
APPENDIX D

Pre-Development HydroCAD and Backup Calculations

Area Listing (all nodes)

Area (acres)	CN	Description (subcatchment-numbers)
3.049	74	>75% Grass cover, Good, HSG C (3S, 4S, 5S, 6S, 9S)
59.528	74	>75% Grass cover, Good, HSG C/D (2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S)
1.194	80	>75% Grass cover, Good, HSG D (6S)
0.179	96	Gravel (6S)
0.088	94	Gravel roads, HSG C/D (9S)
5.078	98	Impervious (6S, 9S, 10S, 11S)
5.217	70	Woods, Good, HSG C (1S, 3S, 4S, 6S)
41.291	70	Woods, Good, HSG C/D (1S, 2S, 4S, 6S, 7S, 8S, 10S, 11S)
0.735	77	Woods, Good, HSG D (6S)
116.358	74	TOTAL AREA

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
109.172	HSG C	1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S
1.929	HSG D	6S
5.257	Other	6S, 9S, 10S, 11S
116.358		TOTAL AREA

pre conditions
Prepared by Ransom Consulting
HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Printed 4/21/2019

Page 4

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	62.577	1.194	0.000	63.770	>75% Grass cover, Good	2S, 3S,
							4S, 5S,
							6S, 7S,
							8S, 9S,
							10S,
							11S
0.000	0.000	0.000	0.000	0.179	0.179	Gravel	6S
0.000	0.000	0.088	0.000	0.000	0.088	Gravel roads	9S
0.000	0.000	0.000	0.000	5.078	5.078	Impervious	6S, 9S,
							10S,
							11S
0.000	0.000	46.507	0.735	0.000	47.243	Woods, Good	1S, 2S,
							3S, 4S,
							6S, 7S,
							8S,
							10S,
							11S
0.000	0.000	109.172	1.929	5.257	116.358	TOTAL AREA	

pre conditions
Prepared by Ransom Consulting
HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Printed 4/21/2019

Page 5

Pipe Listing (all nodes)

Line	e#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
	1	10R	75.50	75.00	25.0	0.0200	0.013	24.0	0.0	0.0
	2	PT7	21.60	18.30	83.0	0.0398	0.013	18.0	0.0	0.0
	3	PT8	23.40	18.60	76.0	0.0632	0.011	36.0	24.0	0.0
	4	PT9	20.00	14.00	93.0	0.0645	0.011	36.0	0.0	0.0

NAF Pre Development Type III 24-hr 2-year Rainfall=2.90" Printed 4/21/2019

Inflow=13.59 cfs 0.953 af Outflow=13.59 cfs 0.953 af

Page 6

pre conditions

Reach 11R: At Stream 9

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: SUBCAT1	Runoff Area=316,158 sf 0.00% Impervious Runoff Depth>0.58" Flow Length=898' Tc=57.7 min CN=70 Runoff=1.92 cfs 0.348 af
Subcatchment2S: SUBCAT2	Runoff Area=692,288 sf 0.00% Impervious Runoff Depth>0.56" Flow Length=1,533' Tc=101.5 min CN=70 Runoff=2.92 cfs 0.741 af
Subcatchment3S: SUBCAT3	Runoff Area=391,117 sf 0.00% Impervious Runoff Depth>0.66" Flow Length=1,335' Tc=48.7 min CN=72 Runoff=3.11 cfs 0.495 af
Subcatchment4S: SUBCAT4	Runoff Area=254,691 sf 0.00% Impervious Runoff Depth>0.67" Flow Length=1,170' Tc=30.2 min CN=72 Runoff=2.58 cfs 0.326 af
Subcatchment5S: SUBCAT5	Runoff Area=231,278 sf 0.00% Impervious Runoff Depth>0.76" Flow Length=839' Tc=31.3 min CN=74 Runoff=2.69 cfs 0.335 af
Subcatchment6S: SUBCAT6	Runoff Area=342,649 sf 10.21% Impervious Runoff Depth>0.85" Flow Length=445' Tc=41.6 min CN=76 Runoff=3.99 cfs 0.558 af
Subcatchment7S: SUBCAT7	Runoff Area=96,383 sf 0.00% Impervious Runoff Depth>0.57" Flow Length=541' Tc=64.7 min CN=70 Runoff=0.55 cfs 0.106 af
Subcatchment8S: SUBCAT8	Runoff Area=14,976 sf 0.00% Impervious Runoff Depth>0.62" Flow Length=276' Tc=34.7 min CN=71 Runoff=0.13 cfs 0.018 af
Subcatchment9S: OFFSITE1 (Below	Runoff Area=570,508 sf 4.47% Impervious Runoff Depth>0.80" Flow Length=1,353' Tc=35.1 min CN=75 Runoff=6.75 cfs 0.878 af
Subcatchment10S: OFFSITE 2 (above	e Runoff Area=1,644,982 sf 2.57% Impervious Runoff Depth>0.73" Flow Length=2,221' Tc=94.2 min CN=74 Runoff=10.03 cfs 2.307 af
Subcatchment11S: OFFSITE 3 (Matth	new Runoff Area=513,527 sf 23.06% Impervious Runoff Depth>0.97" Flow Length=532' Tc=6.8 min CN=78 Runoff=13.59 cfs 0.953 af
Reach 5R: ANALYSISPOINT 5	Inflow=2.69 cfs 0.335 af Outflow=2.69 cfs 0.335 af
Reach 6R: AP for SC 6	Inflow=3.99 cfs 0.558 af Outflow=3.99 cfs 0.558 af
Reach 9R: ANALYSISPOINT 9	Inflow=6.75 cfs 0.878 af Outflow=6.75 cfs 0.878 af
Reach 10R: Perkins Road Culvert 24.0" Round Pipe n=0.013	Avg. Flow Depth=0.77' Max Vel=9.01 fps Inflow=10.03 cfs 2.307 af L=25.0' S=0.0200 '/' Capacity=31.99 cfs Outflow=10.03 cfs 2.307 af

pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Reach PT1: Analysis Point 1 at BWD Little River	Inflow=1.92 cfs 0.348 af
•	Outflow=1.92 cfs 0.348 af

Reach PT2: ANALYSISPOINT 2 at BWD reservoir	Inflow=2.92 cfs 0.741 af
	Outflow=2.92 cfs 0.741 af

- **Reach PT6: Stream 9-1**Avg. Flow Depth=0.64' Max Vel=3.81 fps Inflow=15.78 cfs 4.137 af n=0.030 L=483.0' S=0.0145 '/' Capacity=535.88 cfs Outflow=14.92 cfs 4.122 af
- **Reach PT7: ANALYSIS POINT 7 at US**Avg. Flow Depth=0.17' Max Vel=5.08 fps Inflow=0.55 cfs 0.106 af 18.0" Round Pipe n=0.013 L=83.0' S=0.0398 '/' Capacity=20.95 cfs Outflow=0.55 cfs 0.106 af
- **Reach PT8: ANALYSIS POINT 8 at US**Avg. Flow Depth=0.02' Max Vel=2.48 fps Inflow=0.13 cfs 0.018 af 36.0" x 24.0" Box Pipe n=0.011 L=76.0' S=0.0632 '/' Capacity=144.91 cfs Outflow=0.13 cfs 0.018 af
- **Reach PT9: Analysis Pt Stream 9 at** Avg. Flow Depth=0.63' Max Vel=18.00 fps Inflow=19.61 cfs 4.954 af 36.0" Round Pipe n=0.011 L=93.0' S=0.0645 '/' Capacity=200.22 cfs Outflow=19.61 cfs 4.954 af
- **Reach S9-2: Stream 9** Avg. Flow Depth=0.64' Max Vel=4.85 fps Inflow=19.89 cfs 5.015 af n=0.030 L=1,580.0' S=0.0233 '/' Capacity=161.21 cfs Outflow=19.65 cfs 4.967 af
- **Reach S9-3: Stream 9** Avg. Flow Depth=0.65' Max Vel=4.37 fps Inflow=19.65 cfs 4.967 af n=0.030 L=364.0' S=0.0199 '/' Capacity=177.67 cfs Outflow=19.61 cfs 4.954 af

Total Runoff Area = 116.358 ac Runoff Volume = 7.063 af Average Runoff Depth = 0.73" 95.64% Pervious = 111.280 ac 4.36% Impervious = 5.078 ac

pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: SUBCAT 1

Runoff = 1.92 cfs @ 12.89 hrs, Volume= 0.348 af, Depth> 0.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=2.90"

	Α	rea (sf)	CN D	escription		
*	3	03,390			od, HSG C	
	12,768 70 Woods, Good, HSG C					
	3	16,158	70 V	Veighted A	verage	
	3	16,158	1	00.00% Pe	ervious Are	a
	_		0.1			
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	25.6	88	0.0450	0.06		Sheet Flow, a-b
						Woods: Dense underbrush n= 0.800 P2= 2.90"
	3.5	65	0.0150	0.31		Shallow Concentrated Flow, b-c
						Forest w/Heavy Litter Kv= 2.5 fps
	2.0	72	0.0550	0.59		Shallow Concentrated Flow, c-d
		. –				Forest w/Heavy Litter Kv= 2.5 fps
	25.6	470	0.0150	0.31		Shallow Concentrated Flow, d-e
	_0.0		0.0.00	0.0 .		Forest w/Heavy Litter Kv= 2.5 fps
	1.0	203	0.1000	3.41	13.64	Trap/Vee/Rect Channel Flow, e-f
	1.0	200	0.1000	5.41	10.04	Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
						n= 0.100 Earth, dense brush, high stage
						II- 0.100 ⊑aitii, ueiise biusii, iligii stage
	57.7	898	Total			

Summary for Subcatchment 2S: SUBCAT 2

Runoff = 2.92 cfs @ 13.53 hrs, Volume= 0.741 af, Depth> 0.56"

	Area (sf)	CN	Description
*	653,559	70	Woods, Good, HSG C/D
*	38,729	74	>75% Grass cover, Good, HSG C/D
	692,288	70	Weighted Average
	692,288		100.00% Pervious Area

Prepared by Ransom Consulting
HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Pag	ıе	9

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
•	55.7	134	0.0150	0.04	, ,	Sheet Flow, a-b
						Woods: Dense underbrush n= 0.800 P2= 2.90"
	5.8	175	0.0400	0.50		Shallow Concentrated Flow, b-c
						Forest w/Heavy Litter Kv= 2.5 fps
	13.3	199	0.0100	0.25		Shallow Concentrated Flow, c-d
						Forest w/Heavy Litter Kv= 2.5 fps
	1.2	41	0.0490	0.55		Shallow Concentrated Flow, d-e
						Forest w/Heavy Litter Kv= 2.5 fps
	22.1	468	0.0200	0.35		Shallow Concentrated Flow, e-f
						Forest w/Heavy Litter Kv= 2.5 fps
	3.4	516	0.0550	2.53	10.11	Trap/Vee/Rect Channel Flow, f-g
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
						n= 0.100 Earth, dense brush, high stage
	101.5	1,533	Total			

Summary for Subcatchment 3S: SUBCAT 3

Runoff 3.11 cfs @ 12.74 hrs, Volume= 0.495 af, Depth> 0.66"

	Aı	rea (sf)	CN E	Description		
*	2	05,588	74 >	75% Gras	s cover, Go	ood, HSG C/D
		22,290	74 >	75% Gras	s cover, Go	ood, HSG C
_	1	63,239	70 V	Voods, Go	od, HSG C	
	3	91,117	72 V	Veighted A	verage	
	3	91,117	1	00.00% Pe	ervious Are	a
	Tc	Length	Slope	•		Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	19.1	115	0.0400	0.10		Sheet Flow, a-b
						Woods: Light underbrush n= 0.400 P2= 2.90"
	3.4	155	0.0230	0.76		Shallow Concentrated Flow, b-c
		070				Woodland Kv= 5.0 fps
	9.3	372	0.0090	0.66		Shallow Concentrated Flow, c-d
	0.0	404	0.0400	0.00		Short Grass Pasture Kv= 7.0 fps
	2.3	134	0.0190	0.96		Shallow Concentrated Flow, d-e
	12.6	254	0.0180	0.24		Short Grass Pasture Kv= 7.0 fps
	12.0	254	0.0100	0.34		Shallow Concentrated Flow, e-f Forest w/Heavy Litter Kv= 2.5 fps
	2.0	305	0.0560	2.55	10.21	Trap/Vee/Rect Channel Flow, f-g
	2.0	303	0.0300	2.55	10.21	Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
						n= 0.100 Earth, dense brush, high stage
_	48.7	1.335	Total			ooo Latti, donoo bidon, mgn olago

pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Summary for Subcatchment 4S: SUBCAT 4

Runoff = 2.58 cfs @ 12.48 hrs, Volume= 0.326 af, Depth> 0.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=2.90"

_	Α	rea (sf)	CN E	Description		
*	1	30,853	74 >	75% Gras	s cover, Go	ood, HSG C/D
		26,033				ood, HSG C
		40,857	70 V	Voods, Go	od, HSG C	
*		56,948	70 V	Voods, Go	od, HSG C	/D
	2	254,691 72 Weighted Average				
		54,691		•	ervious Are	a
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	16.9	135	0.0270	0.13		Sheet Flow, a-b
						Grass: Dense n= 0.240 P2= 2.90"
	7.8	462	0.0200	0.99		Shallow Concentrated Flow, b-c
						Short Grass Pasture Kv= 7.0 fps
	2.2	184	0.0380	1.36		Shallow Concentrated Flow, c-d
						Short Grass Pasture Kv= 7.0 fps
	3.3	389	0.0330	1.96	7.83	Trap/Vee/Rect Channel Flow, d-e
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
_						n= 0.100 Earth, dense brush, high stage
	30.2	1,170	Total			

Summary for Subcatchment 5S: SUBCAT 5

Runoff = 2.69 cfs @ 12.49 hrs, Volume= 0.335 af, Depth> 0.76"

	Area (sf)	CN	Description
*	156,287	74	>75% Grass cover, Good, HSG C/D
	74,991	74	>75% Grass cover, Good, HSG C
	231,278	74	Weighted Average
	231,278		100.00% Pervious Area

Prepared by Ransom Consulting
HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 11

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
 23.0	198	0.0270	0.14		Sheet Flow, a-b
					Grass: Dense n= 0.240 P2= 2.90"
2.9	146	0.0140	0.83		Shallow Concentrated Flow, b-c
					Short Grass Pasture Kv= 7.0 fps
3.8	285	0.0320	1.25		Shallow Concentrated Flow, c-d
					Short Grass Pasture Kv= 7.0 fps
1.6	210	0.0430	2.24	8.94	Trap/Vee/Rect Channel Flow, d-e
					Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
					n= 0.100 Earth, dense brush, high stage
31.3	839	Total			

Summary for Subcatchment 6S: SUBCAT 6

3.99 cfs @ 12.62 hrs, Volume= Runoff 0.558 af, Depth> 0.85"

	Aı	rea (sf)	CN	Description		
*	1	42,888	70	Woods, Go	od, HSG C	/D
		10,372	70	Woods, Go	od, HSG C	
*		61,952				ood, HSG C/D
		635				ood, HSG C
		51,989			s cover, Go	ood, HSG D
*		7,818		Gravel		
*		34,971		Impervious		
_		32,024		Woods, Go		
		42,649		Weighted A	•	
		07,678		89.79% Per		
		34,971		10.21% lmp	ervious Ar	ea
	Тс	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft	•	(cfs)	Description
_	32.0	67	0.0150	, , , , , , , , , , , , , , , , , , , ,	(010)	Sheet Flow, a-b
	02.0	01	0.0100	0.00		Woods: Dense underbrush n= 0.800 P2= 2.90"
	5.2	92	0.0140	0.30		Shallow Concentrated Flow, b-c
	0			0.00		Forest w/Heavy Litter Kv= 2.5 fps
	1.8	74	0.0100	0.70		Shallow Concentrated Flow, c-d
						Short Grass Pasture Kv= 7.0 fps
	1.7	163	0.0550	1.64		Shallow Concentrated Flow, d-e
						Short Grass Pasture Kv= 7.0 fps
	8.0	39	0.1000	0.79		Shallow Concentrated Flow, e-f
						Forest w/Heavy Litter Kv= 2.5 fps
	0.1	10	0.5000	1.77		Shallow Concentrated Flow, f-g
_						Forest w/Heavy Litter Kv= 2.5 fps
	41.6	445	Total			

pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Summary for Subcatchment 7S: SUBCAT 7

Runoff = 0.55 cfs @ 12.99 hrs, Volume= 0.106 af, Depth> 0.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=2.90"

	Α	rea (sf)	CN E	escription			
*		93,505	70 V	Voods, Go	od, HSG C	/D	
*	2,878 74 >75% Grass cover, Good, HSG C/D						
		96,383	70 V	Veighted A	verage		
		96,383	1	00.00% P	ervious Are	a	
	т.	1 41-	Olama	\/a a=!h.	0	Description	
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	54.6	172	0.0260	0.05		Sheet Flow, a-b	
						Woods: Dense underbrush n= 0.800 P2= 2.90"	
	2.8	112	0.0700	0.66		Shallow Concentrated Flow, b-c	
						Forest w/Heavy Litter Kv= 2.5 fps	
	0.2	13	0.2300	1.20		Shallow Concentrated Flow, c-d	
						Forest w/Heavy Litter Kv= 2.5 fps	
	6.6	171	0.0300	0.43		Shallow Concentrated Flow, d-e	
						Forest w/Heavy Litter Kv= 2.5 fps	
	0.5	73	0.0600	2.64	10.56	Trap/Vee/Rect Channel Flow, e-f	
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'	
_						n= 0.100 Earth, dense brush, high stage	
	64.7	541	Total				

Summary for Subcatchment 8S: SUBCAT 8

Runoff = 0.13 cfs @ 12.55 hrs, Volume= 0.018 af, Depth> 0.62"

	Area (sf)	CN	Description
*	12,652	70	Woods, Good, HSG C/D
*	2,324	74	>75% Grass cover, Good, HSG C/D
	14,976	71	Weighted Average
	14,976		100.00% Pervious Area

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 13

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
 32.0	67	0.0150	0.03		Sheet Flow, a-b
1.1	43	0.0700	0.66		Woods: Dense underbrush n= 0.800 P2= 2.90" Shallow Concentrated Flow, b-c
	-10	0.0700	0.00		Forest w/Heavy Litter Kv= 2.5 fps
0.1	14	0.7100	2.11		Shallow Concentrated Flow, c-d
1.5	152	0.0240	1.67	6.68	Forest w/Heavy Litter Kv= 2.5 fps Trap/Vee/Rect Channel Flow, d-e
1.5	132	0.0240	1.01	0.00	Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
					n= 0.100
34.7	276	Total			

Summary for Subcatchment 9S: OFFSITE 1 (Below Perkins Rd)

Runoff = 6.75 cfs @ 12.53 hrs, Volume= 0.878 af, Depth> 0.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=2.90"

	Aı	rea (sf)	CN I	Description		
*		25,513	98 I	mpervious		
*	5	32,320	74	>75% Gras	s cover, Go	ood, HSG C/D
*		3,818	94 (Gravel road	ls, HSG C/I	D
_		8,857	74 >	<u>>75% Gras</u>	s cover, Go	ood, HSG C
570,508 75 Weighted Average						
544,995 95.53% Pervious Area						
		25,513	4	a		
	Tc	Length	Slope	•	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.1	15	0.2000	2.25		Sheet Flow, a-b
						Smooth surfaces n= 0.011 P2= 2.90"
	12.6	373	0.0050	0.49		Shallow Concentrated Flow, b-c
						Short Grass Pasture Kv= 7.0 fps
	13.1	715	0.0170	0.91		Shallow Concentrated Flow, c-d
						Short Grass Pasture Kv= 7.0 fps
	9.3	250	0.0320	0.45		Shallow Concentrated Flow, d-e
_						Forest w/Heavy Litter Kv= 2.5 fps
	35.1	1,353	Total			

Summary for Subcatchment 10S: OFFSITE 2 (above Perkins Rd)

Runoff = 10.03 cfs @ 13.35 hrs, Volume= 2.307 af, Depth> 0.73"

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 14

_	Α	rea (sf)	CN D	escription		
*	2	98,066	70 V	Voods, Go	od, HSG C	/D
*		42,276	98 Ir	npervious		
*	1,3	04,640	74 >	75% Gras	s cover, Go	ood, HSG C/D
	1,6	44,982	74 V	Veighted A	verage	
	1,6	02,706	9	7.43% Pei	vious Area	
		42,276	2	.57% Impe	ervious Are	a
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	45.2	141	0.0280	0.05		Sheet Flow, a-b
						Woods: Dense underbrush n= 0.800 P2= 2.90"
	15.3	384	0.0280	0.42		Shallow Concentrated Flow, b-c
						Forest w/Heavy Litter Kv= 2.5 fps
	2.5	227	0.0480	1.53		Shallow Concentrated Flow, c-d
						Short Grass Pasture Kv= 7.0 fps
	18.6	780	0.0100	0.70		Shallow Concentrated Flow, d-e
						Short Grass Pasture Kv= 7.0 fps
	12.6	689	0.0170	0.91		Shallow Concentrated Flow, e-f
_						Short Grass Pasture Kv= 7.0 fps
	94.2	2,221	Total			

Summary for Subcatchment 11S: OFFSITE 3 (Matthew Brothers Lot)

Runoff = 13.59 cfs @ 12.11 hrs, Volume= 0.953 af, Depth> 0.97"

	Α	rea (sf)	CN D	Description					
*	1	18,437	98 Ir	mpervious					
*	2	37,621	70 V	Voods, Go	od, HSG C	/D			
*	1	57,469	· · · · · · · · · · · · · · · · · · ·						
	5	13,527	78 V	Veighted A	verage				
	3	95,090	7	6.94% Pei	vious Area				
	1	18,437	2	3.06% Imp	pervious Ar	ea			
	·								
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.1	16	0.1870	2.22		Sheet Flow, a-b			
						Smooth surfaces n= 0.011 P2= 2.90"			
	4.7	419	0.0100	1.50		Shallow Concentrated Flow, b-c			
						Grassed Waterway Kv= 15.0 fps			
	2.0	97	0.1000	0.79		Shallow Concentrated Flow, c-d			
_						Forest w/Heavy Litter Kv= 2.5 fps			
	6.8	532	Total						

pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Summary for Reach 5R: ANALYSIS POINT 5

Inflow Area = 5.309 ac, 0.00% Impervious, Inflow Depth > 0.76" for 2-year event

Inflow = 2.69 cfs @ 12.49 hrs, Volume= 0.335 af

Outflow = 2.69 cfs @ 12.49 hrs, Volume= 0.335 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 6R: AP for SC 6

Inflow Area = 7.866 ac, 10.21% Impervious, Inflow Depth > 0.85" for 2-year event

Inflow = 3.99 cfs @ 12.62 hrs, Volume= 0.558 af

Outflow = 3.99 cfs @ 12.62 hrs, Volume= 0.558 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 9R: ANALYSIS POINT 9

