	X			Hold rotal merals	7
63	DRX-101	И	8:30	ų	5	X	X				X				HOLD	6
04	DRX-402	vi	8:15	п	и	X	X				X	X			its id total metals	87
ar	Trop Blank					X									HOLD	2
States -	1					L,					-					1
1. S. S. S. S.																+
The The M											-		-			1
											-	\square	-			+
											+		-			+
Container Type	Preservative		Г	Conta	iner Type	1	٨	-			1	1	-			+
P= Plastic A= Amber glass V= Vial	A= None B= HCl C= HNO ₃		-	1 10000	eservative	B	A				C	P				+
G= Glass B= Bacteria cup C= Cube	D= H ₂ SO ₄ E= NaOH Pr	linguished By:		1	e/Time	1	1	Recei	ved By:			Date/T	ime		win great in de an te	
O= Other E= Encore D= BOD Bottle	G= NaHSO4 H = Na2S2O3 PHILLA	en		11-21-	18/53	2	A	Tiocon	AA	24	11	121/1	815		ples submitted are subjections and Conditions.	ct to
G- BOD Bottle	I= Ascorbic Acid J = NH ₄ Cl K= Zn Acetate	AAL	0	1/21/	14	1	A	Tinh	- AA	L	11		1550	See rev	verse side.	
age 65 of 65	O= Other	while A	K	11/21	1730	1/10	al	Tille	211/2	1	0	30		FORM NO	D: 01-01 (rev. 12-Mar-2012)	4.1

ANALYTICAL REPORT

Lab Number:	L1834480
Client:	Ransom Consulting, Inc.
	400 Commercial Street
	Suite 404
	Portland, ME 04101-4660
ATTN:	Elizabeth Ransom
Phone:	(207) 772-2891
Project Name:	NAF BELFAST
Project Number:	171.05027.003.02
Report Date:	09/07/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09071817:47

Project Name:NAF BELFASTProject Number:171.05027.003.02

 Lab Number:
 L1834480

 Report Date:
 09/07/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1834480-01	PW-1	WATER	BELFAST, ME	08/30/18 09:00	08/30/18
L1834480-02	TRIP BLANK	WATER	BELFAST, ME	08/30/18 00:00	08/30/18

Project Name: NAF BELFAST Project Number: 171.05027.003.02

Lab Number: L1834480 Report Date: 09/07/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: NAF BELFAST Project Number: 171.05027.003.02
 Lab Number:
 L1834480

 Report Date:
 09/07/18

Case Narrative (continued)

Semivolatile Organics

The WG1153022-2/-3 LCS/LCSD RPD, associated with L1834480-01, are above the acceptance criteria for benzidine (106%).

The WG1153022-3 LCS/LCSD recoveries, associated with L1834480-01, are above the individual acceptance criteria for p-chloro-m-cresol (100%) and 4-nitrophenol (82%), but within the overall method allowances. The results of the associated samples are reported.

Total Metals

The WG1154185-3 MS recovery, performed on L1834480-01, are outside the acceptance criteria for potassium (130%). A post digestion spike was performed and yielded an unacceptable recovery of 153%. The serial dilution recovery was not acceptable; therefore, this element fails the matrix test and the result reported in the native sample should be considered estimated.

The WG1154185-4 Laboratory Duplicate RPD for arsenic (23%), performed on L1834480-01, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

Alkalinity, Total

The WG1152582-3 Laboratory Duplicate RPD (16%), performed on L1834480-01, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Custen Walker Cristin Walker

Title: Technical Director/Representative

Date: 09/07/18

ORGANICS

VOLATILES

			Serial_N	p:09071817:47
Project Name:	NAF BELFAST		Lab Number:	L1834480
Project Number:	171.05027.003.02		Report Date:	09/07/18
		SAMPLE RESULTS		
Lab ID:	L1834480-01		Date Collected:	08/30/18 09:00
Client ID:	PW-1		Date Received:	08/30/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	09/04/18 10:41			
Analyst:	PK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	1.0		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	0.20		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1

B 1 2 1							0.09071617.47	
Project Name:	NAF BELFAST				Lab Nu	mber:	L1834480	
Project Number:	171.05027.003.02				Report	Date:	09/07/18	
		SAMPI	LE RESULTS	5				
Lab ID:	L1834480-01				Date Col	lected:	08/30/18 09:00	
Client ID:	PW-1				Date Red	ceived:	08/30/18	
Sample Location:	BELFAST, ME				Field Pre	ep:	Refer to COC	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westboroug	gh Lab						
1,2-Dichloroethene, Total		ND		ug/l	0.50		1	
Trichloroethene		ND		ug/l	0.50		1	
1,2-Dichlorobenzene		ND		ug/l	1.0		1	
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylenes, Total		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	0.50		1	
Dibromomethane		ND		ug/l	1.0		1	
1,4-Dichlorobutane		ND		ug/l	5.0		1	
1,2,3-Trichloropropane		ND		ug/l	1.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	1.0		1	
2-Butanone		ND		ug/l	5.0		1	
Vinyl acetate		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Ethyl methacrylate		ND		ug/l	5.0		1	
Acrylonitrile		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	1.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	1.0		1	
1,2-Dibromoethane		ND		ug/l	1.0		1	
1,3-Dichloropropane		ND		ug/l	1.0		1	
1,1,1,2-Tetrachloroethane	1	ND		ug/l	0.50		1	
Bromobenzene		ND		ug/l	1.0		1	
n-Butylbenzene		ND		ug/l	0.50		1	
sec-Butylbenzene		ND		ug/l	0.50		1	
tert-Butylbenzene		ND		ug/l	1.0		1	
o-Chlorotoluene		ND		ug/l	1.0		1	
p-Chlorotoluene		ND		ug/l	1.0		1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	1.0		1	
Hexachlorobutadiene		ND		ug/l	0.50		1	
				uy/i	0.00		1	

Serial_No:09071817:47

		Serial			
Project Name:	NAF BELFAST		Lab Number:	L1834480	
Project Number:	171.05027.003.02		Report Date:	09/07/18	
		SAMPLE RESULTS			
Lab ID:	L1834480-01		Date Collected:	08/30/18 09:00	
Client ID:	PW-1		Date Received:	08/30/18	
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC	
Sample Depth:					

Parameter	Result	Result Qualifier Units R		RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Isopropylbenzene	ND		ug/l	0.50		1			
p-lsopropyltoluene	ND		ug/l	0.50		1			
Naphthalene	ND		ug/l	1.0		1			
n-Propylbenzene	ND		ug/l	0.50		1			
1,2,3-Trichlorobenzene	ND		ug/l	1.0		1			
1,2,4-Trichlorobenzene	ND		ug/l	1.0		1			
1,3,5-Trimethylbenzene	ND		ug/l	1.0		1			
1,2,4-Trimethylbenzene	ND		ug/l	1.0		1			
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1			
Ethyl ether	ND		ug/l	1.0		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	86	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	91	70-130	

			Serial_N	0:09071817:47
Project Name:	NAF BELFAST		Lab Number:	L1834480
Project Number:	171.05027.003.02		Report Date:	09/07/18
		SAMPLE RESULTS		
Lab ID:	L1834480-01		Date Collected:	08/30/18 09:00
Client ID:	PW-1		Date Received:	08/30/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC
Sample Depth:				
Matrix:	Water			
Analytical Method:	117,-			
Analytical Date:	09/05/18 16:07			
Analyst:	EW			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Dissolved Gases by GC - Mansfield Lab						
Carbon Dioxide	17.7		mg/l	3.00		1

Project Name:NAF BELFASTProject Number:171.05027.003.02

 Lab Number:
 L1834480

 Report Date:
 09/07/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8260C 09/04/18 09:50 PD

arameter	Result	Qualifier	Units	RL	MDL
platile Organics by GC/MS - We	stborough La	ab for sampl	e(s): 01	Batch:	WG1153528-5
Methylene chloride	ND		ug/l	3.0	
1,1-Dichloroethane	ND		ug/l	0.75	
Chloroform	ND		ug/l	0.75	
Carbon tetrachloride	ND		ug/l	0.50	
1,2-Dichloropropane	ND		ug/l	1.0	
Dibromochloromethane	ND		ug/l	0.50	
1,1,2-Trichloroethane	ND		ug/l	0.75	
2-Chloroethylvinyl ether	ND		ug/l	10	
Tetrachloroethene	ND		ug/l	0.50	
Chlorobenzene	ND		ug/l	0.50	
Trichlorofluoromethane	ND		ug/l	1.0	
1,2-Dichloroethane	ND		ug/l	0.50	
1,1,1-Trichloroethane	ND		ug/l	0.50	
Bromodichloromethane	ND		ug/l	0.50	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
1,3-Dichloropropene, Total	ND		ug/l	0.50	
1,1-Dichloropropene	ND		ug/l	1.0	
Bromoform	ND		ug/l	1.0	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	0.75	
Ethylbenzene	ND		ug/l	0.50	
Chloromethane	ND		ug/l	2.0	
Bromomethane	ND		ug/l	1.0	
Vinyl chloride	ND		ug/l	0.20	
Chloroethane	ND		ug/l	1.0	
1,1-Dichloroethene	ND		ug/l	0.50	
trans-1,2-Dichloroethene	ND		ug/l	0.75	

Project Name:NAF BELFASTIProject Number:171.05027.003.02I

 Lab Number:
 L1834480

 Report Date:
 09/07/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8260C 09/04/18 09:50 PD

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sampl	e(s): 01	Batch:	WG1153528-5
1,2-Dichloroethene, Total	ND		ug/l	0.50	
Trichloroethene	ND		ug/l	0.50	
1,2-Dichlorobenzene	ND		ug/l	1.0	
1,3-Dichlorobenzene	ND		ug/l	1.0	
1,4-Dichlorobenzene	ND		ug/l	1.0	
Methyl tert butyl ether	ND		ug/l	1.0	
p/m-Xylene	ND		ug/l	1.0	
o-Xylene	ND		ug/l	1.0	
Xylenes, Total	ND		ug/l	1.0	
cis-1,2-Dichloroethene	ND		ug/l	0.50	
Dibromomethane	ND		ug/l	1.0	
1,4-Dichlorobutane	ND		ug/l	5.0	
lodomethane	ND		ug/l	5.0	
1,2,3-Trichloropropane	ND		ug/l	1.0	
Styrene	ND		ug/l	1.0	
Dichlorodifluoromethane	ND		ug/l	2.0	
Acetone	ND		ug/l	5.0	
Carbon disulfide	ND		ug/l	1.0	
2-Butanone	ND		ug/l	5.0	
Vinyl acetate	ND		ug/l	5.0	
4-Methyl-2-pentanone	ND		ug/l	5.0	
2-Hexanone	ND		ug/l	5.0	
Ethyl methacrylate	ND		ug/l	5.0	
Acrolein	ND		ug/l	5.0	
Acrylonitrile	ND		ug/l	5.0	
Bromochloromethane	ND		ug/l	1.0	
Tetrahydrofuran	ND		ug/l	2.0	
2,2-Dichloropropane	ND		ug/l	1.0	
1,2-Dibromoethane	ND		ug/l	1.0	

L1834480

09/07/18

Lab Number:

Report Date:

Project Name:NAF BELFASTProject Number:171.05027.003.02

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/04/18 09:50Analyst:PD

Qualifier RL MDL Result Units Parameter Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1153528-5 1,3-Dichloropropane ND 1.0 ug/l --1,1,1,2-Tetrachloroethane ND ug/l 0.50 --Bromobenzene ND 1.0 ug/l ---ND 0.50 n-Butylbenzene ug/l --ND sec-Butylbenzene ug/l 0.50 -tert-Butylbenzene ND ug/l 1.0 -o-Chlorotoluene ND ug/l 1.0 -p-Chlorotoluene ND 1.0 ug/l --ND 1,2-Dibromo-3-chloropropane 1.0 ug/l ---Hexachlorobutadiene ND ug/l 0.50 --Isopropylbenzene ND 0.50 ug/l -p-Isopropyltoluene ND ug/l 0.50 --Naphthalene ND ug/l 1.0 --ND 0.50 n-Propylbenzene ug/l --ND 1,2,3-Trichlorobenzene ug/l 1.0 --1,2,4-Trichlorobenzene ND ug/l 1.0 --1,3,5-Trimethylbenzene ND ug/l 1.0 --1,3,5-Trichlorobenzene ND ug/l 1.0 ---1,2,4-Trimethylbenzene ND ug/l 1.0 -trans-1,4-Dichloro-2-butene ND ug/l 2.5 --ND 2.5 Halothane ug/l ---Ethyl ether ND ug/l 1.0 ---Methyl Acetate ND ug/l 10 --ND 10 Ethyl Acetate ug/l ---Isopropyl Ether ND ug/l 1.0 --ND 10 Cyclohexane ug/l --Tert-Butyl Alcohol ND ug/l 10 ---Ethyl-Tert-Butyl-Ether ND ug/l 1.0 ---Tertiary-Amyl Methyl Ether ND 1.0 ug/l ---

 Project Name:
 NAF BELFAST
 Lab Number:
 L1834480

 Project Number:
 171.05027.003.02
 Report Date:
 09/07/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	09/04/18 09:50
Analyst:	PD

Parameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - Wes	tborough La	b for samp	e(s): 01	Batch:	WG1153528-5
1,4-Dioxane	ND		ug/l	250	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/l	10	
Methyl cyclohexane	ND		ug/l	10	
p-Diethylbenzene	ND		ug/l	2.0	
4-Ethyltoluene	ND		ug/l	2.0	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	

	Acceptance				
Surrogate	%Recovery Qua	lifier Criteria			
1,2-Dichloroethane-d4	85	70-130			
Toluene-d8	102	70-130			
4-Bromofluorobenzene	105	70-130			
Dibromofluoromethane	90	70-130			

Project Name:	NAF BELFAST			Lab Number:	L1834480
Project Number:	171.05027.003.02			Report Date:	09/07/18

Method Blank Analysis Batch Quality Control

Analytical Method:117,-Analytical Date:09/05/18 15:44Analyst:EW

Parameter	Result	Qualifier		Units	RL	MDL
Dissolved Gases by GC - Mansfield	Lab for sa	mple(s):	01	Batch:	WG1153835-3	
Carbon Dioxide	ND			mg/l	3.00	

