PHASE II ENVIRONMENTAL SITE ASSESSMENT MASON STATION BIRCH POINT ROAD WISCASSET, MAINE

Prepared for:

Mason Station LLC 485 West Putnam Avenue

Greenwich, Connecticut

Prepared by:

Ransom Consulting, Inc. 400 Commercial Street, Suite 404 Portland, Maine 04101 (207) 772-2891

> Project R171.06108 December 17, 2018

> > Rev. 0

EXECUTIVE SUMMARY

On behalf of Mason Station LLC, the following report presents the findings of a Phase II Environmental Site Assessment (ESA) performed by Ransom Consulting, Inc. (Ransom) for a portion of the Mason Station property located along the northern end of Birch Pond Road on the Mason Station Peninsula otherwise referred to as Birch Point in the Town of Wiscasset, Lincoln County, Maine (the "Site"). The Phase II ESA activities described in this report were performed in accordance with Ransom's "Proposed Scope of Work and Cost Estimate (Rev.2)" dated October 24, 2018.

A Phase I ESA, dated May 31, 2018, was completed for the Site, as requested in a letter dated August 30, 2017 from the State of Maine Office of the Attorney General. The Phase I ESA identified Recognized Environmental Conditions (RECs) in connection with the Site's former use as the Mason Station oil/coal fired power plant facility. Numerous environmental investigations have been performed at the Mason Station property since electrical power generation activities ceased in approximately 2003. The current Phase II ESA was designed to investigate specific issues/areas of the Site that had not been previously assessed and/or closed out. These issues/areas of investigation include assessing the interior conditions of the Powerhouse Building, potential releases to the environment from activities that formerly were conducted in the Powerhouse Building, and soil conditions in the vicinity of two electrical transformer enclosures associated with the Powerhouse Building.

Observations made during this current investigation indicate that efforts were made in the past to identify, remove, and dispose of liquid mercury from mercury containing equipment throughout the Powerhouse Building. Equipment labeled as formerly containing liquid mercury was observed with tags indicating the mercury had been drained during a period extending from 1993 to 2004. However, no documentation or report of these efforts was identified or made available during this investigation. It is believed that Central Maine Power (CMP) lead these efforts and a report documenting the activities is currently being researched.

Mercury vapor screening activities conducted throughout the Powerhouse Building during this investigation indicated that ambient air conditions with respect to mercury vapor do not represent an exposure risk for future occupation of the building. Mercury vapor screening of specific pieces of previously drained equipment reservoirs indicated elevated residual concentrations of mercury vapor within the equipment. Considering this equipment is no longer in use, these pieces of equipment should be transported for proper off-site disposal.

Three leaking electrical transformers were identified during the course of the recent Phase I and Phase II assessment efforts. One of the leaking transformers is located on the ground-floor level in Unit 5 of the Powerhouse building. Two additional leaking electrical transformers were identified within a common spill containment on the 4th floor of Unit 4. Analysis of oil associated with the transformers identified in Unit 4 of the Powerhouse Building suggest that the investigation and cleanup of this release is subject to the regulations of the Toxic Substances Control Act (TSCA).

Wipe samples collected from surfaces throughout the Powerhouse Building indicated concentrations of lead that exceed the OSHA recommended level for surface contamination. These contaminants, found primarily on concrete surfaces throughout the building, would likely represent and exposure risk if the building is re-occupied for commercial or residential purposes. In addition, several wipe samples exhibited low concentrations of PCBs. The concentrations of PCBs detected in the wipe samples were less than the U.S. Environmental Protection Agency (EPA's) PCB Remediation Waste wipe sampling criteria of 10 micrograms per square centimeter ($\mu g/100 \text{ cm}^2$).

Evaluation of the soil, groundwater, and soil vapor conditions surrounding the exterior perimeter of the Powerhouse Building did not identify specific contaminant source areas. However, the presence of contaminants of concern suggests that minor releases may have occurred to the subsurface beneath the Powerhouse Building over the approximately 50 years of operation as a power generating facility. Soil vapor results suggest that vapor intrusion may represent an exposure risk if the building is redeveloped for residential use in the future. Surficial soil sample results also suggest a potential exposure risk from PAH compounds above the MEDEP RAGs for residential use.

Findings from the electrical transformer enclosures on the exterior of the Powerhouse Building indicated concentrations of PCBs and metals that would represent an exposure risk if the property is redeveloped for residential or commercial use in the future. Results of the current investigation indicate that the release of PCBs in the southwest electrical transformer enclosure is subject to regulation under the TSCA program. The results of the soil sampling for the north transformer cage did not indicate soil concentration exceeding the TSCA limit. The status of the mineral oil dielectric fluid within the exterior transformers is currently unknown.

Based on the information obtained during this Phase II Investigation, as well as a review of historic documentation associated with the Site, the following recommendations are provided.

- 1. Findings from the current investigation identified three leaking electrical transformers within the Powerhouse Building. Additional electrical transformers are located on the exterior of the Powerhouse Building. Any electrical transformers that are no longer in use should be drained, cleaned, and transported off-site for disposal in accordance with applicable regulations. Surface areas impacted by the leaking transformers should be cleaned of residual contaminants to prevent releases to the environment and potential exposure risks. Investigation and cleanup of the electrical transformer release in Unit 4 of the Powerhouse Building are subject to TSCA regulations.
- 2. Results from the mercury screening activities suggest that equipment and components formerly containing liquid mercury may have residual mercury vapor remaining within the equipment. Equipment and components formerly containing liquid mercury should be removed and transported off-site for proper disposal. Additionally, all mercury containing equipment should be inventoried in the absence of documentation detailing the draining and mercury removal actions that were conducted between1993 and 2004.
- 3. Surfaces throughout the Powerhouse Building exhibited concentrations of lead that exceed the OSHA-recommended level for maximum lead concentrations. Interior building surfaces should be cleaned to remove lead and other residual metals/PCBs if the building is to be re-occupied for residential or commercial use.
- 4. Based on the soil vapor concentrations detected in the vicinity of the Powerhouse Building, the potential for vapor intrusion should be mitigated or indoor air sampling be conducted if the building is to be re-developed for residential use in the future.
- 5. PCBs, metals, and PAH compounds have been detected in accessible soils within the exterior electrical transformer enclosures, and at certain other locations surrounding the Powerhouse Building, at concentrations that represent an exposure risk to residential and/or commercial reuse of the Site. Exposure to these contaminants in accessible soil should be mitigated if the Site is to be re-occupied. Investigation and cleanup of the PCB contamination within the southwestern electrical transformer enclosure are subject to TSCA regulations.

6. Hazardous building materials identified throughout the Powerhouse Building and ancillary buildings should be abated and properly disposed of in accordance with the information and recommendations presented in Ransom's Hazardous Building Materials Report (provided under separate cover).

In addition to the recommendations provided above, several outstanding environmental issues/concerns have been identified in connection with the Site, which were not investigated during the current Phase II ESA. Environmental issues remaining to be resolved are outlined in Section 8 of the following report.

TABLE OF CONTENTS

1.0	INTRODUCTION			
	1.1	Purpose		
	1.2	Special Terms and Conditions	7	
	1.3	Limitations and Exceptions of Assessment	7	
2.0	BACKGROUND			
	2.1	Site Description and Setting		
	2.2	Site and Vicinity History		
	2.3	Previous Environmental Assessments	9	
3.0	CON	CEPTUAL SITE MODEL		
	3.1	Interior of Powerhouse Building		
		3.1.1 Electrical Transformers		
		3.1.2 Mercury		
		3.1.3 Interior Surface Conditions		
	3.2	Subsurface Contamination from Powerhouse Building		
	3.3	Exterior Electrical Transformer Enclosures		
4.0		SE II ESA METHODOLOGY		
4.0	4.1	Mercury vapor screening		
	4.2	Wipe sampling		
	4.3	Hazardous Building Materials Inventory		
	4.4	Soil Boring Advancement		
		4.4.1 Qualitative Field Screening		
		4.4.2 Soil Sampling and Analytical Testing		
	4.5	Groundwater Monitoring Well Installation		
	1.6	4.5.1 Groundwater Sampling and Analytical Testing		
	4.6	Soil Vapor sampling		
	4.7	Surficial Soil Sampling of Exterior Transformer Enclosures		
5.0		SE II ESA RESULTS		
	5.1	Applicable Regulatory Standards and Guidelines		
	5.2	Geology and Hydrogeology		
	5.3	AOC 1 - Interior of Powerhouse Building		
		5.3.1 Mercury Vapor Assessment.		
		5.3.2 Contaminated Surfaces Within the Powerhouse Building		
	5 4	5.3.3 HBMI Results		
	5.4	AOC 2 - Potential Releases from the Powerhouse Building		
		5.4.1 Soil Conditions5.4.2 Groundwater Conditions		
	5.5	5.4.3 Soil Vapor Conditions AOC 3 - Exterior Electrical Transformer Enclosures		
6.0	РНА	SE II ESA CONCLUSIONS		
7.0	РНА	SE II ESA RECOMMENDATIONS		

8.0	UNRESOLVED ENVIRONMENTAL ISSUES/CONCERNS	\$7
9.0	REFERENCES	19
10.0	SIGNATURE(S) OF ENVIRONMENTAL PROFESSIONAL(S)	1

TABLES

Table 1	Transformer Oil Analytical Results
Table 2	Wipe Sample Analytical Results
Table 3	Soil Boring Analytical Results
Table 4	Groundwater Sample Analytical Results
Table 5	Soil Vapor Sample Analytical Results
Table 6	Surficial Soil Sample Analytical Results
Table 7	XRF Field Screening Results

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Wipe & Bulk Product Sample Locations
Figure 4	Exterior Sample Location Plan

APPENDICES

Appendix A	Photograph Log
Appendix B	Soil Boring Logs
Appendix C	Field Data Sheets
Appendix D	Certified Laboratory Analytical Results

1.0 INTRODUCTION

Ransom Consulting, Inc. (Ransom) is pleased to present this report documenting a Phase II Environmental Site Assessment (ESA) for the Mason Station property located on Point East Drive in the Town of Wiscasset, Lincoln County, Maine (the "Site"). The Phase II ESA was performed at the request of the Maine Department of Environmental Protection (MEDEP) and in accordance with Ransom's "Proposed Scope of Work and Cost Estimate (Rev. 2)", dated October 24, 2018.

1.1 Purpose

The Site was historically operated as the Mason Station power plant. Numerous environmental assessments and investigations have been completed at the Site property since power generation activities ceased in approximately 1991. Several outstanding environmental concerns were identified in a letter from the State of Maine, Office of the Attorney General, dated August 30, 2017. In response to the letter from the Attorney General, a Phase I ESA was completed for Mason Station LLC in May 2018. The Phase I ESA identified several Recognized Environmental Concerns (RECs) and recommended additional investigation to evaluate the RECs. This Phase II ESA was implemented to further evaluate the identified RECs, document current Site conditions in relation to current regulatory cleanup guidelines and evaluate the suitability of the Site for redevelopment.

1.2 Special Terms and Conditions

This report was prepared for Mason Station, LLC (client). The services, findings, and conclusions, noted herein, and associated documents provided to the client by Ransom are solely for the benefit of Mason Station LLC, their affiliates and subsidiaries and their successors, assigns, and grantees. Reliance or any use of this report by anyone other than Mason Station LLC, for whom it was prepared, is prohibited. Furthermore, reliance or use by any such third party without explicit authorization in the report does not make said third party a third-party beneficiary to Ransom's contract with Mason Station LLC. Any such unauthorized reliance on or use of this report, including any of its information or conclusions, will be at the third party's risk. For the same reasons, no warranties or representations, expressed or implied in this report, are made to any such third party.

1.3 Limitations and Exceptions of Assessment

The Phase II ESA was executed in accordance with the "Proposed Scope of Work and Cost Estimate (Rev 2), dated October 24, 2018. Any additional revisions to the scope of work or methodologies outlined in the following report were implemented based on conditions encountered in the field. The findings provided by Ransom in this report are based solely on the information reported in this document and the results of limited explorations and confirmatory laboratory testing. Our findings and conclusions must be considered as our professional opinion concerning the significance of the limited data gathered during the course of the environmental assessments. Ransom does not and cannot represent that the Site contains no Oil or Hazardous Materials (OHM) or other adverse environmental conditions beyond that observed by Ransom during the environmental assessments and field investigations. Should additional information become available in the future, this information can be reviewed by Ransom and the findings, presented herein, may be modified as a result of the review.

2.0 BACKGROUND

2.1 Site Description and Setting

The Site is located on a peninsula of land known locally as the Mason Station Peninsula, or Birch Point, which extends into the confluence of the Sheepscot River and Back River. The Site consists of seventyeight parcels, primarily owned by the Town of Wiscasset, with the exception of the Powerhouse Building lot (Lot 81), which is owned by Mason Station LLC. The Site is known as the Mason Station Peninsula, which encompass a total of approximately 30.4 acres of land. The Site is identified by the Town of Wiscasset Assessor's Office as Lots 1 through 79 and Lots 81 through 85 on Tax Map R-7A. The Site is bordered to the north and east by the Back River. A tidal area known as the "Ice Pond" is located to the south, and Hilton Cove and Hilton Pond are located to the west of the Site. The Site location and area geographical features are shown on Figure 1. Site features are shown on Figure 2.

Beginning in the 1940s, the entire Mason Station Peninsula was developed as the Mason Station power plant. The peninsula of land encompassing the Site currently contains the Powerhouse Building and three associated screen house buildings, a CMP-operated switchyard and maintenance facility (not part of the Site), a former coal storage yard and associated support structures, four wastewater ash ponds, a railroad spur, various outbuildings, a microwave tower, two speculative houses currently occupied by Peregrine Consulting (not part of the Site), and unimproved land in the northern portion of the peninsula. Previously, three bulk fuel oil tanks and a marine oil terminal operated at the Site. The bulk oil tanks were located in a formerly bermed area encompassed by what is now South Point Drive and Point East Drive (Figure 2). The bulk fuel tanks and marine oil terminal were closed according to MEDEP requirements in 2007.

The Site is located in an area of Wiscasset that is a mix of commercial, residential, and undeveloped use; however, the Site is zoned as "Shoreland Business II," where a mixture of uses, including residential, marine, commercial, related ancillary business, and low-impact industrial, are currently permitted. The areas in the vicinity of the Site are zoned as "Rural," "Shoreland Business," and "Shoreland Resource Protection" areas.

2.2 Site and Vicinity History

The Mason Station power plant facility was reportedly constructed by CMP beginning in approximately 1940. The Powerhouse Building was constructed in the following phases:

- Units 1 and 2 (constructed in 1940 and 1946);
- Units 3 and 4 (constructed in 1952); and
- Unit 5 (constructed in the late 1950s).

The power plant used both coal and oil for power generation until the early 1960s, at which time the plant was operated exclusively with oil. Power generation at the plant initially ceased in 1984. The plant was brought back on line in 1988, and then deactivated in 1989. CMP briefly reactivated the plant in 1997 in preparation for the sale of the facility. Florida Power and Light (FPL) purchased the Site from CMP and owned it from 1999 to December 2003, when it was purchased by Mason Station, LLC. The Mason Station facility has been inactive since that time. In 2006, the Mason Station property was parceled out into 85 Lots as part of the proposed Point East Maritime Village development.