Inflow Area = 13.097 ac, 4.47% Impervious, Inflow Depth > 0.80" for 2-year event

Inflow = 6.75 cfs @ 12.53 hrs, Volume= 0.878 af

Outflow = 6.75 cfs @ 12.53 hrs, Volume= 0.878 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 10R: Perkins Road Culvert

Inflow Area = 37.764 ac, 2.57% Impervious, Inflow Depth > 0.73" for 2-year event

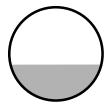
Inflow = 10.03 cfs @ 13.35 hrs, Volume= 2.307 af

Outflow = 10.03 cfs @ 13.36 hrs, Volume= 2.307 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method. Time Span= 5.00-20.00 hrs. dt= 0.05 hrs / 2

Max. Velocity= 9.01 fps, Min. Travel Time= 0.0 min Avg. Velocity = 5.80 fps, Avg. Travel Time= 0.1 min

Peak Storage= 28 cf @ 13.35 hrs Average Depth at Peak Storage= 0.77'


Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 31.99 cfs

24.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior

Length= 25.0' Slope= 0.0200 '/'

Inlet Invert= 75.50', Outlet Invert= 75.00'

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 16

Summary for Reach 11R: At Stream 9

Inflow Area = 11.789 ac, 23.06% Impervious, Inflow Depth > 0.97" for 2-year event

Inflow = 13.59 cfs @ 12.11 hrs, Volume= 0.953 af

Outflow = 13.59 cfs @ 12.11 hrs, Volume= 0.953 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT1: Analysis Point 1 at BWD Little River

Inflow Area = 7.258 ac, 0.00% Impervious, Inflow Depth > 0.58" for 2-year event

Inflow = 1.92 cfs @ 12.89 hrs, Volume= 0.348 af

Outflow = 1.92 cfs @ 12.89 hrs, Volume= 0.348 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT2: ANALYSIS POINT 2 at BWD reservoir

Inflow Area = 15.893 ac, 0.00% Impervious, Inflow Depth > 0.56" for 2-year event

Inflow = 2.92 cfs @ 13.53 hrs, Volume= 0.741 af

Outflow = 2.92 cfs @ 13.53 hrs, Volume= 0.741 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT3: ANALYSIS POINT 3 at BWD reservoir

Inflow Area = 8.979 ac, 0.00% Impervious, Inflow Depth > 0.66" for 2-year event

Inflow = 3.11 cfs @ 12.74 hrs, Volume= 0.495 af

Outflow = 3.11 cfs @ 12.74 hrs, Volume= 0.495 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT4: ANALYSIS POINT 4 at BWD reservoir

Inflow Area = 5.847 ac, 0.00% Impervious, Inflow Depth > 0.67" for 2-year event

Inflow = 2.58 cfs @ 12.48 hrs, Volume= 0.326 af

Outflow = 2.58 cfs @ 12.48 hrs, Volume= 0.326 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT5: all points at BWD Reservoir

Inflow Area = 30.718 ac, 0.00% Impervious, Inflow Depth > 0.61" for 2-year event

Inflow = 6.18 cfs @ 12.74 hrs, Volume= 1.561 af

Outflow = 6.18 cfs @ 12.74 hrs, Volume= 1.561 af, Atten= 0%, Lag= 0.0 min

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 17

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT6: Stream 9-1

Inflow Area = 62.650 ac, 6.82% Impervious, Inflow Depth > 0.79" for 2-year event

Inflow 15.78 cfs @ 12.12 hrs, Volume= 4.137 af

14.92 cfs @ 12.19 hrs, Volume= Outflow 4.122 af, Atten= 5%, Lag= 4.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.81 fps, Min. Travel Time= 2.1 min Avg. Velocity = 2.35 fps, Avg. Travel Time= 3.4 min

Peak Storage= 1,935 cf @ 12.15 hrs Average Depth at Peak Storage= 0.64'

Bank-Full Depth= 4.00' Flow Area= 52.0 sf, Capacity= 535.88 cfs

5.00' x 4.00' deep channel, n= 0.030 Stream, clean & straight

Side Slope Z-value= 2.0 '/' Top Width= 21.00'

Length= 483.0' Slope= 0.0145 '/'

Inlet Invert= 71.00', Outlet Invert= 64.00'

Summary for Reach PT7: ANALYSIS POINT 7 at US Rte 1 culvert

Inflow Area = 2.213 ac, 0.00% Impervious, Inflow Depth > 0.57" for 2-year event

0.55 cfs @ 12.99 hrs. Volume= Inflow 0.106 af

Outflow 0.55 cfs @ 13.00 hrs, Volume= 0.106 af, Atten= 0%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.08 fps, Min. Travel Time= 0.3 min

Avg. Velocity = 3.22 fps, Avg. Travel Time= 0.4 min

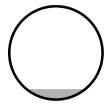
Peak Storage= 9 cf @ 12.99 hrs

Average Depth at Peak Storage= 0.17'

Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 20.95 cfs

18.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior


Length= 83.0' Slope= 0.0398 '/'

Inlet Invert= 21.60', Outlet Invert= 18.30'

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 18

Summary for Reach PT8: ANALYSIS POINT 8 at US Rte 1 culvert

Inflow Area = 0.344 ac, 0.00% Impervious, Inflow Depth > 0.62" for 2-year event

Inflow = 0.13 cfs @ 12.55 hrs, Volume= 0.018 af

Outflow = 0.13 cfs @ 12.57 hrs, Volume= 0.018 af, Atten= 0%, Lag= 1.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 2.48 fps, Min. Travel Time= 0.5 min Avg. Velocity = 2.48 fps, Avg. Travel Time= 0.5 min

Peak Storage= 4 cf @ 12.56 hrs Average Depth at Peak Storage= 0.02'

Bank-Full Depth= 2.00' Flow Area= 6.0 sf, Capacity= 144.91 cfs

36.0" W x 24.0" H Box Pipe n= 0.011 Concrete pipe, straight & clean Length= 76.0' Slope= 0.0632 '/' Inlet Invert= 23.40', Outlet Invert= 18.60'

Summary for Reach PT9: Analysis Pt Stream 9 at US Rte 1 Culvert

Inflow Area = 75.825 ac, 6.70% Impervious, Inflow Depth > 0.78" for 2-year event

Inflow = 19.61 cfs @ 12.73 hrs, Volume= 4.954 af

Outflow = 19.61 cfs @ 12.73 hrs, Volume= 4.954 af, Atten= 0%, Lag= 0.2 min

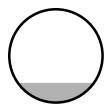
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 18.00 fps, Min. Travel Time= 0.1 min Avg. Velocity = 11.40 fps, Avg. Travel Time= 0.1 min

Peak Storage= 101 cf @ 12.73 hrs Average Depth at Peak Storage= 0.63'

Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 200.22 cfs

NAF Pre Development Type III 24-hr 2-year Rainfall=2.90" Printed 4/21/2019


pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 19

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 93.0' Slope= 0.0645 '/' Inlet Invert= 20.00', Outlet Invert= 14.00'

Summary for Reach S9-2: Stream 9

Inflow Area = 75.825 ac, 6.70% Impervious, Inflow Depth > 0.79" for 2-year event

Inflow = 19.89 cfs @ 12.53 hrs, Volume= 5.015 af

Outflow = 19.65 cfs @ 12.69 hrs, Volume= 4.967 af, Atten= 1%, Lag= 9.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.85 fps, Min. Travel Time= 5.4 min

Avg. Velocity = 2.88 fps, Avg. Travel Time= 9.1 min

Peak Storage= 6,408 cf @ 12.60 hrs Average Depth at Peak Storage= 0.64'

Bank-Full Depth= 2.00' Flow Area= 18.0 sf, Capacity= 161.21 cfs

5.00' x 2.00' deep channel, n= 0.030 Stream, clean & straight

Side Slope Z-value= 2.0 '/' Top Width= 13.00'

Length= 1,580.0' Slope= 0.0233 '/' Inlet Invert= 64.00', Outlet Invert= 27.25'

Summary for Reach S9-3: Stream 9

Inflow Area = 75.825 ac, 6.70% Impervious, Inflow Depth > 0.79" for 2-year event

Inflow = 19.65 cfs @ 12.69 hrs, Volume= 4.967 af

Outflow = 19.61 cfs @ 12.73 hrs, Volume= 4.954 af, Atten= 0%, Lag= 2.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity = 4.37 fps, Min. Travel Time = 1.4 min Avg. Velocity = 2.65 fps, Avg. Travel Time = 2.3 min

NAF Pre Development
Type III 24-hr 2-year Rainfall=2.90"
Printed 4/21/2019
LC Page 20

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Peak Storage= 1,638 cf @ 12.71 hrs Average Depth at Peak Storage= 0.65' Bank-Full Depth= 2.00' Flow Area= 22.0 sf, Capacity= 177.67 cfs

5.00' x 2.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 2.0 4.0 '/' Top Width= 17.00' Length= 364.0' Slope= 0.0199 '/' Inlet Invert= 27.25', Outlet Invert= 20.00'

NAF Pre Development Type III 24-hr 10-year Rainfall=4.20" Printed 4/21/2019

pre conditions

Reach 11R: At Stream 9

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 21

Inflow=27.08 cfs 1.865 af Outflow=27.08 cfs 1.865 af

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

3 ,	3 ,
Subcatchment1S: SUBCAT1	Runoff Area=316,158 sf 0.00% Impervious Runoff Depth>1.31" Flow Length=898' Tc=57.7 min CN=70 Runoff=4.77 cfs 0.792 af
Subcatchment2S: SUBCAT2	Runoff Area=692,288 sf 0.00% Impervious Runoff Depth>1.28" Flow Length=1,533' Tc=101.5 min CN=70 Runoff=7.25 cfs 1.695 af
Subcatchment3S: SUBCAT3	Runoff Area=391,117 sf 0.00% Impervious Runoff Depth>1.44" Flow Length=1,335' Tc=48.7 min CN=72 Runoff=7.24 cfs 1.081 af
Subcatchment4S: SUBCAT4	Runoff Area=254,691 sf 0.00% Impervious Runoff Depth>1.46" Flow Length=1,170' Tc=30.2 min CN=72 Runoff=6.00 cfs 0.710 af
Subcatchment5S: SUBCAT5	Runoff Area=231,278 sf 0.00% Impervious Runoff Depth>1.59" Flow Length=839' Tc=31.3 min CN=74 Runoff=5.90 cfs 0.704 af
Subcatchment6S: SUBCAT6	Runoff Area=342,649 sf 10.21% Impervious Runoff Depth>1.73" Flow Length=445' Tc=41.6 min CN=76 Runoff=8.32 cfs 1.132 af
Subcatchment7S: SUBCAT7	Runoff Area=96,383 sf 0.00% Impervious Runoff Depth>1.30" Flow Length=541' Tc=64.7 min CN=70 Runoff=1.36 cfs 0.241 af
Subcatchment8S: SUBCAT8	Runoff Area=14,976 sf 0.00% Impervious Runoff Depth>1.39" Flow Length=276' Tc=34.7 min CN=71 Runoff=0.31 cfs 0.040 af
Subcatchment9S: OFFSITE1 (Below	Runoff Area=570,508 sf 4.47% Impervious Runoff Depth>1.66" Flow Length=1,353' Tc=35.1 min CN=75 Runoff=14.44 cfs 1.811 af
Subcatchment10S: OFFSITE 2 (above	Runoff Area=1,644,982 sf 2.57% Impervious Runoff Depth>1.55" Flow Length=2,221' Tc=94.2 min CN=74 Runoff=22.26 cfs 4.868 af
Subcatchment11S: OFFSITE 3 (Matth	Runoff Area=513,527 sf 23.06% Impervious Runoff Depth>1.90" Flow Length=532' Tc=6.8 min CN=78 Runoff=27.08 cfs 1.865 af
Reach 5R: ANALYSISPOINT 5	Inflow=5.90 cfs 0.704 af Outflow=5.90 cfs 0.704 af
Reach 6R: AP for SC 6	Inflow=8.32 cfs 1.132 af Outflow=8.32 cfs 1.132 af
Reach 9R: ANALYSISPOINT 9	Inflow=14.44 cfs 1.811 af Outflow=14.44 cfs 1.811 af
Reach 10R: Perkins Road Culvert 24.0" Round Pipe n=0.013	Avg. Flow Depth=1.23' Max Vel=11.00 fps Inflow=22.26 cfs 4.868 af L=25.0' S=0.0200 '/' Capacity=31.99 cfs Outflow=22.25 cfs 4.868 af

NAF Pre Development Type III 24-hr 10-year Rainfall=4.20" Printed 4/21/2019

Outflow=14.99 cfs 3.485 af

pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 22

Reach PT1: Analysis Point 1 at BWD Little River	Inflow=4.77 cfs 0.792 af
	Outflow=4.77 cfs 0.792 af
Reach PT2: ANALYSISPOINT 2 at BWD reservoir	Inflow=7.25 cfs 1.695 af
	Outflow=7.25 cfs 1.695 af
Reach PT3: ANALYSISPOINT 3 at BWD reservoir	Inflow=7.24 cfs 1.081 af
	Outflow=7.24 cfs 1.081 af
Reach PT4: ANALYSISPOINT 4 at BWD reservoir	Inflow=6.00 cfs 0.710 af
	Outflow=6.00 cfs 0.710 af
Reach PT5: all points at BWD Reservoir	Inflow=14.99 cfs 3.485 af

Reach PT6: Stream 9-1Avg. Flow Depth=0.99' Max Vel=4.84 fps Inflow=34.26 cfs 8.544 af n=0.030 L=483.0' S=0.0145 '/' Capacity=535.88 cfs Outflow=32.89 cfs 8.523 af

Reach PT7: ANALYSIS POINT 7 at USAvg. Flow Depth=0.26' Max Vel=6.67 fps Inflow=1.36 cfs 0.241 af 18.0" Round Pipe n=0.013 L=83.0' S=0.0398 '/' Capacity=20.95 cfs Outflow=1.36 cfs 0.240 af

Reach PT8: ANALYSIS POINT 8 at USAvg. Flow Depth=0.03' Max Vel=3.45 fps Inflow=0.31 cfs 0.040 af 36.0" x 24.0" Box Pipe n=0.011 L=76.0' S=0.0632 '/' Capacity=144.91 cfs Outflow=0.31 cfs 0.040 af

Reach PT9: Analysis Pt Stream 9 at Avg. Flow Depth=0.94' Max Vel=22.55 fps Inflow=42.91 cfs 10.273 af 36.0" Round Pipe n=0.011 L=93.0' S=0.0645 '/' Capacity=200.22 cfs Outflow=42.90 cfs 10.272 af

Reach S9-2: Stream 9 Avg. Flow Depth=1.00' Max Vel=6.17 fps Inflow=43.38 cfs 10.359 af n=0.030 L=1,580.0' S=0.0233 '/' Capacity=161.21 cfs Outflow=42.98 cfs 10.290 af

Reach S9-3: Stream 9 Avg. Flow Depth=0.98' Max Vel=5.49 fps Inflow=42.98 cfs 10.290 af n=0.030 L=364.0' S=0.0199 '/' Capacity=177.67 cfs Outflow=42.91 cfs 10.273 af

Total Runoff Area = 116.358 ac Runoff Volume = 14.938 af Average Runoff Depth = 1.54" 95.64% Pervious = 111.280 ac 4.36% Impervious = 5.078 ac

pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: SUBCAT 1

Runoff = 4.77 cfs @ 12.83 hrs, Volume= 0.792 af, Depth> 1.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.20"

	A	rea (sf)	CN D	escription		
*		03,390			od, HSG C	
		12,768			od, HSG C	
		16,158		Veighted A	•	
	3	16,158	1	00.00% P	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
	25.6	88	0.0450	0.06	(013)	Chast Flow a h
	25.0	00	0.0430	0.06		Sheet Flow, a-b
	2.5	G.E.	0.0450	0.24		Woods: Dense underbrush n= 0.800 P2= 2.90"
	3.5	65	0.0150	0.31		Shallow Concentrated Flow, b-c
	0.0	70	0.0550	0.50		Forest w/Heavy Litter Kv= 2.5 fps
	2.0	72	0.0550	0.59		Shallow Concentrated Flow, c-d
						Forest w/Heavy Litter Kv= 2.5 fps
	25.6	470	0.0150	0.31		Shallow Concentrated Flow, d-e
						Forest w/Heavy Litter Kv= 2.5 fps
	1.0	203	0.1000	3.41	13.64	Trap/Vee/Rect Channel Flow, e-f
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
						n= 0.100 Earth, dense brush, high stage
	57.7	898	Total	·		

Summary for Subcatchment 2S: SUBCAT 2

Runoff = 7.25 cfs @ 13.43 hrs, Volume= 1.695 af, Depth> 1.28"

	Area (sf)	CN	Description			
*	653,559	70	Woods, Good, HSG C/D			
*	38,729	74	>75% Grass cover, Good, HSG C/D			
	692,288	70	Weighted Average			
	692,288		100.00% Pervious Area			

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 24

	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	55.7	134	0.0150	0.04		Sheet Flow, a-b
						Woods: Dense underbrush n= 0.800 P2= 2.90"
	5.8	175	0.0400	0.50		Shallow Concentrated Flow, b-c
						Forest w/Heavy Litter Kv= 2.5 fps
	13.3	199	0.0100	0.25		Shallow Concentrated Flow, c-d
						Forest w/Heavy Litter Kv= 2.5 fps
	1.2	41	0.0490	0.55		Shallow Concentrated Flow, d-e
						Forest w/Heavy Litter Kv= 2.5 fps
	22.1	468	0.0200	0.35		Shallow Concentrated Flow, e-f
						Forest w/Heavy Litter Kv= 2.5 fps
	3.4	516	0.0550	2.53	10.11	Trap/Vee/Rect Channel Flow, f-g
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
_						n= 0.100 Earth, dense brush, high stage
	101.5	1,533	Total			

Summary for Subcatchment 3S: SUBCAT 3

Runoff = 7.24 cfs @ 12.70 hrs, Volume= 1.081 af, Depth> 1.44"

	Α	rea (sf)	CN E	Description		
*	2	05,588	74 >	75% Gras	s cover, Go	ood, HSG C/D
		22,290	74 >	75% Gras	s cover, Go	ood, HSG C
	1	63,239	70 V	Voods, Go	od, HSG C	
	3	91,117	72 V	Veighted A	verage	
	3	91,117	1	00.00% Pe	ervious Are	a
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	19.1	115	0.0400	0.10		Sheet Flow, a-b
						Woods: Light underbrush n= 0.400 P2= 2.90"
	3.4	155	0.0230	0.76		Shallow Concentrated Flow, b-c
						Woodland Kv= 5.0 fps
	9.3	372	0.0090	0.66		Shallow Concentrated Flow, c-d
						Short Grass Pasture Kv= 7.0 fps
	2.3	134	0.0190	0.96		Shallow Concentrated Flow, d-e
	40.0	054	0.0400	0.04		Short Grass Pasture Kv= 7.0 fps
	12.6	254	0.0180	0.34		Shallow Concentrated Flow, e-f
	0.0	205	0.0500	0.55	40.04	Forest w/Heavy Litter Kv= 2.5 fps
	2.0	305	0.0560	2.55	10.21	Trap/Vee/Rect Channel Flow, f-g
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
_	40.7	4.005	T - 4 - 1			n= 0.100 Earth, dense brush, high stage
	48.7	1,335	Total			

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 25

Summary for Subcatchment 4S: SUBCAT 4

Runoff = 6.00 cfs @ 12.45 hrs, Volume= 0.710 af, Depth> 1.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.20"

	Α	rea (sf)	CN E	Description					
*	1	30,853	74 >	75% Gras	s cover, Go	ood, HSG C/D			
		26,033	74 >	75% Gras	s cover, Go	ood, HSG C			
		40,857	70 V	Voods, Go	od, HSG C				
*		56,948	70 V	Voods, Go	od, HSG C	/D			
	2	54,691	72 V	Veighted A	verage				
	2	54,691	1	100.00% Pervious Area					
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	16.9	135	0.0270	0.13		Sheet Flow, a-b			
						Grass: Dense n= 0.240 P2= 2.90"			
	7.8	462	0.0200	0.99		Shallow Concentrated Flow, b-c			
						Short Grass Pasture Kv= 7.0 fps			
	2.2	184	0.0380	1.36		Shallow Concentrated Flow, c-d			
						Short Grass Pasture Kv= 7.0 fps			
	3.3	389	0.0330	1.96	7.83				
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'			
_						n= 0.100 Earth, dense brush, high stage			
	30.2	1,170	Total						

Summary for Subcatchment 5S: SUBCAT 5

Runoff = 5.90 cfs @ 12.46 hrs, Volume= 0.704 af, Depth> 1.59"

	Area (sf)	CN	Description
*	156,287	74	>75% Grass cover, Good, HSG C/D
	74,991	74	>75% Grass cover, Good, HSG C
	231,278	74	Weighted Average
	231,278		100.00% Pervious Area

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Pa	g	е	2	6

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
23.0	198	0.0270	0.14		Sheet Flow, a-b
					Grass: Dense n= 0.240 P2= 2.90"
2.9	146	0.0140	0.83		Shallow Concentrated Flow, b-c
					Short Grass Pasture Kv= 7.0 fps
3.8	285	0.0320	1.25		Shallow Concentrated Flow, c-d
					Short Grass Pasture Kv= 7.0 fps
1.6	210	0.0430	2.24	8.94	Trap/Vee/Rect Channel Flow, d-e
					Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
					n= 0.100 Earth, dense brush, high stage
 31.3	839	Total		·	

Summary for Subcatchment 6S: SUBCAT 6

8.32 cfs @ 12.59 hrs, Volume= Runoff 1.132 af, Depth> 1.73"

	Aı	rea (sf)	CN	Description			
*	1	42,888	70	Woods, Go	od, HSG C	/D	
		10,372	70	Woods, Good, HSG C			
*		61,952	74	>75% Gras	s cover, Go	ood, HSG C/D	
		635				ood, HSG C	
		51,989		>75% Gras	s cover, Go	ood, HSG D	
*		7,818		Gravel			
*		34,971		Impervious			
_		32,024	77	Woods, Go	od, HSG D		
		42,649		Weighted A			
		07,678		89.79% Per			
		34,971		10.21% Imp	ervious Ar	rea	
	_				_		
	Tc	Length	Slope	•	Capacity	Description	
_	(min)	(feet)	(ft/ft)		(cfs)		
	32.0	67	0.0150	0.03		Sheet Flow, a-b	
						Woods: Dense underbrush n= 0.800 P2= 2.90"	
	5.2	92	0.0140	0.30		Shallow Concentrated Flow, b-c	
	4.0		0.0400			Forest w/Heavy Litter Kv= 2.5 fps	
	1.8	74	0.0100	0.70		Shallow Concentrated Flow, c-d	
	4 7	400	0.0550			Short Grass Pasture Kv= 7.0 fps	
	1.7	163	0.0550	1.64		Shallow Concentrated Flow, d-e	
	0.0	20	0.4000	0.70		Short Grass Pasture Kv= 7.0 fps	
	8.0	39	0.1000	0.79		Shallow Concentrated Flow, e-f	
	0.1	10	0.5000	177		Forest w/Heavy Litter Kv= 2.5 fps	
	0.1	10	0.5000) 1.77		Shallow Concentrated Flow, f-g Forest w/Heavy Litter Kv= 2.5 fps	
_	44.0	445	Total			1 Olest Willeavy Littel RV- 2.3 Ips	
	41.6	445	Total				

pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Summary for Subcatchment 7S: SUBCAT 7