Lab Control Sample Analysis Batch Quality Control

Project Name: NAF BELFAST Project Number: 171.05027.003.02 Lab Number: L1834480 Report Date: 09/07/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 01	Batch: WG	1153528-3	WG1153528-4			
Methylene chloride	96		97		70-130	1		20
1,1-Dichloroethane	89		87		70-130	2		20
Chloroform	88		86		70-130	2		20
Carbon tetrachloride	83		81		63-132	2		20
1,2-Dichloropropane	93		93		70-130	0		20
Dibromochloromethane	91		89		63-130	2		20
1,1,2-Trichloroethane	93		91		70-130	2		20
2-Chloroethylvinyl ether	120		120		70-130	0		20
Tetrachloroethene	96		94		70-130	2		20
Chlorobenzene	94		92		75-130	2		25
Trichlorofluoromethane	87		82		62-150	6		20
1,2-Dichloroethane	82		82		70-130	0		20
1,1,1-Trichloroethane	85		83		67-130	2		20
Bromodichloromethane	87		85		67-130	2		20
trans-1,3-Dichloropropene	93		91		70-130	2		20
cis-1,3-Dichloropropene	94		93		70-130	1		20
1,1-Dichloropropene	85		84		70-130	1		20
Bromoform	88		89		54-136	1		20
1,1,2,2-Tetrachloroethane	90		93		67-130	3		20
Benzene	93		92		70-130	1		25
Toluene	96		93		70-130	3		25
Ethylbenzene	94		92		70-130	2		20
Chloromethane	83		79		64-130	5		20

Lab Control Sample Analysis Batch Quality Control

Project Name: NAF BELFAST Project Number: 171.05027.003.02 Lab Number: L1834480 Report Date: 09/07/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD imits
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s): 01	Batch: WG	1153528-3	WG1153528-4		
Bromomethane	82		77		39-139	6	20
Vinyl chloride	88		86		55-140	2	20
Chloroethane	74		83		55-138	11	20
1,1-Dichloroethene	93		92		61-145	1	25
trans-1,2-Dichloroethene	94		93		70-130	1	20
Trichloroethene	87		86		70-130	1	25
1,2-Dichlorobenzene	94		95		70-130	1	20
1,3-Dichlorobenzene	95		95		70-130	0	20
1,4-Dichlorobenzene	93		92		70-130	1	20
Methyl tert butyl ether	93		93		63-130	0	20
p/m-Xylene	95		95		70-130	0	20
o-Xylene	95		90		70-130	5	20
cis-1,2-Dichloroethene	95		95		70-130	0	20
Dibromomethane	88		88		70-130	0	20
1,4-Dichlorobutane	91		92		70-130	1	20
1,2,3-Trichloropropane	86		92		64-130	7	20
Styrene	95		90		70-130	5	20
Dichlorodifluoromethane	80		76		36-147	5	20
Acetone	87		84		58-148	4	20
Carbon disulfide	89		86		51-130	3	20
2-Butanone	85		83		63-138	2	20
Vinyl acetate	86		87		70-130	1	20
4-Methyl-2-pentanone	85		87		59-130	2	20

Lab Control Sample Analysis

Batch Quality Control

Project Name:NAF BELFASTProject Number:171.05027.003.02

Lab Number: L1834480 Report Date: 09/07/18

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1153528-3 WG1153528-4 2-Hexanone 91 90 57-130 20 1 Ethyl methacrylate 87 88 70-130 1 20 Acrolein 90 92 70-130 2 20 Acrylonitrile 90 93 70-130 3 20 Bromochloromethane 96 95 70-130 20 1 Tetrahydrofuran 20 86 87 58-130 1 2,2-Dichloropropane 87 86 63-133 20 1 1,2-Dibromoethane 95 94 70-130 1 20 1,3-Dichloropropane 96 96 70-130 0 20 20 1,1,1,2-Tetrachloroethane 89 89 64-130 0 20 Bromobenzene 93 96 70-130 3 20 n-Butylbenzene 90 89 53-136 1 sec-Butylbenzene 90 91 70-130 1 20 88 70-130 20 tert-Butylbenzene 89 1 o-Chlorotoluene 90 91 70-130 1 20 p-Chlorotoluene 94 94 70-130 0 20 1,2-Dibromo-3-chloropropane 71 72 41-144 20 1 Hexachlorobutadiene 74 63-130 20 73 1 70-130 20 Isopropylbenzene 90 90 0 p-Isopropyltoluene 88 88 70-130 0 20 Naphthalene 72 73 70-130 20 1 97 96 69-130 20 n-Propylbenzene 1 20 1,2,3-Trichlorobenzene 76 77 70-130 1

Lab Control Sample Analysis Batch Quality Control

Project Name: NAF BELFAST Project Number: 171.05027.003.02 Lab Number: L1834480 Report Date: 09/07/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG	1153528-3	WG1153528-4			
1,2,4-Trichlorobenzene	79		78		70-130	1	20	
1,3,5-Trimethylbenzene	96		96		64-130	0	20	
1,3,5-Trichlorobenzene	92		90		70-130	2	20	
1,2,4-Trimethylbenzene	91		90		70-130	1	20	
trans-1,4-Dichloro-2-butene	88		88		70-130	0	20	
Halothane	92		92		70-130	0	20	
Ethyl ether	100		100		59-134	0	20	
Methyl Acetate	86		88		70-130	2	20	
Ethyl Acetate	87		88		70-130	1	20	
Isopropyl Ether	94		94		70-130	0	20	
Cyclohexane	83		82		70-130	1	20	
Tert-Butyl Alcohol	84		78		70-130	7	20	
Ethyl-Tert-Butyl-Ether	92		93		70-130	1	20	
Tertiary-Amyl Methyl Ether	84		85		66-130	1	20	
1,4-Dioxane	96		88		56-162	9	20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	86		85		70-130	1	20	
Methyl cyclohexane	85		83		70-130	2	20	
p-Diethylbenzene	89		89		70-130	0	20	
4-Ethyltoluene	97		97		70-130	0	20	
1,2,4,5-Tetramethylbenzene	87		86		70-130	1	20	

Lab Control Sample Analysis Batch Quality Control

Project Name:NAF BELFASTProject Number:171.05027.003.02

 Lab Number:
 L1834480

 Report Date:
 09/07/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01 Batch: WG1	153528-3	WG1153528-4				

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	85	84	70-130
Toluene-d8	101	100	70-130
4-Bromofluorobenzene	99	101	70-130
Dibromofluoromethane	93	93	70-130

Lab Control Sample Analysis

Project Name:	NAF BELFAST	Batch Quality Control	Lab Number:	L1834480
Project Number:	171.05027.003.02		Report Date:	09/07/18

LCS			LCSD		%Recovery			RPD	
%Recovery	Qual		%Recovery	Qual	Limits	RPD	Qual	Limits	
Associated sample(s):	01	Batch:	WG1153835-2						
97			-		80-120	-			
7	%Recovery	%Recovery Qual	%Recovery Qual	%Recovery Qual %Recovery ussociated sample(s): 01 Batch: WG1153835-2	%Recovery Qual %Recovery Qual ussociated sample(s): 01 Batch: WG1153835-2	%Recovery Qual %Recovery Qual Limits	%Recovery Qual Xinitial RPD sssociated sample(s): 01 Batch: WG1153835-2	%Recovery Qual Limits RPD Qual sssociated sample(s): 01 Batch: WG1153835-2	%Recovery Qual Limits RPD Qual Limits sssociated sample(s): 01 Batch: WG1153835-2 WG1153835-2<

						oike Ana uality Cor							
Project Name:	NAF BELFAST	-							Lab Nun	nber:	L183	34480	
Project Number:	171.05027.003	.02							Report I	Date:	09/0	07/18	
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD		RPD .imits	

Dissolved Gases by GC -	Mansfield Lab	Associated sar	mple(s): 01	QC Batch ID: \	WG1153835-5	QC Sample: L	1834480-01	Client ID:	PW-1		
Carbon Dioxide	17.7	12	31.3	113	-	-		80-120	-	25	

Project Name: Project Number:	NAF BELFAST 171.05027.003	-	Lab Duplicate A Batch Quality Co			Lab Numb Report Da		L1834480 09/07/18
Parameter		Native Sample	e Duplicate Sample	Units	RPD	Qual	RPD Limits	
Dissolved Gases by GC	- Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1153835-4	QC Sample:	L1834480-01	Client ID:	PW-1	
Carbon Dioxide		17.7	18.0	mg/l	2		25	

SEMIVOLATILES

			Serial_No:09071817:47		
Project Name:	NAF BELFAST		Lab Number:	L1834480	
Project Number:	171.05027.003.02		Report Date:	09/07/18	
		SAMPLE RESULTS			
Lab ID:	L1834480-01		Date Collected:	08/30/18 09:00	
Client ID:	PW-1		Date Received:	08/30/18	
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC	
Sample Depth:					
Matrix:	Water		Extraction Method	1: EPA 3510C	
Analytical Method:	1,8270D		Extraction Date:	09/03/18 00:48	
Analytical Date:	09/07/18 03:14				
Analyst:	EK				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Westborough Lab					
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorocyclopentadiene	ND		ug/l	20		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA	ND		ug/l	2.0		1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1

			Serial_No	p:09071817:47
Project Name:	NAF BELFAST		Lab Number:	L1834480
Project Number:	171.05027.003.02		Report Date:	09/07/18
		SAMPLE RESULTS		
Lab ID:	L1834480-01		Date Collected:	08/30/18 09:00
Client ID:	PW-1		Date Received:	08/30/18
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Phenol	ND		ug/l	5.0		1
2-Methylphenol	ND		ug/l	5.0		1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1
2,4,5-Trichlorophenol	ND		ug/l	5.0		1
Benzoic Acid	ND		ug/l	50		1
Benzyl Alcohol	ND		ug/l	2.0		1
Carbazole	ND		ug/l	2.0		1
Pyridine	ND		ug/l	3.5		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	48	21-120
Phenol-d6	35	10-120
Nitrobenzene-d5	69	23-120
2-Fluorobiphenyl	78	15-120
2,4,6-Tribromophenol	57	10-120
4-Terphenyl-d14	90	41-149

		Serial_No:09071817:47			
Project Name:	NAF BELFAST		Lab Number:	L1834480	
Project Number:	171.05027.003.02		Report Date:	09/07/18	
		SAMPLE RESULTS			
Lab ID:	L1834480-01		Date Collected:	08/30/18 09:00	
Client ID:	PW-1		Date Received:	08/30/18	
Sample Location:	BELFAST, ME		Field Prep:	Refer to COC	
Sample Depth:					
Matrix:	Water		Extraction Method	1: EPA 3510C	
Analytical Method:	1,8270D-SIM		Extraction Date:	09/03/18 00:45	
Analytical Date:	09/07/18 10:57				
Analyst:	DV				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough La	ıb				
Acenaphthene	ND		ug/l	0.10		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.10		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
1-Methylnaphthalene	ND		ug/l	0.10		1
2-Methylnaphthalene	ND		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

		Serial_No:09071817:47					
Project Name:	NAF BELFAST				Lab N	umber:	L1834480
Project Number:	171.05027.003.02				Repor	t Date:	09/07/18
		SAMPI		6			
Lab ID:	L1834480-01				Date Co	llected:	08/30/18 09:00
Client ID:	PW-1				Date Re	ceived:	08/30/18
Sample Location:	BELFAST, ME				Field Pr	ep:	Refer to COC
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab							

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	47	21-120
Phenol-d6	37	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	63	15-120
2,4,6-Tribromophenol	67	10-120
4-Terphenyl-d14	75	41-149

Project Name:	NAF BELFAST		Lab Number:	L1834480
Project Number:	171.05027.003.02		Report Date:	09/07/18

Analytical Method:
Analytical Date:
Analyst:

1,8270D 09/02/18 21:59 RC Extraction Method: EPA 3510C Extraction Date: 09/02/18 00:51