2.3 Previous Environmental Assessments

Numerous environmental assessments and investigations have been conducted at the Site since the deactivation of the Mason Station power plant facility. The following provides a summary of previous investigations.

Hydrogeologic Evaluation, Haley & Aldrich, Inc. (H&A), June 30, 1992

In 1992, H&A conducted a hydrogeologic investigation at the former Mason Station property on behalf of CMP. The scope of this evaluation encompassed the entire Mason Station Peninsula, which includes the Site, as well as off-site properties. The purpose of this evaluation was to characterize the soil, groundwater, and surface water quality at the Former Mason Station property. Assessment activities included the advancement of fifteen soil borings, seven groundwater monitoring wells, and excavation of nine test pits. The majority of the test pits and borings were advanced in the vicinity of the off-site Ice Pond Lots, and included diked areas surrounding Former Oil Tank Nos. 1, 2, and 3. Soils from the test borings and test pits were visually classified, field screened for the presence of total volatile organic compounds (VOCs) using a photoionization detector (PID) and evaluated for visual and olfactory evidence of petroleum contamination. Additionally, select soil samples collected from the soil borings and test pits were submitted for laboratory analysis of total petroleum hydrocarbons (TPH) and Resource Conservation and Recovery Act (RCRA) 8 Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver). Surface water collected from the southern end of Hilton Pond and the tidal zones of Hilton Cove and the Sheepscot River, as well as groundwater samples collected from the monitoring wells, were submitted for laboratory analysis of polycyclic aromatic hydrocarbons (PAHs), VOCs, TPH, and RCRA 8 Metals.

Based on the field screening and laboratory analysis of the soils, H&A indicated that no significant impacts were identified on the property from storage and handling of petroleum products, and H&A did not identify evidence of oil-saturated soils that might warrant clean-up under current (1992) MEDEP guidelines. Additionally, laboratory analysis of groundwater and surface water did not identify significant impacts from petroleum storage and handling at the property. Lead was the only metal detected in groundwater and surface water at a concentration above the current EPA drinking water guidelines.

Based on these results, H&A did not recommend further evaluation or remediation of soils, groundwater or surface water at the former Mason Station property, including the Site parcel.

Phase II ESA, Jacques Whitford, Inc. (JW), November 10, 2004

In 2004, JW conducted a Phase II ESA at the former Mason Station property, on behalf of Mason Station, LLC. The scope of this assessment encompassed the entire Mason Station Peninsula, which includes the Site as well as off-Site properties. The purpose of this assessment was to evaluate the concerns documented on the property identified in previous environmental investigations (a *Hydrogeologic Evaluation* by H&A, 1991; an *Independent Engineering and Environmental Assessment* by Black & Veatch (B&V) in 1997; and a targeted *Phase II investigation* by JW, 2003). These reports were not reviewed by Ransom as part of the current investigation; however, summaries of these reports are included within the 2004 JW Phase II ESA report.

Investigation activities conducted by JW included the excavation of 60 test pits and the advancement of eighteen soil borings. Select soil samples were collected from the test pit and soil boring locations, as well as five surficial soil locations, and submitted for laboratory analysis of VOCs, PAHs, TPH, RCRA 8 Metals, PCBs, DRO, and/or gasoline range organics (GRO). Four sediment samples were collected from the Ash Ponds and submitted for laboratory analysis of PAHs, RCRA 8 Metals, and DRO. Additionally, two groundwater samples were collected from soil borings and one water sample was collected from the Ash Ponds, and submitted for laboratory analysis of pAHs, PCBs, and/or DRO. Approximately 36 test pits and approximately ten soil borings were located within the vicinity of off-Site parcels including the Ice Pond Lots, Back River Lots, and the North Point Lots.

Based on the laboratory results, JW indicated that no obvious contamination was identified surrounding the Former Oil Tanks or along the underground delivery pipeline during their assessment. However, JW indicated that it was possible that contamination may be present beneath the tanks, or other areas not investigated as part of their assessment (e.g. Hilton Pond Lots). Limited leaks and soil staining were observed along the aboveground oil conveyance piping during their visual reconnaissance, and coal was observed to be prevalent to a depth of about 1-foot in the areas of the off-Site North Point Lots. Additionally, miscellaneous fill and demolition debris, including apparent asbestos-containing materials, was identified in test pits that appear to have been excavated on one Site parcel (North Point; Lot 79) and in the vicinity of the North Point Lots, specifically Lots 73, 74, 75, and 76.

Due to high liquid content in the sediment samples collected from the Ash Ponds, the laboratory detection limits for some of the PAH compounds using the dry weight methodology were elevated above their respective MEDEP Remedial Action Guidelines (RAGs) and/or U.S. EPA Region III Risk Based Concentrations (RBCs). Analysis results based on wet weight did not identify PAH compounds above laboratory detection limits. It should be noted that even on a wet weight basis, the reporting limit for dibenz(a,h)anthracene was above the U.S. EPA Region III RBC. Concentrations of arsenic, chromium, and lead were detected in the sediment samples above the MEDEP RAGs and/or the U.S. EPA Region III RBCs.

Shallow soil beneath the Mason Station roadways was determined to contain PAHs and DRO above MEDEP RAGs. This contamination was inferred to be associated with a black coal ash layer that was identified during JW's investigation, historic oil applications to the roadways (formerly dirt roads) for dust suppression purposes, and/or a byproduct of the asphalt used in the roadways. Further lateral delineation of this contamination away from the roadways was not performed during JW's investigation.

Given the number of investigation areas and laboratory analytical results of the samples submitted from the northern portion of the Mason Station peninsula, it appears that the contaminants identified during JW's Phase II ESA at the northern portion of the peninsula with concentrations exceeding their applicable regulatory limits were localized to off-Site Lots 73, 74, 75, 76, 79 and Site-encompassing Lot 81 (refer to Figure 2).

Lead in Soil Testing Results, Ransom, July 14, 2005

This letter report summarizes results of lead testing of the soils at the location of the Former Oil Tanks in 2005. The entirety of the testing conducted in this investigation occurred in the area of the Site currently referred to as the Ice Pond Lots, specifically in the vicinity of the Former Oils Tanks. Ransom collected eighteen surficial soil samples from the soils surrounding the Former

Oil Tanks and submitted them for laboratory analysis of total lead in order to evaluate whether lead-based paint from the tanks had adversely impacted the surficial soils of the Former Oil Tank area.

Laboratory results indicated that the concentration of lead in one of the soil samples collected from the area surrounding Former Oil Tank No. 1 exceeded the MEDEP RAGs for "Residential," "Trespasser," and "Adult Worker" exposure scenarios at that time. Additionally, the concentration of lead in one of the soil samples collected from the area surrounding Former Oil Tank No. 3 exceeded its MEDEP RAG for "Residential" exposure scenario at that time.

Lead Survey Results for Soil Surrounding Former Bulk Fuel Oil Tanks, Ransom, February 7, 2006

This letter report summarizes results of additional lead screening of the soils at the location of the Former Oil Tanks in 2005. The entirety of the testing conducted in this investigation occurred in the area of the Site currently referred to as the Ice Pond Lots, specifically in the vicinity of the Former Oils Tanks. Ransom collected 112 surficial soil samples from the soils surrounding the Former Oil Tanks (34 samples were collected from soils near Former Oil Tank No. 1; 35 samples were collected from soils near Former Oil Tank No. 2; and 35 samples were collected from soils near Former Oil Tank No. 3). The soil samples were field screened for the presence of lead using an x-ray fluorescence analyzer (XRF) in order to delineate the extent of lead contamination surrounding the Former Oil Tanks for anticipated remediation (e.g., excavation and off-site disposal).

Based on the field screening results, three soil samples collected near Former Oil Tank No. 1 and two soil samples collected near Former Oil Tank No. 3 exhibited lead concentrations greater than its MEDEP Residential RAG of 375 ppm, at that time. Based on these results, lead-impacted soil excavation and off-site disposal was recommended at the discrete areas where lead exceeded its MEDEP Residential RAG at the Former Oil Tank area.

Tank #3 Oil Remediation, RAI, March 7, 2006

This report summarizes the remediation activities of the petroleum-impacted soils beneath and in the vicinity of Former Oil Tank No. 3, which was conducted by RAI, on behalf of CMP in 2005 and 2006. The entirety of the remediation occurred in the immediate area of Former Oil Tank No. 3. Remediation activities included the excavation and off-site disposal of approximately 2,098 tons of impacted soils from immediately below Former Oil Tank No. 3. Confirmatory soil samples were collected from the native clay material at the bottom of the excavation (approximately 2 feet bgs) and submitted for laboratory analysis of PAHs and DRO. Based on the laboratory analytical results, PAHs and DROs were not detected in the analyzed soil samples above laboratory reporting limits.

Lead Confirmation Testing with XRF, Ransom, June 14, 2006

This letter report summarizes results of lead confirmation testing of the soils at the Site conducted by Ransom on behalf of Mason Station, LLC. The entirety of the testing conducted in this investigation occurred in the area of the Site currently referred to as the Ice Pond Lots, specifically in the vicinity of the Former Oils Tanks. At the request of the MEDEP, Ransom conducted additional soil sampling in the vicinity of Former Oil Tank Nos. 1 and 3. Ransom selected five of the previous sampling locations from the November 2005 sampling event (*Lead*

in Soil Testing Results) surrounding Former Oil Tank No. 1, and four of the previous sampling locations from surrounding Former Oil Tank No. 3. Surficial soils collected from these locations were field screened for the presence of lead using an XRF. Based on these findings, it was determined that the lead concentrations from the June 2006 sampling event were comparable to the November 2005 sampling event.

<u>Closure Plan for Decommissioning of Wastewater Treatment (Ash) Ponds, Ransom, August 14,</u> 2006

A closure plan for the decommissioning of the Ash Ponds was developed by Ransom and submitted to the MEDEP in 2006. This closure plan encompassed the area of the Site currently referred to as the Ash Ponds. Decommissioning and closure activities proposed by Ransom included: pumping out the remaining water in the Ash Ponds; dewatering and removal of the remaining sediment; off-site disposal of sediment/water waste (disposal characterization testing would likely be required by the accepting disposal facility); excavation and removal of asphalt liners; confirmatory soil sampling beneath the liners for laboratory analysis of DRO, PAHs, Target Analyte List (TAL) metals, PCBs, dioxins, RCRA Metals, chloride, pH, percent carbon, percent moisture, phosphorous, and total vanadium; and backfilling the excavation area. Additionally, Ransom proposed installing three groundwater monitoring wells surrounding the former Ash Pond area and collecting groundwater samples to be submitted for laboratory analysis of RCRA 8 Metals. This closure plan was approved by the MEDEP on September 7, 2006 but has not been implemented to date.

Marine Oil Terminal and Bulk Tank Closure, Ransom, February 9, 2007

This report summarizes the closure and decommissioning of the marine oil terminal, three Former Oil Tanks, and associated pumps, piping, and ancillary structures at the former Mason Station property, conducted by Ransom on behalf of Mason Station, LLC in 2006. This closure plan encompassed the area of the Site currently referred to as the Ice Pond Lots. This report also provided closure of a RCRA license for the former generation of hazardous waste at the Former Oil Tanks area, which included the Site parcels on the southern portion of the former Mason Station property. Closure and decommissioning activities included product removal from the tanks and piping prior to demolition, demolition and removal of tanks and piping, excavation and removal of petroleum-impacted soils in the vicinity of the Former Oil Tanks, excavation and removal of lead-impacted soils in the vicinity of the Former Oil Tanks, and certification for RCRA Closure of the Former Oil Tanks area. The areas beneath the Former Oil Tank Nos. 1, 2, and 3 were excavated and select confirmatory soil samples were collected and submitted for laboratory analysis of VOC, PCBs, PAHs, DRO, and/or RCRA 8 Metals. Additionally, areas beneath the product piping areas were excavated and confirmatory soil samples were collected and submitted for laboratory analysis of PAHs and DRO. Soils excavated from the property were also field screened for the presence of VOCs using a PID.

Approximately 4,500 tons of petroleum-impacted soils were excavated from the area beneath the Former Oil Tank No. 3 and removed for off-site disposal, and approximately 250 tons of petroleum-impacted soils and base gravel were excavated and removed for off-site disposal from the area of the associated piping. The remedial actions and confirmatory sampling results were reviewed by MEDEP, and no further clean-up action was required.

Based on previous investigations, Ransom directed the excavation and off-site disposal of approximately 443 tons of lead-impacted soils from the surficial soils in the vicinity of the three

Former Oil Tanks. Confirmatory soil samples were collected and submitted for laboratory analysis of lead. Results indicated that residual lead concentrations in these soils were below its MEDEP Residential RAG of 375 mg/kg at the Former Oil Tank areas.

This investigation concluded that petroleum-impacted soils were not present beneath Former Oil Tanks Nos. 1 and 2, petroleum-impacted soils were present in soils beneath Former Oil Tank No. 3, and a slight petroleum sheen was observed on water seeping from a drainage pipe into the foundation of the Former Oil Tank No. 3 pump house. MEDEP reviewed the confirmatory analysis and indicated that the residual DRO-impacted soils identified could remain in place at the Former Mason Station property since they likely did not pose a risk to human health or the environment. This assertion was based on proposed placement of an approximate 4-foot layer of clean fill over the limited area of residual impacted soils, which were determined to be outside of the limits of Point East Maritime Village's proposed residential lots.

The "Certification for RCRA Closure for the Southern Peninsula Including the Tank Farm" (February 2, 2007) states that Mason Station has met MEDEP's clean up goal of 375 ppm for lead contamination in soil and 50 ppm for petroleum contamination in soil, and no known hazardous waste or hazardous wastes residuals remain at the Southern Peninsula (Ice Pond Lots and Hilton Pond Lots). Therefore, MEDEP approved of the closure of the tank farm area and RCRA closure certification for this area. Assuming all required federal, state, and local permits were in place, MEDEP indicated that construction activities were allowed to begin on the Ice Pond Lots, Hilton Pond Lots, and related infrastructure development of the proposed Point East Maritime Village.

Report on Sediment Sampling, Ransom, April 9, 2007

This report summarizes the testing of marine sediment collected from the off-Site areas identified as the Back-River Lots, as well as Site-encompassing Lot 81, at the former Mason Station property in 2007. The sampling was conducted to characterize sediment chemistry as part of ongoing RCRA hazardous waste generator closure activities for the northern areas of the Mason Station Peninsula. Six sediment samples were collected from the shallow tidal zone in the vicinity of the off-Site Ash Ponds, and four sediment samples were collected from the shallow tidal zone northeast of Lot 81 and submitted for laboratory analysis of PAHs, PCBs, RCRA 8 Metals, Herbicides, and/or Pesticides.