Runoff = 1.36 cfs @ 12.92 hrs, Volume= 0.241 af, Depth> 1.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.20"

	Α	rea (sf)	CN D	escription			
*		93,505		Woods, Good, HSG C/D			
*		2,878	74 >	75% Gras	s cover, Go	ood, HSG C/D	
		96,383	70 V	Veighted A	verage		
		96,383	1	00.00% Pe	ervious Are	a	
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	54.6	172	0.0260	0.05		Sheet Flow, a-b	
						Woods: Dense underbrush n= 0.800 P2= 2.90"	
	2.8	112	0.0700	0.66		Shallow Concentrated Flow, b-c	
						Forest w/Heavy Litter Kv= 2.5 fps	
	0.2	13	0.2300	1.20		Shallow Concentrated Flow, c-d	
						Forest w/Heavy Litter Kv= 2.5 fps	
	6.6	171	0.0300	0.43		Shallow Concentrated Flow, d-e	
						Forest w/Heavy Litter Kv= 2.5 fps	
	0.5	73	0.0600	2.64	10.56	Trap/Vee/Rect Channel Flow, e-f	
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'	
						n= 0.100 Earth, dense brush, high stage	
	64.7	541	Total				

Summary for Subcatchment 8S: SUBCAT 8

Runoff = 0.31 cfs @ 12.52 hrs, Volume= 0.040 af, Depth> 1.39"

	Area (sf)	CN	Description			
*	12,652	70	Woods, Good, HSG C/D			
*	2,324	74	>75% Grass cover, Good, HSG C/D			
	14,976	71	Weighted Average			
	14,976		100.00% Pervious Area			

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Pa	age	28

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	32.0	67	0.0150	0.03		Sheet Flow, a-b
						Woods: Dense underbrush n= 0.800 P2= 2.90"
	1.1	43	0.0700	0.66		Shallow Concentrated Flow, b-c
						Forest w/Heavy Litter Kv= 2.5 fps
	0.1	14	0.7100	2.11		Shallow Concentrated Flow, c-d
						Forest w/Heavy Litter Kv= 2.5 fps
	1.5	152	0.0240	1.67	6.68	Trap/Vee/Rect Channel Flow, d-e
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
_						n= 0.100
	34.7	276	Total			

Summary for Subcatchment 9S: OFFSITE 1 (Below Perkins Rd)

Runoff = 14.44 cfs @ 12.51 hrs, Volume= 1.811 af, Depth> 1.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=4.20"

_	A	rea (sf)	CN [Description						
*		25,513	98 I	Impervious						
*	5	32,320	74 >	75% Grass cover, Good, HSG C/D						
*		3,818	94 (Gravel roads, HSG C/D						
		8,857	· · · · · · · · · · · · · · · · · · ·							
570,508 75 Weighted Average										
544,995 95.53% Pervious Area										
		25,513	4	1.47% Impe	ervious Are	a				
				•						
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.1	15	0.2000	2.25		Sheet Flow, a-b				
						Smooth surfaces n= 0.011 P2= 2.90"				
	12.6	373	0.0050	0.49		Shallow Concentrated Flow, b-c				
						Short Grass Pasture Kv= 7.0 fps				
	13.1	715	0.0170	0.91		Shallow Concentrated Flow, c-d				
						Short Grass Pasture Kv= 7.0 fps				
	9.3	250	0.0320	0.45		Shallow Concentrated Flow, d-e				
_						Forest w/Heavy Litter Kv= 2.5 fps				
	35.1	1,353	Total							

Summary for Subcatchment 10S: OFFSITE 2 (above Perkins Rd)

Runoff = 22.26 cfs @ 13.30 hrs, Volume= 4.868 af, Depth> 1.55"

Prepared by Ransom Consulting
HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 29

	Α	rea (sf)	CN D	escription					
*	2	98,066	70 V	70 Woods, Good, HSG C/D					
*		42,276	98 Ir	Impervious					
*	1,3	04,640	74 >	· ·					
	1,644,982 74 Weighted Average								
1,602,706 97.43% Pervious Area									
42,276 2.57% Impervious Area						a			
				•					
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	45.2	141	0.0280	0.05		Sheet Flow, a-b			
						Woods: Dense underbrush n= 0.800 P2= 2.90"			
	15.3	384	0.0280	0.42		Shallow Concentrated Flow, b-c			
						Forest w/Heavy Litter Kv= 2.5 fps			
	2.5	227	0.0480	1.53		Shallow Concentrated Flow, c-d			
						Short Grass Pasture Kv= 7.0 fps			
	18.6	780	0.0100	0.70		Shallow Concentrated Flow, d-e			
						Short Grass Pasture Kv= 7.0 fps			
	12.6	689	0.0170	0.91		Shallow Concentrated Flow, e-f			
_						Short Grass Pasture Kv= 7.0 fps			
	94.2	2,221	Total						

Summary for Subcatchment 11S: OFFSITE 3 (Matthew Brothers Lot)

Runoff 27.08 cfs @ 12.10 hrs, Volume= 1.865 af, Depth> 1.90"

	Α	rea (sf)	CN D	escription					
*	1	18,437							
*	237,021 70 Woods, Good, FISG C/D								
*	* 157,469 74 >75% Grass cover, Good, HSG C/D								
513,527 78 Weighted Average									
	3	95,090	7	76.94% Pervious Area					
	1	18,437	2	3.06% Imp	npervious Area				
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.1	16	0.1870	2.22		Sheet Flow, a-b			
						Smooth surfaces n= 0.011 P2= 2.90"			
	4.7	419	0.0100	1.50		Shallow Concentrated Flow, b-c			
						Grassed Waterway Kv= 15.0 fps			
	2.0	97	0.1000	0.79		Shallow Concentrated Flow, c-d			
_						Forest w/Heavy Litter Kv= 2.5 fps			
	6.8	532	Total						

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 30

Summary for Reach 5R: ANALYSIS POINT 5

Inflow Area = 5.309 ac, 0.00% Impervious, Inflow Depth > 1.59" for 10-year event

Inflow = 5.90 cfs @ 12.46 hrs, Volume= 0.704 af

Outflow = 5.90 cfs @ 12.46 hrs, Volume= 0.704 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 6R: AP for SC 6

Inflow Area = 7.866 ac, 10.21% Impervious, Inflow Depth > 1.73" for 10-year event

Inflow = 8.32 cfs @ 12.59 hrs, Volume= 1.132 af

Outflow = 8.32 cfs @ 12.59 hrs, Volume= 1.132 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 9R: ANALYSIS POINT 9

Inflow Area = 13.097 ac, 4.47% Impervious, Inflow Depth > 1.66" for 10-year event

Inflow = 14.44 cfs @ 12.51 hrs, Volume= 1.811 af

Outflow = 14.44 cfs @ 12.51 hrs, Volume= 1.811 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 10R: Perkins Road Culvert

Inflow Area = 37.764 ac, 2.57% Impervious, Inflow Depth > 1.55" for 10-year event

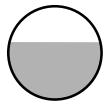
Inflow = 22.26 cfs @ 13.30 hrs, Volume= 4.868 af

Outflow = 22.25 cfs @ 13.30 hrs, Volume= 4.868 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2

Max. Velocity= 11.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 6.58 fps, Avg. Travel Time= 0.1 min

Peak Storage= 51 cf @ 13.30 hrs Average Depth at Peak Storage= 1.23'


Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 31.99 cfs

24.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior

Length= 25.0' Slope= 0.0200 '/'

Inlet Invert= 75.50', Outlet Invert= 75.00'

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 31

Summary for Reach 11R: At Stream 9

Inflow Area = 11.789 ac, 23.06% Impervious, Inflow Depth > 1.90" for 10-year event

Inflow = 27.08 cfs @ 12.10 hrs, Volume= 1.865 af

Outflow = 27.08 cfs @ 12.10 hrs, Volume= 1.865 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT1: Analysis Point 1 at BWD Little River

Inflow Area = 7.258 ac, 0.00% Impervious, Inflow Depth > 1.31" for 10-year event

Inflow = 4.77 cfs @ 12.83 hrs, Volume= 0.792 af

Outflow = 4.77 cfs @ 12.83 hrs, Volume= 0.792 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT2: ANALYSIS POINT 2 at BWD reservoir

Inflow Area = 15.893 ac, 0.00% Impervious, Inflow Depth > 1.28" for 10-year event

Inflow = 7.25 cfs @ 13.43 hrs, Volume= 1.695 af

Outflow = 7.25 cfs @ 13.43 hrs, Volume= 1.695 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT3: ANALYSIS POINT 3 at BWD reservoir

Inflow Area = 8.979 ac, 0.00% Impervious, Inflow Depth > 1.44" for 10-year event

Inflow = 7.24 cfs @ 12.70 hrs, Volume= 1.081 af

Outflow = 7.24 cfs @ 12.70 hrs, Volume= 1.081 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT4: ANALYSIS POINT 4 at BWD reservoir

Inflow Area = 5.847 ac, 0.00% Impervious, Inflow Depth > 1.46" for 10-year event

Inflow = 6.00 cfs @ 12.45 hrs, Volume= 0.710 af

Outflow = 6.00 cfs @ 12.45 hrs, Volume= 0.710 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT5: all points at BWD Reservoir

Inflow Area = 30.718 ac, 0.00% Impervious, Inflow Depth > 1.36" for 10-year event

Inflow = 14.99 cfs @ 12.70 hrs, Volume= 3.485 af

Outflow = 14.99 cfs @ 12.70 hrs, Volume= 3.485 af, Atten= 0%, Lag= 0.0 min

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 32

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT6: Stream 9-1

Inflow Area = 62.650 ac, 6.82% Impervious, Inflow Depth > 1.64" for 10-year event

Inflow = 34.26 cfs @ 12.11 hrs, Volume= 8.544 af

Outflow = 32.89 cfs @ 12.17 hrs, Volume= 8.523 af, Atten= 4%, Lag= 3.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.84 fps, Min. Travel Time= 1.7 min Avg. Velocity = 2.74 fps, Avg. Travel Time= 2.9 min

Peak Storage= 3,327 cf @ 12.14 hrs Average Depth at Peak Storage= 0.99'

Bank-Full Depth= 4.00' Flow Area= 52.0 sf, Capacity= 535.88 cfs

5.00' x 4.00' deep channel, n= 0.030 Stream, clean & straight

Side Slope Z-value= 2.0 '/' Top Width= 21.00'

Length= 483.0' Slope= 0.0145 '/'

Inlet Invert= 71.00', Outlet Invert= 64.00'

Summary for Reach PT7: ANALYSIS POINT 7 at US Rte 1 culvert

Inflow Area = 2.213 ac, 0.00% Impervious, Inflow Depth > 1.30" for 10-year event

Inflow = 1.36 cfs @ 12.92 hrs, Volume= 0.241 af

Outflow = 1.36 cfs @ 12.93 hrs, Volume= 0.240 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity = 6.67 fps, Min. Travel Time = 0.2 min Avg. Velocity = 3.80 fps, Avg. Travel Time = 0.4 min

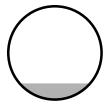
Peak Storage= 17 cf @ 12.92 hrs

Average Depth at Peak Storage= 0.26'

Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 20.95 cfs

18.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior


Length= 83.0' Slope= 0.0398 '/'

Inlet Invert= 21.60', Outlet Invert= 18.30'

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 33

Summary for Reach PT8: ANALYSIS POINT 8 at US Rte 1 culvert

Inflow Area = 0.344 ac, 0.00% Impervious, Inflow Depth > 1.39" for 10-year event

Inflow = 0.31 cfs @ 12.52 hrs, Volume= 0.040 af

Outflow = 0.31 cfs @ 12.53 hrs, Volume= 0.040 af, Atten= 0%, Lag= 0.8 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.45 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.53 fps, Avg. Travel Time= 0.5 min

Peak Storage= 7 cf @ 12.52 hrs Average Depth at Peak Storage= 0.03'

Bank-Full Depth= 2.00' Flow Area= 6.0 sf, Capacity= 144.91 cfs

36.0" W x 24.0" H Box Pipe n= 0.011 Concrete pipe, straight & clean Length= 76.0' Slope= 0.0632 '/' Inlet Invert= 23.40', Outlet Invert= 18.60'

Summary for Reach PT9: Analysis Pt Stream 9 at US Rte 1 Culvert

Inflow Area = 75.825 ac, 6.70% Impervious, Inflow Depth > 1.63" for 10-year event

Inflow = 42.91 cfs @ 12.67 hrs, Volume= 10.273 af

Outflow = 42.90 cfs @ 12.67 hrs, Volume= 10.272 af, Atten= 0%, Lag= 0.1 min

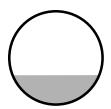
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 22.55 fps, Min. Travel Time= 0.1 min Avg. Velocity = 13.08 fps, Avg. Travel Time= 0.1 min

Peak Storage= 177 cf @ 12.67 hrs Average Depth at Peak Storage= 0.94'

Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 200.22 cfs

NAF Pre Development Type III 24-hr 10-year Rainfall=4.20" Printed 4/21/2019


pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 34

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 93.0' Slope= 0.0645 '/' Inlet Invert= 20.00', Outlet Invert= 14.00'

Summary for Reach S9-2: Stream 9

Inflow Area = 75.825 ac, 6.70% Impervious, Inflow Depth > 1.64" for 10-year event

Inflow = 43.38 cfs @ 12.51 hrs, Volume= 10.359 af

Outflow = 42.98 cfs @ 12.64 hrs, Volume= 10.290 af, Atten= 1%, Lag= 7.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.17 fps, Min. Travel Time= 4.3 min

Avg. Velocity = 3.37 fps, Avg. Travel Time= 7.8 min

Peak Storage= 11,030 cf @ 12.57 hrs Average Depth at Peak Storage= 1.00'

Bank-Full Depth= 2.00' Flow Area= 18.0 sf, Capacity= 161.21 cfs

5.00' x 2.00' deep channel, n= 0.030 Stream, clean & straight

Side Slope Z-value= 2.0 '/' Top Width= 13.00'

Length= 1,580.0' Slope= 0.0233 '/'

Inlet Invert= 64.00', Outlet Invert= 27.25'

Summary for Reach S9-3: Stream 9

Inflow Area = 75.825 ac, 6.70% Impervious, Inflow Depth > 1.63" for 10-year event

Inflow = 42.98 cfs @ 12.64 hrs, Volume= 10.290 af

Outflow = 42.91 cfs @ 12.67 hrs, Volume= 10.273 af, Atten= 0%, Lag= 2.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity = 5.49 fps, Min. Travel Time = 1.1 min Avg. Velocity = 3.08 fps, Avg. Travel Time = 2.0 min

NAF Pre Development Type III 24-hr 10-year Rainfall=4.20" Printed 4/21/2019

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 35

Peak Storage= 2,850 cf @ 12.65 hrs Average Depth at Peak Storage= 0.98' Bank-Full Depth= 2.00' Flow Area= 22.0 sf, Capacity= 177.67 cfs

5.00' x 2.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 2.0 4.0 '/' Top Width= 17.00' Length= 364.0' Slope= 0.0199 '/' Inlet Invert= 27.25', Outlet Invert= 20.00'

NAF Pre Development Type III 24-hr 25-year Rainfall=5.20" Printed 4/21/2019

pre conditions

Reach 11R: At Stream 9

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 36

Inflow=38.24 cfs 2.640 af Outflow=38.24 cfs 2.640 af

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Reach routing by Stor-II	id Trans method - Tond rodding by Stor-ind method
Subcatchment1S: SUBCAT1	Runoff Area=316,158 sf 0.00% Impervious Runoff Depth>1.97" Flow Length=898' Tc=57.7 min CN=70 Runoff=7.33 cfs 1.193 af
Subcatchment2S: SUBCAT2	Runoff Area=692,288 sf 0.00% Impervious Runoff Depth>1.93" Flow Length=1,533' Tc=101.5 min CN=70 Runoff=11.16 cfs 2.559 af
Subcatchment3S: SUBCAT3	Runoff Area=391,117 sf 0.00% Impervious Runoff Depth>2.14" Flow Length=1,335' Tc=48.7 min CN=72 Runoff=10.85 cfs 1.601 af
Subcatchment4S: SUBCAT4	Runoff Area=254,691 sf 0.00% Impervious Runoff Depth>2.16" Flow Length=1,170' Tc=30.2 min CN=72 Runoff=8.98 cfs 1.051 af
Subcatchment5S: SUBCAT5	Runoff Area=231,278 sf 0.00% Impervious Runoff Depth>2.32" Flow Length=839' Tc=31.3 min CN=74 Runoff=8.65 cfs 1.026 af
Subcatchment6S: SUBCAT6	Runoff Area=342,649 sf 10.21% Impervious Runoff Depth>2.48" Flow Length=445' Tc=41.6 min CN=76 Runoff=11.99 cfs 1.626 af
Subcatchment7S: SUBCAT7	Runoff Area=96,383 sf 0.00% Impervious Runoff Depth>1.97" Flow Length=541' Tc=64.7 min CN=70 Runoff=2.09 cfs 0.363 af
Subcatchment8S: SUBCAT8	Runoff Area=14,976 sf 0.00% Impervious Runoff Depth>2.07" Flow Length=276' Tc=34.7 min CN=71 Runoff=0.48 cfs 0.059 af
Subcatchment9S: OFFSITE1 (Below	Runoff Area=570,508 sf 4.47% Impervious Runoff Depth>2.40" Flow Length=1,353' Tc=35.1 min CN=75 Runoff=20.97 cfs 2.620 af
Subcatchment10S: OFFSITE 2 (above	Runoff Area=1,644,982 sf 2.57% Impervious Runoff Depth>2.26" Flow Length=2,221' Tc=94.2 min CN=74 Runoff=32.78 cfs 7.112 af
Subcatchment11S: OFFSITE 3 (Matth	lew Runoff Area=513,527 sf 23.06% Impervious Runoff Depth>2.69" Flow Length=532' Tc=6.8 min CN=78 Runoff=38.24 cfs 2.640 af
Reach 5R: ANALYSISPOINT 5	Inflow=8.65 cfs 1.026 af Outflow=8.65 cfs 1.026 af
Reach 6R: AP for SC 6	Inflow=11.99 cfs 1.626 af Outflow=11.99 cfs 1.626 af
Reach 9R: ANALYSISPOINT 9	Inflow=20.97 cfs 2.620 af Outflow=20.97 cfs 2.620 af
Reach 10R: Perkins Road Culvert	Avg. Flow Depth=1.69' Max Vel=11.61 fps Inflow=32.78 cfs 7.112 af

24.0" Round Pipe n=0.013 L=25.0' S=0.0200 '/' Capacity=31.99 cfs Outflow=32.77 cfs 7.112 af

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 37

Reach PT1: Analysis Point 1 at BWD Little River Inflow=7.33 cfs 1.193 af

Outflow=7.33 cfs 1.193 af

Reach PT2: ANALYSISPOINT 2 at BWD reservoir Inflow=11.16 cfs 2.559 af

Outflow=11.16 cfs 2.559 af

Reach PT3: ANALYSISPOINT 3 at BWD reservoir Inflow=10.85 cfs 1.601 af

Outflow=10.85 cfs 1.601 af

Reach PT4: ANALYSISPOINT 4 at BWD reservoir Inflow=8.98 cfs 1.051 af

Outflow=8.98 cfs 1.051 af

Reach PT5: all points at BWD Reservoir Inflow=22.88 cfs 5.211 af

Outflow=22.88 cfs 5.211 af

Reach PT6: Stream 9-1 Avg. Flow Depth=1.22' Max Vel=5.41 fps Inflow=50.22 cfs 12.372 af

n=0.030 L=483.0' S=0.0145 '/' Capacity=535.88 cfs Outflow=48.36 cfs 12.346 af

Reach PT7: ANALYSISPOINT 7 at US Avg. Flow Depth=0.32' Max Vel=7.57 fps Inflow=2.09 cfs 0.363 af

18.0" Round Pipe n=0.013 L=83.0' S=0.0398 '/' Capacity=20.95 cfs Outflow=2.08 cfs 0.363 af

Reach PT8: ANALYSISPOINT 8 at US Avg. Flow Depth=0.04' Max Vel=3.93 fps Inflow=0.48 cfs 0.059 af

36.0" x 24.0" Box Pipe n=0.011 L=76.0' S=0.0632 '/' Capacity=144.91 cfs Outflow=0.48 cfs 0.059 af

Reach PT9: Analysis Pt Stream 9 at Avg. Flow Depth=1.16' Max Vel=25.08 fps Inflow=62.97 cfs 14.895 af

36.0" Round Pipe n=0.011 L=93.0' S=0.0645 '/' Capacity=200.22 cfs Outflow=62.97 cfs 14.894 af

Reach S9-2: Stream 9 Avg. Flow Depth=1.23' Max Vel=6.90 fps Inflow=63.56 cfs 14.998 af n=0.030 L=1,580.0' S=0.0233 '/' Capacity=161.21 cfs Outflow=63.09 cfs 14.916 af

Reach S9-3: Stream 9 Avg. Flow Depth=1.20' Max Vel=6.11 fps Inflow=63.09 cfs 14.916 af

n=0.030 L=364.0' S=0.0199 '/' Capacity=177.67 cfs Outflow=62.97 cfs 14.895 af

Total Runoff Area = 116.358 ac Runoff Volume = 21.851 af Average Runoff Depth = 2.25" 95.64% Pervious = 111.280 ac 4.36% Impervious = 5.078 ac

Page 38

pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: SUBCAT 1

Runoff = 7.33 cfs @ 12.81 hrs, Volume= 1.193 af, Depth> 1.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=5.20"