Benzidine ND ug/l 20 1,2,4-Trichlorobenzene ND ug/l 5.0 Hexachlorobenzene ND ug/l 2.0 Bis(2-chloroethyl)ether ND ug/l 2.0 2-Chloronaphthalene ND ug/l 2.0 1,2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 2.0 3,3-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 2.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 <t< th=""><th>arameter</th><th>Result</th><th>Qualifier</th><th>Units</th><th></th><th>RL</th><th>MDL</th></t<>	arameter	Result	Qualifier	Units		RL	MDL
Benzidine ND ug/l 20 1,2,4-Trichlorobenzene ND ug/l 5.0 Hexachlorobenzene ND ug/l 2.0 Bis(2-chloroethyl)ether ND ug/l 2.0 2-Chloronaphthalene ND ug/l 2.0 1,2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 2.0 3,3'-Dichlorobenzene ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 2.0 4,2-Dintorobuenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4,2-Dintoroluene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 -	emivolatile Organics by GC/M	S - Westborougl	h Lab for s	ample(s):	01	Batch:	WG1153022-1
1.2.4-Trichlorobenzene ND ug/l 5.0 Hexachlorobenzene ND ug/l 2.0 Bis(2-chloroethyl)ether ND ug/l 2.0 2-Chloronaphthalene ND ug/l 2.0 1,2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 2.0 3,3-Dichlorobenzene ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l <td>Acenaphthene</td> <td>ND</td> <td></td> <td>ug/l</td> <td></td> <td>2.0</td> <td></td>	Acenaphthene	ND		ug/l		2.0	
Hexachlorobenzene ND ug/l 2.0 Bis(2-chloroethyl)ether ND ug/l 2.0 2-Chloronaphthalene ND ug/l 2.0 1.2-Dichlorobenzene ND ug/l 2.0 1.3-Dichlorobenzene ND ug/l 2.0 1.4-Dichlorobenzene ND ug/l 2.0 3.3'-Dichlorobenzene ND ug/l 5.0 2.4-Dinitrotoluene ND ug/l 5.0 2.6-Dinitrotoluene ND ug/l 2.0 2.6-Dinitrotoluene ND ug/l 2.0 2.6-Dinitrotoluene ND ug/l 2.0 4.20 corpenyl ND ug/l 2.0 5.0 ND ug/l 2.0 6.20 chloroethoxylphenyl ether ND ug/l 2.0 8.10/2-Chloroethoxylmethane ND ug/l	Benzidine	ND		ug/l		20	
Bis(2-chloroethyl)ether ND ug/l 2.0 2-Chloronaphthalene ND ug/l 2.0 1,2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 2.0 3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 2.0 2,6-Dinitrotoluene ND ug/l 2.0 4,20 4,20 ND ug/l 2.0 4,40romphenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 <td>1,2,4-Trichlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td></td> <td>5.0</td> <td></td>	1,2,4-Trichlorobenzene	ND		ug/l		5.0	
2-Chloronaphthalene ND ug/l 2.0 1,2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 2.0 3,3-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 2.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 8is(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroethoxy)methane ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Ikophone ND ug/l 2.0 ND ug/l 2.0 - <td>Hexachlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td></td> <td>2.0</td> <td></td>	Hexachlorobenzene	ND		ug/l		2.0	
1.2-Dichlorobenzene ND ug/l 2.0 1,3-Dichlorobenzene ND ug/l 2.0 1,4-Dichlorobenzene ND ug/l 2.0 3,3-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 2.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroethoxy)methane ND ug/l 2.0 Hexachlorooctopentadiene ND ug/l 2.0 Hexachlorooctopentadiene ND ug/l 2.0 ND ug/l 2.0 <	Bis(2-chloroethyl)ether	ND		ug/l		2.0	
ND Ug/l 2.0 1,4-Dichlorobenzene ND Ug/l 2.0 3,3'-Dichlorobenzidine ND Ug/l 5.0 2,4-Dinitrotoluene ND Ug/l 5.0 2,6-Dinitrotoluene ND Ug/l 5.0 2,6-Dinitrotoluene ND Ug/l 2.0 Azobenzene ND Ug/l 2.0 Fluoranthene ND Ug/l 2.0 4-Chlorophenyl phenyl ether ND Ug/l 2.0 4-Stomophenyl phenyl ether ND Ug/l 2.0 8is(2-chloroisopropyl)ether ND Ug/l 2.0 Hexachlorobutadiene ND Ug/l 2.0 Hexachlorocyclopentadiene ND Ug/l 2.0 Isophorone ND Ug/l 2.0 ND Ug/l 2.0 -	2-Chloronaphthalene	ND		ug/l		2.0	
1,4-Dichlorobenzene ND ug/l 2.0 3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 2.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroethoxy)methane ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Isophorone ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Isophorone ND ug/l 2.0 ND ug/l 2.0 <	1,2-Dichlorobenzene	ND		ug/l		2.0	
ND ug/l 5.0 3,3'-Dichlorobenzidine ND ug/l 5.0 2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroethoxy)methane ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Isophorone ND ug/l 2.0 ND ug/l 2.0 Not ug/l 2.0 <t< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td></td><td>2.0</td><td></td></t<>	1,3-Dichlorobenzene	ND		ug/l		2.0	
2,4-Dinitrotoluene ND ug/l 5.0 2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroethoxy)methane ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Isophorone ND ug/l 2.0 ND ug/l 2.0 Isophorone ND ug/l 2.0 ND ug/l 2.0 ND ug/l 2.0 ND ug/l 2.0 ND	1,4-Dichlorobenzene	ND		ug/l		2.0	
2,6-Dinitrotoluene ND ug/l 5.0 Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Hexachlorobutadiene ND ug/l 5.0 Hexachlorocyclopentadiene ND ug/l 2.0 Isophorone ND ug/l 2.0 ND ug/l 2.0 Isophorone ND ug/l 2.0 ND ug/l 2.0 ND ug/l 2.0 Isophorone ND ug/l 2.0 ND ug/l 2.0 NDA ug/l <td>3,3'-Dichlorobenzidine</td> <td>ND</td> <td></td> <td>ug/l</td> <td></td> <td>5.0</td> <td></td>	3,3'-Dichlorobenzidine	ND		ug/l		5.0	
Azobenzene ND ug/l 2.0 Fluoranthene ND ug/l 2.0 4-Chlorophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 4-Bromophenyl phenyl ether ND ug/l 2.0 Bis(2-chloroisopropyl)ether ND ug/l 2.0 Bis(2-chloroethoxy)methane ND ug/l 5.0 Hexachlorobutadiene ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Hexachlorocyclopentadiene ND ug/l 2.0 Isophorone ND ug/l 2.0 Naphthalene ND ug/l 2.0 Nitrobenzene ND ug/l 2.0 NDPA/DPA ND ug/l 2.0 ND ug/l 2.0	2,4-Dinitrotoluene	ND		ug/l		5.0	
FluorantheneNDug/l2.04-Chlorophenyl phenyl etherNDug/l2.04-Bromophenyl phenyl etherNDug/l2.0Bis(2-chloroisopropyl)etherNDug/l2.0Bis(2-chloroethoxy)methaneNDug/l5.0HexachlorobutadieneNDug/l2.0HexachlorocyclopentadieneNDug/l2.0HexachloroethaneNDug/l2.0IsophoroneNDug/l2.0NaphthaleneNDug/l2.0NaphthaleneNDug/l2.0NaphthaleneNDug/l2.0NitrobenzeneNDug/l2.0NDPA/DPANDug/l2.0NDPA/DPANDug/l2.0NDPA/DPANDug/l2.0NDPA/DPANDug/l2.0NDPA/DPANDug/l2.0NDPA/DPANDug/l2.0NDPA/DPANDug/l3.0Bis(2-ethylhexyl)phthalateNDug/l5.0Butyl benzyl phthalateNDug/l5.0	2,6-Dinitrotoluene	ND		ug/l		5.0	
4-Chlorophenyl phenyl etherNDug/l2.04-Bromophenyl phenyl etherNDug/l2.0Bis(2-chloroisopropyl)etherNDug/l2.0Bis(2-chloroethoxy)methaneNDug/l5.0HexachlorobutadieneNDug/l2.0HexachlorocyclopentadieneNDug/l2.0HexachloroethaneNDug/l2.0IsophoroneNDug/l2.0NaphthaleneNDug/l2.0NitrobenzeneNDug/l2.0NDPA/DPANDug/l2.0NDPA/DPANDug/l2.0NDPA/DPANDug/l2.0Bis(2-ethylhexyl)phthalateNDug/l3.0Butyl benzyl phthalateNDug/l5.0	Azobenzene	ND		ug/l		2.0	
4-Bromophenyl phenyl etherNDug/l2.0Bis(2-chloroisopropyl)etherNDug/l2.0Bis(2-chloroethoxy)methaneNDug/l5.0HexachlorobutadieneNDug/l2.0HexachlorobutadieneNDug/l2.0HexachlorocyclopentadieneNDug/l2.0HexachlorocyclopentadieneNDug/l2.0IsophoroneNDug/l2.0NaphthaleneNDug/l2.0NitrobenzeneNDug/l2.0NDPA/DPANDug/l2.0Bis(2-ethylhexyl)phthalateNDug/l3.0Butyl benzyl phthalateNDug/l5.0	Fluoranthene	ND		ug/l		2.0	
Bis(2-chloroisopropyl)etherNDug/l2.0Bis(2-chloroethoxy)methaneNDug/l5.0HexachlorobutadieneNDug/l2.0HexachlorocyclopentadieneNDug/l2.0HexachloroethaneNDug/l2.0IsophoroneNDug/l5.0NaphthaleneNDug/l5.0NitrobenzeneNDug/l2.0NDPA/DPANDug/l2.0Bis(2-ethylhexyl)phthalateNDug/l2.0Bis(2-ethylhexyl)phthalateNDug/l5.0Butyl benzyl phthalateNDug/l5.0	4-Chlorophenyl phenyl ether	ND		ug/l		2.0	
Bis(2-chloroethoxy)methaneNDug/l5.0HexachlorobutadieneNDug/l2.0HexachlorocyclopentadieneNDug/l20HexachlorocethaneNDug/l2.0IsophoroneNDug/l5.0NaphthaleneNDug/l2.0NitrobenzeneNDug/l2.0NDPA/DPANDug/l2.0NDPA/DPANDug/l2.0Bis(2-ethylhexyl)phthalateNDug/l5.0Butyl benzyl phthalateNDug/l5.0	4-Bromophenyl phenyl ether	ND		ug/l		2.0	
HexachlorobutadieneNDug/l2.0HexachlorocyclopentadieneNDug/l20HexachloroethaneNDug/l2.0IsophoroneNDug/l5.0NaphthaleneNDug/l2.0NItrobenzeneNDug/l2.0NDPA/DPANDug/l2.0NItrosodi-n-propylamineNDug/l5.0Bis(2-ethylhexyl)phthalateNDug/l5.0Butyl benzyl phthalateNDug/l5.0	Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	
HexachlorocyclopentadieneNDug/l20HexachloroethaneNDug/l2.0IsophoroneNDug/l5.0NaphthaleneNDug/l2.0NitrobenzeneNDug/l2.0NDPA/DPANDug/l2.0n-Nitrosodi-n-propylamineNDug/l5.0Bis(2-ethylhexyl)phthalateNDug/l3.0Butyl benzyl phthalateNDug/l5.0	Bis(2-chloroethoxy)methane	ND		ug/l		5.0	
HexachloroethaneNDug/l2.0IsophoroneNDug/l5.0NaphthaleneNDug/l2.0NitrobenzeneNDug/l2.0NDPA/DPANDug/l2.0n-Nitrosodi-n-propylamineNDug/l5.0Bis(2-ethylhexyl)phthalateNDug/l3.0Butyl benzyl phthalateNDug/l5.0	Hexachlorobutadiene	ND		ug/l		2.0	
IsophoroneNDug/l5.0NaphthaleneNDug/l2.0NitrobenzeneNDug/l2.0NDPA/DPANDug/l2.0n-Nitrosodi-n-propylamineNDug/l5.0Bis(2-ethylhexyl)phthalateNDug/l5.0NDug/l5.0	Hexachlorocyclopentadiene	ND		ug/l		20	
NaphthaleneNDug/l2.0NitrobenzeneNDug/l2.0NDPA/DPANDug/l2.0n-Nitrosodi-n-propylamineNDug/l5.0Bis(2-ethylhexyl)phthalateNDug/l3.0Butyl benzyl phthalateNDug/l5.0	Hexachloroethane	ND		ug/l		2.0	
NitrobenzeneNDug/l2.0NDPA/DPANDug/l2.0n-Nitrosodi-n-propylamineNDug/l5.0Bis(2-ethylhexyl)phthalateNDug/l3.0Butyl benzyl phthalateNDug/l5.0	Isophorone	ND		ug/l		5.0	
NDPA/DPANDug/l2.0n-Nitrosodi-n-propylamineNDug/l5.0Bis(2-ethylhexyl)phthalateNDug/l3.0Butyl benzyl phthalateNDug/l5.0	Naphthalene	ND		ug/l		2.0	
n-Nitrosodi-n-propylamine ND ug/l 5.0 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 Butyl benzyl phthalate ND ug/l 5.0	Nitrobenzene	ND		ug/l		2.0	
Bis(2-ethylhexyl)phthalateNDug/l3.0Butyl benzyl phthalateNDug/l5.0	NDPA/DPA	ND		ug/l		2.0	
Butyl benzyl phthalate ND ug/l 5.0	n-Nitrosodi-n-propylamine	ND		ug/l		5.0	
	Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	
Di-n-butylphthalate ND ug/l 5.0	Butyl benzyl phthalate	ND		ug/l		5.0	
	Di-n-butylphthalate	ND		ug/l		5.0	

Project Name:	NAF BELFAST		Lab Number:	L1834480
Project Number:	171.05027.003.02		Report Date:	09/07/18

Analytical Method:
Analytical Date:
Analyst:

1,8270D 09/02/18 21:59 RC Extraction Method: EPA 3510C Extraction Date: 09/02/18 00:51

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	6 - Westborougl	n Lab for s	ample(s):	01	Batch:	WG1153022-1
Di-n-octylphthalate	ND		ug/l		5.0	
Diethyl phthalate	ND		ug/l		5.0	
Dimethyl phthalate	ND		ug/l		5.0	
Benzo(a)anthracene	ND		ug/l		2.0	
Benzo(a)pyrene	ND		ug/l		2.0	
Benzo(b)fluoranthene	ND		ug/l		2.0	
Benzo(k)fluoranthene	ND		ug/l		2.0	
Chrysene	ND		ug/l		2.0	
Acenaphthylene	ND		ug/l		2.0	
Anthracene	ND		ug/l		2.0	
Benzo(ghi)perylene	ND		ug/l		2.0	
Fluorene	ND		ug/l		2.0	
Phenanthrene	ND		ug/l		2.0	
Dibenzo(a,h)anthracene	ND		ug/l		2.0	
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	
Pyrene	ND		ug/l		2.0	
Biphenyl	ND		ug/l		2.0	
Aniline	ND		ug/l		2.0	
4-Chloroaniline	ND		ug/l		5.0	
1-Methylnaphthalene	ND		ug/l		2.0	
2-Nitroaniline	ND		ug/l		5.0	
3-Nitroaniline	ND		ug/l		5.0	
4-Nitroaniline	ND		ug/l		5.0	
Dibenzofuran	ND		ug/l		2.0	
2-Methylnaphthalene	ND		ug/l		2.0	
n-Nitrosodimethylamine	ND		ug/l		2.0	
2,4,6-Trichlorophenol	ND		ug/l		5.0	
p-Chloro-m-cresol	ND		ug/l		2.0	
2-Chlorophenol	ND		ug/l		2.0	

Project Name:	NAF BELFAST	Lab Number:	L1834480
Project Number:	171.05027.003.02	Report Date:	09/07/18

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 09/02/18 21:59 RC Extraction Method: EPA 3510C Extraction Date: 09/02/18 00:51

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	01	Batch:	WG1153022-1
2,4-Dichlorophenol	ND		ug/l		5.0	
2,4-Dimethylphenol	ND		ug/l		5.0	
2-Nitrophenol	ND		ug/l		10	
4-Nitrophenol	ND		ug/l		10	
2,4-Dinitrophenol	ND		ug/l		20	
4,6-Dinitro-o-cresol	ND		ug/l		10	
Pentachlorophenol	ND		ug/l		10	
Phenol	ND		ug/l		5.0	
2-Methylphenol	ND		ug/l		5.0	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	
2,4,5-Trichlorophenol	ND		ug/l		5.0	
Benzoic Acid	ND		ug/l		50	
Benzyl Alcohol	ND		ug/l		2.0	
Carbazole	ND		ug/l		2.0	
Pyridine	ND		ug/l		3.5	

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name: Project Number:	NAF BELFAST 171.05027.003.02		Lab Number: Report Date:	L1834480 09/07/18
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270D 09/02/18 21:59 RC		Extraction Method: Extraction Date:	EPA 3510C 09/02/18 00:51

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborou	igh Lab for s	ample(s):	01	Batch:	WG1153022-1	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	60	21-120
Phenol-d6	47	10-120
Nitrobenzene-d5	90	23-120
2-Fluorobiphenyl	77	15-120
2,4,6-Tribromophenol	85	10-120
4-Terphenyl-d14	83	41-149

Project Name:	NAF BELFAST		Lab Number:	L1834480
Project Number:	171.05027.003.02		Report Date:	09/07/18

Analytical Method:	1,8270D-SIM	Ex
Analytical Date:	09/02/18 21:58	Еx
Analyst:	CB	

Extraction Method: EPA 3510C Extraction Date: 09/02/18 00:51

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/MS-S	IM - Westbo	brough Lab	for sample	e(s): 01	Batch: WG1153023-1
Acenaphthene	ND		ug/l	0.10	
2-Chloronaphthalene	ND		ug/l	0.20	
Fluoranthene	ND		ug/l	0.10	
Hexachlorobutadiene	ND		ug/l	0.50	
Naphthalene	ND		ug/l	0.10	
Benzo(a)anthracene	ND		ug/l	0.10	
Benzo(a)pyrene	ND		ug/l	0.10	
Benzo(b)fluoranthene	ND		ug/l	0.10	
Benzo(k)fluoranthene	ND		ug/l	0.10	
Chrysene	ND		ug/l	0.10	
Acenaphthylene	ND		ug/l	0.10	
Anthracene	ND		ug/l	0.10	
Benzo(ghi)perylene	ND		ug/l	0.10	
Fluorene	ND		ug/l	0.10	
Phenanthrene	ND		ug/l	0.10	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	
Pyrene	ND		ug/l	0.10	
1-Methylnaphthalene	ND		ug/l	0.10	
2-Methylnaphthalene	ND		ug/l	0.10	
Pentachlorophenol	ND		ug/l	0.80	
Hexachlorobenzene	ND		ug/l	0.80	
Hexachloroethane	ND		ug/l	0.80	