Laboratory results identified concentrations of organic and inorganic constituents above background concentrations indicating the possibility of impacts from operations at the former Mason Station property. Several PAHs and metals were detected at concentrations above National Oceanic and Atmospheric Administration (NOAA) screening values for marine sediment. Laboratory results did not indicate concentrations of PCBs above reporting limits.

The test results were consistent with the historically industrial use of the former Mason Station property. Such activities involved the use, storage and transport of coal, oil and other raw materials and products. Ransom concluded that the presence of elevated organic and inorganic constituents to depths of 18 inches indicates historical impacts that likely span several years, if not decades.

Closure Plan for Mixed Coal and Soil Stockpile, Ransom, April 9, 2007

This plan outlines the closure details for the mixed coal and soil encountered during excavation of the coal yard on the northern peninsula of the Site in 2007. A larger volume of material was

excavated than originally expected, so a strategy for on-Site reuse and capping was developed based on a MEDEP-established removal target of 95% by volume. Approximately 6,000 cubic yards of mixed coal and soil was stockpiled at the Site in 2007. The closure plan outlines the placement of the coal and soil mixture beneath 18 inches of aggregate sub-base gravel, 6 inches of aggregate base gravel, 2¹/₄ inches hot bituminous base, and 1¹/₂ inches hot bituminous surface for paved areas; or beneath geotextile, 12-24 inches of clean common borrow soil, and 4 inches of seeded loam for landscaped areas. The closure plan also details annual inspection and maintenance requirements. This plan was approved by MEDEP on May 3, 2007.

Interim Report on Coal Removal and Confirmatory Sample Results, Ransom, April 10, 2007

This letter report summarizes the coal removal activities, field observations, and confirmation sampling activities conducted at the northern portion of Lot 81 in 2007. The scope of this evaluation encompassed the northern area of the Site's Mason Station Peninsula, which included the area of the Site identified as the North Point Lots. As part of these remedial activities, MEDEP established a target clean-up goal for coal material removal at 95 percent by volume; however, due to frozen ground conditions at the time of excavation, it was estimated that approximately 1,500 to 2,000 cubic yards of coal and co-mingled materials still remained in the northern portion of Lot 81. Additionally, a 4- to 6-inch thick seam of coal about 2 feet bgs was observed at the northern extent of coal excavation in the vicinity of the North Point Lots. Removal of this seam was discontinued because the excavation was approaching a fill area suspected of containing asbestos (Lots 73 through 76); however, this area was planned to be investigated as part of a test pit program proposed at the property (North Peninsula Fill Area *Investigation*, 2008). Following the excavation and removal of coal and associated materials, the excavation area was visually inspected to estimate the extent of material remaining. Additionally, confirmatory soil samples were collected from the remaining surface material and submitted for laboratory analysis of PAHs, DRO, and RCRA 8 Metals.

Visual inspections indicated that greater than 95 percent of the coal material was excavated from the former Mason Station property in the coal yard areas. Results from the confirmatory soil sampling indicated that contaminant concentrations of soils mixed with coal were below regulatory guidelines for PAHs, DRO and all metals, with the exception of arsenic. Additionally, the concentrations of DRO detected did not exceed the MEDEP Site guideline of 100 mg/kg for heavy petroleum residuals.

Ransom concluded that coal material likely still remained on Site areas including the northern portion of Lot 81 and the northern portions of the North Point Lots, specifically in the areas adjacent to Lots 73 through 76.

Subsurface Investigation and Remediation, Ransom, January 23, 2008

This letter report summarizes investigation and remediation associated with the former UST area at the former Mason Station property in 2007. The entirety of this investigation was conducted on the property currently identified as Lot 81. Investigation and remediation activities included the excavation of nine test pits in the area of the former USTs (Lot 81). Soils excavated from the property were field screened for the presence of VOCs using a PID. Confirmatory soil samples were collected from the limits of excavation and submitted for laboratory analysis of DRO, GRO, VOCs, and PAHs.

Approximately 70 tons of soil were excavated from the property and removed for off-site disposal at Commercial Recycling of Scarborough, Maine. In general, petroleum-impacted soils were encountered at depths approximately 4 to 12 feet bgs. Laboratory results indicated that petroleum-impacted soils remained at the UST area, but were not likely to pose a significant risk to human health or the environment given the depth below ground surface, relatively low to moderate concentrations of petroleum, and proposed future use of this part of the former Mason Station property. No further remediation activities were required at the former UST area at that time.

North Peninsula Fill Area Investigation, Ransom, February 26, 2008

This letter report summarizes the investigation activities conducted at the former Mason Station property in 2007. The scope of this evaluation encompassed the northern area of the Mason Station Peninsula, which includes the area of the Site identified as the North Point Lots. This report focuses on the investigation conducted within the suspected solid waste fill area located on North Point Lots 72 through 76, and 78. Investigation activities included the excavation of 27 test pits, visual inspection of the subsurface soils, and the collection of soil samples for analysis of VOCs, DRO, GRO, acid and base/neutral extractable compounds (ABNs), asbestos, PCBs, chloride, phosphorus, reactivity as cyanide and sulfide, total organic halogens (TOX), dioxin, percent carbon, pH, and various metals including aluminum, arsenic, barium, boron, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, silver, vanadium, and zinc. Additionally, soils excavated from the property were field screened for the presence of VOCs using a PID.

The asbestos-containing material (ACM) was identified primarily near the shoreline of Lots 72 through 76, and 78. Fill material encountered during the excavations ranged in thickness from about one to eight feet, and included bricks, wood debris, glass, metal, rubber, asphalt, coal, and apparent gypsum board and fiberglass insulation; the groundwater table was not encountered in the fill materials. Generally, the fill materials observed in the test pits did not contain contaminants exceeding the applicable regulatory action levels, with the exception of the PAH benzo(a)pyrene and arsenic, which were detected in two of the soil samples collected from the test pits. The concentrations of these contaminants exceeded their respective MEDEP RAG for "Residential" exposure scenarios; however, these concentrations did not exceed their respective MEDEP RAG for "Trespasser" exposure scenarios. Results also indicated that DRO was not detected in the soil samples at concentrations above its laboratory reporting limits.

It was recommended that the ACM identified at the former Mason Station property should be properly removed and disposed off-site. Additionally, characterization (i.e., chemical testing) of the fill material identified in this investigation was recommended, prior to reuse or disposal, given the variable nature of the fill. Additionally, Ransom indicated that a few areas, where concentrations of metals, PAHs or other compounds exceeded risk-based screening guidelines, also have the potential to contain contaminated ACM-impacted fill, given the past industrial use and widespread use of fill throughout the Mason Station property.

North Peninsula Fill Area Closure Plan, Ransom, August 20, 2008

A closure plan for the fill area located on the northern portion of the peninsula (including the North Point Lots) was developed by Ransom and submitted to the MEDEP in 2006. Closure activities proposed by Ransom included disposal of surface debris containing ACM, enhancing the stabilization of the shoreline to secure historic fill containing ACM, implementation of a

closure system for the landward portion of the historic fill area containing ACM, providing a deed-restricted buffer adjacent to the fill area, and establishing an ongoing maintenance program. MEDEP approved this plan on July 1, 2008; however, the Closure Plan has not been implemented, and will likely need to be updated to meet current guidelines and standards.

Phase I ESA, Ransom, February 5, 2016

On behalf of the Town of Wiscasset, and as part of the Lincoln County Regional Planning Commission Brownfields Assessment Program, a Phase I ESA, was completed by Ransom in 2016 for a subsection of Site lots that represented the lots that Wiscasset had ownership of through foreclosure. The Phase I ESA identified *RECs* in connection with the Site and vicinity's former use as the Mason Station oil/coal fired power plant facility. Based on the findings of Ransom's Phase I ESA, impacted soil and groundwater have been documented at the Site and vicinity, which were associated with OHS releases during the Site and vicinity's former use as an oil/coal-fired power plant facility. In addition, it was Ransom's opinion that historical Mason Station operations may have also impacted soil, pore water, and/or soil vapor at the property, which were not assessed during previous environmental investigations or cleanup activities that have been completed at the Site and vicinity. Based on this information, Ransom recommended a Phase II ESA to evaluate soil, groundwater, and soil vapor conditions at exterior portions of the Site and vicinity.

Phase II ESA, Ransom, June 21,2016

In 2016, Ransom completed a Phase II ESA for the Site lots owned by Wiscasset. Based on the results of this Phase II ESA, soils throughout exterior portions of the Site and vicinity do not contain contaminants of concern (COCs) that may present an exposure risk to future occupants or workers with the exception of COCs identified in soils at the off-Site North Point Lots. Siterelated fill material, including bricks and ash, which was likely associated with historic fill deposition during the Site and vicinity's former use as a coal/oil-fired power plant, was observed in the accessible soils [0 to 2 feet below ground surface (bgs)] and potentially accessible soils (deeper than 2 feet bgs) at the North Point Lots. The PAHs and asbestos fibers were detected in accessible and potentially accessible soils at the North Point Lots at concentrations that may pose an exposure risk to future residential occupants or commercial workers. Arsenic was also detected in all accessible soils collected throughout the Site at concentrations above its corresponding MEDEP RAGs for the Residential and Outdoor Commercial Worker exposure scenarios. However, a majority of the detected arsenic concentrations were less than or equal to its Undeveloped Background RAG; and therefore, are likely representative of naturally-occurring arsenic concentrations in Maine soils. Other RCRA 8 metals (barium, cadmium, chromium, lead, mercury, selenium, and silver) were also detected in accessible and potentially accessible soils throughout exterior portions of the Site and vicinity, but at concentrations that did not exceed their respective MEDEP RAGs. No observed evidence of petroleum-impacted soils was noted during the advancement of soil borings at the off-Site Ice Pond Lots (former bulk oil tank area). However, accessible soils throughout the Ice Pond Lots contain PAHs and EPH fractions, but at concentrations that do not exceed their respective MEDEP RAGs for Residential, Outdoor Commercial Worker, or Excavation/Construction Worker exposure scenarios. PCB congeners were detected in Site soils but at concentrations below their corresponding MEDEP RAGs and the U.S. EPA Toxic Substances Control Act (TSCA) threshold. Therefore, the PCBs detected in the Site soils analyzed are not anticipated to pose an exposure risk to future residential and commercial occupants or construction workers at the property. Furthermore, the results indicate that the sampled media are not subject to regulation under the TSCA program.

Pore water samples collected at off-Site locations along the banks of the Back River and Ice Pond contained solvent-related VOCs, PAHs, and dissolved metals (arsenic, barium, and chromium). The presence of these COCs detected in pore water are likely associated with OHS releases from the Ash Ponds or the former bulk tank area, Site-related fill-impacted soils at the Site and vicinity, and/or naturally occurring concentrations in Maine soils (e.g., metals). However, these COCs were not detected at concentrations exceeding their acute or chronic Surface Water Criteria for Saltwater and/or were less than or similar to their background pore water concentrations. Therefore, it is inferred that COCs identified in pore water have not migrated into the Back River or Ice Pond at concentrations that would pose a risk to aquatic life in these saltwater estuaries.

Soil vapor collected at off-Site locations was discovered to contain VOCs and APH compounds, but at concentrations that did not exceed their calculated MEDEP Soil Gas Targets for Residential or Commercial exposure scenarios with the exception of 1,3-butadiene, a petroleum-related VOC. 1,3- butadiene was detected in soil vapor at concentrations that exceeded its calculated MEDEP Soil Gas Targets for Residential exposure only at the soil vapor location in the off-Site Northern Peninsula and at the location of former Oil Tank No. 3.

The Hazardous Materials Inventory (HMI) conducted as part of this Phase II ESA identified asbestos-containing material (ACM) and lead-based painted surfaces in the Maintenance Garage, Ash Pond Pump House, and the Hilton Pond Pump House (all of which are located off-Site) along with potential PCB-containing fluorescent light ballasts and mercury-containing fluorescent light tubes inside the buildings. These materials will need to be properly abated and/or removed if disturbed during future redevelopment including demolition and/or restoration of these off-Site buildings.

Based on the information obtained during this Phase II Investigation, Ransom recommended the following with respect to future redevelopment at the Site and vicinity:

- 1. The results of the Phase II ESA completed for the Site and vicinity should be submitted to the MEDEP Voluntary Response Action Program (VRAP). The MEDEP VRAP is a voluntary program that offers technical review of environmentally-impacted sites and ultimately provides state liability protections for interested parties, including a "No Action Assurance" (NAA) letter, "No Further Action Assurance" (NFAA) letter, and/or a "Certificate of Completion" letter (i.e., no further action required), provided that proper and appropriate environmental assessment and cleanup/remedial actions are completed, as approved by the MEDEP.
- 2. MEDEP VRAP will likely require a deed restriction and/or institutional control(s) in the form of a DEC in order to potentially restrict/prohibit excavation of impacted soils and/or extraction of groundwater at the Site and vicinity, without proper MEDEP notification/approvals and implementation of a Soil and Groundwater Management Plan and Health and Safety Plan;
- 3. The risk of human exposure to elevated concentrations of contaminants identified in accessible soils at concentrations exceeding their respective MEDEP RAGs for Residential and Outdoor Commercial Worker exposure scenarios should be mitigated in accordance with the guidance and approval of MEDEP's VRAP.

- 4. Similar to previous remediation activities at various areas of the Mason Station peninsula, soil mitigation measures to prevent exposure to identified contamination and potential migration of contaminants throughout remaining portions of the Site and vicinity will likely be required. These mitigation measures will likely include engineering controls consisting of the placement of a low-permeable or impermeable soil cover systems or other barrier systems (e.g., pavement, concrete, building foundations in order to prevent contact and exposure to remaining contaminated soil and groundwater) and/or targeted excavation and proper off-site disposal of contaminated soils. Additional contaminant delineation or confirmatory sampling may also be necessary, prior to or during implementation of the selected remedial action. As a likely condition of the MEDEP VRAP and assuming U.S. EPA Brownfields Cleanup funding under a Grant, Subgrant, and/or Loan will be utilized for cleanup of the Site, prepare a Site-specific Analysis of Brownfields Cleanup Alternatives and Conceptual Remedial Action Plan (ABCA/RAP) for review and approval by the MEDEP and U.S. EPA prior to future Site and vicinity cleanup and redevelopment activities;
- 5. The risk of human exposure to asbestos fibers identified in soils at off-Site North Point Lots 68 and 77 during this Phase II ESA should be mitigated in accordance with the "North Peninsula Fill Area Closure Plan, which was prepared by Ransom and dated August 20, 2008. Please note that North Point Lots 77 and 79 are previously included in this closure plan. MEDEP approved this plan on July 1, 2008 and Ransom recommends that this closure plan be updated to meet current regulatory guidelines and/or standards, resubmitted to the MEDEP for approval, and undertaken to properly reduce the contact risk with these materials;
- 6. A vapor barrier and/or passive sub-slab depressurization system should be incorporated into the design of any new proposed residential dwellings in the vicinity of former Oil Tank No. 3 and at the off-Site Northern Peninsula in order to mitigate potential impacts to indoor air quality from potential vapor intrusion of volatile compounds identified in soil vapor at these portions of the Site. Vapor mitigation systems are similar and/or analogous to radon mitigation systems and are relatively easy to install and incorporate into the design of new building foundations;
- 7. The license permitting the operation of the off-Site Ash Ponds has expired, and the Ash Ponds are no longer in operation. A plan titled Closure Plan for Decommissioning of Wastewater Treatment (Ash) Ponds (August 14, 2006) prepared by Ransom was approved with conditions by the MEDEP on September 7, 2006; however, decommissioning activities were not completed by the owner at that time. Decommissioning and closure activities proposed by Ransom include pumping out the remaining water in the Ash Ponds, dewatering and removal of the remaining sediment, offsite disposal of sediment/water waste (waste characterization testing would likely be required by the accepting disposal facility), excavation and removal of asphalt liners, confirmatory soil sampling beneath the liners for laboratory analysis various parameters. This plan should be updated, re-submitted to the MEDEP for approval, and undertaken in order to properly decommission the Ash Ponds; and

8. Prior to renovation and/or demolition of the Maintenance Building, Ash Pond Pump House, and Hilton Pond Pump House, identified hazardous building materials at these off-Site locations that will be disturbed by these activities must be properly abated, removed, and/or addressed according to the recommendations provided in Ransom's HMI report, which was submitted concurrently with this Phase II ESA.