	Area (sf)	CN E	Description		
*	303,390		,	od, HSG C	
	12,768	70 V	Voods, Go	od, HSG C	
;	316,158	70 V	Veighted A	verage	
;	316,158	1	00.00% Pe	ervious Are	a
т.	1	Olama	\/a a=!t	0	Description
Tc	-	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
25.6	88	0.0450	0.06		Sheet Flow, a-b
					Woods: Dense underbrush n= 0.800 P2= 2.90"
3.5	65	0.0150	0.31		Shallow Concentrated Flow, b-c
					Forest w/Heavy Litter Kv= 2.5 fps
2.0	72	0.0550	0.59		Shallow Concentrated Flow, c-d
					Forest w/Heavy Litter Kv= 2.5 fps
25.6	470	0.0150	0.31		Shallow Concentrated Flow, d-e
					Forest w/Heavy Litter Kv= 2.5 fps
1.0	203	0.1000	3.41	13.64	Trap/Vee/Rect Channel Flow, e-f
					Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
					n= 0.100 Earth, dense brush, high stage
57.7	898	Total			

Summary for Subcatchment 2S: SUBCAT 2

Runoff = 11.16 cfs @ 13.41 hrs, Volume= 2.559 af, Depth> 1.93"

	Area (sf)	CN	Description
*	653,559	70	Woods, Good, HSG C/D
*	38,729	74	>75% Grass cover, Good, HSG C/D
	692,288	70	Weighted Average
	692,288		100.00% Pervious Area

Prepared by Ransom Consulting
HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Pag	ıе	39

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
•	55.7	134	0.0150	0.04	, ,	Sheet Flow, a-b
						Woods: Dense underbrush n= 0.800 P2= 2.90"
	5.8	175	0.0400	0.50		Shallow Concentrated Flow, b-c
						Forest w/Heavy Litter Kv= 2.5 fps
	13.3	199	0.0100	0.25		Shallow Concentrated Flow, c-d
						Forest w/Heavy Litter Kv= 2.5 fps
	1.2	41	0.0490	0.55		Shallow Concentrated Flow, d-e
						Forest w/Heavy Litter Kv= 2.5 fps
	22.1	468	0.0200	0.35		Shallow Concentrated Flow, e-f
						Forest w/Heavy Litter Kv= 2.5 fps
	3.4	516	0.0550	2.53	10.11	Trap/Vee/Rect Channel Flow, f-g
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
						n= 0.100 Earth, dense brush, high stage
	101.5	1,533	Total			

Summary for Subcatchment 3S: SUBCAT 3

10.85 cfs @ 12.69 hrs, Volume= Runoff 1.601 af, Depth> 2.14"

	Aı	rea (sf)	CN E	Description		
*	2	05,588	74 >	75% Gras	s cover, Go	ood, HSG C/D
	22,290		74 >	75% Gras	s cover, Go	ood, HSG C
	1	63,239	70 V	Voods, Go	od, HSG C	
	3	91,117	72 V	Veighted A	verage	
	3	91,117	1	00.00% Pe	ervious Are	a
	Tc	Length	Slope	Velocity	Capacity	Description
(n	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
1	9.1	115	0.0400	0.10		Sheet Flow, a-b
						Woods: Light underbrush n= 0.400 P2= 2.90"
	3.4	155	0.0230	0.76		Shallow Concentrated Flow, b-c
						Woodland Kv= 5.0 fps
	9.3	372	0.0090	0.66		Shallow Concentrated Flow, c-d
						Short Grass Pasture Kv= 7.0 fps
	2.3	134	0.0190	0.96		Shallow Concentrated Flow, d-e
						Short Grass Pasture Kv= 7.0 fps
1	2.6	254	0.0180	0.34		Shallow Concentrated Flow, e-f
						Forest w/Heavy Litter Kv= 2.5 fps
	2.0	305	0.0560	2.55	10.21	Trap/Vee/Rect Channel Flow, f-g
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
						n= 0.100 Earth, dense brush, high stage
4	8.7	1,335	Total			

Page 40

pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Summary for Subcatchment 4S: SUBCAT 4

Runoff = 8.98 cfs @ 12.43 hrs, Volume= 1.051 af, Depth> 2.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=5.20"

_	Α	rea (sf)	CN E	Description					
*	1	30,853	74 >	75% Gras	s cover, Go	ood, HSG C/D			
		26,033				ood, HSG C			
		40,857	70 V	Woods, Good, HSG C					
*		56,948	70 V	Voods, Go	od, HSG C	/D			
	2	54,691	72 V	Veighted A	verage				
		54,691		•	ervious Are	a			
		•							
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·			
	16.9	135	0.0270	0.13		Sheet Flow, a-b			
						Grass: Dense n= 0.240 P2= 2.90"			
	7.8	462	0.0200	0.99		Shallow Concentrated Flow, b-c			
						Short Grass Pasture Kv= 7.0 fps			
	2.2	184	0.0380	1.36		Shallow Concentrated Flow, c-d			
						Short Grass Pasture Kv= 7.0 fps			
	3.3	389	0.0330	1.96	7.83	Trap/Vee/Rect Channel Flow, d-e			
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'			
_						n= 0.100 Earth, dense brush, high stage			
	30.2	1,170	Total						

Summary for Subcatchment 5S: SUBCAT 5

Runoff = 8.65 cfs @ 12.45 hrs, Volume= 1.026 af, Depth> 2.32"

	Area (sf)	CN	Description
*	156,287	74	>75% Grass cover, Good, HSG C/D
	74,991	74	>75% Grass cover, Good, HSG C
	231,278	74	Weighted Average
	231,278		100.00% Pervious Area

Prepared by Ransom Consulting
HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 41

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
23.0	198	0.0270	0.14		Sheet Flow, a-b
					Grass: Dense n= 0.240 P2= 2.90"
2.9	146	0.0140	0.83		Shallow Concentrated Flow, b-c
					Short Grass Pasture Kv= 7.0 fps
3.8	285	0.0320	1.25		Shallow Concentrated Flow, c-d
					Short Grass Pasture Kv= 7.0 fps
1.6	210	0.0430	2.24	8.94	Trap/Vee/Rect Channel Flow, d-e
					Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
					n= 0.100 Earth, dense brush, high stage
 31.3	839	Total		·	

Summary for Subcatchment 6S: SUBCAT 6

11.99 cfs @ 12.58 hrs, Volume= Runoff 1.626 af, Depth> 2.48"

	Aı	rea (sf)	CN	Description						
*	1	42,888	70	70 Woods, Good, HSG C/D						
		10,372	70							
*		61,952	74	>75% Gras	s cover, Go	ood, HSG C/D				
		635				ood, HSG C				
		51,989		>75% Grass cover, Good, HSG D						
*		7,818		Gravel						
*		34,971		Impervious						
_		32,024	77	Woods, Go	od, HSG D					
		42,649		Weighted A						
		07,678		89.79% Pei						
		34,971		10.21% Imp	ervious Ar	rea				
	_				_					
	Tc	Length	Slope	•	Capacity	Description				
_	(min)	(feet)	(ft/ft)		(cfs)					
	32.0	67	0.0150	0.03		Sheet Flow, a-b				
						Woods: Dense underbrush n= 0.800 P2= 2.90"				
	5.2	92	0.0140	0.30		Shallow Concentrated Flow, b-c				
	4.0		0.0400			Forest w/Heavy Litter Kv= 2.5 fps				
	1.8	74	0.0100	0.70		Shallow Concentrated Flow, c-d				
	4 7	400	0.0550			Short Grass Pasture Kv= 7.0 fps				
	1.7	163	0.0550	1.64		Shallow Concentrated Flow, d-e				
	0.0	20	0.4000	0.70		Short Grass Pasture Kv= 7.0 fps				
	8.0	39	0.1000	0.79		Shallow Concentrated Flow, e-f				
	0.1	10	0.5000	177		Forest w/Heavy Litter Kv= 2.5 fps				
	0.1	10	0.5000) 1.77		Shallow Concentrated Flow, f-g Forest w/Heavy Litter Kv= 2.5 fps				
_	44.0	445	Total			1 Olest Willeavy Littel RV- 2.3 Ips				
	41.6	445	Total							

Page 42

pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Summary for Subcatchment 7S: SUBCAT 7

Runoff = 2.09 cfs @ 12.90 hrs, Volume= 0.363 af, Depth> 1.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=5.20"

	Α	rea (sf)	CN E	Description							
*		93,505	70 V	Voods, Go	od, HSG C	/D					
*		2,878	74 >	>75% Grass cover, Good, HSG C/D							
		96,383	70 V	Veighted A	verage						
		96,383	1	00.00% P	ervious Are	a					
	Тс	Length	Slope		Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	54.6	172	0.0260	0.05		Sheet Flow, a-b					
						Woods: Dense underbrush n= 0.800 P2= 2.90"					
	2.8	112	0.0700	0.66		Shallow Concentrated Flow, b-c					
						Forest w/Heavy Litter Kv= 2.5 fps					
	0.2	13	0.2300	1.20		Shallow Concentrated Flow, c-d					
	0.0	474	0.0000	0.40		Forest w/Heavy Litter Kv= 2.5 fps					
	6.6	171	0.0300	0.43		Shallow Concentrated Flow, d-e					
	0.5	70	0.0000	0.64	10.50	Forest w/Heavy Litter Kv= 2.5 fps					
	0.5	73	0.0600	2.64	10.56	Trap/Vee/Rect Channel Flow, e-f					
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00' n= 0.100 Earth, dense brush, high stage					
_						n- 0.100 Earth, dense brush, high stage					
	64 7	541	Total								

Summary for Subcatchment 8S: SUBCAT 8

Runoff = 0.48 cfs @ 12.50 hrs, Volume= 0.059 af, Depth> 2.07"

	Area (sf)	CN	Description			
*	12,652	70	Noods, Good, HSG C/D			
*	2,324	74	>75% Grass cover, Good, HSG C/D			
•	14,976	71	Weighted Average			
	14,976		100.00% Pervious Area			

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 43

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	32.0	67	0.0150	0.03		Sheet Flow, a-b
						Woods: Dense underbrush n= 0.800 P2= 2.90"
	1.1	43	0.0700	0.66		Shallow Concentrated Flow, b-c
						Forest w/Heavy Litter Kv= 2.5 fps
	0.1	14	0.7100	2.11		Shallow Concentrated Flow, c-d
						Forest w/Heavy Litter Kv= 2.5 fps
	1.5	152	0.0240	1.67	6.68	Trap/Vee/Rect Channel Flow, d-e
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
						n= 0.100
	34.7	276	Total			

Summary for Subcatchment 9S: OFFSITE 1 (Below Perkins Rd)

Runoff = 20.97 cfs @ 12.50 hrs, Volume= 2.620 af, Depth> 2.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-year Rainfall=5.20"

	Aı	rea (sf)	CN I	Description						
*		25,513	98 I	98 Impervious						
*	5	32,320	74	>75% Gras	s cover, Go	ood, HSG C/D				
*		3,818	94 (Gravel road	ls, HSG C/I	D				
_		8,857	74 >	>75% Gras	s cover, Go	ood, HSG C				
	5	70,508	75 \	Neighted A	verage					
	5	44,995	(95.53% Pei	vious Area					
		25,513	4	1.47% Impe	ervious Are	a				
	Tc	Length	Slope	•	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.1	15	0.2000	2.25		Sheet Flow, a-b				
						Smooth surfaces n= 0.011 P2= 2.90"				
	12.6	373	0.0050	0.49		Shallow Concentrated Flow, b-c				
						Short Grass Pasture Kv= 7.0 fps				
	13.1	715	0.0170	0.91		Shallow Concentrated Flow, c-d				
						Short Grass Pasture Kv= 7.0 fps				
	9.3	250	0.0320	0.45		Shallow Concentrated Flow, d-e				
_						Forest w/Heavy Litter Kv= 2.5 fps				
	35.1	1,353	Total							

Summary for Subcatchment 10S: OFFSITE 2 (above Perkins Rd)

Runoff = 32.78 cfs @ 13.29 hrs, Volume= 7.112 af, Depth> 2.26"

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 44

	Α	rea (sf)	CN D	escription				
*	2	298,066 70 Woods, Good, HSG C/D						
*		42,276 98 Impervious						
*	1,3	04,640	74 >	75% Gras	s cover, Go	ood, HSG C/D		
	1,6	44,982	74 V	Veighted A	verage			
	1,6	02,706			vious Area			
		42,276	2	.57% Impe	ervious Are	a		
				•				
	Tc	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	45.2	141	0.0280	0.05		Sheet Flow, a-b		
						Woods: Dense underbrush n= 0.800 P2= 2.90"		
	15.3	384	0.0280	0.42		Shallow Concentrated Flow, b-c		
						Forest w/Heavy Litter Kv= 2.5 fps		
	2.5	227	0.0480	1.53		Shallow Concentrated Flow, c-d		
						Short Grass Pasture Kv= 7.0 fps		
	18.6	780	0.0100	0.70		Shallow Concentrated Flow, d-e		
	40.0	000	0.0470	0.04		Short Grass Pasture Kv= 7.0 fps		
	12.6	689	0.0170	0.91		Shallow Concentrated Flow, e-f		
_						Short Grass Pasture Kv= 7.0 fps		
	94.2	2.221	Total					

Summary for Subcatchment 11S: OFFSITE 3 (Matthew Brothers Lot)

Runoff = 38.24 cfs @ 12.10 hrs, Volume= 2.640 af, Depth> 2.69"

_	Α	rea (sf)	CN E	escription)					
*	1	18,437	98 lı	98 Impervious					
*	2	37,621	70 V	Voods, Go	od, HSG C	/D			
*	1	57,469	69 74 >75% Grass cover, Good, HSG C/D						
513,527 78 Weighted Average									
	3	95,090	7	6.94% Per	vious Area				
	1	18,437	2	3.06% Imp	ervious Ar	ea			
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.1	16	0.1870	2.22		Sheet Flow, a-b			
						Smooth surfaces n= 0.011 P2= 2.90"			
	4.7	419	0.0100	1.50		Shallow Concentrated Flow, b-c			
						Grassed Waterway Kv= 15.0 fps			
	2.0	97	0.1000	0.79		Shallow Concentrated Flow, c-d			
_						Forest w/Heavy Litter Kv= 2.5 fps			
	6.8	532	Total						

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 45

Summary for Reach 5R: ANALYSIS POINT 5

Inflow Area = 5.309 ac, 0.00% Impervious, Inflow Depth > 2.32" for 25-year event

Inflow = 8.65 cfs @ 12.45 hrs, Volume= 1.026 af

Outflow = 8.65 cfs @ 12.45 hrs, Volume= 1.026 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 6R: AP for SC 6

Inflow Area = 7.866 ac, 10.21% Impervious, Inflow Depth > 2.48" for 25-year event

Inflow = 11.99 cfs @ 12.58 hrs, Volume= 1.626 af

Outflow = 11.99 cfs @ 12.58 hrs, Volume= 1.626 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 9R: ANALYSIS POINT 9

Inflow Area = 13.097 ac, 4.47% Impervious, Inflow Depth > 2.40" for 25-year event

Inflow = 20.97 cfs @ 12.50 hrs, Volume= 2.620 af

Outflow = 20.97 cfs @ 12.50 hrs, Volume= 2.620 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 10R: Perkins Road Culvert

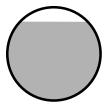
Inflow Area = 37.764 ac, 2.57% Impervious, Inflow Depth > 2.26" for 25-year event

Inflow = 32.78 cfs @ 13.29 hrs, Volume= 7.112 af

Outflow = 32.77 cfs @ 13.29 hrs, Volume= 7.112 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2

Max. Velocity= 11.61 fps, Min. Travel Time= 0.0 min Avg. Velocity = 7.03 fps, Avg. Travel Time= 0.1 min


Peak Storage= 71 cf @ 13.29 hrs Average Depth at Peak Storage= 1.69'

Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 31.99 cfs

24.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior Length= 25.0' Slope= 0.0200 '/'

Inlet Invert= 75.50', Outlet Invert= 75.00'

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 46

Summary for Reach 11R: At Stream 9

Inflow Area = 11.789 ac, 23.06% Impervious, Inflow Depth > 2.69" for 25-year event

Inflow = 38.24 cfs @ 12.10 hrs, Volume= 2.640 af

Outflow = 38.24 cfs @ 12.10 hrs, Volume= 2.640 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT1: Analysis Point 1 at BWD Little River

Inflow Area = 7.258 ac, 0.00% Impervious, Inflow Depth > 1.97" for 25-year event

Inflow = 7.33 cfs @ 12.81 hrs, Volume= 1.193 af

Outflow = 7.33 cfs @ 12.81 hrs, Volume= 1.193 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT2: ANALYSIS POINT 2 at BWD reservoir

Inflow Area = 15.893 ac, 0.00% Impervious, Inflow Depth > 1.93" for 25-year event

Inflow = 11.16 cfs @ 13.41 hrs, Volume= 2.559 af

Outflow = 11.16 cfs @ 13.41 hrs, Volume= 2.559 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT3: ANALYSIS POINT 3 at BWD reservoir

Inflow Area = 8.979 ac, 0.00% Impervious, Inflow Depth > 2.14" for 25-year event

Inflow = 10.85 cfs @ 12.69 hrs, Volume= 1.601 af

Outflow = 10.85 cfs @ 12.69 hrs, Volume= 1.601 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT4: ANALYSIS POINT 4 at BWD reservoir

Inflow Area = 5.847 ac, 0.00% Impervious, Inflow Depth > 2.16" for 25-year event

Inflow = 8.98 cfs @ 12.43 hrs, Volume= 1.051 af

Outflow = 8.98 cfs @ 12.43 hrs, Volume= 1.051 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT5: all points at BWD Reservoir

Inflow Area = 30.718 ac, 0.00% Impervious, Inflow Depth > 2.04" for 25-year event

Inflow = 22.88 cfs @ 12.68 hrs, Volume= 5.211 af

Outflow = 22.88 cfs @ 12.68 hrs, Volume= 5.211 af, Atten= 0%, Lag= 0.0 min

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 47

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT6: Stream 9-1

Inflow Area = 62.650 ac, 6.82% Impervious, Inflow Depth > 2.37" for 25-year event

Inflow = 50.22 cfs @ 12.11 hrs, Volume= 12.372 af

Outflow = 48.36 cfs @ 12.16 hrs, Volume= 12.346 af, Atten= 4%, Lag= 3.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 5.41 fps, Min. Travel Time= 1.5 min Avg. Velocity = 2.96 fps, Avg. Travel Time= 2.7 min

Peak Storage= 4,366 cf @ 12.14 hrs Average Depth at Peak Storage= 1.22'

Bank-Full Depth= 4.00' Flow Area= 52.0 sf, Capacity= 535.88 cfs

5.00' x 4.00' deep channel, n= 0.030 Stream, clean & straight

Side Slope Z-value= 2.0 '/' Top Width= 21.00'

Length= 483.0' Slope= 0.0145 '/'

Inlet Invert= 71.00', Outlet Invert= 64.00'

Summary for Reach PT7: ANALYSIS POINT 7 at US Rte 1 culvert

Inflow Area = 2.213 ac, 0.00% Impervious, Inflow Depth > 1.97" for 25-year event

Inflow = 2.09 cfs @ 12.90 hrs, Volume= 0.363 af

Outflow = 2.08 cfs @ 12.91 hrs, Volume= 0.363 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity = 7.57 fps, Min. Travel Time = 0.2 min Avg. Velocity = 4.12 fps, Avg. Travel Time = 0.3 min

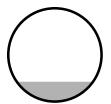
Peak Storage= 23 cf @ 12.90 hrs

Average Depth at Peak Storage= 0.32'

Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 20.95 cfs

18.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior


Length= 83.0' Slope= 0.0398 '/'

Inlet Invert= 21.60', Outlet Invert= 18.30'

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 48

Summary for Reach PT8: ANALYSIS POINT 8 at US Rte 1 culvert

Inflow Area = 0.344 ac, 0.00% Impervious, Inflow Depth > 2.07" for 25-year event

Inflow = 0.48 cfs @ 12.50 hrs, Volume= 0.059 af

Outflow = 0.48 cfs @ 12.51 hrs, Volume= 0.059 af, Atten= 0%, Lag= 0.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 3.93 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.58 fps, Avg. Travel Time= 0.5 min

Peak Storage= 9 cf @ 12.50 hrs Average Depth at Peak Storage= 0.04

Bank-Full Depth= 2.00' Flow Area= 6.0 sf, Capacity= 144.91 cfs

36.0" W x 24.0" H Box Pipe n= 0.011 Concrete pipe, straight & clean Length= 76.0' Slope= 0.0632 '/' Inlet Invert= 23.40', Outlet Invert= 18.60'

Summary for Reach PT9: Analysis Pt Stream 9 at US Rte 1 Culvert

Inflow Area = 75.825 ac, 6.70% Impervious, Inflow Depth > 2.36" for 25-year event

Inflow = 62.97 cfs @ 12.65 hrs, Volume= 14.895 af

Outflow = 62.97 cfs @ 12.65 hrs, Volume= 14.894 af, Atten= 0%, Lag= 0.1 min

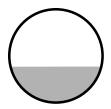
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 25.08 fps, Min. Travel Time= 0.1 min Avg. Velocity = 14.03 fps, Avg. Travel Time= 0.1 min

Peak Storage= 233 cf @ 12.65 hrs Average Depth at Peak Storage= 1.16'

Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 200.22 cfs

NAF Pre Development Type III 24-hr 25-year Rainfall=5.20" Printed 4/21/2019


pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 49

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 93.0' Slope= 0.0645 '/' Inlet Invert= 20.00', Outlet Invert= 14.00'

Summary for Reach S9-2: Stream 9

Inflow Area = 75.825 ac, 6.70% Impervious, Inflow Depth > 2.37" for 25-year event

Inflow = 63.56 cfs @ 12.51 hrs, Volume= 14.998 af

Outflow = 63.09 cfs @ 12.62 hrs, Volume= 14.916 af, Atten= 1%, Lag= 6.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.90 fps, Min. Travel Time= 3.8 min

Avg. Velocity = 3.65 fps, Avg. Travel Time= 7.2 min

Peak Storage= 14,468 cf @ 12.55 hrs Average Depth at Peak Storage= 1.23'

Bank-Full Depth= 2.00' Flow Area= 18.0 sf, Capacity= 161.21 cfs

5.00' x 2.00' deep channel, n= 0.030 Stream, clean & straight

Side Slope Z-value= 2.0 '/' Top Width= 13.00'

Length= 1,580.0' Slope= 0.0233 '/' Inlet Invert= 64.00', Outlet Invert= 27.25'

Summary for Reach S9-3: Stream 9

Inflow Area = 75.825 ac, 6.70% Impervious, Inflow Depth > 2.36" for 25-year event

Inflow = 63.09 cfs @ 12.62 hrs, Volume= 14.916 af

Outflow = 62.97 cfs @ 12.65 hrs, Volume= 14.895 af, Atten= 0%, Lag= 1.9 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.11 fps, Min. Travel Time= 1.0 min Avg. Velocity = 3.32 fps, Avg. Travel Time= 1.8 min pre conditions
Prepared by Ransom Consulting