Project Name: Project Number:	NAF BELFAST 171.05027.003.02	Method Blank Analysis	Lab Number: Report Date:	L1834480 09/07/18
		Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270D-SIM 09/02/18 21:58 CB		Extraction Method: Extraction Date:	EPA 3510C 09/02/18 00:51

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	IM - Westb	orough Lab	for sample	e(s): 01	Batch: WG1153023-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	21-120
Phenol-d6	40	10-120
Nitrobenzene-d5	77	23-120
2-Fluorobiphenyl	60	15-120
2,4,6-Tribromophenol	84	10-120
4-Terphenyl-d14	80	41-149

Project Name: NAF BELFAST Project Number: 171.05027.003.02

Parameter	LCS %Recovery	Qual	LCSD %Recovery	۶ Qual	6Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	brough Lab Associ	ated sample(s):	01 Batch:	WG1153022-2	WG1153022-3			
Acenaphthene	85		87		37-111	2		30
Benzidine	17		55		10-75	106	Q	30
1,2,4-Trichlorobenzene	76		73		39-98	4		30
Hexachlorobenzene	87		88		40-140	1		30
Bis(2-chloroethyl)ether	93		92		40-140	1		30
2-Chloronaphthalene	85		86		40-140	1		30
1,2-Dichlorobenzene	78		76		40-140	3		30
1,3-Dichlorobenzene	76		74		40-140	3		30
1,4-Dichlorobenzene	79		74		36-97	7		30
3,3'-Dichlorobenzidine	80		82		40-140	2		30
2,4-Dinitrotoluene	92		94		48-143	2		30
2,6-Dinitrotoluene	91		91		40-140	0		30
Azobenzene	105		109		40-140	4		30
Fluoranthene	94		93		40-140	1		30
4-Chlorophenyl phenyl ether	81		81		40-140	0		30
4-Bromophenyl phenyl ether	84		87		40-140	4		30
Bis(2-chloroisopropyl)ether	107		105		40-140	2		30
Bis(2-chloroethoxy)methane	96		94		40-140	2		30
Hexachlorobutadiene	77		76		40-140	1		30
Hexachlorocyclopentadiene	51		56		40-140	9		30
Hexachloroethane	77		79		40-140	3		30
Isophorone	101		100		40-140	1		30
Naphthalene	84		83		40-140	1		30

Project Name: NAF BELFAST Project Number: 171.05027.003.02

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westb	orough Lab Associ	ated sample(s):	01 Batch:	WG1153022-2	WG1153022-3			
Nitrobenzene	99		99		40-140	0		30
NDPA/DPA	89		88		40-140	1		30
n-Nitrosodi-n-propylamine	103		101		29-132	2		30
Bis(2-ethylhexyl)phthalate	105		102		40-140	3		30
Butyl benzyl phthalate	107		103		40-140	4		30
Di-n-butylphthalate	100		97		40-140	3		30
Di-n-octylphthalate	109		107		40-140	2		30
Diethyl phthalate	95		94		40-140	1		30
Dimethyl phthalate	92		92		40-140	0		30
Benzo(a)anthracene	87		91		40-140	4		30
Benzo(a)pyrene	94		98		40-140	4		30
Benzo(b)fluoranthene	93		97		40-140	4		30
Benzo(k)fluoranthene	90		93		40-140	3		30
Chrysene	93		94		40-140	1		30
Acenaphthylene	86		88		45-123	2		30
Anthracene	92		93		40-140	1		30
Benzo(ghi)perylene	90		95		40-140	5		30
Fluorene	88		88		40-140	0		30
Phenanthrene	91		90		40-140	1		30
Dibenzo(a,h)anthracene	89		94		40-140	5		30
Indeno(1,2,3-cd)pyrene	91		96		40-140	5		30
Pyrene	91		90		26-127	1		30
Biphenyl	90		89		40-140	1		30

Project Name: NAF BELFAST Project Number: 171.05027.003.02

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Wes	stborough Lab Associ	ated sample(s):	01 Batch:	WG1153022-2	WG1153022-3			
Aniline	52		51		40-140	2	30	
4-Chloroaniline	94		98		40-140	4	30	
1-Methylnaphthalene	95		94		41-103	1	30	
2-Nitroaniline	95		96		52-143	1	30	
3-Nitroaniline	87		84		25-145	4	30	
4-Nitroaniline	88		82		51-143	7	30	
Dibenzofuran	86		86		40-140	0	30	
2-Methylnaphthalene	82		84		40-140	2	30	
n-Nitrosodimethylamine	62		61		22-74	2	30	
2,4,6-Trichlorophenol	93		90		30-130	3	30	
p-Chloro-m-cresol	97		100	Q	23-97	3	30	
2-Chlorophenol	90		86		27-123	5	30	
2,4-Dichlorophenol	93		90		30-130	3	30	
2,4-Dimethylphenol	95		92		30-130	3	30	
2-Nitrophenol	91		88		30-130	3	30	
4-Nitrophenol	76		82	Q	10-80	8	30	
2,4-Dinitrophenol	79		70		20-130	12	30	
4,6-Dinitro-o-cresol	83		84		20-164	1	30	
Pentachlorophenol	79		70		9-103	12	30	
Phenol	53		51		12-110	4	30	
2-Methylphenol	88		87		30-130	1	30	
3-Methylphenol/4-Methylphenol	89		87		30-130	2	30	
2,4,5-Trichlorophenol	90		91		30-130	1	30	

Lab Number: L1834480 Report Date: 09/07/18

Project Number: 171.05027.003.02

NAF BELFAST

Project Name:

	LCS		LCSD	9	%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS - Westbo	orough Lab Associa	ated sample(s)	01 Batch:	WG1153022-2	WG1153022-3				
Benzoic Acid	19		14		10-164	30		30	
Benzyl Alcohol	88		89		26-116	1		30	
Carbazole	95		95		55-144	0		30	
Pyridine	33		41		10-66	22		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	69	68	21-120
Phenol-d6	53	53	10-120
Nitrobenzene-d5	100	98	23-120
2-Fluorobiphenyl	82	87	15-120
2,4,6-Tribromophenol	84	88	10-120
4-Terphenyl-d14	83	85	41-149

Project Name: NAF BELFAST Project Number: 171.05027.003.02

Accamphthalene 76 76 40.140 0 40 2-Choronphthalene 79 78 40.140 9 40 2-Choronphthalene 79 78 40.140 9 40 Fluoranthene 82 90 40.140 9 40 Hexachlorobutadiene 71 69 40.140 9 40 Napthtalene 72 72 40.140 0 40 Berzo(a)nthracene 74 77 40.140 4 40 Berzo(a)pyrene 80 83 40.140 4 40 Berzo(b)fluoranthene 78 81 40.140 4 40 Accaphthylene 82 83 40.140 4 40 Accaphthylene 80 40.140 1 40 40 Accaphthylene 82 83 40.140 5 40 Antracene 80 40.140 1 40 40 40	Parameter	LCS %Recovery	LCSD Qual %Recover	%Recovery Y Qual Limits	RPD	RPD Qual Limits
2-Choronaphthalene 79 78 40-140 1 40 Fluoranthene 82 90 40-140 9 40 Hexachlorobutadiene 71 69 40-140 3 40 Naphthalene 72 40-140 0 40 Benzolajanthracene 74 72 40-140 4 40 Benzolajpyrene 80 83 40-140 4 40 Benzolyfluoranthene 78 81 40-140 4 40 Benzolyfluoranthene 78 81 40-140 4 40 Chysone 78 81 40-140 4 40 Chysone 78 81 40-140 4 40 Acenaphthylene 80 81 40-140 1 40 Acenaphthylene 80 84 40-140 5 40 Fluorene 78 80 40-140 5 40 Fluorene 78 <	Semivolatile Organics by GC/MS-SIM -	Westborough Lab Ass	sociated sample(s): 01	Batch: WG1153023-2 WG115	53023-3	
Fluoranthene829040-140940Hexachlorobutadiene716940-140340Naphthalene727240-140040Benzo(a)anthracene747740-140440Benzo(a)pyrene808340-140440Benzo(h)fluoranthene788140-140440Benzo(h)fluoranthene828340-140440Chrysene788140-140440Acenaphthylene808040-140040Anthracene80808040-140540Fluoranthene788140-14034040Chrysene788140-14034040Acenaphthylene808640-140540Fluoranthene788340-140340Phenzo(h)iperylene828340-140340Fluorene778140-140340Phenzo(h)iperylene828640-140240Indeno(1,2,3-cd)pyrene828440-140940Phenathtracene778140-140940Phene789140-140940Phene789140-140940Phene777740-140940Phene787740	Acenaphthene	76	76	40-140	0	40
Hexachlorobutadiene716940-140340Naphthalene727240-140040Benzo(a)anthracene747740-140440Benzo(a)pyrene808340-140440Benzo(b/fluoranthene788140-140440Benzo(k/fluoranthene788140-140440Chysene788140-140440Acenaphthylene808040-140040Anthracene808040-140540Benzo(k/j)perylene828340-140540Fluorene788840-140540Dibenzo(k/j)perylene828340-140540Phenanthrene778140-140540Dibenzo(k/j)anthracene849140-140940Pyrene839140-140940Pyrene777740-140940Pyrene787740-140940Dibenzo(k/j)anthracene777740-140940Pyrene839140-140940Pyrene787740-140140Pyrene839140-140940Pyrene839140-140940Pyrene787740-140140 <td< td=""><td>2-Chloronaphthalene</td><td>79</td><td>78</td><td>40-140</td><td>1</td><td>40</td></td<>	2-Chloronaphthalene	79	78	40-140	1	40
Naphthalene 72 72 40-140 0 40 Berzo(a)anthracene 74 77 40-140 4 40 Berzo(a)pyrene 80 83 40-140 4 40 Berzo(b)fluoranthene 78 81 40-140 4 40 Berzo(k)fluoranthene 82 83 40-140 4 40 Chrysene 78 81 40-140 4 40 Acenaphthylene 80 80 40-140 4 40 Acenaphthylene 80 80 40-140 5 40 Anthracene 80 84 40-140 5 40 Fluorene 77 81 40-140 5 40 Phenanthrene 77 81 40-140 5 40 Dibenzo(a,h)anthracene 84 86 40-140 2 40 Pyrene 83 91 40-140 9 40 Pyrene 83	Fluoranthene	82	90	40-140	9	40
Berzo(a)anthracene 74 77 40-140 4 40 Berzo(a)pyrene 80 83 40-140 4 40 Berzo(b)fluoranthene 78 81 40-140 4 40 Berzo(k)fluoranthene 82 83 40-140 4 40 Berzo(k)fluoranthene 82 83 40-140 4 40 Chrysene 78 81 40-140 4 40 Acenaphthylene 80 80 40-140 0 40 Acenaphthylene 80 80 40-140 0 40 Anthracene 80 84 40-140 5 40 Berzo(ghi)perylene 82 83 40-140 1 40 Fluorene 78 80 40-140 3 40 Diberzo(a,h)anthracene 84 86 40-140 2 40 Indeno(1,2,3-cd)pyrene 82 84 40-140 2 40	Hexachlorobutadiene	71	69	40-140	3	40
Benzo(a)prene 80 83 40-140 4 40 Benzo(b)fluoranthene 78 81 40-140 4 40 Benzo(k)fluoranthene 82 83 40-140 4 40 Benzo(k)fluoranthene 82 83 40-140 4 40 Chrysene 78 81 40-140 4 40 Acenaphthylene 80 81 40-140 4 40 Acenaphthylene 80 80 40-140 4 40 Acenaphthylene 80 80 40-140 5 40 Anthracene 80 84 40-140 5 40 Benzo(ghi)perylene 82 83 40-140 1 40 Fluorene 78 80 40-140 3 40 Dibenzo(a,h)anthracene 84 86 40-140 2 40 Pyrene 83 91 40-140 9 40 Pyrene	Naphthalene	72	72	40-140	0	40
Benzo(b)fluoranthene 78 81 40-140 4 40 Benzo(k)fluoranthene 82 83 40-140 1 40 Benzo(k)fluoranthene 82 83 40-140 4 40 Chysene 78 81 40-140 4 40 Acenaphthylene 80 80 40-140 0 40 Acenaphthylene 80 80 40-140 0 40 Acenaphthylene 80 84 40-140 5 40 Anthracene 80 84 40-140 5 40 Benzo(ghi)perylene 82 83 40-140 3 40 Fluorene 77 81 40-140 2 40 Dibenzo(a,h)anthracene 84 86 40-140 2 40 Pyrene 83 91 40-140 9 40 Pyrene 83 91 40-140 9 40 1Metnylinaphthalene	Benzo(a)anthracene	74	77	40-140	4	40
Benzo(k)fluoranthene 82 83 40-140 1 40 Chrysene 78 81 40-140 4 40 Acenaphthylene 80 80 40-140 0 40 Acenaphthylene 80 80 40-140 0 40 Anthracene 80 84 40-140 5 40 Benzo(ghi)perylene 82 83 40-140 1 40 Fluorene 78 880 40-140 1 40 Fluorene 78 80 40-140 3 40 Fluorene 78 80 40-140 5 40 Dibenzo(a,h)anthracene 84 86 40-140 2 40 Dibenzo(1,2,3-cd)pyrene 82 84 40-140 2 40 Pyrene 83 91 40-140 9 40 1-Methylnaphthalene 77 77 40-140 0 40 2-Methylnaphthalene	Benzo(a)pyrene	80	83	40-140	4	40
Chrysene 78 81 40-140 4 40 Acenaphthylene 80 80 40-140 0 40 Acenaphthylene 80 80 40-140 0 40 Anthracene 80 84 40-140 5 40 Benzo(ghi)perylene 82 83 40-140 1 40 Fluorene 78 80 40-140 3 40 Phenanthrene 77 81 40-140 3 40 Dibenzo(a,h)anthracene 84 86 40-140 5 40 Pyrene 83 91 40-140 2 40 Pyrene 83 91 40-140 9 40 Pyrene 83 91 40-140 9 40 1-Methylnaphthalene 77 77 40-140 0 40 2-Methylnaphthalene 78 77 40-140 1 40 Pentachlorophenol 83	Benzo(b)fluoranthene	78	81	40-140	4	40
Acenaphthylene 80 80 40-140 0 40 Anthracene 80 84 40-140 5 40 Benzo(ghi)perylene 82 83 40-140 1 40 Fluorene 78 80 40-140 3 40 Phenanthrene 77 81 40-140 3 40 Dibenzo(a,h)anthracene 84 86 40-140 5 40 Prene 82 81 40-140 5 40 Dibenzo(a,h)anthracene 84 86 40-140 2 40 Indeno(1,2,3-cd)pyrene 82 84 40-140 2 40 Pyrene 83 91 40-140 9 40 1-Methylnaphthalene 77 77 40-140 0 40 2-Methylnaphthalene 78 77 40-140 1 40 Pentachlorophenol 83 87 40-140 5 40	Benzo(k)fluoranthene	82	83	40-140	1	40
Anthracene808440-140540Benzo(ghi)perylene828340-140140Fluorene788040-140340Phenanthrene778140-140540Dibenzo(a,h)anthracene848640-140240Indeno(1,2,3-cd)pyrene828440-140240Pyrene839140-1409401-Methylnaphthalene777740-1400402-Methylnaphthalene787740-140140Pentachlorophenol838740-140540	Chrysene	78	81	40-140	4	40
Benzo(ghi)perylene 82 83 40-140 1 40 Fluorene 78 80 40-140 3 40 Phenanthrene 77 81 40-140 5 40 Dibenzo(a,h)anthracene 84 86 40-140 2 40 Indeno(1,2,3-cd)pyrene 82 86 40-140 2 40 Pyrene 83 91 40-140 2 40 1.Methylnaphthalene 77 91 40-140 9 40 2-Methylnaphthalene 77 77 40-140 9 40 2-Methylnaphthalene 78 77 40-140 1 40 Pentachlorophenol 83 87 40-140 5 40	Acenaphthylene	80	80	40-140	0	40
Fluorene788040-140340Phenanthrene778140-140540Dibenzo(a,h)anthracene848640-140240Indeno(1,2,3-cd)pyrene828440-140240Pyrene839140-1409401-Methylnaphthalene777740-1400402-Methylnaphthalene787740-140140Pentachlorophenol838740-140540	Anthracene	80	84	40-140	5	40
Phenanthrene778140-140540Dibenzo(a,h)anthracene848640-140240Indeno(1,2,3-cd)pyrene828440-140240Pyrene839140-1409401-Methylnaphthalene777740-1400402-Methylnaphthalene787740-140140Pentachlorophenol83838740-140540	Benzo(ghi)perylene	82	83	40-140	1	40
Dibenzo(a,h)anthracene848640-140240Indeno(1,2,3-cd)pyrene828440-140240Pyrene839140-1409401-Methylnaphthalene777740-1400402-Methylnaphthalene787740-140140Pentachlorophenol83838740-140540	Fluorene	78	80	40-140	3	40
Indeno(1,2,3-cd)pyrene 82 84 40-140 2 40 Pyrene 83 91 40-140 9 40 1-Methylnaphthalene 77 77 40-140 9 40 2-Methylnaphthalene 78 77 40-140 1 40 Pentachlorophenol 83 87 40-140 1 40	Phenanthrene	77	81	40-140	5	40
Pyrene 83 91 40-140 9 40 1-Methylnaphthalene 77 77 40-140 0 40 2-Methylnaphthalene 78 77 40-140 1 40 Pentachlorophenol 83 87 40-140 5 40	Dibenzo(a,h)anthracene	84	86	40-140	2	40
Image: Market Ma Market Market Mark	Indeno(1,2,3-cd)pyrene	82	84	40-140	2	40
2-Methylnaphthalene 78 77 40-140 1 40 Pentachlorophenol 83 87 40-140 5 40	Pyrene	83	91	40-140	9	40
Pentachlorophenol838740-140540	1-Methylnaphthalene	77	77	40-140	0	40
	2-Methylnaphthalene	78	77	40-140	1	40
Hexachlorobenzene 76 80 40-140 5 40	Pentachlorophenol	83	87	40-140	5	40
	Hexachlorobenzene	76	80	40-140	5	40
Hexachloroethane 67 64 40-140 5 40	Hexachloroethane	67	64	40-140	5	40