Letter from Peter LaFond, State of Maine Office of the Attorney General, August 30, 2017

A letter from Peter LaFond, Assistant Attorney General for the State of Maine, on behalf of MEDEP, identified multiple environmental issues located at the Site and vicinity that warranted further investigation/delineation. Identified off-Site environmental issues included the ash ponds, coal yards, and the north peninsula land fill area in the Site vicinity. Identified on-Site environmental issues included exterior PCB-Contaminated areas, HBM within the former plant building (i.e. Powerhouse Building), and mercury contamination within the Powerhouse Building. Furthermore, this letter acknowledged that an additional comprehensive Phase I ESA was required at the Site and vicinity in an effort to ensure that no additional RECs were present at the Site and vicinity.

Phase I ESA, Ransom, May 31, 2018

In response to the August 30, 2017 letter from the Attorney General's Office, a Phase I ESA was completed for the Site by Ransom in 2018. The Phase I ESA identified the following *RECs* in connection with the Site:

- 1. The Powerhouse Building was observed in a vacant state and it is likely that additional hazardous substances or petroleum products (HSP), potentially including cutting fluids, hydraulic oils, fuel oils, solvents, and/or coal/oil combustion residuals, etc., were present on the Site during historic operations. Within the Powerhouse Building, fluid suspected to contain polychlorinated biphenyls (PCBs) was observed within the secondary containment of two labeled PCB-containing transformers and also migrating through the floor and dripping from the ceiling onto the building floor below the transformer location. Also, multiple locations within the Powerhouse Building showed evidence of prior use and/or storage of HSP, including the observed evidence of use and/or storage of caustic soda, mercury, petroleum products, and PCBs and potential releases of these materials. Along the exterior of the Mason Station building is an electrical transformer area with labels indicating the presence of PCBs. Spills previously reported to the MEDEP suggest contamination may be present in nearby soils and possibly on concrete transformer and switchgear pads. Additional sampling should be conducted within the Powerhouse Building, at targeted areas beneath the lowest level floor slab, and along the exterior in the vicinity of the electrical transformers to evaluate the potential impacts from these substances.
- 2. The license permitting the operation of the Ash Ponds remains expired, and the Ash Ponds are no longer in operation. A plan titled Closure Plan for Decommissioning of Wastewater Treatment (Ash) Ponds (August 14, 2006), prepared by Ransom, was approved with conditions by the MEDEP on September 7, 2006; however, decommissioning activities were not completed by the owner at that time. Decommissioning and closure activities proposed by Ransom include pumping out the remaining water in the Ash Ponds, dewatering and removal of the remaining sediment, offsite disposal of sediment/water waste (disposal characterization testing would likely be

required by the accepting disposal facility), excavation and removal of asphalt liners, confirmatory soil sampling beneath the liners for laboratory analysis various parameters. This plan should be updated, reviewed and approved by the MEDEP, and implemented in order to properly decommission the Ash Ponds.

3. Materials previously excavated from the northern lots at the Site, which contain residual coal, still remain stockpiled at the Site. This material was originally intended to be capped beneath a planned parking lot after redevelopment. Depending on the timing of redevelopment, this material should either be placed under a temporary cap or characterized and disposed off-Site.

In addition to the REC discussed above, certain ASTM non-scope considerations were reviewed and identified in connection with the Site that represent potential business environmental risk and require state and/or federal regulatory compliance:

1. Based on the age of the Powerhouse Building (circa 1940) and Screen House Buildings (likely 1940s), it is possible that asbestos-containing materials (ACM), lead-based paint (LBP), PCB-containing transformers and fluorescent light ballasts, mercury-containing switches and fluorescent lamps, and other potential universal wastes exist at the Site. Ransom recommends that a HBMI be conducted concurrent with the recommended Phase II ESA to identify hazardous building materials requiring proper abatement prior to redevelopment.

3.0 CONCEPTUAL SITE MODEL

Numerous environmental investigations have been completed at the former Mason Station property from 1992 to 2016, as part of the powerplant closure and peninsula redevelopment efforts. As described above, the previous environmental investigations have generally characterized environmental conditions in the areas of the North Point Lots, the Ice Pond Lots, the Back-River Lots, the former bulk fuel storage tanks, the former marine terminal and oil conveyance piping, and sediments in the ash ponds as well as in the river adjacent to the Powerhouse Building.

Based on the historical information, and the findings of the recent Phase I ESA, the current Phase II ESA was designed to investigate the following issues and areas of the Site.

3.1 Interior of Powerhouse Building

Based on conditions observed within the Powerhouse Building during the 2018 Phase I ESA, additional investigation appeared warranted to address the following potential environmental concerns:

- 1. Legacy or residual Hazardous Materials that may remain within the Powerhouse Building;
- 2. Exposure risks associated with reoccupation and/or reuse of the Powerhouse Building; and
- 3. Hazardous Building Materials that will need to be addressed prior to or as part of redevelopment.

3.1.1 Electrical Transformers

During the 2018 Phase I ESA, two electrical transformers were identified on the 4th floor of Unit 4, which appeared to have leaked transformer oil into the secondary containment which the transformers were located. The secondary containment had filled up with rain water, causing the oily water mixture to overflow the containment and drip down several stories through the steel grating and concrete floors of the building. During an October 9, 2018 Site visit, an additional leaking electrical transformer was identified in connection with a transformer located on the ground level of Unit 5 of the Powerhouse Building. Photos of the leaking transformers are included in the Photograph Log, Appendix A.

The oil released from the transformers has the potential to contain PCBs and metals. The transformer releases pose a risk of contaminant migration throughout interior locations of the Powerhouse, within drainage/utility lines associated with the Powerhouse, and at drainage line outfall locations along the Back River. These impacts could adversely affect future occupants/workers, soil and/or groundwater in the vicinity of the utility/drainage lines, and various ecological receptors associated with the Back River. Accordingly, fluid sampling in these suspect areas is warranted.

3.1.2 Mercury

Within the Powerhouse Building, the potential for mercury contamination exists in areas suspected to have been used for storage or operation of mercury containing switches and other equipment components. These potentially-impacted areas pose a risk of vapor contaminant migration throughout interior locations of the Powerhouse, which could adversely affect receptors including future workers/occupants within the Powerhouse Building. Contaminant migration could also occur as a result of spills or releases of liquid mercury, which could be released to the subsurface and migrate in the dissolved phase to the adjacent river.

3.1.3 Interior Surface Conditions

Historic Site operations and spills at various areas within the Powerhouse Building may have caused releases of metals- and/or PCB-containing oils at areas in the vicinity of the interior, as well as suspected PCB transformers and various other stained surfaces throughout the building. The potentially metals- and/or PCB impacted oil releases pose a risk of contaminant migration throughout interior locations of the Powerhouse, within drainage/utility lines associated with the warehouse, and at drainage line outfall locations along the Back River. These impacts could adversely affect future occupants/workers, soil and/or groundwater in the vicinity of the utility/drainage lines, and various ecological receptors associated with the Back River. Accordingly, fluid- and wipe-sampling in these suspect areas is warranted.

Since the Site is proposed to be renovated, any redevelopment activities which involve the renovation or demolition of the Site Buildings that were constructed before 1980 (Mason Station Powerhouse and Screen Houses 1, 2, and 3) will require an inspection for ACM. Other potentially hazardous building materials, including LBP, PCB-contaminated wastes and building materials, and mercury-containing fluorescent lamps may be present in the buildings. Identification of potentially hazardous building materials will be necessary prior to building renovation and/or demolition in order to protect worker safety and to maintain compliance with applicable storage, maintenance, and/or disposal regulatory criteria. In order to address these concerns, a HBMI was conducted in conjunction with the Phase II ESA activities. A copy of Ransom's HBMI report is being provided under separate cover.

3.2 Subsurface Contamination from Powerhouse Building

Historic Site operations and potential releases from equipment within the Powerhouse Building have the potential to have been released to the environment from within the building. Releases from the Powerhouse Building would be expected to have impacted soil, groundwater, and/or soil vapor beneath and in the vicinity of the building. Contaminants of concern associated with historic operations of the Powerhouse Building include various cutting fluids, hydraulic oils, fuel oils, solvents, and/or coal/oil combustion residuals.

Potentially impacted soil along the building exterior poses a risk of contaminant migration throughout the Site exterior during Site redevelopment, specifically during excavation/grading activities. Potentially impacted groundwater along the building exterior poses a risk of contaminant migration to receptors including off-Site media and/or the Back River. Potentially-impacted soil vapor beneath the Powerhouse Building and along its exterior pose a risk of airborne contamination within the Site building that could affect future workers/occupants. Accordingly, soil, groundwater, and soil vapor sampling along the building exterior is warranted.

3.3 Exterior Electrical Transformer Enclosures

The August 30, 2017 letter from Peter LaFond, Assistant Attorney General for the State of Maine, indicated that further characterization of PCB-contaminated surficial soils was required in the vicinity of the electrical transformer enclosures located on the southwest and north sides of the Powerhouse Building. Contaminated surficial soils in these areas may represent a direct-contact exposure risk to future Site occupants or workers. Potentially impacted surficial soil in the vicinity of the exterior transformers poses a risk of contaminant migration throughout the Site exterior during Site redevelopment, specifically during excavation/grading activities. Accordingly, surficial soil sampling within transformer cages along the building exterior is warranted.

4.0 PHASE II ESA METHODOLOGY

Based on the Conceptual Site Model outlined above, the following methodologies were used to investigate the remaining areas of concern.

4.1 Mercury vapor screening

On November 5 and 6, field screening readings of mercury vapor concentrations were recorded throughout the Powerhouse Building. Ransom utilized a Jerome 431-X Mercury Vapor Analyzer reading in milligrams per cubic meter (mg/m³). Screening was conducted in areas where evidence of mercury containing equipment and switches were identified. Ambient air concentrations were also recorded throughout the building. A photolog, documenting the mercury vapor field screening activities, is included in Appendix A.

4.2 Wipe sampling

Wipe samples were collected throughout the building in accordance with Ransom's Standard Operating Procedure (SOP) for Polychlorinated Biphenyl Surface Wipe Sampling, dated February 2007. Samples were collected using a wipe pad moistened with hexane solvent, wiped over a 100 square centimeter area. Sample locations were selected based on visual evidence of staining or areas of releases associated with machinery and infrastructure throughout the Powerhouse Building. Wipe sampling was concentrated on lower floors of the building as a result of the upper floors being primarily constructed of framing and grating, with limited areas of staining.

4.3 Hazardous Building Materials Inventory

In conjunction with the Phase II ESA activities, a HBMI was conducted for interior and exterior portions of the Powerhouse Building, and the Screen House #1, Screen House #2, and Screen House #3 buildings. The HBMI was conducted in accordance with applicable State and Federal regulations and included a survey of potential asbestos-containing materials (ACM), lead-based paint (LBP) and other potentially hazardous/universal wastes. Details of the HBMI and sampling methodology are described in the HBMI report, which is provided under separate cover.

4.4 Soil Boring Advancement

On November 12, 2018, soil borings B301 through B304 were advanced around the perimeter of the Powerhouse Building. The soil borings were advanced by Environmental Projects Inc. (EPI) using direct-push (i.e., Geoprobe) drilling techniques. At each soil boring location, 5-foot macrocore soil samples were collected continuously from surface grade to the termination of each boring. The borings were advanced until groundwater or probe refusal conditions were encountered.

Soil boring locations were selected in areas assumed to be down-gradient of the Powerhouse Building. The soil borings were located in an effort to evaluate potential source areas and migration pathways of contaminants that may have been released from the building. Soil boring locations are shown on Figure 4.

Soil samples collected during the advancement of the soil borings were visually classified in the field by Ransom in general accordance with the Burmeister Soil Classification System. Soil boring logs are provided in Appendix B.

4.4.1 Qualitative Field Screening

Soil samples collected during the advancement of the soil borings were screened in the field for the presence of total organic volatile compounds (TVOCs), using a photoionization detector (PID) equipped with a 10.6 eV lamp and calibrated to an isobutylene standard. Field screening readings are recorded on the soil boring logs included in Appendix A.

4.4.2 Soil Sampling and Analytical Testing

Select soil sample intervals from each boring location were submitted for laboratory analysis. Ransom generally targeted intervals representing surface conditions (0 to 2-feet below grade) and subsurface conditions (greater than 2 feet below grade), at each location. Due to the shallow refusal conditions encountered in soil boring B302, only the sample collected from the 0 to 2-foot interval was submitted for laboratory analysis from this location.

Soil samples collected from the soil borings were submitted to Alpha Analytical, LLC (Alpha) of Westborough, Massachusetts, for chemical analysis. The samples were preserved in the field in accordance with applicable protocols and delivered on ice under chain-of-custody protocol for laboratory analysis. Soil samples from the soil borings were submitted for the following chemical analysis based on the conceptual site model presented above:

- 1. Volatile organic compounds (VOCs) by U.S. EPA Method 8260C;
- 2. PCBs by U.S. EPA Method 8082A;
- 3. Extractable Petroleum Hydrocarbons (EPH), including ranges and target polycyclic aromatic hydrocarbons (PAHs) by Massachusetts Department of Environmental Protection (MADEP) Method MADEP-EPH-04-1/8270D-SIM;
- 4. Volatile Petroleum Hydrocarbons (VPH), excluding target VOCs, by MADEP Method MADEP-VPH-04-1.1; and/or
- 5. RCRA 8 Metals by ICP-MS.

4.5 Groundwater Monitoring Well Installation

Following advancement, soil borings B301 through B304 were completed as groundwater monitoring wells (MW301 through MW304, respectively). The monitoring wells were constructed using 1-inch diameter Schedule 40 polyvinyl chloride (PVC) well casing and factory-slotted screen. Traffic boxes were placed around the well casing at the ground surface to protect the well head. Well construction details can be found on the boring logs provided as Appendix B.