NAF Pre Development Type III 24-hr 25-year Rainfall=5.20" Printed 4/21/2019

Page 50

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Peak Storage= 3,757 cf @ 12.63 hrs Average Depth at Peak Storage= 1.20' Bank-Full Depth= 2.00' Flow Area= 22.0 sf, Capacity= 177.67 cfs

5.00' x 2.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 2.0 4.0 '/' Top Width= 17.00' Length= 364.0' Slope= 0.0199 '/' Inlet Invert= 27.25', Outlet Invert= 20.00'

NAF Pre Development Type III 24-hr 100-year Rainfall=7.20" Printed 4/21/2019

pre conditions

Reach 11R: At Stream 9

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 51

Inflow=61.36 cfs 4.292 af Outflow=61.36 cfs 4.292 af

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

3 1, 111	3 · J · · · · · · · · · · · · · · · · ·
Subcatchment1S: SUBCAT1	Runoff Area=316,158 sf 0.00% Impervious Runoff Depth>3.46" Flow Length=898' Tc=57.7 min CN=70 Runoff=12.93 cfs 2.090 af
Subcatchment2S: SUBCAT2	Runoff Area=692,288 sf 0.00% Impervious Runoff Depth>3.39" Flow Length=1,533' Tc=101.5 min CN=70 Runoff=19.74 cfs 4.494 af
Subcatchment3S: SUBCAT3	Runoff Area=391,117 sf 0.00% Impervious Runoff Depth>3.68" Flow Length=1,335' Tc=48.7 min CN=72 Runoff=18.64 cfs 2.750 af
Subcatchment4S: SUBCAT4	Runoff Area=254,691 sf 0.00% Impervious Runoff Depth>3.70" Flow Length=1,170' Tc=30.2 min CN=72 Runoff=15.44 cfs 1.803 af
Subcatchment5S: SUBCAT5	Runoff Area=231,278 sf 0.00% Impervious Runoff Depth>3.91" Flow Length=839' Tc=31.3 min CN=74 Runoff=14.53 cfs 1.729 af
Subcatchment6S: SUBCAT6	Runoff Area=342,649 sf 10.21% Impervious Runoff Depth>4.11" Flow Length=445' Tc=41.6 min CN=76 Runoff=19.71 cfs 2.692 af
Subcatchment7S: SUBCAT7	Runoff Area=96,383 sf 0.00% Impervious Runoff Depth>3.45" Flow Length=541' Tc=64.7 min CN=70 Runoff=3.68 cfs 0.636 af
Subcatchment8S: SUBCAT8	Runoff Area=14,976 sf 0.00% Impervious Runoff Depth>3.59" Flow Length=276' Tc=34.7 min CN=71 Runoff=0.83 cfs 0.103 af
Subcatchment9S: OFFSITE1 (Below	W Runoff Area=570,508 sf 4.47% Impervious Runoff Depth>4.01" Flow Length=1,353' Tc=35.1 min CN=75 Runoff=34.83 cfs 4.375 af
Subcatchment10S: OFFSITE 2 (abo	ve Runoff Area=1,644,982 sf 2.57% Impervious Runoff Depth>3.82" Flow Length=2,221' Tc=94.2 min CN=74 Runoff=55.26 cfs 12.013 af
Subcatchment11S: OFFSITE 3 (Mat	thew Runoff Area=513,527 sf 23.06% Impervious Runoff Depth>4.37" Flow Length=532' Tc=6.8 min CN=78 Runoff=61.36 cfs 4.292 af
Reach 5R: ANALYSISPOINT 5	Inflow=14.53 cfs 1.729 af Outflow=14.53 cfs 1.729 af
Reach 6R: AP for SC 6	Inflow=19.71 cfs 2.692 af Outflow=19.71 cfs 2.692 af
Reach 9R: ANALYSISPOINT 9	Inflow=34.83 cfs 4.375 af Outflow=34.83 cfs 4.375 af
Reach 10R: Perkins Road Culvert 24.0" Round Pipe n=0.013	Avg. Flow Depth=2.00' Max Vel=11.61 fps Inflow=55.26 cfs 12.013 af L=25.0' S=0.0200 '/' Capacity=31.99 cfs Outflow=31.99 cfs 12.014 af

NAF Pre Development Type III 24-hr 100-year Rainfall=7.20" Printed 4/21/2019

pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 52

Reach PT1: Analysis Point 1 at BWD Little River	Inflow=12.93 cfs 2.090 af

Outflow=12.93 cfs 2.090 af

Reach PT2: ANALYSISPOINT 2 at BWD reservoir Inflow=19.74 cfs 4.494 af

Outflow=19.74 cfs 4.494 af

Reach PT3: ANALYSISPOINT 3 at BWD reservoir Inflow=18.64 cfs 2.750 af

Outflow=18.64 cfs 2.750 af

Reach PT4: ANALYSISPOINT 4 at BWD reservoir Inflow=15.44 cfs 1.803 af

Outflow=15.44 cfs 1.803 af

Reach PT5: all points at BWD Reservoir Inflow=40.15 cfs 9.047 af

Outflow=40.15 cfs 9.047 af

Reach PT6: Stream 9-1 Avg. Flow Depth=1.60' Max Vel=6.26 fps Inflow=84.29 cfs 20.681 af

n=0.030 L=483.0' S=0.0145 '/' Capacity=535.88 cfs Outflow=81.42 cfs 20.647 af

Reach PT7: ANALYSIS POINT 7 at US Avg. Flow Depth=0.43' Max Vel=8.92 fps Inflow=3.68 cfs 0.636 af

18.0" Round Pipe n=0.013 L=83.0' S=0.0398 '/' Capacity=20.95 cfs Outflow=3.68 cfs 0.635 af

Reach PT8: ANALYSIS POINT 8 at USAvg. Flow Depth=0.06' Max Vel=4.91 fps Inflow=0.83 cfs 0.103 af 36.0" x 24.0" Box Pipe n=0.011 L=76.0' S=0.0632 '/' Capacity=144.91 cfs Outflow=0.83 cfs 0.103 af

Reach PT9: Analysis Pt Stream 9 at Avg. Flow Depth=1.55' Max Vel=28.72 fps Inflow=105.90 cfs 24.934 af 36.0" Round Pipe n=0.011 L=93.0' S=0.0645 '/' Capacity=200.22 cfs Outflow=105.88 cfs 24.932 af

Reach S9-2: Stream 9 Avg. Flow Depth=1.61' Max Vel=7.99 fps Inflow=106.62 cfs 25.068 af

n=0.030 L=1,580.0' S=0.0233 '/' Capacity=161.21 cfs Outflow=106.06 cfs 24.961 af

Reach S9-3: Stream 9 Avg. Flow Depth=1.56' Max Vel=7.04 fps Inflow=106.06 cfs 24.961 af

n=0.030 L=364.0' S=0.0199 '/' Capacity=177.67 cfs Outflow=105.90 cfs 24.934 af

Total Runoff Area = 116.358 ac Runoff Volume = 36.977 af Average Runoff Depth = 3.81" 95.64% Pervious = 111.280 ac 4.36% Impervious = 5.078 ac

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 53

Summary for Subcatchment 1S: SUBCAT 1

Runoff = 12.93 cfs @ 12.78 hrs, Volume= 2.090 af, Depth> 3.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.20"

A	rea (sf)	CN D	escription		
* 3	303,390			od, HSG C	
	12,768			od, HSG C	
	16,158		Veighted A 00.00% Pe	O Company of the comp	
3	16,158	ı	00.00% P6	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	P
25.6	88	0.0450	0.06		Sheet Flow, a-b
					Woods: Dense underbrush n= 0.800 P2= 2.90"
3.5	65	0.0150	0.31		Shallow Concentrated Flow, b-c
					Forest w/Heavy Litter Kv= 2.5 fps
2.0	72	0.0550	0.59		Shallow Concentrated Flow, c-d
					Forest w/Heavy Litter Kv= 2.5 fps
25.6	470	0.0150	0.31		Shallow Concentrated Flow, d-e
4.0	000	0.4000	0.44	40.04	Forest w/Heavy Litter Kv= 2.5 fps
1.0	203	0.1000	3.41	13.64	Trap/Vee/Rect Channel Flow, e-f
					Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
	000	T-4-1			n= 0.100 Earth, dense brush, high stage
57.7	898	Total			

Summary for Subcatchment 2S: SUBCAT 2

Runoff = 19.74 cfs @ 13.39 hrs, Volume= 4.494 af, Depth> 3.39"

	Area (sf)	CN	Description
*	653,559	70	Woods, Good, HSG C/D
*	38,729	74	>75% Grass cover, Good, HSG C/D
	692,288	70	Weighted Average
	692,288		100.00% Pervious Area

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 54

	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	55.7	134	0.0150	0.04		Sheet Flow, a-b
						Woods: Dense underbrush n= 0.800 P2= 2.90"
	5.8	175	0.0400	0.50		Shallow Concentrated Flow, b-c
						Forest w/Heavy Litter Kv= 2.5 fps
	13.3	199	0.0100	0.25		Shallow Concentrated Flow, c-d
						Forest w/Heavy Litter Kv= 2.5 fps
	1.2	41	0.0490	0.55		Shallow Concentrated Flow, d-e
						Forest w/Heavy Litter Kv= 2.5 fps
	22.1	468	0.0200	0.35		Shallow Concentrated Flow, e-f
						Forest w/Heavy Litter Kv= 2.5 fps
	3.4	516	0.0550	2.53	10.11	Trap/Vee/Rect Channel Flow, f-g
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
_						n= 0.100 Earth, dense brush, high stage
	101.5	1,533	Total			

Summary for Subcatchment 3S: SUBCAT 3

Runoff = 18.64 cfs @ 12.67 hrs, Volume= 2.750 af, Depth> 3.68"

_	Α	rea (sf)	CN E	Description			
*	* 205,588		74 >	74 >75% Grass cover, Good, HSG C/D			
		22,290	74 >	>75% Grass cover, Good, HSG C			
_	1	63,239	70 V	Woods, Good, HSG C			
	3	91,117	72 V	Veighted A	verage		
	3	91,117	1	00.00% Pe	ervious Are	a	
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	19.1	115	0.0400	0.10		Sheet Flow, a-b	
						Woods: Light underbrush n= 0.400 P2= 2.90"	
	3.4	155	0.0230	0.76		Shallow Concentrated Flow, b-c	
						Woodland Kv= 5.0 fps	
	9.3	372	0.0090	0.66		Shallow Concentrated Flow, c-d	
						Short Grass Pasture Kv= 7.0 fps	
	2.3	134	0.0190	0.96		Shallow Concentrated Flow, d-e	
						Short Grass Pasture Kv= 7.0 fps	
	12.6	254	0.0180	0.34		Shallow Concentrated Flow, e-f	
						Forest w/Heavy Litter Kv= 2.5 fps	
	2.0	305	0.0560	2.55	10.21	Trap/Vee/Rect Channel Flow, f-g	
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'	
_						n= 0.100 Earth, dense brush, high stage	
	48.7	1,335	Total				

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 55

Summary for Subcatchment 4S: SUBCAT 4

Runoff = 15.44 cfs @ 12.42 hrs, Volume= 1.803 af, Depth> 3.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.20"

	Α	rea (sf)	CN E	Description					
*	1	30,853	74 >	75% Gras	s cover, Go	ood, HSG C/D			
		26,033	74 >	75% Gras	s cover, Go	ood, HSG C			
		40,857	70 V	Voods, Go	od, HSG C				
*		56,948	70 V	Voods, Go	od, HSG C	/D			
	2	54,691	72 V	Veighted A	verage				
	2	54,691	1	00.00% Pe	ervious Are	a			
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	16.9	135	0.0270	0.13		Sheet Flow, a-b			
						Grass: Dense n= 0.240 P2= 2.90"			
	7.8	462	0.0200	0.99		Shallow Concentrated Flow, b-c			
						Short Grass Pasture Kv= 7.0 fps			
	2.2	184	0.0380	1.36		Shallow Concentrated Flow, c-d			
						Short Grass Pasture Kv= 7.0 fps			
	3.3	389	0.0330	1.96	7.83				
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'			
_						n= 0.100 Earth, dense brush, high stage			
	30.2	1,170	Total						

Summary for Subcatchment 5S: SUBCAT 5

Runoff = 14.53 cfs @ 12.43 hrs, Volume= 1.729 af, Depth> 3.91"

	Area (sf)	CN	Description
*	156,287	74	>75% Grass cover, Good, HSG C/D
	74,991	74	>75% Grass cover, Good, HSG C
	231,278	74	Weighted Average
	231,278		100.00% Pervious Area

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 56

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
23.0	198	0.0270	0.14		Sheet Flow, a-b
					Grass: Dense n= 0.240 P2= 2.90"
2.9	146	0.0140	0.83		Shallow Concentrated Flow, b-c
					Short Grass Pasture Kv= 7.0 fps
3.8	285	0.0320	1.25		Shallow Concentrated Flow, c-d
					Short Grass Pasture Kv= 7.0 fps
1.6	210	0.0430	2.24	8.94	Trap/Vee/Rect Channel Flow, d-e
					Bot.W=2.00' D=1.00' Z= 2.0 '/ Top.W=6.00'
					n= 0.100 Earth, dense brush, high stage
31.3	839	Total			

Summary for Subcatchment 6S: SUBCAT 6

Runoff = 19.71 cfs @ 12.57 hrs, Volume= 2.692 af, Depth> 4.11"

	Aı	rea (sf)	CN	Description					
*	1	42,888	70	70 Woods, Good, HSG C/D					
		10,372		Woods, Go					
*		61,952				ood, HSG C/D			
		635				ood, HSG C			
		51,989		>75% Grass cover, Good, HSG D					
*		7,818		Gravel					
*		34,971	98	Impervious					
		32,024	77	Woods, Go	od, HSG D				
	3	42,649	76	Weighted A	verage				
	3	07,678		89.79% Per	rvious Area				
		34,971		10.21% Imp	pervious Ar	ea			
	Tc	Length	Slope		Capacity	Description			
_	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)				
	32.0	67	0.0150	0.03		Sheet Flow, a-b			
						Woods: Dense underbrush n= 0.800 P2= 2.90"			
	5.2	92	0.0140	0.30		Shallow Concentrated Flow, b-c			
						Forest w/Heavy Litter Kv= 2.5 fps			
	1.8	74	0.0100	0.70		Shallow Concentrated Flow, c-d			
						Short Grass Pasture Kv= 7.0 fps			
	1.7	163	0.0550	1.64		Shallow Concentrated Flow, d-e			
						Short Grass Pasture Kv= 7.0 fps			
	0.8	39	0.1000	0.79		Shallow Concentrated Flow, e-f			
	0.4	40	0.500			Forest w/Heavy Litter Kv= 2.5 fps			
	0.1	10	0.5000	1.77		Shallow Concentrated Flow, f-g			
_	44.6					Forest w/Heavy Litter Kv= 2.5 fps			
	41.6	445	Total						

Page 57

pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Summary for Subcatchment 7S: SUBCAT 7

Runoff = 3.68 cfs @ 12.88 hrs, Volume= 0.636 af, Depth> 3.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.20"

	Α	rea (sf)	CN E	Description		
*		93,505	70 V	Voods, Go	od, HSG C	/D
*		2,878	74 >	75% Gras	s cover, Go	ood, HSG C/D
96,383 70 Weighted Average						
		96,383	1	00.00% P	ervious Are	a
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	54.6	172	0.0260	0.05		Sheet Flow, a-b
						Woods: Dense underbrush n= 0.800 P2= 2.90"
	2.8	112	0.0700	0.66		Shallow Concentrated Flow, b-c
						Forest w/Heavy Litter Kv= 2.5 fps
	0.2	13	0.2300	1.20		Shallow Concentrated Flow, c-d
	0.0	474	0.0000	0.40		Forest w/Heavy Litter Kv= 2.5 fps
	6.6	171	0.0300	0.43		Shallow Concentrated Flow, d-e
	0.5	70	0.0000	0.64	10.50	Forest w/Heavy Litter Kv= 2.5 fps
	0.5	73	0.0600	2.64	10.56	Trap/Vee/Rect Channel Flow, e-f
						Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00' n= 0.100 Earth, dense brush, high stage
_						n- 0.100 Earth, dense brush, high stage
	64 7	541	Total			

Summary for Subcatchment 8S: SUBCAT 8

Runoff = 0.83 cfs @ 12.48 hrs, Volume= 0.103 af, Depth> 3.59"

	Area (sf)	CN	Description
*	12,652	70	Woods, Good, HSG C/D
*	2,324	74	>75% Grass cover, Good, HSG C/D
	14,976	71	Weighted Average
	14,976		100.00% Pervious Area

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 58

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
32.0	67	0.0150	0.03		Sheet Flow, a-b
					Woods: Dense underbrush n= 0.800 P2= 2.90"
1.1	43	0.0700	0.66		Shallow Concentrated Flow, b-c
0.1	14	0.7100	2.11		Forest w/Heavy Litter Kv= 2.5 fps Shallow Concentrated Flow, c-d
0.1	14	0.7 100	2.11		Forest w/Heavy Litter Kv= 2.5 fps
1.5	152	0.0240	1.67	6.68	Trap/Vee/Rect Channel Flow, d-e
					Bot.W=2.00' D=1.00' Z= 2.0 '/' Top.W=6.00'
					n= 0.100
34.7	276	Total			

Summary for Subcatchment 9S: OFFSITE 1 (Below Perkins Rd)

Runoff = 34.83 cfs @ 12.48 hrs, Volume= 4.375 af, Depth> 4.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.20"

	Aı	rea (sf)	CN I	Description					
*		25,513	98 I	Impervious					
*	5	32,320	74	>75% Gras	s cover, Go	ood, HSG C/D			
*		3,818	94 (Gravel road	ls, HSG C/I	D			
_		8,857	74 >	>75% Gras	s cover, Go	ood, HSG C			
	5	70,508	75 \	Neighted A	verage				
	5	44,995	(95.53% Pei	vious Area				
		25,513	4	1.47% Impe	ervious Are	a			
	Tc	Length	Slope	•	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.1	15	0.2000	2.25		Sheet Flow, a-b			
						Smooth surfaces n= 0.011 P2= 2.90"			
	12.6	373	0.0050	0.49		Shallow Concentrated Flow, b-c			
						Short Grass Pasture Kv= 7.0 fps			
	13.1	715	0.0170	0.91		Shallow Concentrated Flow, c-d			
						Short Grass Pasture Kv= 7.0 fps			
	9.3	250	0.0320	0.45		Shallow Concentrated Flow, d-e			
_						Forest w/Heavy Litter Kv= 2.5 fps			
	35.1	1,353	Total						

Summary for Subcatchment 10S: OFFSITE 2 (above Perkins Rd)

Runoff = 55.26 cfs @ 13.28 hrs, Volume= 12.013 af, Depth> 3.82"

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 59

	Α	rea (sf)	CN D	escription				
*	2	98,066	70 V	70 Woods, Good, HSG C/D				
*		42,276	98 Ir	npervious	•			
*	1,3	04,640	74 >	75% Gras	s cover, Go	ood, HSG C/D		
	1.6	44,982	74 V	Veighted A	verage			
	,	02,706		_	vious Area			
	,	42,276	_		ervious Are			
		,						
	Tc	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'		
	45.2	141	0.0280	0.05		Sheet Flow, a-b		
						Woods: Dense underbrush n= 0.800 P2= 2.90"		
	15.3	384	0.0280	0.42		Shallow Concentrated Flow, b-c		
						Forest w/Heavy Litter Kv= 2.5 fps		
	2.5	227	0.0480	1.53		Shallow Concentrated Flow, c-d		
						Short Grass Pasture Kv= 7.0 fps		
	18.6	780	0.0100	0.70		Shallow Concentrated Flow, d-e		
						Short Grass Pasture Kv= 7.0 fps		
	12.6	689	0.0170	0.91		Shallow Concentrated Flow, e-f		
						Short Grass Pasture Kv= 7.0 fps		
	94.2	2,221	Total					

Summary for Subcatchment 11S: OFFSITE 3 (Matthew Brothers Lot)

Runoff = 61.36 cfs @ 12.10 hrs, Volume= 4.292 af, Depth> 4.37"

	Aı	rea (sf)	CN [Description		
*	1	18,437	98 I	mpervious		
*	2	37,621	70 \	Noods, Go	od, HSG C	/D
*	1	57,469	74 >	>75% Gras	s cover, Go	ood, HSG C/D
	513,527 78 Weighted Average					
	395,090 76.94% Per				vious Area	
	1	18,437	2	23.06% Imp	ervious Ar	ea
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.1	16	0.1870	2.22		Sheet Flow, a-b
						Smooth surfaces n= 0.011 P2= 2.90"
	4.7	419	0.0100	1.50		Shallow Concentrated Flow, b-c
						Grassed Waterway Kv= 15.0 fps
	2.0	97	0.1000	0.79		Shallow Concentrated Flow, c-d
_						Forest w/Heavy Litter Kv= 2.5 fps
	6.8	532	Total			

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 60

Summary for Reach 5R: ANALYSIS POINT 5

Inflow Area = 5.309 ac, 0.00% Impervious, Inflow Depth > 3.91" for 100-year event

14.53 cfs @ 12.43 hrs, Volume= Inflow 1.729 af

Outflow 14.53 cfs @ 12.43 hrs, Volume= 1.729 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 6R: AP for SC 6

7.866 ac, 10.21% Impervious, Inflow Depth > 4.11" for 100-year event Inflow Area =

19.71 cfs @ 12.57 hrs, Volume= Inflow 2.692 af

Outflow 19.71 cfs @ 12.57 hrs, Volume= 2.692 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 9R: ANALYSIS POINT 9

13.097 ac, 4.47% Impervious, Inflow Depth > 4.01" for 100-year event Inflow Area =

34.83 cfs @ 12.48 hrs, Volume= Inflow 4.375 af

Outflow 34.83 cfs @ 12.48 hrs, Volume= 4.375 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach 10R: Perkins Road Culvert

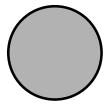
37.764 ac, 2.57% Impervious, Inflow Depth > 3.82" for 100-year event Inflow Area =

Inflow 55.26 cfs @ 13.28 hrs, Volume= 12.013 af

Outflow 31.99 cfs @ 12.75 hrs, Volume= 12.014 af, Atten= 42%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2

Max. Velocity= 11.61 fps, Min. Travel Time= 0.0 min Avg. Velocity = 7.35 fps, Avg. Travel Time= 0.1 min


Peak Storage= 79 cf @ 12.70 hrs Average Depth at Peak Storage= 2.00'

Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 31.99 cfs

24.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior Length= 25.0' Slope= 0.0200 '/'

Inlet Invert= 75.50', Outlet Invert= 75.00'

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 61

Summary for Reach 11R: At Stream 9

Inflow Area = 11.789 ac, 23.06% Impervious, Inflow Depth > 4.37" for 100-year event