Project Name:NAF BELFASTProject Number:171.05027.003.02

 Lab Number:
 L1834480

 Report Date:
 09/07/18

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS-SIM - Wes	stborough Lab As	sociated sa	mple(s): 01 Batc	h: WG11	53023-2 WG1153	023-3			

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	54	54	21-120
Phenol-d6	41	40	10-120
Nitrobenzene-d5	75	75	23-120
2-Fluorobiphenyl	69	70	15-120
2,4,6-Tribromophenol	80	84	10-120
4-Terphenyl-d14	76	85	41-149

METALS

Serial_No:09071817:47

L1834480

Project Name:	NAF BELFAST
Project Number:	171.05027.003.02

SAMPLE RESULTS

Lab ID: L1834480-01 Client ID: PW-1 Sample Location: BELFAST, ME

Sample Depth:

Matrix:

Water

Report Date:	09/07/18
Date Collected:	08/30/18 09:00
Date Received:	08/30/18
Field Prep:	Refer to COC

Lab Number:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	ND		mg/l	0.100		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Antimony, Total	ND		mg/l	0.00400		1	09/06/18 11:20	09/06/18 16:27	EPA 3005A	1,6020B	AM
Arsenic, Total	0.006		mg/l	0.005		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Barium, Total	ND		mg/l	0.010		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Beryllium, Total	ND		mg/l	0.00050		1	09/06/18 11:20	09/06/18 16:27	EPA 3005A	1,6020B	AM
Boron, Total	ND		mg/l	0.030		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Cadmium, Total	ND		mg/l	0.00020		1	09/06/18 11:20	09/06/18 16:27	EPA 3005A	1,6020B	AM
Calcium, Total	11.6		mg/l	0.100		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Chromium, Total	ND		mg/l	0.010		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Cobalt, Total	ND		mg/l	0.020		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Copper, Total	ND		mg/l	0.010		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Iron, Total	3.20		mg/l	0.050		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Lead, Total	ND		mg/l	0.010		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Magnesium, Total	5.10		mg/l	0.100		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Manganese, Total	0.034		mg/l	0.010		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Mercury, Total	ND		mg/l	0.00020		1	08/31/18 12:27	08/31/18 23:14	EPA 7470A	1,7470A	EA
Molybdenum, Total	ND		mg/l	0.050		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Nickel, Total	ND		mg/l	0.025		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Potassium, Total	ND		mg/l	2.50		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Selenium, Total	ND		mg/l	0.010		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Silver, Total	ND		mg/l	0.007		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Sodium, Total	13.8		mg/l	2.00		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Strontium, Total	0.053		mg/l	0.010		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Sulfur, Total	4.79		mg/l	0.250		1	09/07/18 06:50	09/07/18 07:59	EPA 3015A	1,6010D	PE
Thallium, Total	ND		mg/l	0.00050		1	09/06/18 11:20	09/06/18 16:27	EPA 3005A	1,6020B	AM
Titanium, Total	ND		mg/l	0.010		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Vanadium, Total	ND		mg/l	0.010		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB
Zinc, Total	ND		mg/l	0.050		1	09/06/18 11:20	09/07/18 01:38	EPA 3005A	1,6010D	AB

Serial_No:09071817:47

								Senai	_No:090718	517.47	
Project Name:	NAF E	BELFAST					Lab Nur	nber:	L18344	80	
Project Number:	171.0	5027.003.02	2				Report I	Date:	09/07/1	8	
				SAMPL	E RES	ULTS					
Lab ID:		480-01					Date Co		08/30/18		
Client ID: Sample Location:	PW-1	AST, ME					Date Re Field Pre		08/30/18 Refer to		
Cample Location.	DELI							·Þ.		000	
Sample Depth:											
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Fotal Hardness by S	M 2340E	R - Mansfield	d l ab								
Hardness	49.9		mg/l	0.660	NA	1	00/06/19 11:20	09/07/18 01:38	EDA 2005A	1,6010D	AB
laiuness	49.9		mg/i	0.000	IN/A	I	09/00/10 11.20	09/07/18 01.38	LFA 3003A	1,0010D	AD
Dissolved Metals - M	lansfield	Lab									
Aluminum, Dissolved	ND		mg/l	0.100		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Antimony, Dissolved	ND		mg/l	0.00400		1	09/07/18 07:15	09/07/18 11:57	EPA 3005A	1,6020B	AM
Arsenic, Dissolved	0.005		mg/l	0.005		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Barium, Dissolved	ND		mg/l	0.010		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Beryllium, Dissolved	ND		mg/l	0.00050		1	09/07/18 07:15	09/07/18 11:57	EPA 3005A	1,6020B	AM
Boron, Dissolved	ND		mg/l	0.030		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Cadmium, Dissolved	ND		mg/l	0.00020		1	09/07/18 07:15	09/07/18 11:57	EPA 3005A	1,6020B	AM
Calcium, Dissolved	11.8		mg/l	0.100		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Chromium, Dissolved	ND		mg/l	0.010		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Cobalt, Dissolved	ND		mg/l	0.020		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Copper, Dissolved	ND		mg/l	0.010		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
ron, Dissolved	3.31		mg/l	0.050		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Lead, Dissolved	ND		mg/l	0.010		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Magnesium, Dissolved	5.04		mg/l	0.100		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Manganese, Dissolved	0.036		mg/l	0.010		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Mercury, Dissolved	ND		mg/l	0.00020		1	08/31/18 14:29	09/04/18 21:24	EPA 7470A	1,7470A	EA
Molybdenum, Dissolved	ND		mg/l	0.050		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Nickel, Dissolved	ND		mg/l	0.025		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Potassium, Dissolved	2.51		mg/l	2.50		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Selenium, Dissolved	ND		mg/l	0.010		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Silicon, Dissolved	10.8		mg/l	0.500		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Silver, Dissolved	ND		mg/l	0.007		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Sodium, Dissolved	14.9		mg/l	2.00		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Strontium, Dissolved	0.057		mg/l	0.010		1	09/07/18 07:15	09/07/18 11:32	EPA 3005A	1,6010D	PE
Thallium, Dissolved	ND		mg/l	0.00050		1	09/07/18 07:15	09/07/18 11:57	EPA 3005A	1,6020B	AM

Serial_No:09071817:47

1,6010D

1,6010D

1,6010D

ΡE

ΡE

ΡE

09/07/18 07:15 09/07/18 11:32 EPA 3005A

09/07/18 07:15 09/07/18 11:32 EPA 3005A

09/07/18 07:15 09/07/18 11:32 EPA 3005A

BELFA: Vater	ST, ME					Field Pr	ep:	Refer to		
BELFA	ST, ME					Field Pr	ep:	Refer to	5000	
BELFA	ST, ME					Field Pr	ep:	Refer to	5000	
								Defent		
PW-1						Date Re	eceived:	08/30/1	8	
18344	80-01					Date Co	ollected:	08/30/1	8 09:00	
			SAMPL	E RES	ULTS					
71.05	027.003.02	2				Report	Date:	09/07/	'18	
	ELFAST					Lab Nu	mber:	L1834	480	
			IAF BELFAST 71.05027.003.02	71.05027.003.02	71.05027.003.02		71.05027.003.02 Report	71.05027.003.02 Report Date:	71.05027.003.02 Report Date: 09/07/	71.05027.003.02 Report Date: 09/07/18

--

--

--

1

1

1

Titanium, Dissolved

Vanadium, Dissolved

Zinc, Dissolved

ND

ND

ND

mg/l

mg/l

mg/l

0.010

0.010

0.050

 Lab Number:
 L1834480

 Report Date:
 09/07/18

Project Name:NAF BELFASTProject Number:171.05027.003.02

Method Blank Analysis Batch Quality Control

RL MDL	Factor	Prepared	Analyzed	Method	Analyst
WG1152667-	·1				
0.00020	1	08/31/18 12:27	08/31/18 22:28	1,7470A	EA
	WG1152667-	WG1152667-1	WG1152667-1	WG1152667-1	WG1152667-1

Prep Information

Digestion Method: EPA 7470A

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	insfield Lab	for sample	e(s): 01	Batch: V	VG1152	2711-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	08/31/18 14:29	09/04/18 21:16	1,7470A	EA

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batch	n: WG1′	154185-	1				
Aluminum, Total	ND	mg/l	0.100		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Arsenic, Total	ND	mg/l	0.005		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Barium, Total	ND	mg/l	0.010		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Boron, Total	ND	mg/l	0.030		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Calcium, Total	ND	mg/l	0.100		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Chromium, Total	ND	mg/l	0.010		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Cobalt, Total	ND	mg/l	0.020		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Copper, Total	ND	mg/l	0.010		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Iron, Total	ND	mg/l	0.050		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Lead, Total	ND	mg/l	0.010		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Magnesium, Total	ND	mg/l	0.100		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Manganese, Total	ND	mg/l	0.010		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Molybdenum, Total	ND	mg/l	0.050		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Nickel, Total	ND	mg/l	0.025		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Potassium, Total	ND	mg/l	2.50		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Selenium, Total	ND	mg/l	0.010		1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB

Project Name:NAF BELFASTProject Number:171.05027.003.02

 Lab Number:
 L1834480

 Report Date:
 09/07/18

Method Blank Analysis Batch Quality Control

Silver, Total	ND	mg/l	0.007	 1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Sodium, Total	ND	mg/l	2.00	 1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Strontium, Total	ND	mg/l	0.010	 1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Titanium, Total	ND	mg/l	0.010	 1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Vanadium, Total	ND	mg/l	0.010	 1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB
Zinc, Total	ND	mg/l	0.050	 1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL M	IDL	Dilution Factor	Date Prepared		Analytical Method	
Total Hardness by SM 2	340B - Mansfield Lab	for samp	le(s): 01	Batc	h: WG1154	185-1			
Hardness	ND	mg/l	0.660	NA	1	09/06/18 11:20	09/07/18 01:30	1,6010D	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01 Batc	h: WG11	54187	·1				
Antimony, Total	ND	mg/l	0.00400		1	09/06/18 11:20	09/06/18 15:13	3 1,6020B	AM
Beryllium, Total	ND	mg/l	0.00050		1	09/06/18 11:20	09/06/18 15:13	3 1,6020B	AM
Cadmium, Total	ND	mg/l	0.00020		1	09/06/18 11:20	09/06/18 15:13	3 1,6020B	AM
Thallium, Total	ND	mg/l	0.00050		1	09/06/18 11:20	09/06/18 15:13	3 1,6020B	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - M	ansfield Lab	for sample	e(s): 01	Batch: N	VG1154	475-1				
Aluminum, Dissolved	ND		mg/l	0.100		1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Arsenic, Dissolved	ND		mg/l	0.005		1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE

Project Name: NAF BELFAST Project Number: 171.05027.003.02 Lab Number: L1834480 **Report Date:**