Refusal conditions were encountered at a depth of 6 feet in soil boring B302 on apparent bedrock surface. No groundwater accumulated in the monitoring well at this location. Therefore, a groundwater sample was not obtained from this location, and groundwater monitoring well MW302 was subsequently removed.

4.5.1 Groundwater Sampling and Analytical Testing

Prior to sample collection, the monitoring wells were developed using a peristaltic pump and dedicated tubing. The wells were developed in an effort to remove silt and fines and to restore the natural permeability of the soils surrounding the well screens. When purging was complete, the monitoring wells were sampled in accordance with modified low-flow sampling methods. Copies of the groundwater sampling field data sheets are included in Appendix C.

The groundwater samples were collected directly from the sampling equipment and transferred into laboratory-prepared sample containers. The samples were preserved in the field in accordance with applicable protocols and delivered on ice under chain-of-custody protocol to Alpha for laboratory analysis. Groundwater samples were submitted for the following chemical analysis:

- 1. VOCs by U.S. EPA Method 8260C;
- 2. EPH including ranges and target PAHs by MADEP Method MADEP-EPH-04-1/8270D-SIM;
- 3. VPH including ranges and target VOCs by MADEP Method MADEP-VPH-04-1.1; and
- 4. RCRA 8 Metals by ICP-MS.
- 4.6 Soil Vapor sampling

On November 12 and 13, 2018, six soil vapor samples (SV301 through SV306) were collected around the perimeter of the Powerhouse Building. Sub-slab soil vapor samples were initially planned for the interior of the building but were precluded by the depth to bedrock and groundwater, as observed in the soil borings discussed above, and groundwater infiltration into the basement areas of the Powerhouse Building. The soil vapor samples collected around the perimeter of the building were analyzed to identify potential contaminant source areas and risk drivers.

Based on the anticipated depth to bedrock and groundwater at each location, soil vapor samples SV302, SV303, and SV306 were collected using a Geoprobe® Post-Run Tubing (PRT) system in accordance with MEDEP "Protocol for Collecting Soil Gas Samples (MEDEP SOP No. DR-026). Soil vapor samples SV301, SV304, and SV305 were collected according to the "Soil Gas Sample Collection Method Utilizing Hand Tools" (MEDEP SOP No. DR-005).

Prior to sampling, the soil vapor points were purged for several minutes using a peristaltic pump at a flow rate of 0.5 liter/minute to ensure at least one well volume of vapor was purged prior to sampling. Soil vapor parameters, including carbon dioxide and oxygen concentrations were monitored prior to soil vapor sample collection to ensure that each sampling point was not drawing in ambient air. After purging, soil vapor samples were collected from the soil vapor points using laboratory-prepared SUMMA[®] passivated stainless-steel canisters with 200 milliliters per minute flow controllers. Soil vapor sampling field data sheets are included in Appendix C.

Soil vapor samples were submitted to Alpha and analyzed for the following:

1. VOCs by U.S. EPA Method TO-15; and

2. Air-phase petroleum hydrocarbons (APH) by the MA DEP Method.

4.7 Surficial Soil Sampling of Exterior Transformer Enclosures

On November 5, 2018, surficial soil samples SS301 through SS308 were collected from the electrical transformer enclosures located adjacent to the southwest and northern sides of the Powerhouse Building in an effort to characterize soil conditions and potential direct contact exposure risks. Samples were collected using hand tools (shovel and pick axe). Surficial soil samples SS301 through SS304 were collected in the vicinity of transformers within the transformer enclosure at the southwestern exterior of the Powerhouse Building. Surficial soil samples SS305 through SS308 were collected in the vicinity of transformer cage located at the northern exterior of the Powerhouse Building. An equipment blank was collected in conjunction with the surficial sampling in an effort verify successful decontamination of sampling tools and laboratory analytical quality assurance/quality control (QA/QC).

5.0 PHASE II ESA RESULTS

The following subsections document the results of the current Phase II ESA activities. Field screening and laboratory analytical results are summarized in Tables 1 through 7. Sample locations are shown on Figures 3 and 4. Copies of the laboratory chemical analysis data reports are provided as Appendix D.

5.1 Applicable Regulatory Standards and Guidelines

The analytical results of soil, groundwater, and soil vapor samples collected at the Site were compared to the MEDEP Bureau of Remediation and Waste Management's (BRWM's) "Remedial Action Guidelines (RAGs) for Sites Contaminated with Hazardous Substances," dated October 19, 2018.

Soil

Since the Site is currently unoccupied, but may be redeveloped for mixed residential, commercial, and marina reuse, the MEDEP RAGs for "Residential" and "Outdoor Commercial Worker" exposure scenario appears to be the most applicable guidance standards. In addition, potential exposure risks to Site workers during future construction activities and utility work (i.e., subsurface water and sewer lines) exists at the Site; therefore, "Excavation/Construction Worker" scenarios also apply to accessible soils (0 to 2 feet bgs) and potentially accessible soils (i.e., deeper than 2 feet bgs), in order to evaluate potentially unacceptable risks to excavation or construction workers during proposed redevelopment and/or future utility work at the Site.

Groundwater

The Mason Station Peninsula is supplied with municipal water by the Wiscasset Water District. Therefore, ingestion of contaminated groundwater is not expected to represent an exposure risk. Groundwater sample analytical results were compared to the MEDEP RAGs for the "Construction Worker" exposure scenario.

Soil Vapor

The soil vapor sample analytical results were compared to both residential and commercial Indoor Air Targets as presented in the MEDEP RAGs. In order to evaluate potential impacts from vapor intrusion, Ransom calculated applicable Soil Gas Target concentrations for residential and commercial exposure risk by dividing the applicable Indoor Air Targets by an attenuation factor (0.03), as outlined in the RAGs. The calculated Soil Gas Targets are shown in Table 5.

Building Interior Surfaces

PCB wipe sample results were compared to the U.S. Environmental Protection Agency (EPA's) PCB Remediation Waste wipe sampling criteria of 10 micrograms per square centimeter (μ g/100 cm²). 40 CFR §761 defines PCB-contaminated wastes as follows:

- Excluded PCB Product: Building materials or wastes which contain PCBs at concentrations less than 50 mg/kg.
- PCB Bulk Product Waste: Non-liquid bulk wastes and/or debris (including waste building materials) which contain PCBs at concentrations greater than 50 mg/kg, which is suspected to

result from manufactured products which formerly contained PCBs (such as paint, caulking, plastics, ballasts, etc.).

PCB Remediation Waste: Non-liquid environmental media (i.e. soil) and/or building
materials (i.e. concrete floors, wood floors or walls) which contain PCBs at concentrations
greater than 1 mg/kg, which is suspected to result from a spill, release, or other unauthorized
disposal. This includes building materials which were impacted by a leaking PCB containing
transformer. Included in this definition is material with a porous surface which has been
contaminated by a historic release and has a surficial concentration of PCB (as determined by
wipe sampling) which exceeds 10 µg/100 cm².¹

Wipe sampling results for lead were compared to an OSHA-recommended level of 200 micrograms per square foot ($\mu g/ft^2$) (or 21.5 $\mu g/100$ cm²), as a maximum lead concentration for "clean" surfaces.

5.2 Geology and Hydrogeology

In general, soils encountered during this Phase II ESA were similar to soils encountered during previous investigations and cleanup activities conducted at the Site. Soils composition varied in the locations explored during this investigation, but generally consisted of 1 to 10 feet of fill overlaying native, glaciomarine deposits (Presumpscot Formation), till, and bedrock.

Accessible soil contained fill, which generally consisted of brown, fine to coarse sand with varying amounts of silt and gravel. Potentially accessible fill soils recovered along the powerhouse building consisted of brown silty clay with gravel at select locations. Brick and coal ash debris were encountered in potentially accessible fill soils in borings B302 and B304 advanced to the east and north of the powerhouse building exterior, respectively. Fill soils to the east of the powerhouse building exterior were underlain with native, glaciomarine silts and clays with variable amounts of sand and/or gravel in soil borings B301 and B302. Fill soils to the north of the powerhouse building exterior were underlain with native well-graded sands with gravel followed by silty clay and gravel in soil borings B303 and B304.

Groundwater-saturated soils were encountered along the Powerhouse building exterior in soil borings B301, B303, and B304 at depths ranging between 11.5 and 15 feet below grade. A groundwater elevation survey was conducted after the temporary monitoring wells had been installed, developed, and allowed to equilibrate. Coupled with depth to groundwater data, relative groundwater elevations were calculated as shown in the table, below. The data generally indicates a hydraulic gradient and associated interpreted groundwater flow direction to the east-southeast, in the direction of the Back River. Note that monitoring well MW302 was excluded from the groundwater elevation calculations, since the well was dry at the time of measurement. Due to the limited number of monitoring wells installed during the Phase II investigation, groundwater contours were not generated.

¹ U.S. EPA PCB Site Revitalization Guidance Under the Toxic Substances Control Act (TSCA), November 2005 (https://www.epa.gov/sites/production/files/2015-08/documents/pcb-guid3-06.pdf)

Well	Depth to Groundwater (feet below top of casing)	Relative Top of Casing Elevation	Relative Groundwater Elevation
MW301	5.53	15.73	10.20
MW302	Dry	Not Measured	Not Measured
MW303	5.15	18.25	13.10
MW304	5.03	18.58	13.55

Groundwater Elevation Survey Results

NOTES:

Elevations are relative to an assigned arbitrary elevation of 20 feet above mean sea level (MSL).

5.3 AOC 1 - Interior of Powerhouse Building

5.3.1 Mercury Vapor Assessment

During the Phase II ESA activities, Ransom personnel observed numerous fixtures and pieces of equipment throughout the Powerhouse Building that were labeled as having contained liquid mercury. The majority of these items were marked with labels indicating the liquid mercury had been drained during a period of time ranging from 1993 to 2004. No disposal contractor information or additional mercury disposal information was identified.

Findings from the mercury screening activities indicated ambient air concentrations throughout the Powerhouse Building ranging from 0.0 to 0.011 mg/m³. Ten specific locations were screened based on the presence of equipment that was labeled or otherwise appeared to have historically contained liquid mercury. Mercury vapor concentrations at these specific equipment locations ranged from 0.0 to 0.007 mg/m³. The OSHA Permissible Exposure Limit for mercury vapor is 0.1 mg/m³. In an attempt to gauge the completeness of the previous mercury removal actions, the mercury vapor analyzer was utilized to take readings within the previously drained equipment reservoirs which indicated concentrations up to 0.485 mg/m³.

5.3.2 Contaminated Surfaces Within the Powerhouse Building

As previously discussed, the 2018 Phase I ESA identified two electrical transformer units on the 4th floor of Unit 4 (Powerhouse Building) that appeared to have leaked mineral oil dielectric fluid. An additional electrical transformer leak, located on the ground level of Unit 5, was discovered during a Site visit conducted on October 9, 2018. In order to characterize the mineral oil dielectric fluid, samples "Oil Unit 4" and Oil Unit 5" were collected from the transformer oil at each location. The transformer oil samples were analyzed for PCBs and RCRA 8 Metals. Laboratory analysis of the oil samples indicated a total PCB concentration of 51.6 mg/kg detected in the oil associated with the transformers in Unit 4. Total PCBs were detected at a concentration of 3.15 mg/kg in the oil associated with the transformer in Unit 5. RCRA 8 Metals were not detected above laboratory detection limits in either of the transformer oil samples. Transformer oil sample results are summarized in Table 1. Based on the concentration of PCBs detected, the transformer release in Unit 4 of the Powerhouse Building is subject to regulation under TSCA.

Wipe samples WS101 through WS116 were collected to evaluate areas of staining and general surface area conditions throughout the interior of the Powerhouse Building. Results of the wipe

samples are summarized in Table 2. The table also describes the specific location from which the wipe samples were collected. Wipe sample locations are shown on Figure 3.

Results of the wipe sampling activities identified concentrations of PCBs ranging from 0.761 to 6.53 micrograms per 100 square centimeters (μ g/100 cm²) at eight of the sixteen wipe sample locations. (The remaining eight wipe sample locations were below the laboratory detection limit for PCBs). The PCB results did not exceed 10 μ g/100 cm² and therefore, do not constitute a "PCB Remediation Waste" as defined by TSCA. The presence of PCBs did not appear to be associated with a particular location or piece of equipment.

Some or all of the RCRA 8 metals were detected at each of the wipe sample locations. The wipe samples indicated concentrations of lead ranging from 19.6 to 12,000 μ g/100 cm². With the exception of wipe sample WS101, the concentrations of lead detected at the wipe sampling locations exceeded the OSHA-recommended level of 21.5 μ g/100 cm².

5.3.3 HBMI Results

Ransom conducted an HBMI concurrent with our Phase II ESA investigation, which included interior and exterior inspections of the Powerhouse Building, and Screenhouses #1, #2, and #3. The HBMI identified large quantities of asbestos-containing materials, PCBs in one interior paint, and limited lead-based paint coated surfaces, as well as potentially PCB-containing fluorescent light ballasts, mercury-containing fluorescent light tubes, and other universal wastes inside the Site Buildings. These materials will need to be properly managed during future Site redevelopment, which would likely include removal and disposal of some or all hazardous building materials in accordance with MEDEP and U.S. EPA regulations. Results of the HBMI are detailed in the full HBMI report, which is provided under separate cover.

5.4 AOC 2 - Potential Releases from the Powerhouse Building

Soil, groundwater, and soil vapor conditions immediately adjacent to the Powerhouse Building were investigated to evaluate potential releases to the subsurface and/or contaminant source areas in the vicinity of the building. Soil sample analytical results from soil borings B301 through B304 are summarized in Table 3. Groundwater sample analytical results obtained from the monitoring wells installed during this ESA are summarized in Table 4. Soil vapor sample analytical results are summarized in Table 5. Sample locations are shown on Figure 4.

5.4.1 Soil Conditions

Soil sample analytical results from the soil borings advanced adjacent to, and downgradient from, the Powerhouse Building indicated low concentrations of various EPH fractions and/or PAH compounds in the accessible soils (0 to 2 feet below grade) at soil boring locations B301, B302, and B303. As shown in Table 2, the PAH compound benzo(a)pyrene was detected at a concentration above the MEDEP RAG for Residential exposure. These compounds were also detected in the subsurface soil samples, collected at depths of 10 to 15 feet in soil borings B303 and 304. These compounds were not detected above the laboratory detection limit in the deep-zone soil sample (10 to 13 feet below grade) collected from soil boring B301, or the surficial soil sample collected from location B304.

The metals arsenic, barium, total chromium, and lead were detected in soil samples collected from both accessible (0 to 2-feet) and potentially accessible (2 to 15 feet below grade) soils.

Concentrations of arsenic exceeded the MEDEP RAGs for Residential exposure at locations B301 and B303. However, these concentrations were less than the State-wide background concentration of 16 milligrams per kilogram (mg/kg) for arsenic. The remaining metals concentrations did not exceed the MEDEP RAGs for the applicable exposure scenarios.