Inflow = 61.36 cfs @ 12.10 hrs, Volume= 4.292 af

Outflow = 61.36 cfs @ 12.10 hrs, Volume= 4.292 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT1: Analysis Point 1 at BWD Little River

Inflow Area = 7.258 ac, 0.00% Impervious, Inflow Depth > 3.46" for 100-year event

Inflow = 12.93 cfs @ 12.78 hrs, Volume= 2.090 af

Outflow = 12.93 cfs @ 12.78 hrs, Volume= 2.090 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT2: ANALYSIS POINT 2 at BWD reservoir

Inflow Area = 15.893 ac, 0.00% Impervious, Inflow Depth > 3.39" for 100-year event

Inflow = 19.74 cfs @ 13.39 hrs, Volume= 4.494 af

Outflow = 19.74 cfs @ 13.39 hrs, Volume= 4.494 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT3: ANALYSIS POINT 3 at BWD reservoir

Inflow Area = 8.979 ac, 0.00% Impervious, Inflow Depth > 3.68" for 100-year event

Inflow = 18.64 cfs @ 12.67 hrs, Volume= 2.750 af

Outflow = 18.64 cfs @ 12.67 hrs, Volume= 2.750 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT4: ANALYSIS POINT 4 at BWD reservoir

Inflow Area = 5.847 ac, 0.00% Impervious, Inflow Depth > 3.70" for 100-year event

Inflow = 15.44 cfs @ 12.42 hrs, Volume= 1.803 af

Outflow = 15.44 cfs @ 12.42 hrs, Volume= 1.803 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT5: all points at BWD Reservoir

Inflow Area = 30.718 ac, 0.00% Impervious, Inflow Depth > 3.53" for 100-year event

Inflow = 40.15 cfs @ 12.65 hrs, Volume= 9.047 af

Outflow = 40.15 cfs @ 12.65 hrs, Volume= 9.047 af, Atten= 0%, Lag= 0.0 min

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 62

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Reach PT6: Stream 9-1

Inflow Area = 62.650 ac, 6.82% Impervious, Inflow Depth > 3.96" for 100-year event

Inflow = 84.29 cfs @ 12.11 hrs, Volume= 20.681 af

Outflow = 81.42 cfs @ 12.16 hrs, Volume= 20.647 af, Atten= 3%, Lag= 2.8 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 6.26 fps, Min. Travel Time= 1.3 min Avg. Velocity = 3.32 fps, Avg. Travel Time= 2.4 min

Peak Storage= 6,341 cf @ 12.13 hrs Average Depth at Peak Storage= 1.60' Bank-Full Depth= 4.00' Flow Area= 52.0 sf, Capacity= 535.88 cfs

5.00' x 4.00' deep channel, n= 0.030 Stream, clean & straight

Side Slope Z-value= 2.0 '/' Top Width= 21.00'

Length= 483.0' Slope= 0.0145 '/'

Inlet Invert= 71.00', Outlet Invert= 64.00'

Summary for Reach PT7: ANALYSIS POINT 7 at US Rte 1 culvert

Inflow Area = 2.213 ac, 0.00% Impervious, Inflow Depth > 3.45" for 100-year event

Inflow = 3.68 cfs @ 12.88 hrs, Volume= 0.636 af

Outflow = 3.68 cfs @ 12.88 hrs, Volume= 0.635 af, Atten= 0%, Lag= 0.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 8.92 fps, Min. Travel Time= 0.2 min Avg. Velocity = 4.60 fps, Avg. Travel Time= 0.3 min

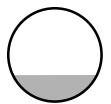
Peak Storage= 34 cf @ 12.88 hrs

Average Depth at Peak Storage= 0.43'

Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 20.95 cfs

18.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior


Length= 83.0' Slope= 0.0398 '/'

Inlet Invert= 21.60', Outlet Invert= 18.30'

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

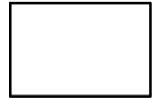
Page 63

Summary for Reach PT8: ANALYSIS POINT 8 at US Rte 1 culvert

Inflow Area = 0.344 ac, 0.00% Impervious, Inflow Depth > 3.59" for 100-year event

Inflow = 0.83 cfs @ 12.48 hrs, Volume= 0.103 af

Outflow = 0.83 cfs @ 12.49 hrs, Volume= 0.103 af, Atten= 0%, Lag= 0.5 min


Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 4.91 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.66 fps, Avg. Travel Time= 0.5 min

Peak Storage= 13 cf @ 12.49 hrs Average Depth at Peak Storage= 0.06'

Bank-Full Depth= 2.00' Flow Area= 6.0 sf, Capacity= 144.91 cfs

36.0" W x 24.0" H Box Pipe n= 0.011 Concrete pipe, straight & clean Length= 76.0' Slope= 0.0632 '/' Inlet Invert= 23.40', Outlet Invert= 18.60'

Summary for Reach PT9: Analysis Pt Stream 9 at US Rte 1 Culvert

Inflow Area = 75.825 ac, 6.70% Impervious, Inflow Depth > 3.95" for 100-year event

Inflow = 105.90 cfs @ 12.62 hrs, Volume= 24.934 af

Outflow = 105.88 cfs @ 12.62 hrs, Volume= 24.932 af, Atten= 0%, Lag= 0.1 min

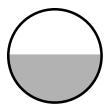
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 28.72 fps, Min. Travel Time= 0.1 min Avg. Velocity = 15.60 fps, Avg. Travel Time= 0.1 min

Peak Storage= 343 cf @ 12.62 hrs Average Depth at Peak Storage= 1.55'

Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 200.22 cfs

NAF Pre Development Type III 24-hr 100-year Rainfall=7.20" Printed 4/21/2019


pre conditions

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Page 64

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 93.0' Slope= 0.0645 '/' Inlet Invert= 20.00', Outlet Invert= 14.00'

Summary for Reach S9-2: Stream 9

Inflow Area = 75.825 ac, 6.70% Impervious, Inflow Depth > 3.97" for 100-year event

Inflow = 106.62 cfs @ 12.50 hrs, Volume= 25.068 af

Outflow = 106.06 cfs @ 12.59 hrs, Volume= 24.961 af, Atten= 1%, Lag= 5.8 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 7.99 fps, Min. Travel Time= 3.3 min

Avg. Velocity = 4.10 fps, Avg. Travel Time= 6.4 min

Peak Storage= 20,992 cf @ 12.54 hrs Average Depth at Peak Storage= 1.61'

Bank-Full Depth= 2.00' Flow Area= 18.0 sf, Capacity= 161.21 cfs

5.00' x 2.00' deep channel, n= 0.030 Stream, clean & straight

Side Slope Z-value= 2.0 '/' Top Width= 13.00'

Length= 1,580.0' Slope= 0.0233 '/'

Inlet Invert= 64.00', Outlet Invert= 27.25'

Summary for Reach S9-3: Stream 9

Inflow Area = 75.825 ac, 6.70% Impervious, Inflow Depth > 3.95" for 100-year event

Inflow = 106.06 cfs @ 12.59 hrs, Volume= 24.961 af

Outflow = 105.90 cfs @ 12.62 hrs, Volume= 24.934 af, Atten= 0%, Lag= 1.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Max. Velocity= 7.04 fps, Min. Travel Time= 0.9 min

Avg. Velocity = 3.71 fps, Avg. Travel Time= 1.6 min

NAF Pre Development
Type III 24-hr 100-year Rainfall=7.20"
Printed 4/21/2019
as LLC Page 65

Prepared by Ransom Consulting

HydroCAD® 10.00-12 s/n 05121 © 2014 HydroCAD Software Solutions LLC

Peak Storage= 5,483 cf @ 12.60 hrs Average Depth at Peak Storage= 1.56' Bank-Full Depth= 2.00' Flow Area= 22.0 sf, Capacity= 177.67 cfs

5.00' x 2.00' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 2.0 4.0 '/' Top Width= 17.00' Length= 364.0' Slope= 0.0199 '/' Inlet Invert= 27.25', Outlet Invert= 20.00'

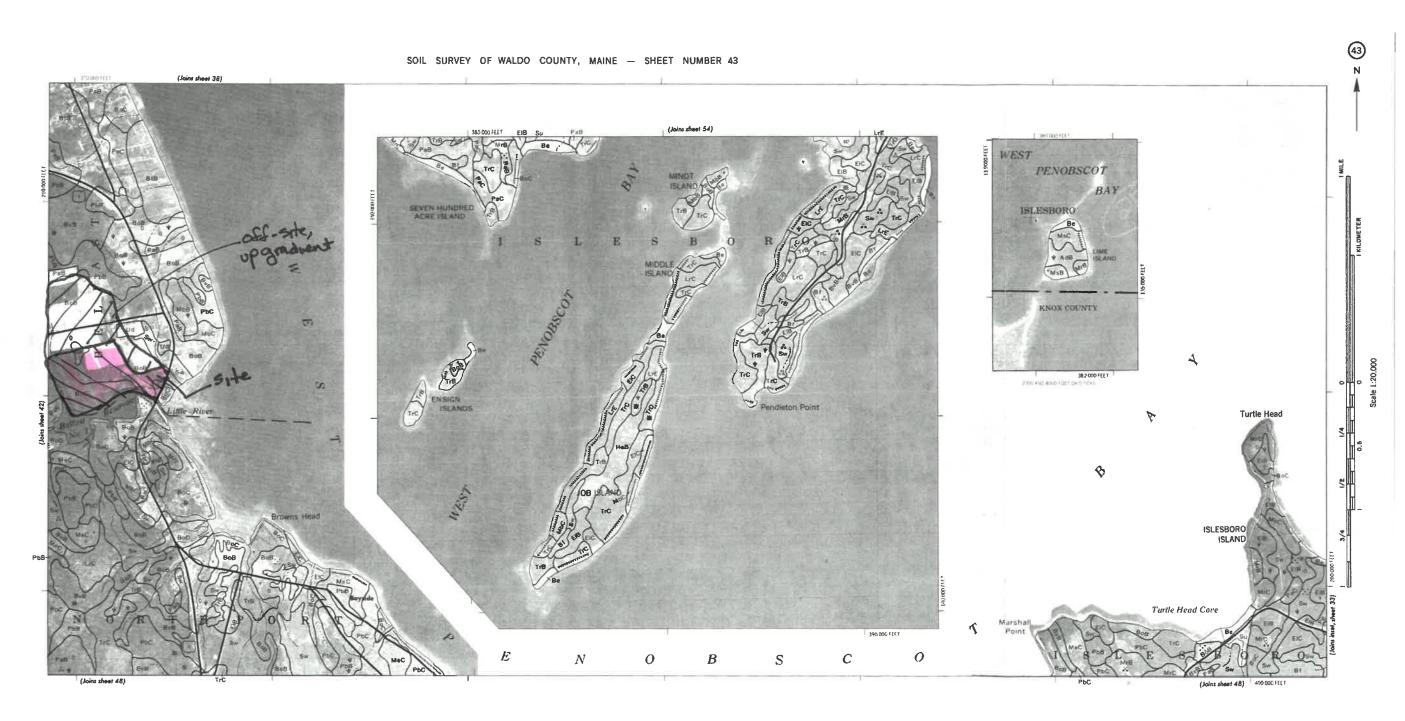
‡

Byfield, Massachusetts Providence, Rhode Island Portsmouth, New Hampshire Portland, Maine Hamilton, New Jersey

978-465-1822 401-433-2160 603-436-1490 207-772-2891 609-584-0090

PROJECT NO. 171. 05027	SITE WAF
SHEET NO.	OF
CALCULATED BY	DATE
CHECKED BY	DATE 4 1 19
SCALE SCALE	4/17/19

NAF Stormer Pre-Condi	tions	2/12/19
Purpose: To determine the Site (land con characteristics, Star and To inthis).	the existing condutions in your los munater most volume	ns of
Assimptions:		
1. Soil Classifications wi Soil groups are lossed Delineation Report Broadwater U.C.	th corresponding hydral off of the H155 prepared for Kanis	olonic mapping/ om by
Soil Mag Symbol PWA SWA PWC	H64 C/D C/D	
PNB PND BaA UdA	C/D C/D C/D	
2 Soils that have		
	to determe areas, lev Slopes using polylin	



Byfield, Massachusetts Providence, Rhode Island Portsmouth, New Hampshire Portland, Maine Hamilton, New Jersey

978-465-1822 401-433-2160 603-436-1490 207-772-2891 609-584-0090

PROJECT NO. 71,05027	SITE WAP
SHEET NO Z	OF
CALCULATED BY MH	DATE 2 12 19
CHECKED BY MM	DATE
SCALE NA SIB	4/17/19

4	Hydro CAN used to coloulate and end
	Hydro CAD used to calculate areas, flow rates, and To path times based on inputs provided.
5	Classified the Ste as Type III 24-hr rainfall
	Classified the Site as Type III 24-hr rainfall based on Maine DEP, Chapter 500: Stormwater management, Appendix H. 24-hr duration rainfalls for various return periods.
6.	Hydro CAD automatically Selects/calculates the velocity factor, Mannings number, and To times based off of inputs selected.
4	To times based off of inputs selected.
7.	Subcatchments 9 and 10 are runoff from
	Off Site. Prenson used Uslay to determe
and the same of the	Contours / elevations of those areas.
8.	"Field is referred to as the Former Goldwood
enfect evenue	Property "Old Reld" is referred to as the only existing field now used for logging on the east side of the site
9.	Soil type / classification is assumed to 'all be type C/D soils in offsite subcoutchments (Subcatchment 9 10, \$ 11) besides BaAm Subcatchment 9. Refer to NRCS sals
	BaAn Subcatchment 9 10, \$ 11) besides BaAn Subcatchment 9 Rect to NPCS old
	Map for Waldo County, Assumed

of supervisions and the supervision of the supervis

Table 5-1 - Hydrologic Soil Groups for Maine Soils

This table provides information on the hydrologic soil series recognized in Maine and is current as of January 1, 2016. It is understood that these ratings may, and some probably will, change over time and with better data. The USDA - NRCS (Natural Resources Conservation Service) should be contacted for more accurate information. http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm

HSG A	HSG A/D	HSG B	HSG B/D	HSG C	HSG C/D	HSG D
Adams	Au Gres	Agawam	Atherton	Becket	Boothbay #	Abram
Colton	Bucksport	Allagash	Belgrade	Chesuncook *	Buxton #	Aurelie
Croghan	Chocorua	Bangor	Charles	Conant	Chesuncook **	Bemis
Danforth	Kinsman	Berkshire	Cornish	Dixfield *	Dixfield **	Benson
Deerfield	Markey	Caribou	Elmwood +	Elliottsville	Dixmont	Biddeford
Eldridge	Moosabec	Charlton	Fredon	Howland *	Easton	Brayton
Enchanted	Naskeag	Fryeburg	Halsey	Linneus	Howland **	Burnham
Hermon	Naumburg	Hadley	Limerick	Mapleton	Lamoine	Cabot
Hinckley	Rifle	Hartland	Lovewell +	Marlow	Leicester	Canaan
Mahoosuc	Scarboro	Nicholville ^	Medomak	Melrose	Perham **	Canandaigua
Masardis	Searsport	Machias ^	Ninigret +	Paxton	Pushaw	Colonel
Merrimac	Sebago	Madawaska ^	Podunk +	Penquis	Ragmuff **	Creasey
Skowhegan	Togus	Monadnock	Raynham	Perham *	Peru **	Daigle
Stetson	Vassalboro	Ondawa	Red Hook	Peru *	Skerry *	Gouldsboro
Sunday	Walpole	Salmon	, Roundabout	Plaisted	Surplus **	Hogback
Udipsamments	Waskish	Sheepscot ^	Rumney	Ragmuff *	Washburn	Hollis
Windsor			Saco	Rawsonville	Woodbridge	Knob Lock
			Scio +	Sisk		Lyman
		39.	Sutton +	Skerry **		Monarda
			Swanton	Suffield		Monson
			Whately	Surplus *		Peacham
			Winooski +	Tunbridge		Pillsbury
			Wonsqueak	Winnecook		Ricker
						Ridgebury
	Soils (with *)		Saddleback			
	with a dense	unconsolidated ma		Scantic		
	**) most com	monly HSG C/D		Saugatuck		
	Soile (with +)	are USC B as B/D		Schoodic		
	Solis (Wid1 +)	are HSG B or B/D		Swanville		
	Soils (with ^)	are HSG B if wate		Telos		
	horizon great	er than 10		Thorndike		
	Soile (with #)	are HSG C or C/I		Westbury		
	30115 (WILLI #)	are HSG C - or C/I		Whitman		

Byfield, Massachusetts Providence, Rhode Island Portsmouth, New Hampshire Portland, Maine Hamilton, New Jersey

978-465-1822 401-433-2160 603-436-1490 207-772-2891 609-584-0090

PROJECT NO. 171.05027	SITE NAP
SHEET NO.	OF
CALCULATED BY	DATE 2/12/19
CHECKED BY MON	DATE
SCALE V/A SJB 4	17/19

000 001 0000		
	1	
A. Subcatchment 1		
	+	
1. Area. (sq. ft.)	CN	Description
	å .	
303, 390	70	Good woods, HSGC/D
12,768	70	6-1-1-1-1-1-1-1
Total: 316,158		Good woods, HSG C
10121 . 0.0,156	-	
		* Combined all soils w/ the
		same HSG and
2. Te Path		description. For example,
		Pu, A and Pwc 10 cated.
a-b sheet flow	+ - +	INA and PWC ID CUTE 9
		in Good woods areas
Woods: Dense Underbrush	¥	are added together,
Mannings No. : 0.8		U
Flow lingth: 88 ft		
12-yr 24-hrrain: 290	in	
	11.7	
Slana - V2 - V1	10n	7/->5/
Slope = Y2-Y1 = Flow length	00-	76)F4 = 0,045 A/F4
Flow length	88	
$T_{t} = 0.007(nL)^{0.8}$ $P_{2}^{0.5} \leq 0.4$	i	n = friction factor
arb Das ball		1 = flow loveth (CL)
P2 5 0.4		L = flow length (ft)
= 0.007(0.8 X 88A) O.	8	Z= (ountail (in.)
= 0.007[0.8 1.884)]	-	S = Slope (H/ft)
(292)05(2000)		5 = Slope (Pt/ft) Tt = travel time (min.)
(290)0.5 (0.045)0.4		
a-b = 25.6 min		
a-b 1,		5
	No =	P. Gartina
		TE Cornected
	d	17mi H 1200
		tom Hydrocas
	01	Linw/ formula
	Med	min w/ tommia
	1	

Byfield, Massachusetts Providence, Rhode Island Portsmouth, New Hampshire Portland, Maine

978-465-1822 401-433-2160 603-436-1490 207-772-2891 609-584-0090

PROJECT NO. 171.05027	SITE NAT
SHEET NO.	OF
CALCULATED BY	DATE 2/2/9
CHECKED BY MON	DATE
SCALE NA SIB	4/17/19

	Hamilton, New Jersey	609-584-0090	
	b-C Should	ow concentrated	flow
	Forest w/	Heavy Litter	
	Velocity Fact	ar: 25 A15	
	Flow length	: 654	* Average Velocity Calculated
	5lope : 0.01	5 F4/F4	by HydroCAD #
_ +	Elevation 5.	5 F4/F4 42 = 76 F4 X1 = 75 (7 V= avg. velocity (F4/s)
	7 t = L	- = 134 BT	L= flow length (ft)
NAME OF STREET	b-c 36001	= 34 PT	
ndependence producery con-	35	3 1	
	1+ = 275	min	
	b-a		
1			
+	C-d Shallo	in concentrated	(How)
1	Forest W/ A	leavy Litter	
	Vel. Factor	· Z.5 A1/5	
	Flow length	:729	
4	Slope : 0.05		
	1(42 = 75 A	·, y = 7/A)	
	Tt = 2.0 h		
	C-d		
Note the space	d-e Shalla	N conc. flow	
	Forest w/ H	eary litter	
	Length: 4th) A)	Tc = (25.6+2.5+2.0+
	Slape 10,015		25.6+13.5)min
	(42 = 71A,	4, = 64 Pt)	lmin
	+ 35/	poor a	Tc = 69.2 min
	Tt = 256 min	the second of the second	97.7
	1, 1		
,	e-f shallow	mel w/2 bottom ?	2:1 sideslopes
	C T Granden	CODE + CO	Dense brush
	Terest w/ Heave		
	length: 203	I de la	= 4.3 min
	Slape: 0.1	ULUE	Imm
	1/2 017	71 + 10	

PROJECT NO. 171.05027	SITE NAP
SHEET NO5	OF
	DATE 2/12/19
CHECKED BY NPM	DATE
SCALE NA SJB	417/19

3					in the second se
B.	Subcatchment 2				
		}		ş ;	
1.	Area (sq. ft)	CN	Desci	ription	
	653,559	70	Good u	occls t	434 C/D
and the supplemental state of the supplement	38,729	74	775%	Grass,	HS6 4/D
	Total: 692,288/		1		
				 	
7	Te Path				
٠.	16 Tain				
	a-b Sheet flow				
	Woods: dense inde	choush			
	Mannings No. : 0.8				
ļ	Flow length: 134 ft				
	P2:2.90 in.				
	Slope = 0.015 ft/f4				
0.00	$(y_1 = 804y_1 = 7.8$	ft)		7	
han sakaran ana aha	7 000 (00 40)	0.8		78 Z	one of the state o
	$T_{t} = 0.007 (0.8 \times 134)$ $a-b = 0.007 (0.8 \times 134)$	(+)	00 min)		
~~	(2.90 in)0.5 (0		ThF		
	and the same of th			+	
	Tt = 55.7 min	~~			
	b-c shallow conc.	Plane			
	Forest w/ Heavy L	itter			
	Velocity Factor: 2,5 4	-/5		1	
	Flan Length: 175 A	4			
	Slope: 0.04 A14		Ann vive	+ + +	-
1	(1/2 = 78 At y, = 71	A))	,		3
+ + -	Te = 5.8 min	-	,		
The	0-c = 5.8 min	· · · · · · ·			
Sparre Sp		1		\$ 	
conse spens			·	- +	

PROJECT NO. 171,05027	SITE NAM
SHEET NO	OF
CALCULATED BY MH	DATE 3/12/19
CHECKED BY	DATE
SCALE NA SJB 4	1719

· C-d Shallow conc. flow	
Forest w/ Heavy Litter	· e-+ shouldon conc. How
Vel. Factor = 2.5 ft/s	torest w/ Heavy Litter
Flow length = 199 ft	length: 4684
P2 = 2.9 %	5/ope:0.02
Slope: 0.01 A 14	(42 = 6744, y = 5844)
Slope: 0.01 # /f4 (y2 = 71ft /y, = 769 ft)	et = 22 1 min
6-d = 13.5 min	Channel w/2 bottom
· at-e - Shoulaw conc. Flow .	f-g shallow cont (100 2:1 sto Ferest w/ litter 50.46
	Herest u/ litter Earty,
length = 4/ft 5/gpe: 0.049	Congth: 51/1 ft dense
Dige: 0.049	Ferest w/ litter Earth, Length: 511 ft dense Slape: 0.055 - (42 = 58 ft y, = 29.5 ft)
(4z = 69 F4, y, = 67 F4)	(4/2 = 58+14, = 29.5+4)
- 1.7 = +1.2 mini	It = +4.4 min 3,4 min
de Te= 42 Emin	3,4 min
(2\.7 MtM	
C. Subcatchment 3	
1. Area (sq.ft) (N	Description
205588 74	775% grass, HSG C/D (Field)
163,239 70	Good Cuords, HSGC
72290 74	7.75% grass, HSG C (Field)
Total: 391,117	
Z. To Path	
2. 14 1 am	
a la clasif fla.	
a-b sheet flow woods Grass Dense Twoods Mannings Noi 0.24 o.40	111111
Manninge Alai 024- a 1	21234
Flow length: 115 ft	
P2 = 2.9 in	
5lope: 0.04 ft/ft	
(y2 = 74.5(+, y = 70.8+)	
T ₂	
a-b = 19.1 min	

978-465-1822 401-433-2160 603-436-1490 207-772-2891 609-584-0090 SHEET NO. 7

CALCULATED BY MPM

CHECKED BY MPM

DATE

SCALE N/A

SCALE N/A

SITE NAF

DATE

SCALE N/A

SITE NAF

DATE

STALE N/A

SITE NAF

DATE

STALE N/A

SITE NAF

DATE

Titalimon, New delacy	
Tt 0.007 (0.24 x 3004) a-b (2.90)05 (0.029)04	
Tt = 0.007 (0.24 x 3004)	
a-b /29. 105/10.4	((Dmin)
(0.024)	
Tt = 31.1 min	
a-6	
	MXH
b-c shallow conc flow,	e-f Shallow conc. Aow
Short Grass Pastore Wooded	Forest w/ heavy litter
Vel. Factor: 7At/s	Length: 254 ft
Flow Cangth: 15574	5lope: 0.018
Slave: 8.023 At /4	
(y2 = .70 ft, y, = 665ft)	(42 = 60.5ft, y = 56ft)
(9 2 - 10 1 9 1 - 00 3 1)	Tt = 12.6 min
7. 24	e-f
Tt = 3.4 min	Channel w/2 bottom;
b-c	f-g shallow conc. Plow 211
	Forest w/ heavy litter soul
C-d Shallow conc. flow	Cength : 30544
Short Grass Pasture	5/ge: 10,036
Vel. Factor : 7 ft/s	Length: 305 ft Earth, Bloce: 0.056 dense (4z = 56 ft, y, = 39 ft) on
Flow length: 372 A	
Slope = 0.009 At /At	f-g 2
(42 = 66.5ft, y, = 63ft)	
T 00	Te = 55,3min
$T_{t} = 9.3 \text{min}$	423
C-d	NO.7
d-e Shallow conc. Flew	1
Shert grass pastire length: 134 ft Slope: 0.019	
ength: 139 t4	
5(ape: 0.0/9	
(42 = 63ft, 4, = 60.5 ft)	<u>'</u>
It = 2,3 min.	