09/07/18

Method Blank Analysis Batch Quality Control

Devices Disselated			0.040	4	00/07/40 07 45	00/07/40 44 00	4 00405	
Barium, Dissolved	ND	mg/l	0.010	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Boron, Dissolved	ND	mg/l	0.030	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Calcium, Dissolved	ND	mg/l	0.100	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Chromium, Dissolved	ND	mg/l	0.010	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Cobalt, Dissolved	ND	mg/l	0.020	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Copper, Dissolved	ND	mg/l	0.010	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Iron, Dissolved	ND	mg/l	0.050	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Lead, Dissolved	ND	mg/l	0.010	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Magnesium, Dissolved	ND	mg/l	0.100	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Manganese, Dissolved	ND	mg/l	0.010	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Molybdenum, Dissolved	ND	mg/l	0.050	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Nickel, Dissolved	ND	mg/l	0.025	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Potassium, Dissolved	ND	mg/l	2.50	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Selenium, Dissolved	ND	mg/l	0.010	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Silicon, Dissolved	ND	mg/l	0.500	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Silver, Dissolved	ND	mg/l	0.007	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Sodium, Dissolved	ND	mg/l	2.00	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Strontium, Dissolved	ND	mg/l	0.010	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Titanium, Dissolved	ND	mg/l	0.010	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Vanadium, Dissolved	ND	mg/l	0.010	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE
Zinc, Dissolved	ND	mg/l	0.050	 1	09/07/18 07:15	09/07/18 11:23	1,6010D	PE

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Mans	sfield Lab	for sample	e(s): 01	Batch: V	VG1154	1476-1				
Antimony, Dissolved	ND		mg/l	0.00400		1	09/07/18 07:15	09/07/18 12:18	3 1,6020B	AM
Beryllium, Dissolved	ND		mg/l	0.00050		1	09/07/18 07:15	09/07/18 12:18	3 1,6020B	AM
Cadmium, Dissolved	ND		mg/l	0.00020		1	09/07/18 07:15	09/07/18 12:18	1,6020B	AM
Thallium, Dissolved	ND		mg/l	0.00050		1	09/07/18 07:15	09/07/18 12:18	3 1,6020B	AM

Prep Information

Digestion Method: EPA 3005A

Project Name:NAF BELFASTProject Number:171.05027.003.02

 Lab Number:
 L1834480

 Report Date:
 09/07/18

Method Blank Analysis Batch Quality Control

Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1154487-1 Sulfur, Total ND mg/l 0.250 1 09/07/18 06:50 09/07/18 07:37 1,6010D PI	Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Sulfur, Total ND mg/l 0.250 1 09/07/18 06:50 09/07/18 07:37 1,6010D Pl	Total Metals - Mansfield	Lab for sample(s): (01 Batch	: WG1′	154487-	1				
	Sulfur, Total	ND	mg/l	0.250		1	09/07/18 06:50	09/07/18 07:37	7 1,6010D	PE

Prep Information

Digestion Method: EPA 3015A

Lab Control Sample Analysis

Batch Quality Control

 Lab Number:
 L1834480

 Report Date:
 09/07/18

Project Number: 171.05027.003.02

NAF BELFAST

Project Name:

LCS LCSD %Recovery %Recovery %Recovery Limits **RPD** Limits Parameter Qual RPD Qual Qual Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1152667-2 Mercury, Total 80-120 96 --Dissolved Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1152711-2 Mercury, Dissolved 80-120 105 --

Lab Control Sample Analysis

Batch Quality Control

Project Name:NAF BELFASTProject Number:171.05027.003.02

 Lab Number:
 L1834480

 Report Date:
 09/07/18

LCS LCSD %Recovery Limits %Recovery %Recovery RPD **RPD Limits** Parameter Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1154185-2 Aluminum, Total 102 80-120 -Arsenic, Total 111 80-120 --Barium, Total 100 80-120 --80-120 Boron, Total 110 --Calcium, Total 103 80-120 --Chromium, Total 100 80-120 --Cobalt. Total 98 80-120 --Copper, Total 80-120 96 --Iron, Total 103 80-120 --Lead, Total 102 80-120 --Magnesium, Total 102 80-120 --Manganese, Total 99 80-120 --Molybdenum, Total 93 80-120 --Nickel, Total 80-120 100 -Potassium, Total 101 80-120 --Selenium, Total 116 80-120 --Silver, Total 102 80-120 --Sodium, Total 101 80-120 --Strontium, Total 98 80-120 --Titanium, Total 101 80-120 --Vanadium, Total 103 80-120 -

Project Name: NAF BELFAST Project Number: 171.05027.003.02

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sa	mple(s): 01 Batch: WG1	154185-2			
Zinc, Total	107	-	80-120	-	
Total Hardness by SM 2340B - Mansfield La	ab Associated sample(s):	01 Batch: WG1154185-2			
Hardness	103	-	80-120	-	
Total Metals - Mansfield Lab Associated sa	mple(s): 01 Batch: WG1	154187-2			
Antimony, Total	104	-	80-120	-	
Beryllium, Total	106	-	80-120	-	
Cadmium, Total	117	-	80-120	-	
Thallium, Total	108	-	80-120	-	

Lab Control Sample Analysis

Batch Quality Control

Project Name:NAF BELFASTProject Number:171.05027.003.02

 Lab Number:
 L1834480

 Report Date:
 09/07/18

LCS LCSD %Recovery **RPD** Limits %Recovery %Recovery Limits RPD Parameter Dissolved Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1154475-2 Aluminum, Dissolved 107 80-120 -Arsenic, Dissolved 108 80-120 --Barium, Dissolved 103 80-120 --Boron, Dissolved 80-120 108 --Calcium, Dissolved 103 80-120 --Chromium, Dissolved 101 80-120 --Cobalt. Dissolved 101 80-120 --Copper, Dissolved 80-120 99 --Iron, Dissolved 80-120 105 --Lead. Dissolved 102 80-120 --Magnesium, Dissolved 98 80-120 --Manganese, Dissolved 101 80-120 --Molybdenum, Dissolved 98 80-120 --Nickel, Dissolved 102 80-120 -Potassium, Dissolved 102 80-120 --Selenium, Dissolved 114 80-120 --Silicon, Dissolved 80-120 99 --Silver, Dissolved 101 80-120 -Sodium, Dissolved 108 80-120 --Strontium, Dissolved 102 80-120 --Titanium, Dissolved 103 80-120 -

Project Name: NAF BELFAST Project Number: 171.05027.003.02

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associa	ted sample(s): 01 Batch: \	NG1154475-2			
Vanadium, Dissolved	106	-	80-120	-	
Zinc, Dissolved	109	-	80-120	-	
Dissolved Metals - Mansfield Lab Associa	ted sample(s): 01 Batch: \	NG1154476-2			
Antimony, Dissolved	100		80-120	-	
Beryllium, Dissolved	118	-	80-120	-	
Cadmium, Dissolved	112	-	80-120	-	
Thallium, Dissolved	103	-	80-120	-	
otal Metals - Mansfield Lab Associated s	ample(s): 01 Batch: WG1	154487-2			
Sulfur, Total	112		80-120	-	

					-	ike Analy ality Cont						
Project Name:	NAF BELFAST			24					_ab Numbe	r:	L183	4480
Project Number:	171.05027.003.02							I	Report Date	:	09/07	7/18
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits

Dissolved Metals - Mansfield L	ab Associated	sample(s): (01 QC Batc	h ID: WG1152	2711-3	QC Samp	ole: L1834480-01	Client ID: P	W-1	
Mercury, Dissolved	ND	0.005	0.00474	95		-	-	75-125	-	20

NAF BELFAST

Project Number: 171.05027.003.02

Project Name:

Lab Number: L1834480

Report Date:

09/07/18

rameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield L	ab Associated sar	mple(s): 01	QC Batch	ID: WG1154185-3	3 QC Sample	e: L1834480-01	Client ID: PW-1		
Aluminum, Total	ND	2	2.12	106	-	-	75-125	-	20
Arsenic, Total	0.006	0.12	0.144	114	-	-	75-125	-	20
Barium, Total	ND	2	2.09	104	-	-	75-125	-	20
Boron, Total	ND	1	1.15	115	-	-	75-125	-	20
Calcium, Total	11.6	10	22.9	113	-	-	75-125	-	20
Chromium, Total	ND	0.2	0.206	103	-	-	75-125	-	20
Cobalt, Total	ND	0.5	0.500	100	-	-	75-125	-	20
Copper, Total	ND	0.25	0.249	100	-	-	75-125	-	20
ron, Total	3.20	1	4.45	125	-	-	75-125	-	20
₋ead, Total	ND	0.51	0.531	104	-	-	75-125	-	20
Magnesium, Total	5.10	10	15.8	107	-	-	75-125	-	20
Manganese, Total	0.034	0.5	0.553	104	-	-	75-125	-	20
Molybdenum, Total	ND	1	0.987	99	-	-	75-125	-	20
Nickel, Total	ND	0.5	0.512	102	-	-	75-125	-	20
Potassium, Total	ND	10	13.0	130	Q -	-	75-125	-	20
Selenium, Total	ND	0.12	0.143	119	-	-	75-125	-	20
Silver, Total	ND	0.05	0.052	104	-	-	75-125	-	20
Sodium, Total	13.8	10	25.0	112	-	-	75-125	-	20
Strontium, Total	0.053	1	1.08	103	-	-	75-125	-	20
Fitanium, Total	ND	1	1.06	106	-	-	75-125	-	20
Vanadium, Total	ND	0.5	0.534	107	-	-	75-125	-	20

Project Name:	NAF BELFAST
Project Number:	171.05027.003.02

 Lab Number:
 L1834480

 Report Date:
 09/07/18

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch	ID: WG1154185-3	QC Sample: L	1834480-01	Client ID: PW-1		
Zinc, Total	ND	0.5	0.564	113	-	-	75-125	-	20
otal Hardness by SM 2340B	- Mansfield La	b Associate	ed sample(s)): 01 QC Batch ID	: WG1154185-3	G QC Samp	le: L1834480-01	Client ID:	PW-1
Hardness	49.9	66.2	122	109	-	-	75-125	-	20
otal Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch	ID: WG1154187-3	QC Sample: L	1834480-01	Client ID: PW-1		
Antimony, Total	ND	0.5	0.5947	119	-	-	75-125	-	20
Beryllium, Total	ND	0.05	0.05541	111	-	-	75-125	-	20
Cadmium, Total	ND	0.051	0.06234	122	-	-	75-125	-	20
Thallium, Total	ND	0.12	0.1452	121	-	-	75-125	-	20

Project Name:NAF BELFASTProject Number:171.05027.003.02

 Lab Number:
 L1834480

 Report Date:
 09/07/18

MS RPD Native MS MS MSD MSD Recovery Sample %Recovery Added Found Found Limits Limits %Recovery RPD Parameter QC Sample: L1834480-01 Dissolved Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1154475-3 Client ID: PW-1 Aluminum, Dissolved ND 2 2.10 105 75-125 20 --Arsenic. Dissolved 0.005 0.12 0.137 110 75-125 20 ---Barium. Dissolved ND 2 2.09 104 75-125 20 _ --Boron, Dissolved ND 1 1.12 112 75-125 20 -_ -Calcium, Dissolved 11.8 10 22.0 102 -75-125 20 --Chromium, Dissolved ND 0.2 0.205 102 75-125 20 ---Cobalt, Dissolved ND 0.5 0.511 102 75-125 20 ---Copper, Dissolved ND 0.25 0.252 101 75-125 20 _ --Iron, Dissolved 3.31 1 4.29 98 75-125 20 -_ -Lead, Dissolved ND 0.51 0.526 103 -75-125 20 --Magnesium, Dissolved 5.04 10 14.9 99 75-125 20 ---Manganese, Dissolved 0.5 0.542 0.036 101 -75-125 _ 20 -Molybdenum, Dissolved 100 75-125 ND 1 1.00 --_ 20 Nickel, Dissolved 0.5 0.514 ND 103 -75-125 20 --Potassium, Dissolved 2.51 10 12.9 104 -75-125 _ 20 -Selenium, Dissolved ND 0.12 0.140 117 -75-125 _ 20 _ Silicon, Dissolved 1 12.0 120 75-125 10.8 -_ 20 -75-125 Silver, Dissolved ND 0.05 0.051 102 ---20 Sodium, Dissolved 14.9 10 25.4 105 20 -75-125 _ _ Strontium, Dissolved 0.057 1 1.09 103 -75-125 _ 20 _ Titanium, Dissolved ND 1 1.06 106 75-125 20 _ --

Project Name:NAF BELFASTProject Number:171.05027.003.02

 Lab Number:
 L1834480

 Report Date:
 09/07/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfi	eld Lab Associated	sample(s):	01 QC Ba	atch ID: WG1154475	-3 QC Sai	mple: L1834480-01	Client ID: F	PW-1	
Vanadium, Dissolved	ND	0.5	0.541	108	-	-	75-125	-	20
Zinc, Dissolved	ND	0.5	0.566	113	-	-	75-125	-	20
Dissolved Metals - Mansfi	eld Lab Associated	l sample(s):	01 QC Ba	atch ID: WG1154476	-3 QC Sai	mple: L1834480-01	Client ID: F	PW-1	
Antimony, Dissolved	ND	0.5	0.5600	112	-	-	75-125	-	20
Beryllium, Dissolved	ND	0.05	0.05325	106	-	-	75-125	-	20
Cadmium, Dissolved	ND	0.051	0.05212	102	-	-	75-125	-	20
Thallium, Dissolved	ND	0.12	0.1397	116	-	-	75-125	-	20
Fotal Metals - Mansfield L	ab Associated sam	nple(s): 01	QC Batch I	D: WG1154487-3	QC Sample	: L1834480-01 Cli	ent ID: PW-1		
Sulfur, Total	4.79	0.5	5.31	104	-	-	75-125	-	20

20

Project Name: Project Number:	NAF BELFAST 171.05027.003.02		Lab Duplicate Analysis Batch Quality Control					L1834480 09/07/18
Parameter		Native Sample	Duplicate		Units	RPD	Qual	RPD Limits
Dissolved Metals - Mansf	ield Lab Associated sample(s):	01 QC Batch ID:	WG1152711-4	QC Sample:	L1834480-01	Client ID:	PW-1	

Mercury, Dissolved	ND	ND	mg/l	NC

Lab Duplicate Analysis Batch Quality Control

Project Name: NAF BELFAST **Project Number:** 171.05027.003.02 Lab Number:

L1834480 09/07/18 Report Date:

Native Sample **Duplicate Sample** Units RPD **RPD Limits** Parameter Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1154185-4 QC Sample: L1834480-01 Client ID: PW-1 Aluminum. Total ND ND mg/l NC 20 Q Arsenic, Total 0.006 0.008 mg/l 23 20 NC Barium, Total ND ND mg/l 20 Boron, Total ND ND mg/l NC 20 Calcium, Total 11.6 11.7 mg/l 1 20 Chromium, Total ND ND mg/l NC 20 Cobalt, Total ND ND mg/l NC 20 Copper, Total ND ND mg/l NC 20 Iron, Total 3.20 3.24 mg/l 1 20 Lead, Total ND ND mg/l NC 20 Magnesium, Total 5.10 5.13 mg/l 20 1 Manganese, Total 0.034 0.034 mg/l 1 20 Molybdenum, Total ND ND NC 20 mg/l Nickel, Total ND ND mg/l NC 20 Potassium, Total ND ND mg/l NC 20 Selenium, Total ND ND mg/l NC 20 Silver, Total ND ND mg/l NC 20 Sodium, Total 13.8 13.9 mg/l 1 20 Strontium, Total 0.053 0.054 mg/l 2 20

Lab Duplicate Analysis Batch Quality Control

Project Name: NAF BELFAST Project Number: 171.05027.003.02

Lab Number: L1834480 09/07/18 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG11	54185-4 QC Sample: L	_1834480-01 C	lient ID: PW-	1
Titanium, Total	ND	ND	mg/l	NC	20
Vanadium, Total	ND	ND	mg/l	NC	20
Zinc, Total	ND	ND	mg/l	NC	20
otal Hardness by SM 2340B - Mansfield Lab Associate	ed sample(s): 01 QC	Batch ID: WG1154185-4	QC Sample:	L1834480-0	1 Client ID: PW-1
Hardness	49.9	50.4	mg/l	1	20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG11	154187-4 QC Sample: L	_1834480-01 C	lient ID: PW-	1
Antimony, Total	ND	ND	mg/l	NC	20
Beryllium, Total	ND	ND	mg/l	NC	20
Cadmium, Total	ND	ND	mg/l	NC	20
Thallium, Total	ND	ND	mg/l	NC	20

Lab Duplicate Analysis Batch Quality Control

Project Name: NAF BELFAST **Project Number:** 171.05027.003.02 Lab Number:

L1834480 09/07/18 Report Date:

Native Sample **Duplicate Sample** Units RPD **RPD Limits** Parameter Dissolved Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1154475-4 QC Sample: L1834480-01 Client ID: PW-1 Aluminum. Dissolved ND ND mg/l NC 20 NC Arsenic, Dissolved 0.005 ND mg/l 20 NC Barium, Dissolved ND ND mg/l 20 Boron, Dissolved ND ND mg/l NC 20 Calcium. Dissolved 11.8 11.6 mg/l 2 20 Chromium, Dissolved ND ND mg/l NC 20 Cobalt, Dissolved ND ND mg/l NC 20 Copper, Dissolved ND ND mg/l NC 20 Iron, Dissolved 3.31 3.23 mg/l 2 20 Lead, Dissolved ND ND mg/l NC 20 Magnesium, Dissolved 5.04 4.96 mg/l 2 20 Manganese, Dissolved 0.036 0.034 mg/l 5 20 Molybdenum, Dissolved ND ND NC 20 mg/l Nickel, Dissolved ND ND mg/l NC 20 Potassium, Dissolved 2.51 ND mg/l NC 20 Selenium, Dissolved ND ND mg/l NC 20 Silicon. Dissolved 10.8 10.4 mg/l 4 20 Silver, Dissolved ND ND mg/l NC 20 Sodium, Dissolved 14.9 14.6 mg/l 2 20

Lab Duplicate Analysis Batch Quality Control

Project Name:NAF BELFASTProject Number:171.05027.003.02

Lab Number:

 Lab Number:
 L1834480

 Report Date:
 09/07/18

Native Sample	Duplicate Sample	Units	RPD	RPD Limits
01 QC Batch ID:	WG1154475-4 QC Sample	: L1834480-01	Client ID:	PW-1
0.057	0.056	mg/l	3	20
ND	ND	mg/l	NC	20
ND	ND	mg/l	NC	20
ND	ND	mg/l	NC	20
01 QC Batch ID: V	WG1154476-4 QC Sample	: L1834480-01	Client ID:	PW-1
ND	ND	mg/l	NC	20
ND	ND	mg/l	NC	20
ND	ND	mg/l	NC	20
ND	ND	mg/l	NC	20
QC Batch ID: WG1	154487-4 QC Sample: L1	834480-01 Clie	nt ID: PW-	1
4.79	4.77	mg/l	0	20
	01 QC Batch ID: ' 0.057 ND ND ND 01 QC Batch ID: ' ND ND ND ND ND ND ND ND ND	01 QC Batch ID: WG1154475-4 QC Sample 0.057 0.056 ND ND 01 QC Batch ID: WG1154476-4 QC Sample ND ND ND QC Batch ID: WG1154487-4 QC Sample: L1	01 QC Batch ID: WG1154475-4 QC Sample: L1834480-01 0.057 0.056 mg/l ND ND mg/l 01 QC Batch ID: WG1154476-4 QC Sample: L1834480-01 ND ND mg/l ND ND mg/l	01 QC Batch ID: WG1154475-4 QC Sample: L1834480-01 Client ID:

INORGANICS & MISCELLANEOUS

Serial_No:09071817:47

Lab Number: L1834480 Report Date: 09/07/18

Project Name: NAF BELFAST Project Number: 171.05027.003.02

SAMPLE RESULTS

Lab ID:L1834480-01Client ID:PW-1Sample Location:BELFAST, ME

Sample Depth: Matrix:

Water

Date Collected:	08/30/18 09:00
Date Received:	08/30/18
Field Prep:	Refer to COC

Dilution Date Date Analytical Factor Prepared Analyzed Method Parameter Result Qualifier Units RL MDL Analyst General Chemistry - Westborough Lab Turbidity 0.87 NTU 0.20 1 08/31/18 00:46 121,2130B AS ---Color, True 7.0 A.P.C.U. 5.0 ---1 08/31/18 02:30 121,2120B GD -Color, Apparent 13 A.P.C.U. 5.0 1 08/31/18 02:30 121,2120B GD ---UV Absorbance @ 254nm Abs/cm 0.005 NA 1 08/31/18 03:18 121,5910B GD 0.034 -Alkalinity, Total 71.3 mg CaCO3/L 2.00 NA 1 08/31/18 02:49 121,2320B GD -Carbon Dioxide 980 mg/l 2.0 ---1 08/31/18 02:49 121,4500CO2-D GD -Solids, Total Suspended ND mg/l 5.0 NA 1 08/31/18 15:05 121,2540D DR -Phosphorus, Total 0.116 mg/l 0.010 ---1 08/31/18 09:15 08/31/18 13:03 121,4500P-E SD Phosphorus, Soluble mg/l 0.010 ---1 09/06/18 09:54 121,4500P-E SD 0.108 09/05/18 14:25

Project Name:NAF BELFASTProject Number:171.05027.003.02

 Lab Number:
 L1834480

 Report Date:
 09/07/18

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG11	52424-1				
Turbidity	ND		NTU	0.20		1	-	08/31/18 00:46	121,2130B	AS
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG11	52523-1				
Phosphorus, Total	ND		mg/l	0.010		1	08/31/18 09:15	08/31/18 12:36	121,4500P-E	SD
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG11	52545-1				
UV Absorbance @ 254nm	ND		Abs/cm	0.005	NA	1	-	08/31/18 03:18	121,5910B	GD
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG11	52582-1				
Alkalinity, Total	ND		mg CaCO3/L	2.00	NA	1	-	08/31/18 02:49	121,2320B	GD
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG11	52660-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	08/31/18 15:05	121,2540D	DR
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG11	53798-1				
Phosphorus, Soluble	ND		mg/l	0.010		1	09/05/18 14:25	09/06/18 09:43	121,4500P-E	SD

Lab Control Sample Analysis Batch Quality Control

Project Name: NAF BELFAST Project Number: 171.05027.003.02 Lab Number: L1834480 Report Date: 09/07/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1152424-2					
Turbidity	105		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1152523-2					
Phosphorus, Total	100		-		80-120	-		
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1152545-2					
UV Absorbance @ 254nm	100		-			-		
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1152582-2					
Alkalinity, Total	101		-		90-110	-		10
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch: WG1153798-2					
Phosphorus, Soluble	97				80-120	-		

		Matrix Spike Analysis Batch Quality Control		
Project Name:	NAF BELFAST	Batch Quality Control	Lab Number:	L1834480
Project Number:	171.05027.003.02		Report Date:	09/07/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery 0	Recovery Qual Limits RPD	RPD Qual Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	VG1152582-4	QC Sample: L183	4480-01 Client ID: PW	/-1
Alkalinity, Total	71.3	100	160	89	-	-	86-116 -	10

Lab Duplicate Analysis Batch Quality Control

Project Name: NAF BELFAST Project Number: 171.05027.003.02
 Lab Number:
 L1834480

 Report Date:
 09/07/18

Native Sample **Duplicate Sample** Units RPD Qual **RPD Limits** Parameter General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1152545-3 QC Sample: L1834480-01 Client ID: PW-1 UV Absorbance @ 254nm 0.034 0.033 Abs/cm 3 General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1152581-1 QC Sample: L1834480-01 Client ID: PW-1 Carbon Dioxide 980 630 mg/l 43 General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1152582-3 QC Sample: L1834480-01 Client ID: PW-1 Alkalinity, Total mg CaCO3/L Q 10 71.3 60.5 16

Project Name:NAF BELFASTProject Number:171.05027.003.02

Serial_No:09071817:47 *Lab Number:* L1834480 *Report Date:* 09/07/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1834480-01A	Vial HCI preserved	А	NA		3.6	Y	Absent		ME-8260(14)
L1834480-01B	Vial HCI preserved	А	NA		3.6	Y	Absent		ME-8260(14)
L1834480-01C	Vial HCI preserved	А	NA		3.6	Y	Absent		ME-8260(14)
L1834480-01D	Vial unpreserved 20ml	А	NA		3.6	Y	Absent		DISSGAS-CO2(7)
L1834480-01E	Vial unpreserved 20ml	A	NA		3.6	Υ	Absent		DISSGAS-CO2(7)
L1834480-01F	Plastic 250ml unpreserved/No Headspace	А	NA		3.6	Y	Absent		ALK-T-2320(14),CO2(1)
L1834480-01G	Plastic 250ml HNO3 preserved	A	<2	<2	3.6	Υ	Absent		B-SI(180),PB-SI(180),FE-SI(180),BA- SI(180),BE-6020S(180),TI-SI(180),AG- SI(180),AS-SI(180),CU-SI(180),MN- SI(180),NA-SI(180),NI-SI(180),AL-SI(180),CO- SI(180),SI-SI(180),SR-SI(180),TL- 6020S(180),CR-SI(180),K-SI(180),MG- SI(180),MO-SI(180),SB-6020S(180),CA- SI(180),CD-6020S(180),HG-S(28),SE- SI(180),V-SI(180),ZN-SI(180)
L1834480-01H	Plastic 250ml HNO3 preserved	A	<2	<2	3.6	Y	Absent		TL-6020T(180),AS-TI(180),BA-TI(180),AG- TI(180),AL-TI(180),B-TI(180),CR-TI(180),MO- TI(180),NI-TI(180),S-TI(180),BE- 6020T(180),CU-TI(180),PB-TI(180),SE- TI(180),TI-TI(180),CN-TI(180),CO-TI(180),SB- 6020T(180),V-TI(180),CD-6020T(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),SR- TI(180),CA-TI(180),HARDT(180),K-TI(180),NA- TI(180)
L1834480-01I	Plastic 500ml HNO3 preserved	A	<2	<2	3.6	Y	Absent		TL-6020T(180),AS-TI(180),BA-TI(180),AG- TI(180),AL-TI(180),B-TI(180),CR-TI(180),MO- TI(180),NI-TI(180),S-TI(180),BE- 6020T(180),CU-TI(180),PB-TI(180),SE- TI(180),TI-TI(180),ZN-TI(180),CO-TI(180),SB- 6020T(180),V-TI(180),CD-6020T(180),FE- TI(180),HG-TI(28),MG-TI(180),MN-TI(180),SR- TI(180),CA-TI(180),HARDT(180),K-TI(180),NA- TI(180)
L1834480-01J	Plastic 950ml unpreserved	А	7	7	3.6	Y	Absent		TSS-2540(7)
L1834480-01K	Amber 500ml unpreserved	А	7	7	3.6	Y	Absent		UV-254(2),COLOR-T-2120(2),COLOR-A- 2120(2)

Project Name:NAF BELFASTProject Number:171.05027.003.02

Serial_No:09071817:47 *Lab Number:* L1834480 *Report Date:* 09/07/18

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1834480-01L	Plastic 250ml H2SO4 preserved	А	<2	<2	3.6	Y	Absent		TPHOS-4500(28)
L1834480-01M	Plastic 250ml H2SO4 preserved	А	<2	<2	3.6	Υ	Absent		SPHOS-4500(28)
L1834480-01N	Amber 1000ml unpreserved	А	7	7	3.6	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
L1834480-01O	Amber 1000ml unpreserved	А	7	7	3.6	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
L1834480-01P	Plastic 250ml unpreserved	А	7	7	3.6	Υ	Absent		TURB-2130(2)
L1834480-02A	Vial HCl preserved	А	NA		3.6	Υ	Absent		HOLD-8260(14)
L1834480-02B	Vial HCI preserved	А	NA		3.6	Y	Absent		HOLD-8260(14)

Project Name: NAF BELFAST

Project Number: 171.05027.003.02

Lab Number: L1834480

Report Date: 09/07/18

GLOSSARY

Acronyms

,	
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

- 1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Usability Report Report Format:

Project Name: NAF BELFAST

Project Number: 171.05027.003.02

Serial_No:09071817:47

 Lab Number:
 L1834480

 Report Date:
 09/07/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name: NAF BELFAST Project Number: 171.05027.003.02

 Lab Number:
 L1834480

 Report Date:
 09/07/18

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 117 Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene, EPA-NE, Revision 1, February 21, 2002 and Sample Preparation & Calculations for Dissolved Gas Analysis in Water Samples using a GC Headspace Equilibration Technique, EPA RSKSOP-175, Revision 2, May 2004.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine. EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate EPA 9010: <u>NPW</u> and SCM: Amenable Cyanide Distillation SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. **Mansfield Facility**