PCBs and VPH compounds were not detected above the laboratory detection limits in the soil samples collected from the soil borings installed during this assessment. With the exception of trace concentrations of toluene and acetone, VOCs were not detected in the soil samples collected from the soil borings.

5.4.2 Groundwater Conditions

Groundwater samples collected from monitoring wells MW301, MW303, and MW304 showed little evidence of contaminants of concern. Low concentrations of the VOCs 1,1-dichloroethane and 1,1-dichloroethene were detected in the groundwater sample collected from MW301. Barium was detected in the groundwater samples collected from all three monitoring well locations. Petroleum hydrocarbons, PCBs, and mercury were not detected in any of the groundwater samples collected adjacent to the Powerhouse Building.

5.4.3 Soil Vapor Conditions

As shown in Table 5, petroleum compounds and VOCs were detected in the soil vapor samples collected from the perimeter of the Powerhouse Building. These detected compounds included low concentrations of tetrachloroethene (PCE) and/or trichloroethene (TCE) in soil vapor samples SV301 through SV305. The concentration of naphthalene detected in soil vapor sample SV303 exceeds the Soil Gas Target for Residential use scenarios.

Analytical results from the soil, groundwater, and soil vapor conditions surrounding the Powerhouse Building did not identify specific source areas or release locations. However, the detection of contaminants of concern in soil and soil vapor samples suggest that limited releases to the subsurface have occurred in the vicinity of the Powerhouse building and source areas may exist beneath the building foundation. Groundwater sample analytical results suggest that contaminants are not migrating in the dissolved phase from potential source or spill areas beneath the Powerhouse Building.

5.5 AOC 3 - Exterior Electrical Transformer Enclosures

Two exterior electrical transformer enclosures were identified on the southwest and northern sides of the Powerhouse, respectively. Soil samples were collected from accessible soils (0 to 2 feet below grade) in each of the electrical transformer enclosures to determine the potential for releases of PCBs associated with the pad-mounted electrical transformers. Soil samples SS301 through SS304 were collected in the southwest transformer enclosure, and soil samples SS305 through SS308 were collected in the northern electrical transformer enclosure. The surficial soil samples were also screened in the field for concentrations of RCRA 8 Metals using an X-ray fluorescence meter (XRF). Sample locations are shown on Figure 4.

Analytical results from the electrical transformer enclosures identified total PCBs in each of the samples collected, at concentrations ranging from 8.76 to 84.4 mg/kg (refer to Table 6). PCB concentrations in both exterior transformer areas exceed the MEDEP RAGs for Residential and Outdoor Commercial Worker exposure. Furthermore, the concentration of PCBs detected in sample SS303, in the southwest

transformer enclosure area, exceeded 50 parts per million, and is therefore subject to regulation under TSCA.

Field screening of the surficial soils collected from the transformer enclosures are summarized in Table 7. The field screening results indicated detectable concentrations of barium, chromium, and lead in the samples collected from the exterior transformer enclosures. The concentrations of barium and lead detected in both exterior transformer areas exceeded the MEDEP RAG for Residential exposure. The concentration of lead detected in sample SS303 also exceeds the Commercial Worker and Construction Worker guidelines. Concentrations of total chromium exceed the RAGs for Chromium VI, but do not exceed the RAGs for Chromium III. Laboratory analysis and speciation would be required to further evaluate the chromium results. Arsenic was not detected above the instrument detection limit. However, it should be noted that the XRF detection limit for arsenic was generally greater than the MEDEP RAGs for arsenic.

6.0 PHASE II ESA CONCLUSIONS

Based on the results of the current Phase II ESA, the following conclusions are presented.

Observations made during this current investigation indicate that efforts were made in the past to identify, remove, and dispose of liquid mercury from mercury containing equipment throughout the Powerhouse Building. Equipment labeled as formerly containing liquid mercury was observed with tags indicating the mercury had been drained during a period extending from 1993 to 2004. However, no documentation or report of these efforts was identified or made available during this investigation. It is believed that Central Maine Power (CMP) lead these efforts and a report documenting the activities is currently being researched.

Mercury vapor screening activities conducted throughout the Powerhouse Building during this investigation indicated that ambient air conditions with respect to mercury vapor do not represent an exposure risk for future occupation of the building. Mercury vapor screening of specific pieces of previously drained equipment reservoirs indicated elevated residual concentrations of mercury vapor within the equipment. Considering this equipment is no longer in use, these pieces of equipment should be transported for proper off-site disposal.

Three leaking electrical transformers have been identified during the course of the recent Phase I and Phase II assessment efforts. One of the leaking transformers is located on the ground-floor level in Unit 5 of the Powerhouse building. Analysis of the oil associated with this transformer identified low concentrations of PCBs but suggest that this transformer release is not subject to regulation under the TSCA program. Nevertheless, the unauthorized release of petroleum product will need to be addressed and cleaned up under State regulations.

Two additional leaking electrical transformers were identified within a common spill containment on the 4th floor of Unit 4. Transformer oil was observed on top of rain water that had accumulated within the spill containment structure. Oily water had spilled over the top of the spill containment and dripped onto the steel grating and concrete floors below the transformers. Analysis of oil associated with the transformers identified in Unit 4 of the Powerhouse Building suggest that the investigation and cleanup of this release is subject to TSCA regulation.

Wipe samples collected from surfaces throughout the Powerhouse Building indicated concentrations of lead that exceed the OSHA recommended level for surface contamination. These contaminants, found primarily on concrete surfaces throughout the building, would likely represent and exposure risk if the building is re-occupied for commercial or residential purposes. In addition, several wipe samples exhibited low concentrations of PCBs. The concentrations of PCBs detected in the wipe samples were less than the U.S. EPA's PCB Remediation Waste wipe sampling criteria of 10 micrograms per square centimeter ($\mu g/100 \text{ cm}^2$).

Evaluation of the soil, groundwater, and soil vapor conditions surrounding the exterior perimeter of the Powerhouse Building did not identify specific contaminant source areas. However, the presence of contaminants of concern suggests that minor releases may have occurred to the subsurface beneath the Powerhouse Building over the approximately 50 years of operation as a power generating facility. Soil vapor results suggest that vapor intrusion may represent an exposure risk if the building is redeveloped for residential use in the future. Surficial soil sample results also suggest a potential exposure risk from PAH compounds above the MEDEP RAGs for residential use.

Findings from the electrical transformer enclosures on the exterior of the Powerhouse Building indicated concentrations of PCBs and metals that would represent an exposure risk if the property is redeveloped for residential or commercial use in the future. Results of the current investigation indicate that the release of PCBs in the southwest electrical transformer enclosure is subject to regulation under the TSCA program. The results of the soil sampling for the north transformer cage did not indicate soil concentration exceeding the TSCA limit. The status of the mineral oil dielectric fluid within the exterior transformers is currently unknown.

7.0 PHASE II ESA RECOMMENDATIONS

Based on the information obtained during this Phase II Investigation, as well as a review of historic documentation associated with the Site, the following recommendations are provided.

- 1. Findings from the current investigation identified three leaking electrical transformers within the Powerhouse Building. Additional electrical transformers are located on the exterior of the Powerhouse Building. Any electrical transformers that are no longer in use should be drained, cleaned, and transported off-site for disposal in accordance with applicable regulations. Surface areas impacted by the leaking transformers should be cleaned of residual contaminants to prevent releases to the environment and potential exposure risks. Investigation and cleanup of the electrical transformer release in Unit 4 of the Powerhouse Building are subject to TSCA regulations.
- 2. Results from the mercury screening activities suggest that equipment and components formerly containing liquid mercury may have residual mercury vapor remaining within the equipment. Equipment and components formerly containing liquid mercury should be removed and transported off-site for proper disposal. Additionally, all mercury containing equipment should be inventoried in the absence of documentation detailing the draining and mercury removal actions that were conducted between1993 and 2004.
- 3. Surfaces throughout the Powerhouse Building exhibited concentrations of lead that exceed the OSHA-recommended level for maximum lead concentrations. Interior building surfaces should be cleaned to remove lead and other residual metals/PCBs if the building is to be re-occupied for residential or commercial use.
- 4. Based on the soil vapor concentrations detected in the vicinity of the Powerhouse Building, the potential for vapor intrusion should be mitigated or indoor air sampling be conducted if the building is to be re-developed for residential use in the future.
- 5. PCBs, metals, and PAH compounds have been detected in accessible soils within the exterior electrical transformer enclosures, and at certain other locations surrounding the Powerhouse Building, at concentrations that represent an exposure risk to residential and/or commercial reuse of the Site. Exposure to these contaminants in accessible soil should be mitigated if the Site is to be re-occupied. Investigation and cleanup of the PCB contamination within the southwestern electrical transformer enclosure are subject to TSCA regulations.
- 6. Hazardous building materials identified throughout the Powerhouse Building and ancillary buildings should be abated and properly disposed of in accordance with the information and recommendations presented in Ransom's Hazardous Building Materials Report (provided under separate cover).

8.0 UNRESOLVED ENVIRONMENTAL ISSUES/CONCERNS

In addition to the recommendations provided above, several outstanding environmental issues/concerns have been identified in connection with the Site, which were not investigated during the current Phase II ESA. Environmental issues remaining to be resolved include the following:

- Based on recent Site observations and a documented release to the adjacent Back River, the MEDEP has requested that all connections between the Powerhouse Building and the river be removed. The roof drains associated with the Powerhouse Building currently drain to several outfall pipes that discharge directly to the river. The roof drains will need to be re-engineered to discharge to the ground surface. Additionally, what appears to be a natural spring is currently engineered to discharge to the trench drain system within Unit 5 of the Powerhouse Building. The natural spring will need to be re-engineered to discharge to an appropriate location. Furthermore, it is our understanding that the screenhouse buildings are connected to the Powerhouse Building by concrete vault structures that were designed to provide intake/discharge of river water to and from the Powerhouse Building. At the request of the MEDEP, these structures will need to be demolished to prevent a direct pathway for migration of contaminants from the Powerhouse Building to the river.
- 2. The license permitting the operation of the Ash Ponds has expired, and the Ash Ponds are no longer in operation. A plan titled Closure Plan for Decommissioning of Wastewater Treatment (Ash) Ponds (August 14, 2006) prepared by Ransom was approved with conditions by the MEDEP on September 7, 2006; however, decommissioning activities were not completed by the owner at that time. Decommissioning and closure activities proposed by Ransom include pumping out the remaining water in the Ash Ponds, dewatering and removal of the remaining sediment, offsite disposal of sediment/water waste (disposal characterization testing would likely be required by the accepting disposal facility), excavation and removal of asphalt liners, confirmatory soil sampling beneath the liners for laboratory analysis various parameters. This plan should be updated, re-submitted to the MEDEP for approval, and undertaken in order to properly decommission the Ash Ponds;
- 3. An Environmental Covenant is required in relation to the Oil Terminal Closure activities that were completed in 2006-2007. Residual soil contamination remains in place at depth on the southern end of the Mason Station Peninsula, and the MEDEP has requested that an environmental covenant be placed on this portion of the property to restrict groundwater extraction. The environmental covenant should be prepared in accordance with the requirements of the Uniform Environmental Covenant Act (UECA).
- 4. Materials previously excavated from the northern lots of the Mason Station Peninsula, which contain residual coal material, still remain stockpiled at the Site. This material was originally intended to be capped beneath a planned parking lot after redevelopment. Depending on the timing of redevelopment, this material should either be placed under a temporary cap or characterized and disposed off-Site.
- 5. During previous investigations, fill and demolition debris, including apparent ACM, was identified, and still remains, on several parcels (North Point Lots 73, 74, 75 76, and 79). A closure plan for the fill area was developed by Ransom and submitted to the MEDEP in 2006. Closure activities proposed by Ransom included disposal of surface debris containing ACM, enhancing the stabilization of the shoreline to secure historic fill containing ACM, implementation of a closure system for the landward portion of the historic fill area containing

ACM, providing a deed-restricted buffer adjacent to the fill area, and establishing an ongoing maintenance program. MEDEP approved this plan on July 1, 2008; Ransom recommends that this closure plan be updated to meet current regulatory guidelines and/or standards.

9.0 **REFERENCES**

- 1. Hydrogeologic Evaluation, Mason Station, Wiscasset, Maine, Haley & Aldrich, Inc., June 30, 1992.
- 2. Phase II Environmental Site Assessment Report, Mason Station, Wiscasset, Maine, Jacques Whitford Company, Inc, November 10, 2004.
- 3. Geotechnical Engineering Report, Maritime Village, Wiscasset, Maine, Jacques Whitford, May 25, 2005.
- 4. Lead in Soil Testing Results, Former Mason Station Power Plant, Birch Point Road, Wiscasset, Maine, Ransom, July 14, 2005.
- 5. Lead Survey Results for Soil Surrounding Former Bulk Fuel Oil Tanks, Former Mason Station Power Plant, Birch Point Road, Wiscasset, Maine, Ransom, February 7, 2006.
- 6. Tank #3 Oil Remediation, Mason Station, Roux Associates, Inc., March 7, 2006.
- 7. Lead Confirmation Testing with XRF, Mason Station, Birch Point Road, Wiscasset, Maine, Ransom, June 14, 2006.
- 8. Closure Plan For Decommissioning of Wastewater Treatment (Ash) Ponds, Former Mason Station Power Plant, Wiscasset, Maine, Ransom, August 14, 2006.
- 9. Marine Oil Terminal and Bulk Tank Closure, Mason Station, 144 Birch Point Road, Wiscasset, Maine, Ransom, February 9, 2007.
- 10. Report on Sediment Sampling, North Peninsula, Point East Maritime Village, Wiscasset, Maine, Ransom, April 9, 2007.
- 11. Interim Report on Coal Removal and Confirmatory Sample Results, North Peninsula, Point East Maritime Village, Wiscasset, Maine, Ransom, April 10, 2007.
- 12. Subsurface Investigation and Remediation, Former Underground Storage Tank Area, Point East Maritime Village, 144 Birch Point Road, Wiscasset, Maine, Ransom, January 23, 2008.
- 13. North Peninsula Fill Area Investigation, 144 Birch Point Road, Wiscasset, Maine, Ransom, February 26, 2008.
- 14. North Peninsula Fill Area Closure Plan, 144 Birch Point Road, Wiscasset, Maine, Ransom, August 20, 2008.
- 15. MEDEP; Surface Water Quality Criteria for Toxic Pollutants, effective July 29, 2012.
- 16. Report on Limited Power Building Condition Assessment, Mason Station, Wiscasset, Maine, GEI Consultants, Inc., May 2, 2013.

- 17. Site Closure Issues Outstanding, Former Mason Station Facility, 144 Birch Point Road, Wiscasset, Maine, MEDEP, May 15, 2013.
- 18. State of Maine Brownfields Assessment Projects Generic Quality Assurance Project Plan (QAPP) RFA #14028, Ransom Consultants, Inc., January 24, 2014.
- 19. MEDEP; Maine RAGs for Sites Contaminated with Hazardous Substances, February 5, 2016.
- 20. Phase I Environmental Site Assessment, Revision No. 1, Phase I Environmental Site Assessment, Point East Maritime Village- Birch Point Road, Wiscasset, Maine, Ransom Consulting, Inc., February 5, 2016.
- 21. Site-Specific Quality Assurance Project Plan Addendum No. 38, Revision No. 2, Phase II Environmental Site Assessment, Point East Maritime Village- Birch Point Road, Wiscasset, Maine, Ransom Consulting, Inc., May 20, 2016.
- 22. Phase II Environmental Site Assessment, Point East Maritime Village- Birch Point Road, Wiscasset, Maine, Ransom Consulting, Inc., June 21, 2016.