PROJECT NO	SITE TUAL
SHEET NO.	OF
CALCULATED BY	DATE 2/12/19
CHECKED BY MOM	DATE
SCALE WA 5JB	4/17/19

D. Subcatchment 4
1. Area (sq. A) CN Description 130853 74 775% grass, HSG C/D (Field) 26033 74 775% grass, HSG C (Field) 40857 70 Grood woods HSG C 56918 70 Grood woods, 'HSG S/D 70tal: 254,691 / Grood woods, 'HSG S/D 7. To Path a-b sheet flow Grass: Dense Mannings No: 0.24 Flow Censth: 135 At P2: 29in Slope: 0.027 A/A4 (yz = 71.75A, y, = 68 A)
a-b (2.9.n)0.5(0.02+)0.4 (60 min)
Tt = 16.9 min a-b
b-c shallow (cnc. flow Short grass pasture Nel. Factor: 7 ft/s Flow length: 46z ft Slope: 0.02 (42 = 68 ft, fy, = 59ft)
11t = 7.8 min-

PROJECT NO	SITE NAC
SHEET NO	OF
CALCULATED BY MH	DATE 2/12/19
CHECKED BY MPM	DATE
SCALE N/A SIB	417/19

c-d shallow conc. flow
Short grass pastire
Vel, Factor; 7.0 ft/s
Flow length: 184 ft
Slape : 0.038
$(y_2 = 59ft, y_1 = 52ft)$
$T_{c-d} = 2.2 \text{min}$
channel W/ 2' bottom 2:1 slopes Earth, deuse
de comme with bottom and super party autist
d-e shadlaw conc. Plan
Forest w/ heavy littler [Tc = 4+2 min]
5lope:0.033 30.0
(Yz = 50 ft, y = 39 ft)
(42 = 50 ft, 4, = 39 ft) 1-te = 143-00 3.3 min.
E. Subcatchment 5
1. Area (sq.ft.) CN Description
A Company of the second of the
156,789 -207923 74 775% grass, HSG C/D (Field)
7991 23355 7759 9 (ass His 6 (Field)
101al: 231,24 0V 10 0,000 30003
2. Te Path
a-b sheet flow
Grass: Dense
Marinings No: 024
Flow Lexiath: 198 A
Flow length: 198 At Pz = 2.9 in
Slope: 0.027
(yz = 69.5 ft, y = 64 ft)
$T_t = 23 \text{min}$
a-6

PROJECT NO. 171, 05023	SITE NAF
SHEET NO.	OF
CALCULATED BY	DATE 2/12 19
CHECKED BY MPM	DATE
SCALE NA SJB	4/17/19

Tc = 0.007 (0 a-b (29m)	0.24×30	20 (40 min)
Tc = 36.1 mi	~	
a-b		MKH
b-c Shallow conc Short-grass Dasture Nel. Factor: 7ft/s Flow Length: 1 Slope: 0.0/4 (y2 = 64ft, y, = Tt = 29 min b-c C-d Shallow conc. Short-grass postu long h: 285 ft Slope: 0.032 (y2=62ft, y, =53 Tt = 3.8 min	Acu 16 A 62 A)	channel, 2' bottom 2:1 side d+e Shatten conc flow path, Forest w/ heavy litter length: 210 ft Slope: 0.043 (Yz=53 ft, Y = 44 ft)
F. Subcatchment	(g)	
1. Area (59. ft.) 142,888 10372 (61952 16.35 51,989 7,818 34,971 32,024 Total:342,649		Description Good Woods, HSG 9D Good woods, HSG C 775% grass, HSG C 775% grass, HSG D Gravel, (NE of Paved driveway) Impervious (Roofs, Pavement) Good woods, HSG D

PROJECT NO. 171.05027	SITE NAC
SHEET NO.	OF
CALCULATED BY MH	DATE 2/12/19
CHECKED BY MANAGEMENT OF THE CHECKED BY MANAG	DATE
SCALE NA SJB	4/17/19

Hamilton, New Jersey	609-584-0090
2. To Path	
· a-b Sheet fl Woods: Dens	se Underlorush
Mannings No: Flow length: P2:2.9 in	
Slope: 0.015 (yz = 57A, y Tt = 32 min	, = 56.ft)
b-c Shallow	conc. Plon
Forest w/hear lingth: 92-64 _Slope: 0,014 b=c=5.2 min	(y2 = 56ft, y, = 54.75ft)
· c-d shallow	conc. flow
Short grass parties of Flow levigth: P2 = 2.9 in	74 A
Slope: 0.01 (y2 = 54.75 f	4, 4, = 54.4)
· d-e shallow	conc. Flow
short grass po length: 163 ft Slope: 0.055	28ture.
(yz = 54ft, y, . Tt = 1.7 min d-e	= 45 f4)
u-e	

PROJECT NO. 171,05027	SITE NAT
SHEET NO. 12	OF
CALCULATED BY M	DATE 2/12/19
CHECKED BY MPW	DATE
SCALE N/A SJB	417/19

Hamilton, New Jersey	609-584-0090	
· e-f Shallon	conc. Agus	
Forest w/ hea	vy litter	
length: 39 CH	J	
Slove 0.1		
14 = 45 At 1	1=410	
192 700	1 - 1 - 7	THE WITCHIS
Tt = 0.8 min		Te Al-Omin
£ 0 0 1	and D.	
++9 Shallow		
forest w/ hoa	vy liner	1 de cha a @ leach 57-0
length: 10 ft		Who stream 9 @ leach 59-2
Slope: 0,5	210	See Drecis
(42 = 41A, 4	= 3674)	
Tt = 0.1 min		
		New Reach - 59- to 36 West
· g-h Shallan	conc. How	
Forces 1 / 100	ty litter E	- Channel Sow (Stream 9)
work: 360 to		5 bottom; 2' side slopes
5lope: 0.074	500	Rocky, gravel
(42 = 36A, 4,	(44 8)	
1+ = 32 mir		
g-h		
· h-i Shallow	conc. flax	
Grassed water		Channel Flow (stream 9) 5 bottom: 2: 5 leslopes
length: 350 f	- //	Soften : 2:15 & slopes
5lape: 0.02		grassed.
(y2 = 28ft, 4)	20,754)	
Tt = 2.70m		
h-i		
Tc = 76.3 min		
		
V		

Byfield, Massachusetts
Providence, Rhode Island
Portsmouth, New Hampshire
Portland, Maine

978-465-1822 401-433-2160 603-436-1490 207-772-2891 609-584-0090 SHEET NO. 13 OF

CALCULATED BY MH DATE

CHECKED BY MPM DATE

SCALE VA 5 8 A11 9

Hamilton, New Jersey	609-584-0090	
G. Subcatchmen	+ 7	
1. Area (sa +	F) (N	Description
93555	70	Good woods, HSG C/D
7578	74	> 75 % grass, HSG C/D
Total: 94,383		
:		
2. To Path		
a-b sheet 1	Plow	c-d shallow conc. flow
Woods: Dens		ish Forest w/ heavy litter
Mannings No:	0.8	Length: 13 ft
Flow Ceneth		Slope : 0.23
P2: 2.9 in		$(y_2 = 33 \text{ f4})$ $y_1 = 30 \text{ f4})$
Slope: 0.021	0	t = 0.7 min
(42 = 45.5 A	·, y, = 41 ft)	(-d)
T+ = 54.6 m		Hallay Comme Distra The
a-b		d-e Charlow conc flow alst
		Forest w/ heavy litter dent
	4-1-1-1-1	Length = 171 ft
		Slope: 0.03
		(42 = 30ft, 4 = 26ft) V
		Tt = 6.6 min
b-c shallow	conc. flou	
Forest W/ He Vel. Factor: 2.	ary Litter	
Vel. Factor: 2.	5 4/3	
Flow length:	11274	
Slope: 0.07		
Cyz = 41 ft, y	$r_{i} = 33 + 4$	
(42 = 41ft, 4 Tt = 2.8 min		
b-c	J	
· · · · · · · · · · · · · · · · · · ·		

PROJECT NO. 171.05027	SITE WAR
SHEET NO	OF
CALCULATED BY MH	DATE 2/12/19
CHECKED BY WPM	DATE
SCALE N/A SIB 4	17/19

enemal ?	2 bottom 21 Sides
e-f Shallow conc.	tow a to a
rucest by Heavy t	the carry, and wife
Vel. Factor: 2,8 ft.	
Flow Length: 173 Slope: 0.06	
(y2 = 26 H, y,	= Zlab (inv. culvert)
It = 2min OSmin	
e-+'	Discharge through
To = 66.7 min	Discharge Through 18" Whet inder Rt.
Cet. Min.	Initian 1 mv. m= 21.6
	Institute 1 mv. m = 21.6 mv. out = 18.3
	1=83/00
H. Subcatchment 8	
1. Area (sq. ft.)	CN Description
12652	70 Grood woods, HSG 4/D
2956	74 >75% grass, HSGC/D
Total: 15608	
Q. To Path	
a-b sheet flow	
woods: Dense L	Inderbrush
Mannings No: 0.8	
Flow Length: 58	## V
P2: 29in Slope: 0,017	
(42 = HI Ft, 40 ft)	
Tt = 27.1 min	
a-b	

Byfield, Massachusetts Providence, Rhode Island Portsmouth, New Hampshire Portland, Maine 978-465-1822 401-433-2160 603-436-1490 207-772-2891 609-584-0090 SHEET NO. 15 OF DATE Z/12/19

CHECKED BY MPM DATE

SCALE 15 OF DATE

SCALE 15 OF DATE

Tt = 0.00 7 (0.8 x 112 ft) (60) a-b (29, 0) (0.04) 0. V (60) Te = 32.6 min a-b min b-c Shallow conc. flow Forest w/ Heavy Litter Vel. Factor: 2.5 ft/s Flow Length: 43 ft / Slope: 0.07 (Y2 = 40 ft, Y1 = 37 ft) V The -1.1 min b-c -1.1 min b-c -1.4 min b-c -1.4 min c-d Shallow conc. flow Forest W/ Heavy Litter Vel. Factor: 2.5 ft/s Flow Cength: 14 ft / Slope: 0.71 (Y2 = 37 ft, Y1 = 27 ft) Tt = 0.1 min c-d -2 charled or votant, 3:1 sales, eath dessionest d-e charled or votant forest w/ heavy litter Lischarge through length: 152 ft. Slope: 0.024 (Y2 = 27 ft, Y1 = 23.4 ft.) Tc = 24.8 min Tc = 4.5 min Tc = 34.7 min Tc = 34.7 min Tc = 34.7 min Tc = 34.7 min 34.7 min	Hamilton, New Jersey	609-584-0090	
a-b = 32.6 min a-b MKH b-c Shallow conc flow Forest w/ Heavy Litter Vel. Factor: 2.5 A/S Flow Length: 43 A/S Slope: 0.07 (Y2 = 40 Pt. Y, = 37 +t) V The I min b-c Min b-c Min b-c Min C-d Shallow conc. flow Forest w/ Heavy Litter Vel. Factor: 2.5 Ft/S Flow Length: 14 A/S Slope: 0.i71 (Y2 = 37 ft, Y, = 27 ft) The coll min C-d Channel of bottom; 2:1 soles eath development d-e shallow conc. flow Forest w/ heavy litter Length: 152 fts Slope: 0.024 (Y2 = 27 ft, Y, = 23.4ft.) Tc = 24.8 min Tc = 24.8 min Te = 24.8 min Terest w/ Litter Lit		28	
a-b = 32.6 min a-b MKH b-c Shallow conc flow Forest w/ Heavy Litter Vel. Factor: 2.5 A/S Flow Length: 43 A/S Slope: 0.07 (Y2 = 40 Pt. Y, = 37 +t) V The I min b-c Min b-c Min b-c Min C-d Shallow conc. flow Forest w/ Heavy Litter Vel. Factor: 2.5 Ft/S Flow Length: 14 A/S Slope: 0.i71 (Y2 = 37 ft, Y, = 27 ft) The coll min C-d Channel of bottom; 2:1 soles eath development d-e shallow conc. flow Forest w/ heavy litter Length: 152 fts Slope: 0.024 (Y2 = 27 ft, Y, = 23.4ft.) Tc = 24.8 min Tc = 24.8 min Te = 24.8 min Terest w/ Litter Lit	T+ = 0.00 7	(0.8x 112 ft)	
a-b = 32.6 min a-b MKH b-c Shallow conc flow Forest w/ Heavy Litter Vel. Factor: 2.5 A/S Flow Length: 43 A/S Slope: 0.07 (Y2 = 40 Pt. Y, = 37 +t) V The I min b-c Min b-c Min b-c Min C-d Shallow conc. flow Forest w/ Heavy Litter Vel. Factor: 2.5 Ft/S Flow Length: 14 A/S Slope: 0.i71 (Y2 = 37 ft, Y, = 27 ft) The coll min C-d Channel of bottom; 2:1 soles eath development d-e shallow conc. flow Forest w/ heavy litter Length: 152 fts Slope: 0.024 (Y2 = 27 ft, Y, = 23.4ft.) Tc = 24.8 min Tc = 24.8 min Te = 24.8 min Terest w/ Litter Lit	a-b	(60	
D-C Shallow conc flow Forest W Heavy Litter Vel. Factor : 2.5 ft/s Flow Length: 43 ft V Slope: 0.07 (Y2 = 40 ft, Y, = 37 ft) V The state : 2.5 ft/s Flow Length: 14 ft Vel. Factor : 2.5 ft/s Flow Length: 14 ft Slope: 0.7! (Y2 = 37 ft, Y, = 27 ft) V The cold min cold Channel of bottom; 2.1 sides, eath december Forest W heavy litter Length: 152 ft Slope: 0.024 (Y2 = 27 ft, Y, = 23.4ft) The color of the concentration of the color	(2.9m)	(0.04)	
D-C Shallow conc flow Forest W Heavy Litter Vel. Factor : 2.5 ft/s Flow Length: 43 ft V Slope: 0.07 (Y2 = 40 ft, Y, = 37 ft) V The state : 2.5 ft/s Flow Length: 14 ft Vel. Factor : 2.5 ft/s Flow Length: 14 ft Slope: 0.7! (Y2 = 37 ft, Y, = 27 ft) V The cold min cold Channel of bottom; 2.1 sides, eath december Forest W heavy litter Length: 152 ft Slope: 0.024 (Y2 = 27 ft, Y, = 23.4ft) The color of the concentration of the color	= 32.6	min	
b-c Shallow Conc. flow Forest W/ Heavy Litter Vel. Factor: 2.5 fts Flow Length: 43 ft Slope: 0.07 (Y2 = 40 ft, y, = 37 ft) V The Indian b-c C-od Shallow Conc. flow Forest W/ Heavy Litter Vel. Factor: 2.5 ft/s Flow Length: 14 ft Slope: 0.71 (Y2 = 37 ft, y, = 27 ft) The coll min c-d Channel g bottom; 21 sides, earth, dense brush d-e Challow Conc. flow Forest W/ Heavy Litter Length: 152 ft, Slope: 0.024 [Slope: 0.024 [Y2 = 27 ft, y, = 23.4ft] The constant of the concentration of the concentr	a-b		
Forest W/ Heavy Litter Vel. Factor: 2,5 A/s Flow Length: 43 A Slope: 0.07 (Y2 = 40 A, Y, = 37 A) V It = 1.1 min b-c L-d Shallow Conc. Alow Forest W/ Heavy Litter Vel. Factor: 2,5 A/s Flow Length: 14 A Slope: 0.171 (Y2 = 37 At, Y, = 27 At) T+ = 0.1 min C-d Channel y bottom; 3:1 soles eath deuse oven d-e shallow conc. Flow Forest W/ heavy litter Length: 152 At, Slope: 0.024 (Y2 = 27 At, Y, = 23.4AL) T+ = 6x5 min T- = 24.8 min T- =			MKH
Forest W/ Heavy Litter Vel. Factor: 2,5 A/s Flow Length: 43 A Slope: 0.07 (Y2 = 40 A, Y, = 37 A) V It = 1.1 min b-c L-d Shallow Conc. Alow Forest W/ Heavy Litter Vel. Factor: 2,5 A/s Flow Length: 14 A Slope: 0.171 (Y2 = 37 At, Y, = 27 At) T+ = 0.1 min C-d Channel y bottom; 3:1 soles eath deuse oven d-e shallow conc. Flow Forest W/ heavy litter Length: 152 At, Slope: 0.024 (Y2 = 27 At, Y, = 23.4AL) T+ = 6x5 min T- = 24.8 min T- =	b-c Shallow	conc Acres	
Vel. Factor: 2.5 H/s Flow Length: 43 A V Slope: 0.07 (Y2 = 40 PL, Y, = 37 FD) V The I.I min b-c C-d Shallow Conc. Flow Forest W/ Heavy Litter Vel. Factor: 2.5 Fl/s Flow Cength: 14 Ft Slope: 0.71 (Y2 = 37 Ft, Y, = 27 Ft) The c-d Channel of Bottom; 21 sules, earth, duse brush d-e Shallow conc. Flow Forest W/ heavy litter Length: 152 ft. Slope: 0.024 (Y2 = 27 Ft, Y, = 23.4ft.) The c-d The shallow conc. Stown Slope: 0.024 (Y2 = 27 Ft, Y, = 23.4ft.) The c-d The shallow conc. Stown Slope: 0.024 (Y2 = 27 Ft, Y, = 23.4ft.) The concepts is the concepts of the concepts in the concepts			
Flow length: 93 ff & Slope: 0.07 (Y2 = 40 ft, Y, = 37 ft) V It = 1.1 min b-c L-d Shallow Canc. Flow Forest W/ Heavy Litter Vel. Factor: 2.5 ft/s Flow length: 14 ft Slope: 0.71 (Y2 = 37 ft, Y, = 27 ft) Tt = 0.1 min C-d Channel of bottom; 2:1 sides, earth, descended Forest W/ heavy litter Length: 152 ft, Slope: 0.024 (Y2 = 27 ft, Y, = 23.4ft) Tc = 24.2 min Tc = 24.2 min Tc = 24.2 min Concrete Tc = 24.2 min Concrete Concrete Concrete Tc = 24.2 min Concrete Tc = 24.2 min Concrete	Vel. Factor: 2	E Ale	
Slope: 0.07 (Y2 = 40 Pt. Y, = 37 ft) V The Inin b-c C-d Shallow Conc. Flow Forest W/ Heavy Litter Vel. Factor: 2.5 ft/s Flow Length: 14 ft Slope: 0.71 (Y2 = 37 ft, Y, = 27 ft) The = 0.1 min C-d Channel of bottom; 2:1 soles, earth deage brush d-e Shallow conc. Flow Forest W/ heavy litter Length: 152 ft Slope: 0.024 (Y2 = 27 ft, Y, = 23.4ft.) The construction of the concentration of the construction of the con			
(Yz = 40 ft, y, = 37 ft) is To a limin Local Shallow Conc. Flow Forest W/ Heavy Litter Vel. Factor: 2.5 ft/s Flow Cength: 14 ft Slope: 0.71 (yz = 37 ft, y, = 27 ft) To a Oil min Cod Channel of Bottom; d'I soles, eath, deux brush d - e shallow conc. flow Forest W/ heavy litter Length: 152 ft, Slope: 0.024 (yz = 27 ft, y, = 23.4ft.) To a 24.8 min To a 24.8 min Concrete			
C-d Shallow Conc. Flow Forest W/ Heavy Litter Vel. Factor: 2.5 H/S Flow Length: 14 At Y Slope: O.i7! (yz = 37 ft, y, = 27 ft) Tt = 0.11 min C-d Channel J' Dottom; 2!1 soles, earth, denselven and the conc. Flow Forest W heavy litter Length: 152 ft, Slope: 0.024 (yz = 27 ft, y, = 23.4 ft.) Tt = length: 152 ft, Tt = len	(V = 40.64 V	- 37 CAN	
C-d Shallow Conc. Flow Forest W/ Heavy Litter Vel. Factor: 2.5 H/s Flow Cength: 14 ft Slope: 0.71 (42 = 37 ft, y, = 27 ft) Tt = 0.1 min C-d Channel of Bottom; 3:1 soles, eath deusebrush d-e Shallow conc. Flow Forest W/ heavy litter Length: 152 ft Slope: 0.024 (42 = 27 ft, y, = 23.4ft.) Tt = 6.5 mm 1.5 mm, Tc = 24.8 min Tc = 24.8 min Conc. Flow Inv. 10 = 23.4 (42 = 76' Concrete		- 9 / - 0 / -	
C-d Shallow Conc. Flow Forest W/ Heavy Litter Vel. Factor: 2.5 H/s Flow Cength: 14 ft Slope: 0.71 (42 = 37 ft, y, = 27 ft) Tt = 0.1 min C-d Channel of Bottom; 3:1 soles, eath deusebrush d-e Shallow conc. Flow Forest W/ heavy litter Length: 152 ft Slope: 0.024 (42 = 27 ft, y, = 23.4ft.) Tt = 6.5 mm 1.5 mm, Tc = 24.8 min Tc = 24.8 min Conc. Flow Inv. 10 = 23.4 (42 = 76' Concrete	b = I min		
Forest W/ Heavy Litter Vel. Factor: 2.5 kt/s Flow Length: 14 ft Slope: 0.7.1 (yz = 37 ft, y, = 27 ft) Tt = 0.1 min C-d Channel g' bottom; 2:1 siles, eath, deuse brush d-e shallow conc. flow Forest W/ heavy litter Length: 152 ft, Slope: 0.024 (yz = 27 ft, y, = 23.4 ft) Tc = 24.8 min Tc = 34.8 min Length: 152 ft, Tc = 24.8 min Tc = 24.8 min Tc = 24.8 min Tc = 24.8 min Te = 25.4 min Te = 24.8 min Te = 25.4 min Te = 24.8 min Te = 25.4 min Te = 24.8 min Te = 24	0-0		
Forest W/ Heavy Litter Vel. Factor: 2.5 kt/s Flow Length: 14 ft Slope: 0.7.1 (yz = 37 ft, y, = 27 ft) Tt = 0.1 min C-d Channel g' bottom; 2:1 siles, eath, deuse brush d-e shallow conc. flow Forest W/ heavy litter Length: 152 ft, Slope: 0.024 (yz = 27 ft, y, = 23.4 ft) Tc = 24.8 min Tc = 34.8 min Length: 152 ft, Tc = 24.8 min Tc = 24.8 min Tc = 24.8 min Tc = 24.8 min Te = 25.4 min Te = 24.8 min Te = 25.4 min Te = 24.8 min Te = 25.4 min Te = 24.8 min Te = 24			
Forest W/ Heavy Litter Vel. Factor: 2.5 kt/s Flow Length: 14 ft Slope: 0.7.1 (yz = 37 ft, y, = 27 ft) Tt = 0.1 min C-d Channel g' bottom; 2:1 siles, eath, deuse brush d-e shallow conc. flow Forest W/ heavy litter Length: 152 ft, Slope: 0.024 (yz = 27 ft, y, = 23.4 ft) Tc = 24.8 min Tc = 34.8 min Length: 152 ft, Tc = 24.8 min Tc = 24.8 min Tc = 24.8 min Tc = 24.8 min Te = 25.4 min Te = 24.8 min Te = 25.4 min Te = 24.8 min Te = 25.4 min Te = 24.8 min Te = 24	and Shallows	Cons Q	
Vel. Factor: 2.5 ft/s Flow Length: 14 ft Slope: 0.71 (yz = 37 ft, y, = 27 ft) Tt = 0.1 min c-d Channel of potton; 2:1 sides, earth, dense sough d-e shallow conc. flow Forest w heavy litter Length: 152 ft. Slope: 0.024 (yz = 27 ft, y, = 23.4ft.) Tt = 6.5 min 1.5 min, Tc = 34.8 min Tc = 34.8 min Conercte	Frest Ind H	ear litter	
Flow length: 14 ft Slope: 0.7.1 (yz = 37 ft, y, = 27 ft) Tt = 0.1 min C-d Channel of bottom; 2:1 sides, earth, deuse brush d-e shallow conc. flow Forest w/ heavy litter Length: 152 ft. Slope: 0.024 (yz = 27 ft, y, = 23.4ft.) It = 6.5 min 1.5 min, d-e Tc = 34.8 min Inv. in = 23.4 (inv. wt = 18.6			
Slope: 0.171 (yz = 37 ft, y, = 27 ft) Tt = 0.1 min c-d Channel g' potem; 2:1 siles, earth, deuse brush d-e shallow conc. flow Forest w/ heavy litter Length: 152 ft, Slope: 0.024 (yz = 27 ft, y, = 23.4ft.) Tt = 6.5 min 1.5min, d-e Tc = 34.8 min Conevite			,
(yz = 37 ft, y, = 27 f4) Tt = 0.1 min C-d Channel y' bottom; 2'1 sides, earth, deuse sough d - e shallow conc. flow Forest w/ heavy litter Length: 152 ft. Slope: 0.024 (yz = 27 ft, y, = 23.4ft.) Tt = 6.5 min 1.5 min, d - e Tc = 34.3 min Conercte	5/000: 031		
Tt = 0.1 min C-d Channel of poten; dels, earth, deuse srugh d - e shallow conc. flow Forest w/ heavy litter Length: 152 fts Slope: 0.024 (yz = 27 ft, y, = 23.4ft.) Tt = 6.5 min 1.5 min, d-e Tc = 34.8 min Concrete	11 - 27 (1	1, = 77 (1)	
Cid Channel of bottom; 2:1 sides, earth, deuse sousch d-e shallow conc. flow Forest w/ heavy litter Cength: 152 ft. Slope: 0.024 (yz = 27 ft, y, = 23.4ft.) Tt = 6.5 mm 1.5 mm, Tc = 24.8 min Conevite Tc = 24.8 min Conevite	T, 2 - 37 TT,	Y, = 2T +4)	
Channel of pottom; 2:1 sides, earth, deuse soush d-e shallow conc. flow Forest w/ heavy litter Length: 152 fts Slope: 0.024 (yz = 27 ft, y, = 23.4ft.) Te = 6.5 min 1.5 min, Tc = 34.8 min) Charle Concrete Concrete			
Forest w/ heavy litter Length: 152 ft. Slope: 0.024 (yz = 27 ft, y, = 23.4ft.) The same is smin, The sa	Metabolic control of the control of	0 allation 1 211	
Forest w/ heavy litter Length: 152 fts Slope: 0.024 (yz = 27 ft, y = 23.4ft.) Tc = 34.8 min Length: 152 fts 3'x2' culvet under Rt. 1nv. 1n = 23.4 Inv. wh = 18.6 Length: 15mm Length: 152 fts Conevite Conevite	d-a channe	C. C.	soes, early ainse brosh
Slope: 0.024 (yz = 27 ft, y, = 23.4ft.) Tt = 6.5 mm 1.5 mm Tc = 34.8 min (onerete	7		The Horaxh
Slope: 0.024 (yz = 27 ft, y, = 23.4ft.) [hv. in = 23.4] [nv. wt = 18.6] [t = 6.5 mm 1.5 mm, d-e [t = 34.8 mix] (converte			Scharge 100
(y2 = 27 ft, y, = 23.4ft.) Inv. wt = 18.60 Tt = 6.5 min 1.5 min	Slean O AZE	•	
d-e = 6.5 mm 1.5 mm, & = 76 Tc = 34.8 min) (onevite	- 77 C	22 AU	nv. in= 27, T
Tc = 34.8 min	T, (42 = 27 th, y	= 23,714.)	A
1c = 34.0 min	d-e - ma	1.5mm,	
	T - 51 0		Concrete
34.7 min	1 c 3.0 min		
	34.7 min		