SM 2540D: TSS EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

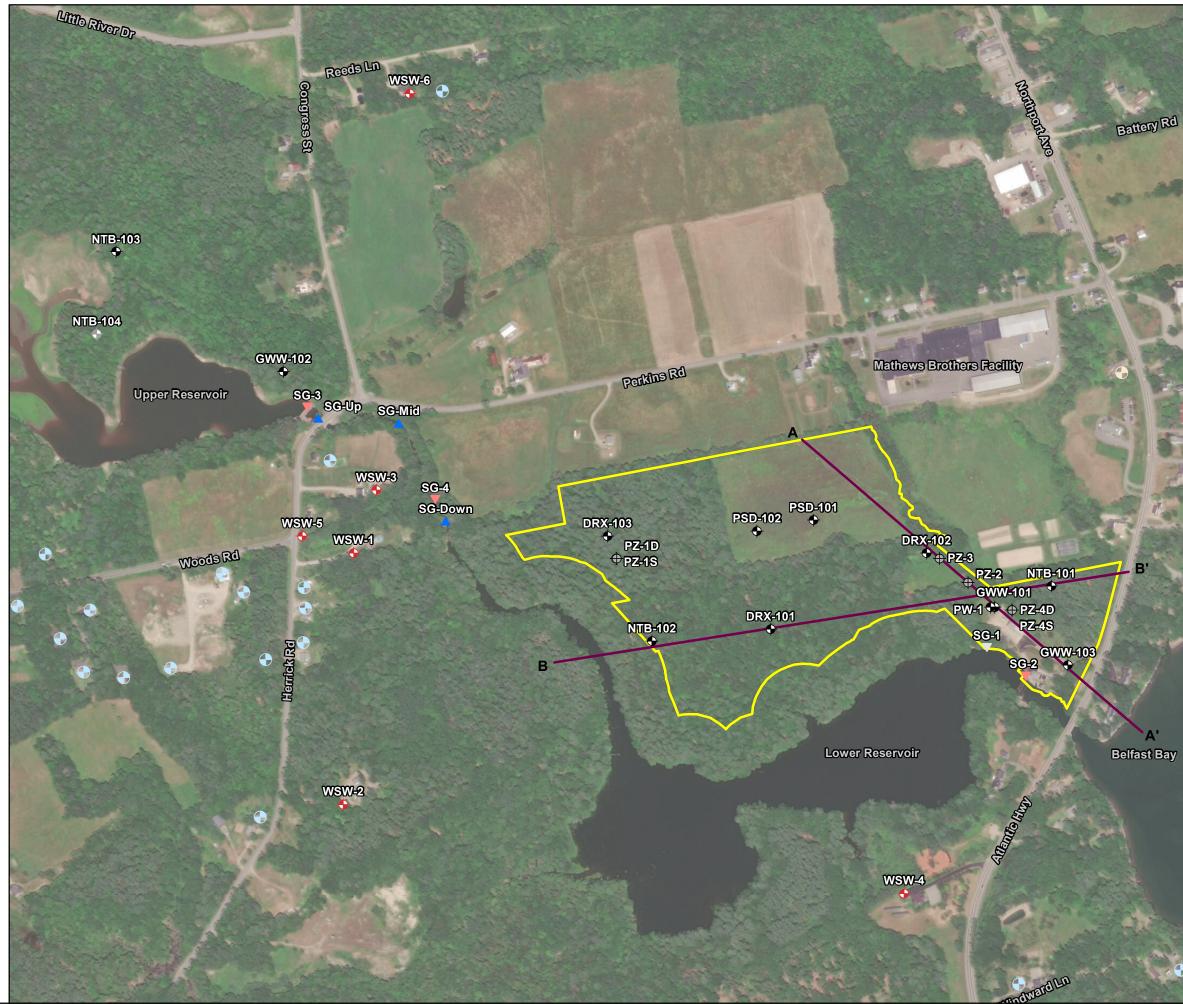
Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: AI, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B


For a complete listing of analytes and methods, please contact your Alpha Project Manager.

D	Khon	~																ę	Seria	al_N	lo:09071	817:47	
Агрна	C	HAIN O	FCU	ISTO	DY,	PAGE	_OF	Date Rec'd in Lab: 8/30/18									ALPHA JOB #: 6 834486						
8 Walkup Drive	320 Er	orbes Blvd	Projec	t Informat	lion	-		Report Information - Data Deliverable							rable	95	Bil	lling	g Info	orma	ation		
Westboro, MA 0 Tel: 508-898-92	1581 Mansf	field, MA 02048 08-822-9300	Project	Name: N	HF Bel	fast		0	ADE	x	0	EM/	AIL					ame	as C	Client	info PO i	# 11183	
Client Information	n		Project	Location:	elfast	TE		R	egula	atory	Requ	ireme	ents	& 1	Proje	ect In	form	nati	on R	lequi	irements		
KANTSWIMUN	C NA O	Hally Duc. Drive 3801 2603-436-149	Project I Project I ALPHA	# 171.0	5027.	003.0 elli ka)) ulom		Yes C Yes C Yes C	No N	Aatrix S	Spike I tandar S RGP	ds (Inf	ed on t	this S		(Rec	auire & El	d for	MCP with Ta	CT RCP An Inorganics argets)	alytical Metho)	ds
Additional Pr	fuchs@v	angrand	Date 1	Due:		ccolianed # pre-a	oproved) izeof,		624	ABA	21:	EPH: DRanges S DRCRAB	VPH: DRanges & Targets D Ranges Oct	D PEST Ranges Only	1 Disset Only Day	S. T. T. T. Marphin	AL INDERS PLES	Hear May puer 10 8.5.	there is tone	NUN THE SULFUL	FII CON	AMPLE INFO iltration I Field I Lab to do reservation	The second second
ALPHA Lab ID (Lab Use Only)		Sample ID		Colle	ection Time	Sample Matrix	Sampler		SVOC.	METALS.	METALI	Hill Has	D'Ha	PH: D	1 A	and a	- may	Tario	Elon a	Nised		Lab to do	
VY40al	Pw/-	-1		8-37-18	9.00	GW	DAF	V	x	<u> </u>			-/-	1	X	4	X	X	X	X	/ Samp	le Comments	14
-Q-	Trop	Blank		- 2 10	1.00		5761	X											~>	~	HOL	D	00
											-		_				_	_					+
								_					-										
Container Type Preservative					Г	Conta	iner Type	V	A						P	P	PI	>	MA	V/p			-
P= Plastic A= Amber glass V= Vial	A= None B= HCl C= HNO ₃ D= H ₂ SO ₄ E= NaOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₂ Cl K= Zn Acctate O= Other					B	A		-	+	-		C	C	DA	10	A	A			+		
Glass Bacteria cup Cube Other Encore BOD Bottle ge 76 of 76						1	₹₀}	M		By:	k	8/3	00	Date/1	8:5		All Alp See	ha's 1 e reve	les submitt Terms and (erse side 01-01 (rev. 12-		t to		

APPENDIX H

Conceptual Geologic Cross Sections

Hydrogeologic Investigation Report Proposed Commercial Land-Based Aquaculture Facility Belfast Water District, Cassida Back Lot, and Mathews Brothers West Field Properties 285 Northport Avenue Belfast, Maine

RANSOM Consulting Engineers and Scientists Legend & Notes Site Boundary ᡗ᠘ ▼ Staff Gage Staff Gage-Abandoned Stream Gage-Manual Wetland \oplus Piezometer Monitoring Well • Monitoring Well- \bullet Abandoned

Hazeltine Rd Seaside Dr

Tozler St

Notes

- 1. Site Plan based on available orthoimagery
- 2. Some features are approximate in location and scale.

Private Well-

Private Well-

Private Well-

Out of Service

Unable to Locate

Cross Section Line

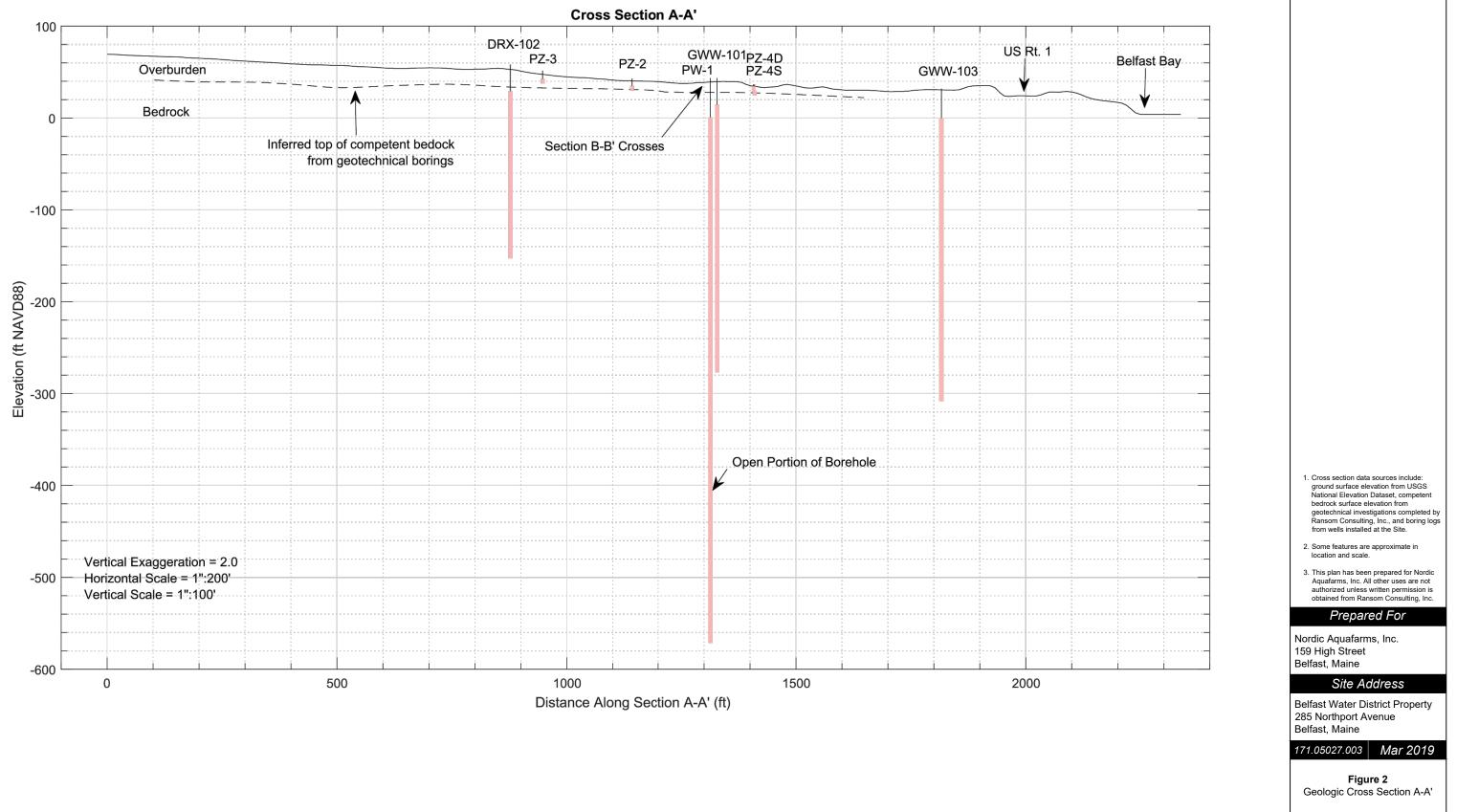
Not Monitored Assumed Location

Monitored

 This plan has been prepared for Nordic Aquafarms Inc. All other uses are not authorized unless written permission is obtained from Ransom Consulting, Inc.

Scale & Orientation

250 500 **(**) 0 1 inch = 500 feet Prepared For Nordic Aquafarms, Inc. 159 High Street Belfast, Maine


Site Address

Belfast Water District Property 285 Northport Avenue Belfast, Maine

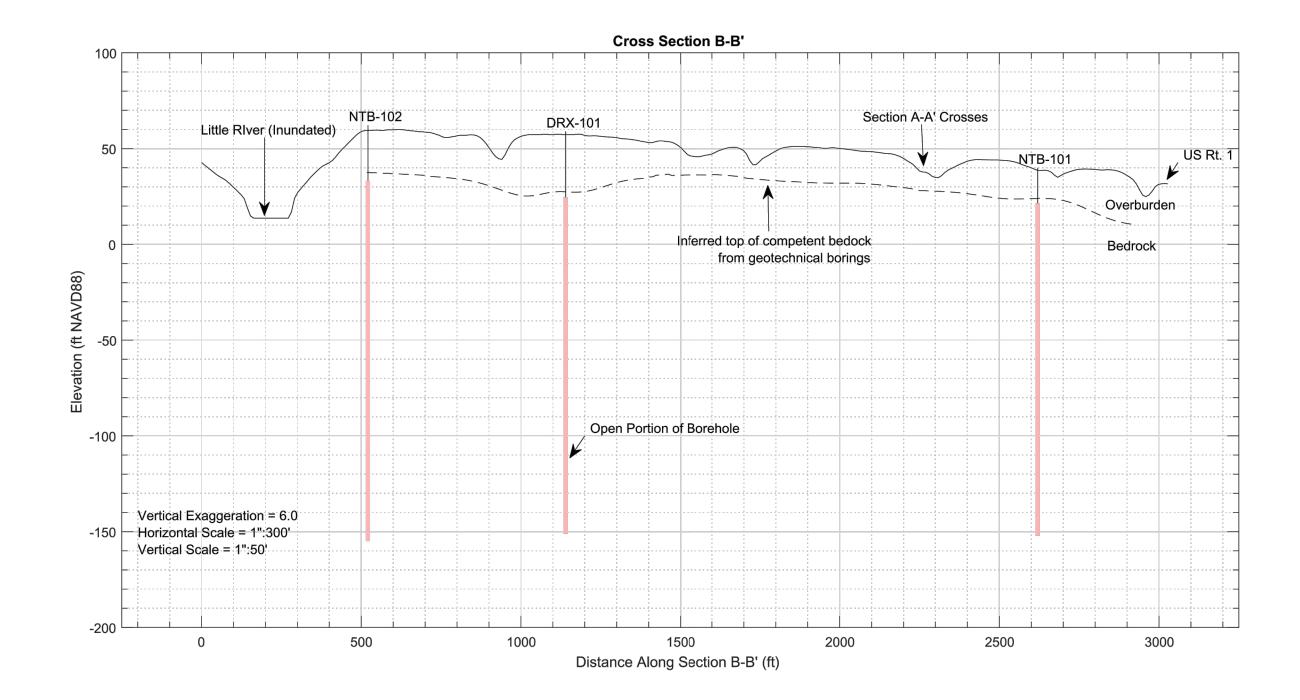
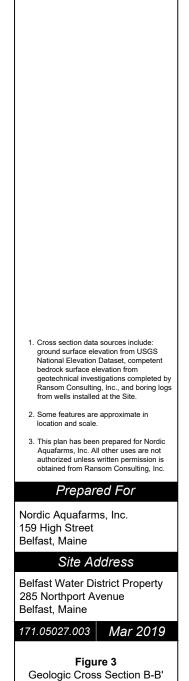

171.05027 Apr 2019

Figure 1:


Site Area Map

File: NAF_BELFAST-ME_XSECTION.dwg Date: 03/04/2019