10.0 SIGNATURE(S) OF ENVIRONMENTAL PROFESSIONAL(S)

Ransom performed services in a manner consistent with the guidelines set forth in the ASTM International standard E 1903-97 (Standard Practices for Environmental Site Assessments: Phase II Environmental Site Assessment Process), and in accordance with the scope of work outlined in the "Proposed Scope of Work and Cost Estimate (Rev.2), dated October 24, 2018.

The following Ransom personnel possess the sufficient training and experience necessary to conduct a Phase II Environmental Site Assessment, and from the information generated by such activities, have the ability to develop opinions and conclusions regarding recognized environmental conditions in connection with the Subject Property.

Environmental Professionals:

Patrick Brown Project Scientist I/Primary Author

Eriksen Phenix, C.G. Project Geologist/Primary Reviewer

Stephen J. Dyer, P.E. Senior Project Manager

Table 1: Transformer Oil Analytical ResultsPhase II Environmental Site AssessmentMason StationWiscasset, Maine

Sample Identification	OIL UNIT-4	OIL UNIT-5
Sample Location	Unit-4	Unit-5
	Transformer	Transformer
Sampling Date	11/5/2018	11/5/2018
Sample Type	Oil	Oil
Polychlorinated Biphenyls by GC	Concentrat	ions mg/kg
Aroclor 1016	BRL(2.2)	BRL(2.46)
Aroclor 1221	BRL(2.2)	BRL(2.46)
Aroclor 1232	BRL(2.2)	BRL(2.46)
Aroclor 1242	BRL(2.2)	BRL(2.46)
Aroclor 1248	BRL(1.47)	BRL(1.64)
Aroclor 1254	BRL(2.2)	BRL(2.46)
Aroclor 1260	51.6	3.15
Aroclor 1262	BRL(0.735)	BRL(0.82)
Aroclor 1268	BRL(0.735)	BRL(0.82)
PCBs, Total	51.6	3.15
Total Metals	Concentratio	ons in mg/kg
Arsenic, Total	BRL(1.46)	BRL(1.5)
Barium, Total	BRL(1.46)	BRL(1.5)
Cadmium, Total	BRL(1.46)	BRL(1.5)
Chromium, Total	BRL(1.56)	BRL(1.51)
Lead, Total	BRL(7.29)	BRL(7.51)
Mercury, Total	BRL(0.063)	BRL(0.063)
Selenium, Total	BRL(2.92)	BRL(3)
Silver, Total	BRL(1.46)	BRL(1.5)

NOTES:

mg/kg = milligrams per kilogram

BRL = Not detected above laboratory reporting limit as noted in parenthesis

Table 2: Wipe Sample Analytical ResultsPhase II Environmental Site AssessmentMason StationWiscasset, Maine

Sample Location	Concrete floor	Concrete floor near compressor	Concrete mount for turbine fan	Concrete floor near leaking transformer	Concrete floor beneath leaking pipe	Concrete floor beneath Bailey Meter	Concrete mount for turbine fan	Concrete floor beneath leaking pipe	tor Ingersol	Concrete floor near turbine fan	Concrete floor near turbine fan	Concrete floor within spill containment		Steel plates beneath air pre- heater	Concrete floor near former mercury components	Concrete floor near electrical precipitator
Sample Identification	WS101	WS102	WS103	WS104	WS105	WS106	WS107	WS108	WS109	WS110	WS111	WS112	WS113	WS114	WS115	WS116
Sampling Date	11/5/2018	11/5/2018	11/5/2018	11/5/2018	11/5/2018	11/5/2018	11/5/2018	11/5/2018	11/5/2018	11/6/2018	11/6/2018	11/6/2018	11/6/2018	11/6/2018	11/7/2018	11/7/2018
Sample Location	Unit #5	Unit #5	Unit #5	Unit #5	Unit #1 & #2	Unit #1 & #2	Unit #1 & #2	Unit #1 & #2	Unit #3 & #4	Unit #3 & #4	Unit #1 & #2	Unit #5	Unit #1 & #2	Unit #3 & #4	Unit #1 & #2	Unit #3 & #4
Sample Location	1st Floor	1st Floor	1st Floor	1st Floor	1st Floor	1st Floor	1st Floor	1st Floor	1st Floor	1st Floor	Floor 1.5	2nd Floor	2nd Floor	2nd Floor	3rd Floor	7th Floor
Polychlorinated Biphenyls by GC								Concentration	s in ug/100 cm ²							
Aroclor 1254	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(1)	2.84	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)	1.01
Aroclor 1260	BRL(0.5)	BRL(0.5)	0.761	1.6	0.958	BRL(1)	3.69	BRL(0.5)	2.91	BRL(0.5)	0.822	BRL(0.5)	BRL(0.5)	1.15	BRL(0.5)	1.62
All other Aroclors	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(1)	BRL(1)	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)	BRL(0.5)
PCBs, Total	BRL(0.5)	BRL(0.5)	0.761	1.6	0.958	BRL(1)	6.53	BRL(0.5)	2.91	BRL(0.5)	0.822	BRL(0.5)	BRL(0.5)	1.15	BRL(0.5)	2.63
Total Metals								Concentration	s in ug/100 cm ²							
Arsenic, Total	1.04	2	22.2	2.88	92	4.84	11.4	4.78	11.8	4.33	4.44	18.6	76.8	0.715	2.2	1.86
Barium, Total	6.51	54.2	110	136	58.5	64.6	372	71.8	740	242	144	114	288	11.6	102	18.7
Cadmium, Total	BRL(0.5)	1.82	6.44	4.96	BRL(5)	41.1	4.78	0.545	7.16	5.86	9.52	12.4	BRL(5)	BRL(0.5)	2.45	43.1
Chromium, Total	15.8	13.2	149	66.7	844	39.6	115	46.4	145	168	23.4	371	195	5.55	20.3	10.3
Lead, Total	19.6	51.2	1210	388	1610	471	1100	151	12000	1630	244	1100	290	30.8	77	201
Mercury, Total	BRL(0.025)	0.248	0.451	0.419	0.126	0.382	0.593	BRL(0.025)	1.91	0.261	0.332	2.19	0.79	0.291	0.364	0.266
Selenium, Total	BRL(1)	BRL(1)	4.94	BRL(1)	12.2	BRL(1)	1.44	BRL(1)	BRL(1)	BRL(1)	1.06	4.88	10.7	BRL(1)	BRL(1)	BRL(1)
Silver, Total	BRL(0.5)	0.635	2.62	1.08	8.7	0.785	1.85	BRL(0.5)	1.28	BRL(0.5)	1.88	3.71	8.25	BRL(0.5)	BRL(0.5)	BRL(0.5)

NOTES:

MEDEP = Maine Department of Environmental Protection

 $ug/100 \text{ cm}^2 = \text{micrograms per 100 square centimeters; } J= Estimated concentration; (1) Standard is for total of all isomers (i.e., total xylenes)$

BRL = Not detected above laboratory reporting limit as noted in parenthesis; NA= Not Analyzed; NE= Indicates that a standard or guideline is "not established" for the referenced parameter.

Values in **bold** text exceed applicable MEDEP RAGs for current or proposed reuse/exposure scenarios for Residential, Outdoor Commercial Worker, and/or Excavation/Construction Worker

Values with (*) exceed MEDEP RAGs for Leaching to Groundwater

Values with *italic* text indicate laboratory reporting limits that exceed applicable MEDEP RAGs for current or proposed reuse/exposure scenarios for Residential, Outdoor Commercial Worker, Excavation/Construction Worker, and/or Leaching to Groundwater

Table 3: Soil Boring Analytical Results Phase II Environmental Site Assessment **Mason Station** Wiscasset, Maine

Sample Location		MEDEP Remedial Action Guidelines for Sites Contaminated with Hazardous Substances			B301	B302	B303	B303	B304	B304
Sample Identification		October 19,2018)	Substances	B301-S1	B301-S4	B302-S1	B303-S1	B303-S4	B304-S1	B304-S4
Sample Depth (ft bgs)	Construction	Outdoor Commercial	Residential	0-2	10-13	0-2	0-2	10-15	0-2	10-13
Sampling Date	Worker	Worker	Kesiuentiai	11/12/2018	11/12/2018	11/12/2018	11/12/2018	11/12/2018	11/12/2018	11/12/2018
Extractable Petroleum Hydrocarbons (EPH) w/MS					Concentrations i					
C9-C18 Aliphatics	4800	14000	2500	ND	ND	ND	ND	ND	ND	ND
C19-C36 Aliphatics	100000	100000	100000	BRL(7.89)	BRL(7.48)	BRL(7.37)	BRL(9.4)	BRL(6.9)	BRL(6.61)	22.9
C11-C22 Aromatics	74000	33000	2600	13.1	BRL(7.48)	BRL(7.37)	78.7	BRL(6.9)	BRL(6.61)	11.8
C11-C22 Aromatics, Adjusted	74000	33000	2600	10.5	BRL(7.48)	BRL(7.37)	36.9	BRL(6.9)	BRL(6.61)	10.5
Naphthalene	130	250	57	BRL(0.032)	BRL(0.03)	BRL(0.03)	BRL(0.376)	BRL(0.028)	BRL(0.026)	0.046
2-Methylnaphthalene	960	4100	330	BRL(0.032)	BRL(0.030)	BRL(0.030)	BRL(0.376)	BRL(0.028)	BRL(0.026)	BRL(0.030)
Acenaphthylene	48000	45000	4900	BRL(0.032)	BRL(0.03)	BRL(0.03)	0.884	0.057	BRL(0.026)	BRL(0.03)
Acenaphthene	48000	62000	4900	0.041	BRL(0.03)	BRL(0.03)	BRL(0.376)	BRL(0.028)	BRL(0.026)	BRL(0.03)
Fluorene	96000	41000	3300	0.033	BRL(0.03)	BRL(0.03)	BRL(0.376)	BRL(0.028)	BRL(0.026)	BRL(0.03)
Phenanthrene	72000	23000	2500	0.294	BRL(0.03)	0.074	1.27	0.074	BRL(0.026)	0.12
Anthracene	100000	100000	25000	0.062	BRL(0.03)	BRL(0.03)	0.592	0.035	BRL(0.026)	0.034
Fluoranthene	24000	41000	3300	0.406	BRL(0.03)	0.202	7.91	0.431	BRL(0.026)	0.19
Pyrene	72000	31000	2500	0.421	BRL(0.03)	0.171	9.03	0.513	BRL(0.026)	0.184
Benzo(a)anthracene	1700	280	16	0.211	BRL(0.03)	0.067	3.66	0.227	BRL(0.026)	0.093
Chrysene	100000	29000	1600	0.278	BRL(0.03)	0.091	4.4	0.283	BRL(0.026)	0.133
Benzo(b)fluoranthene	1700	290	16	0.259	BRL(0.03)	0.093	3.79	0.249	BRL(0.026)	0.132
Benzo(k)fluoranthene	17000	2900	160	0.112	BRL(0.03)	0.045	1.6	0.108	BRL(0.026)	0.057
Benzo(a)pyrene	9.9	29	1.6	0.195	BRL(0.03)	0.065	3.47	0.228	BRL(0.026)	0.103
Indeno(1,2,3-cd)Pyrene	1700	290	16	0.135	BRL(0.03)	0.051	2.25	0.152	BRL(0.026)	0.075
Dibenzo(a,h)anthracene	170	29	1.6	0.033	BRL(0.03)	BRL(0.03)	0.53	0.036	BRL(0.026)	BRL(0.03)
Benzo(ghi)perylene	72000	23000	2500	0.137	BRL(0.03)	0.049	2.37	0.168	BRL(0.026)	0.075
Polychlorinated Biphenyls (PCBs)				(Concentrations i	in mg/kg				
All Aroclors and PCBs, Total	Various	Various	Various	BRL(various)	BRL(various)	BRL(various)	BRL(various)	BRL(various)	BRL(various)	BRL(various)
Metals			•	(Concentrations i	in mg/kg	· · · · · ·		· · · ·	
Arsenic, Total	54	41	9.3	11.3	16.9	7.32	9.68	5.42	7.56	9.53
Barium, Total	20000	100000	21000	66.5	25.6	38.8	49.4	24.9	39.9	71.4
Chromium, Total	46 ⁽¹⁾	89 ⁽¹⁾	4.2 ⁽¹⁾	36.4	10.4	23.3	20.8	12	16.8	34.2
Lead, Total	450	440	140	8.46	2.57	9.04	8.32	4.86	4.26	17.6
All other Metals	Various	Various	Various	BRL(various)	BRL(various)	BRL(various)	BRL(various)	BRL(various)	BRL(various)	BRL(various)
VOCs by GC/MS-5035					(
Toluene	820	810	750		Concentrations i BRL(0.00091)	0.0014	0.0028	BRL(0.0011)	BRL(0.001)	0.0012
Acetone	98000	100000	52000	0.015	0.026	0.03	0.048	0.02	0.012	0.1
All Other VOCs	Various	Various	Various	BRL(various)	BRL(various)	BRL(various)	BRL(various)	BRL(various)	BRL(various)	BRL(various)
Volatile Petroleum Hydrocarbons (VPH)					Concentrations i					
All VPHs	Various	Various		BRL(various)		BRL(various)	BRL(various)	BRL(various)	BRL(various)	

NOTES:

(1) Values are for Chromium (VI).