PROJECT NO. 171, 0527	SITE UAT
SHEET NO.	OF
CALCULATED BY MH	DATE 2/12/19
CHECKED BY	DATE
SCALE NA SJB	4/17/19

I. Subcatchment 9 (offsite	
1. Area (sq. ft) CN 8857 74 3818 94 25513 98 5372320 74 Total 570500	Description >75 % grass, H56 C Gravel Roads (Mosses) Impervious (Perlans/Noves) >75% grass, H56 C/D
2. Te Path	
a-b Sheet flow Smooth Surface Length 15 ft Cyz = 87ffy, = 84 A) Tt = 0.1 mm a-b	d-e shallow conc. flaw Forest W/ heavy litter longth: 250ft Slave: 0.032 (y2=70ft, y=62ft) T+=93min d-e
6-c Shallow Conc. Alaw	(T. = 35)1 min
Shortgrass pasture length: 373 F4 Slope: 0.005 142=84 Ft, 4, = 82 Ft) To = 12.6 min b-c	To Stream 9 Into 59-1 See Page 20
C-ol Shallow Conc. Alaw Shart-grass pasture Length: 715ft Slape: 0.017 Lyz=87ft, y, = 70ft) Tt = 13.1 min C-d	

PROJECT NO. 171.05027	SITE NAF
SHEET NO.	OF
CALCULATED BY	DATE 2 12 19
CHECKED BY MPM	DATE
SCALE N/A SJE	3 4 17/19

J. Subcato	chment 10 Co	offsite) upgrad	ient of Perkins
1. Area 298 422 1.304 Total:1,64 2. To Path	76 76 98 1,640 74	Grand woods	(Roadway)
length: 1 Slope: 0 (yz=122	Dense Underb 41 ft / 0.028 ff, y, = 1118 A)		w conc. flow 84ft
Short a length Slope:	ulou conc. flo rass pastine :277 ft v	$\begin{array}{c} (yz = 118ft) \\ Farestw/ \\ W T_t = 15 \\ b-c \end{array}$	Heavy Litter
(-d = 2,	//		
Slope: 0. Cy2 = 90 Tt = 1 d-é	ass pasture 780 ft 2 01 (eft, y, = 88f 8.6 min	1-1	

PROJECT NO. 171.05027	SITE NA
SHEET NO. 16	OF
CALCULATED BY MH	DATE 21219
CHECKED BY MPM	DATE
SCALE N/A 5	1B 4/17/19

Short Grass Pastire	Discharge under	Terrorio, televisiones
Length: 089 ftv	Perkins Through	
Slope: 0.017	culvert. To	-
$(y_2 = 88ft, y_1 = 76f4)$ $T_{\pm} = 12.6 min$	2 Start of Stream 9	
d-e	20 result modelled as Reach	49
T 0/12	133mg 23 V W 3-0.0	
Tc = 94.2 min	HDPE, Smooth willed	
	aymynu (n= 75.5	600
K. Subcatchment 11 (offsite)) cult inv. ost = 75,5-(65) = 75,0	
	= ///	
1. Area (sq.ft.) (N 1/8437 98	Description Impervious	
70 70	Good woods, HSG C/D	
157,469 74	>75% grass, HSG C/D	
Total: 5135271		
Z. To Path		
a-b Sheet flow		E .
Smonth Sichaca		
length 16 ft off	of Perkins to ditch	1
Slope: 1.187		*
Slope: 0.187 (yz = 87 ft, y, = 84 ft) It = 0.1 min		1
4-6		
b-c Shoulow Conc. flou	O I	1
Grassed water way Length: 419 ft Roads	A 1 41	
5/ope : 0.01	rine arian	
(42 = 84 4, = 80 ft)		APPA S
Tt = 4.7 min		

Byfield, Massachusetts
Providence, Rhode Island
Portsmouth, New Hampshire
Portland, Maine

978-465-1822 401-433-2160 603-436-1490 207-772-2891 609-584-0090 SHEET NO. 19 OF

CALCULATED BY MH

CHECKED BY MPM

SCALE MA

SCALE MA

STE MA

DATE

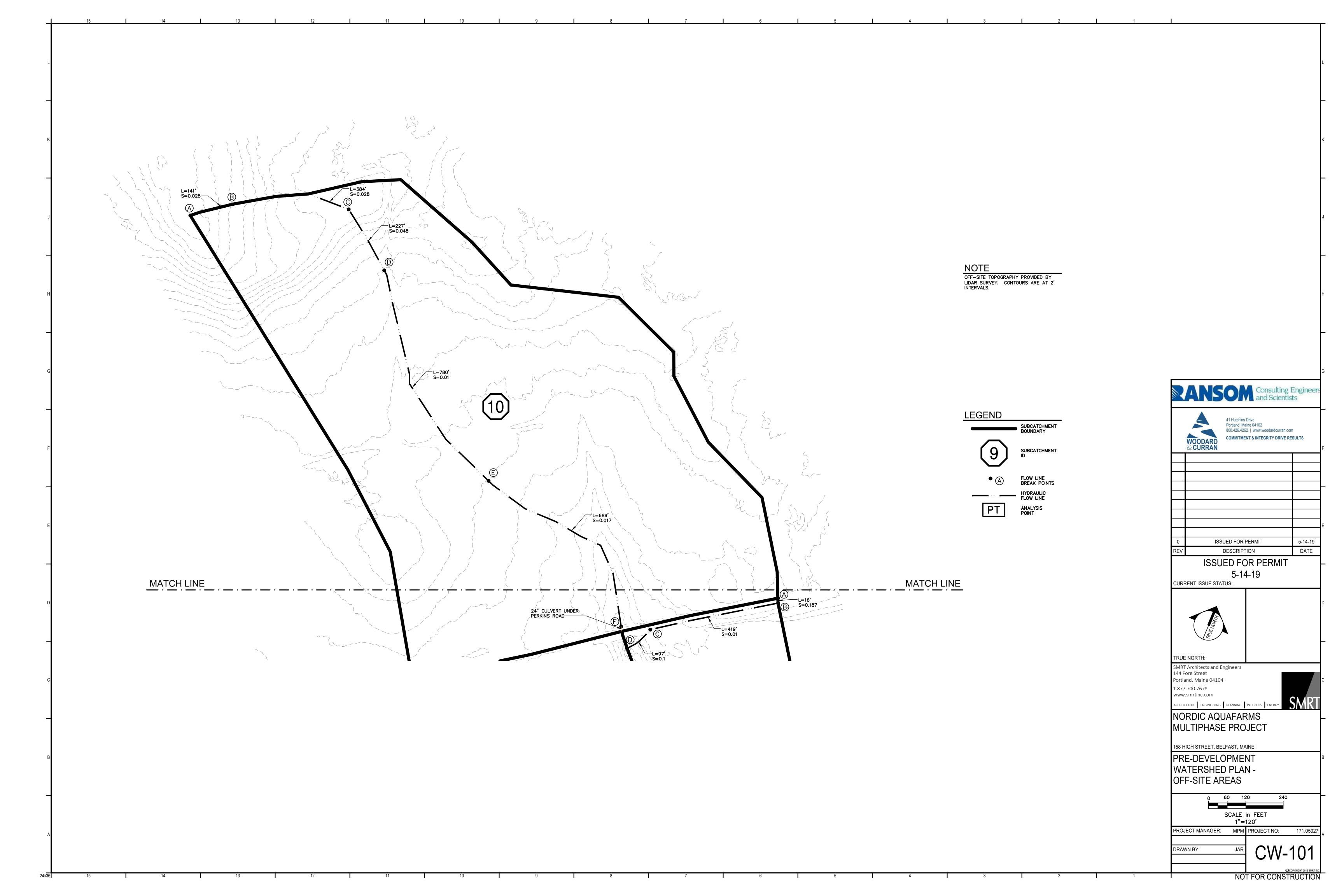
DATE

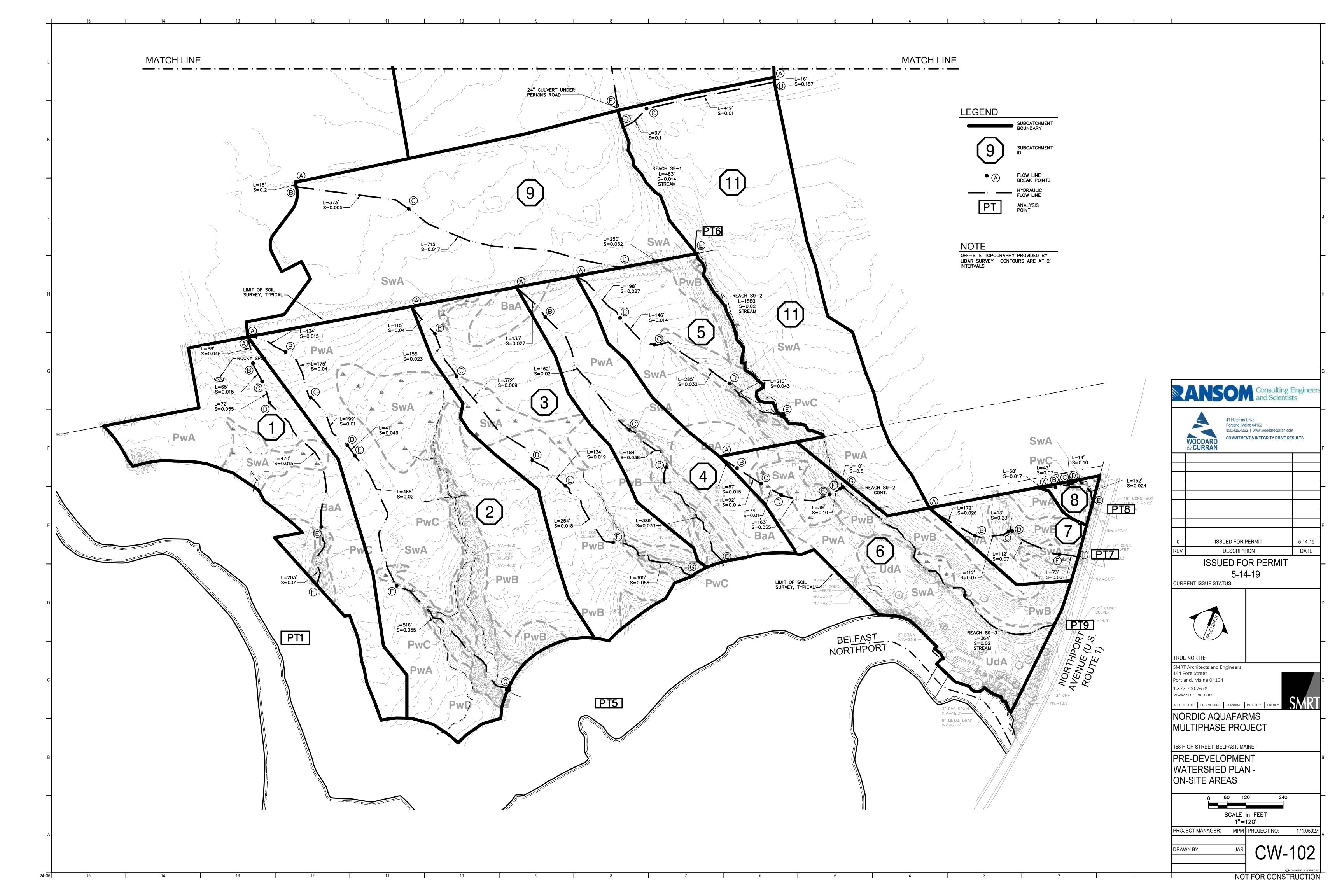
SCALE MA

STE MA

DATE

1. dalmites, 1404 delecty 003-304-0030
Cub and the man to 11
Subcatchment 11
C-al Shallow conc. flow to 59-1 See Page 20
Forest up heavy litter (40)
Cenath 97 Pt &
Slope: 0. / g-n shallow conc. flow
(42 = 80 ft, 4 = 70 ft) Forest w/ Keavy litter
$l_{\alpha} = 700 \text{ min}$
C-d BRING NO 6 ge = 0,038 Evach 59 (42 = 80 ft, 4, = 33 ft)
Seed 49 (11 - 220)
Eeach (4) (42 = 80 ft, 41 = 33 ft)
d-e Shallow Conc. flow It 27 min
Forest w/ heavy litter / gh
Cength: 470 FT
Slope: 0.017 Tc = 7/2min
Slope: 0.017 (y, 70, y = 62 94) Tt = 24 min
++ 1t + 27 min
de le Ce. Comm
T-1, 1 (e)
e-f shallow conc flow
Forest W/ heavy litter
100000000000000000000000000000000000000
length: 26 Cf
8(cpe: 0.15
(42 = 62 + 4 = 58 + 4)
Tt = 0.4 min
e-f
FO 5/2/10 1 200 10 1
f-9 shallow onc. flow Forest w/ heave litter length: 877.4 Side: 0.025 142 = 58.4, 4, = 36,4) V+ = 37.min
Torest w/ neavy litter
length: 877.94
5/de:0.025
(4) =584. U = 36 (4)
7/4 37 min


PROJECT NO. 171.05007	SITE NAF
SHEET NO. 20	OF
CALCULATED BY MPM	DATE 4
CHECKED BY	DATE
SCALE NA 51B	4/11/4


Transition, New Octably 003-304-0030
Reach 59 - 3 sections of Stream9
Socuton 11 discharges to upper portion of
Strann 9 which Follows Pe along subcatch
Strann 9 which Follows Pe along subcatch bandary botheren 5 ill and through 6 wooded on both sides of Stream through to subb.
Channel averages 5' und w/ 2: 1 slopes
Discharge from subcatch 10 under Perkins Road & begin of Stream.
Discharge of colver @ +/- 75, but colvert elevated from distah/estream.
Segment 1: Sob 10 discharge to
Propertyline.
Assume 2:1 side clopes
Assume 2:1 side clopes 5' channel bottom (average) assure L= 483' Wastram Cran/stragt manning=0.03
A=71-64
5=0.014
depth: vanes 6' to B' assume d'available for water depth
(down stream)

PROJECT NO. [7], 05027	SITE NAP
SHEET NO. 2	_ OF
CALCULATED BY MPM	DATE 4/1/19
SCALE NA 518	Alin 119
SCALE	7/1///

Stream 9: Scitu	~ 2 along property bondary
	where off site flow ends
	ground cover change Come in the woods to grassed channel
Stream	in the woods to grassed Channel
Attame	2:15 lopes along length
Mannings = 0.04	5' channel bottom with
	L= 1580 Ct.
	D= 64' to 27,25
	5=0.02
	depth: between 2'i4' assume 2' flow depth max
	3 along roading in grassed
	suale to culvert under 18t. 1
Assam	side slopes LT 2:1; P2+ 4:1
	5' channel bottom wilth
Culvert 1586' 1=93'	L= 364'
Inv.14= 40	D= 27.25 to 20, (inv. of 36 almit)
	520.02