MEDEP = Maine Department of Environmental Protection

mg/kg = milligrams per kilogram; J= Estimated concentration; (1) Standard is for total of all isomers (i.e., total xylenes)

BRL = Not detected above laboratory reporting limit as noted in parenthesis; NA= Not Analyzed; NE= Indicates that a standard or guideline is "not established" for the referenced parameter. Values in **bold** text exceed applicable MEDEP RAGs for current or proposed reuse/exposure scenarios for Residential, Outdoor Commercial Worker, and/or Excavation/Construction Worker

Table 4: Groundwater Sample Analytical ResultsPhase II Environmental Site AssessmentMason Station

Wiscasset, Maine

	Guidelines for Sites Contaminated with	EQUIPMENT BLANK	MW301	MW303	MW304
Sample Identification	Hazardous Substances Excavation/Construction	11/5/2018	11/13/2018	11/13/2018	11/13/2018
Sampling Date	Excavation/Construction Worker	WATER	WATER	WATER	WATER
Sample Type Dissolved Metals	worker	Concentratio		WAIER	WATER
Arsenic. Dissolved	5800	NA	BRL(5)	DDL (5)	BRL(5)
Barium, Dissolved	100000	NA	21 BKL(5)	BRL(5) 72	$\frac{BRL(5)}{20}$
Cadmium, Dissolved	940	NA	BRL(5)	BRL(5)	BRL(5)
Chromium, Dissolved	<u> </u>	NA		BRL(3) BRL(10)	
	NE 690	NA	BRL(10)		BRL(10)
Lead, Dissolved			BRL(10)	BRL(10)	BRL(10)
Mercury, Dissolved	2.1	NA	BRL(0.2)	BRL(0.2)	BRL(0.2)
Selenium, Dissolved	96000	NA	BRL(10)	BRL(10)	BRL(10)
Silver, Dissolved	12000	NA	BRL(7)	BRL(7)	BRL(7)
Extractable Petroleum Hydrocarbons		Concentratio			
C9-C18 Aliphatics	3900	NA	BRL(100)	BRL(100)	BRL(100)
C19-C36 Aliphatics	100000	NA	BRL(100)	BRL(100)	BRL(100)
C11-C22 Aromatics, Adjusted	100000	NA	BRL(100)	BRL(100)	BRL(100)
Naphthalene	19	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
2-Methylnaphthalene	1500	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Acenaphthylene	71000	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Acenaphthene	74000	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Fluorene	100000	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Phenanthrene	58000	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Anthracene	100000	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Fluoranthene	100000	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Pyrene	36000	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Benzo(a)anthracene	470	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Chrysene	100000	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Benzo(b)fluoranthene	100000	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Benzo(k)fluoranthene	100000	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Benzo(a)pyrene	11000	NA	BRL(0.2)	BRL(0.2)	BRL(0.2)
Indeno(1,2,3-cd)Pyrene	100000	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Dibenzo(a,h)anthracene	26000	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Benzo(ghi)pervlene	100000	NA	BRL(0.4)	BRL(0.4)	BRL(0.4)
Polychlorinated Biphenyls (PCBs)		Concentratio	ons in ug/L		
Aroclor 1260	NE	BRL(0.25)	NA	NA	NA
PCBs, Total	NE	BRL(0.25)	NA	NA	NA
Volatile Organic Compounds (VOCs)		Concentratio			
1,1-Dichloroethane	2200	NA	3.6	BRL(0.75)	BRL(0.75)
1,1-Dichloroethene	390	NA	0.86	BRL(0.5)	BRL(0.5)
All other VOCs	Various	NA	BRL(Various)	BRL(Various)	BRL(Various)
Volatile Petroleum Hydrocarbons		Concentratio		5102(101003)	
All Volatile Petroleum Hydrocarbons	Various	NA	BRL(50)	BRL(50)	BRL(50)

NOTES:

MEDEP = Maine Department of Environmental Protection

mg/kg = milligrams per kilogram; J= Estimated concentration; (1) Standard is for total of all isomers (i.e., total xylenes)

BRL = Not detected above laboratory reporting limit as noted in parenthesis; NA= Not Analyzed; NE= Indicates that a standard or guideline is "not established" for the referenced parameter.

Values in **bold** text exceed applicable MEDEP RAGs for current or proposed reuse/exposure scenarios for Excavation/Construction Worker

Values with *italic* text indicate laboratory reporting limits that exceed applicable MEDEP RAGs for current or proposed reuse/exposure scenarios for Residential, Outdoor Commercial Worker, Excavation/Construction Worker, and/or Leaching to Groundwater

Table 5: Soil Vapor Analytical Results

Phase II Environmental Site Assessment

Mason Station

Wiscasset, Maine

SAMPLE I.D.	MEDEP Soil (Gas Targets ⁽¹⁾	SV301	SV302	SV303	SV304	SV305	
SAMPLING DATE	Commercial	Residential	11/13/2018	11/13/2018	11/13/2018	11/13/2018	11/13/2018	11
Petroleum Hydrocarbons in Air			Conce	entrations in micro	grams per cubic n	neter (ug/m ³)		
1,3-Butadiene	136.7	31.3	BRL(5)	12	2.5	BRL(0.5)	1.2	
Benzene	533.3	120.0	BRL(6)	5.1	6.4	BRL(0.6)	3	
C5-C8 Aliphatics, Adjusted	29333.3	7000.0	3500	360	350	220	87	
Toluene	733333.3	173333.3	BRL(9)	3.4	12	BRL(0.9)	4.5	E
Ethylbenzene	1633.3	366.7	BRL(9)	BRL(0.9)	6.4	BRL(0.9)	2.3	E
p/m-Xylene	14666.7	3333.3	BRL(9)	1	24	BRL(0.9)	3	
o-Xylene	14666.7	3333.3	BRL(9)	BRL(0.9)	13	BRL(0.9)	1.2	
Naphthalene	120.0	27.7	BRL(11)	BRL(1.1)	46	BRL(1.1)	1.7	E
C9-C12 Aliphatics, Adjusted	29333.3	7000.0	260	34	640	410	460	
C9-C10 Aromatics Total	7333.3	1733.3	BRL(100)	BRL(10)	450	BRL(10)	11	
Volatile Organics in Air by SIM	•		Conce	entrations in micro	grams per cubic n	neter (ug/m ³)	•	
Propylene	NE	NE	BRL(8.61)	77.3	16	5.09	4.08	
Dichlorodifluoromethane	14666.7	3333.3	BRL(9.89)	1.76	1.66	1.68	9	В
Chloromethane	13000.0	3133.3	BRL(4.13)	BRL(0.413)	0.417	BRL(0.413)	BRL(0.413)	BI
1,3-Butadiene	136.7	31.3	BRL(0.442)	11.5	2.48	0.642	1.31	
Ethyl Alcohol	NE	NE	BRL(94.2)	37.3	211	BRL(9.42)	11.9	
Acetone	3333333.3	1066666.7	BRL(23.8)	84.8	82.4	16.5	30.4	
Trichlorofluoromethane	NE	NE	BRL(2.81)	1.26	1.18	1.15	1.06	
iso-Propyl Alcohol	NE	NE	BRL(12.3)	1.44	7.23	BRL(1.23)	BRL(1.23)	В
Carbon disulfide	103333.3	24333.3	BRL(6.23)	5.42	0.791	BRL(0.623)	BRL(0.623)	
1,1,2-Trichloro-1,2,2-Trifluoroetha		NE	BRL(3.83)	0.46	0.475	0.506	0.429	B
1,1-Dichloroethane	2566.7	600.0	BRL(0.809)	BRL(0.081)	0.838	BRL(0.081)	BRL(0.081)	BI
2-Butanone	733333.3	173333.3	BRL(14.7)	11.6	16.4	5.87	9.94	
Chloroform	176.7	40.0	BRL(0.977)	0.454	0.454	0.547	0.117	
n-Hexane	NE	NE	1360	25.9	19.7	53.6	32.3	
1,1,1-Trichloroethane	733333.3	173333.3	BRL(1.09)	0.136	10.3	0.115	BRL(0.109)	BI
Benzene	533.3	120.0	BRL(3.19)	4.57	6.07	0.492	2.81	
Carbon tetrachloride	666.7	156.7	BRL(1.26)	2.79	0.396	0.252	0.208	
Cyclohexane	866666.7	210000.0	43.4	1.46	1.68	1.51	BRL(0.688)	
Trichloroethene	293.3	70.0	1.45	0.656	BRL(0.107)	0.242	BRL(0.107)	Bl
2,2,4-Trimethylpentane	NE	NE	BRL(9.34)	BRL(0.934)	6.59	BRL(0.934)	BRL(0.934)	В
Heptane	NE	NE	BRL(8.2)	2.73	5.86	BRL(0.82)	BRL(0.82)	
4-Methyl-2-pentanone	433333.3	103333.3	BRL(20.5)	2.17	2.64	BRL(2.05)	BRL(2.05)	В
Toluene	733333.3	173333.3	BRL(1.88)	2.92	10.5	0.637	4.03	
2-Hexanone	4333.3	1033.3	BRL(8.2)	1.23	2.86	BRL(0.82)	BRL(0.82)	В
Tetrachloroethene	6000.0	1400.0	BRL(1.36)	0.292	1.15	0.142	0.285	BI
Ethylbenzene	1633.3	366.7	2.56	0.452	5.73	0.517	2.06	
p/m-Xylene	NE	NE	BRL(1.74)	0.864	22.4	0.604	2.74	
Styrene	146666.7	33333.3	6.05	0.783	2.31	5.41	8.52	
o-Xylene	14666.7	3333.3	BRL(0.869)	0.456	11.7	0.235	1.01	1
4-Ethyltoluene	NE	NE	BRL(0.983)	0.187	8.16	0.103	0.3	1
1,3,5-Trimethylbenzene	8666.7	2100.0	BRL(0.983)	0.187	10.8	0.108	0.354	1
1,2,4-Trimethylbenzene	8666.7	2100.0	BRL(0.983)	0.418	54.1	0.374	1.21	1
1,4-Dichlorobenzene	366.7	86.7	BRL(1.2)	BRL(0.12)	BRL(0.12)	BRL(0.12)	1.34	E
Naphthalene	120.0	27.7	BRL(2.62)	BRL(0.262)	38.4	0.446	1.42	1

NOTES:

(1) Soil Gas Targets derived by applying an attenuation factor of 0.03 to the Maine Department of Environmental Protection Remedial Action Guidelines for the Indoor Air Exposure Pathway, dated October 19, 2018.

BRL = Not detected above laboratory reporting limit as noted in parenthesis; NA= Not Analyzed; NE= Indicates that a standard or guideline is "not established" for the referenced parameter.

Values in bold text exceed applicable MEDEP RAGs for residential use.

SV306
11/13/2018
2.5
BRL(1)
3600
BRL(1.5)
BRL(1.5)
7
4
BRL(1.9)
6000
200
200
22.0
22.9
BRL(1.65)
BRL(0.688)
2.26
50.1
79.8
0.938 BRL(2.05)
BRL(2.05)
3.15
BRL(0.639)
BRL(0.135)
16.5
5.62 170
170
BRL(0.182)
0.751
21.1
7.78
BRL(0.179)
BRL(1.56)
3.83
BRL(3.42)
0.659
BRL(1.36) BRL(0.226)
BRL(0.226)
1.02
5.99
1.04
3.36
10.9
15.7
52.6
BRL(0.2)
1.18

Table 6: Surficial Soil Analytical ResultsPhase II Environmental Site AssessmentMason StationWiscasset, Maine

Sample Location		DEP Remedial Action Guidelines for Sites ntaminated with Hazardous Substances			Southwest Transformer Cage North Transformer Cage								
Sample Identification		ctober 19, 2018)	Substances	TSCA PCB Remediation	SS301	SS302	SS303	SS304	SS305	SS306	SS307	SS308	
Sample Depth (ft bgs)	Construction	ruction Commercial Residential W		Waste	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	
Sampling Date	Worker				11/5/2018	11/5/2018	11/5/2018	11/5/2018	11/5/2018	11/5/2018	11/5/2018	11/5/2018	
Polychlorinated Biphenyls (PCBs)					Concer	ntrations in r	ng/kg						
Aroclor 1254	NE	NE	NE	NE	BRL(1.87)	16.4	BRL(9.11)	BRL(3.58)	BRL(0.899)	BRL(0.975)	BRL(2.64)	BRL(2.3)	
Aroclor 1260	NE	NE	NE	NE	32.4	BRL(3.93)	84.4	BRL(3.58)	8.76	9.14	20.6	25.6	
Aroclor 1262	NE	NE	NE	NE	BRL(1.87)	BRL(3.93)	BRL(9.11)	BRL(3.58)	BRL(0.899)	BRL(0.975)	BRL(2.64)	BRL(2.3)	
Aroclor 1268	NE	NE	NE	NE	BRL(1.87)	BRL(3.93)	BRL(9.11)	18.1	BRL(0.899)	BRL(0.975)	BRL(2.64)	BRL(2.3)	
All other Aroclors	NE	NE	NE	NE	BRL(1.87)	BRL(3.93)	BRL(9.11)	BRL(3.58)	BRL(0.899)	BRL(0.975)	BRL(2.64)	BRL(2.3)	
PCBs, Total	74	13	3.1	50	32.4	16.4	84.4	18.1	8.76	9.14	20.6	25.6	

NOTES:

MEDEP = Maine Department of Environmental Protection

TSCA = Toxic Substances Control Act

mg/kg = milligrams per kilogram; J= Estimated concentration; (1) Standard is for total of all isomers (i.e., total xylenes)

BRL = below laboratory reporting limit as noted in parenthesis; NA= Not Analyzed; NE= Indicates that a standard or guideline is "not established" for the referenced parameter. Values in **bold** text exceed applicable MEDEP RAGs for current or proposed reuse/exposure scenarios for Residential, Outdoor Commercial Worker, and/or Excavation/Construction Worker

Table 7: XRF Field Screening Results Phase II Environmental Site Assessment **Mason Station** Wiscasset, Maine

Sample Location		EDEP Remedial Action Guidelines for Sites Contaminated with Hazardous Substances			uthwest Tra	nsformer Ca	ige	North Transformer Cage				
Sample Identification		d with Hazardou October 19, 2018		SS301	SS302	SS303	SS304	SS305	SS306	SS307	SS308	
Sample Depth (ft bgs)	Construction	Commercial	Desidential	0-2	0-2	0-2	0-2	0-2	0-2	0-2	0-2	
Sampling Date	Worker	Resid		11/5/2018	11/5/2018	11/5/2018	11/5/2018	11/5/2018	11/5/2018	11/5/2018	11/5/2018	
Total Metals by Field Screening				mil	ligrams per k	tilogram (mg	/kg)					
Arsenic, Total	54	41	9.3	<18	<26	<69	<26	<28	<28	<30	<29	
Barium, Total	20000	100000	2400	1435	6255	1.18%	1557	4039	4365	6801	9150	
Cadmium, Total	42	1400	98	<70	<70	<76	<71	<67	<69	<68	<66	
Chromium, Total	46 ⁽¹⁾	89 ⁽¹⁾	4.2 (1)	<158	<249	588	<198	<216	<212	272	272	
Lead, Total	450	440	140	35	108	778	90	132	125	157	168	
Mercury, Total	1300	5600	430	<13	<13	<20	<13	<13	<15	<14	<15	
Selenium, Total	1700	8000	<5	<5	<8	<5	<5	<5	<6	<5		
Silver, Total	1700	8000	540	<51	<52	<57	<54	<51	<51	<52	<49	

NOTES:

(1) Values are for Chromium VI

mg/kg = milligrams per kilogram BRL = Not detected above laboratory reporting limit as noted in parenthesis

X:\Ransom_NewEngland\Maine\Wiscasset_ME\MasonStation\MS_Wiscasset_ME_F2_SP.mxd

Southwest **Transformer Enclosure**

> # WS119 # WS110 **₩**S116

WS108

OIL UNIT 4 T **₩** WS109

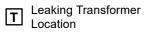
WS102 WS101

Mason Station Powerhouse Building **₩** WS111

₩S107

⊕ WS113 ⊕ WS106 🖶 WS115

OIL UNIT 5


WS103 WS112 + WS105

Screen House #1

Ash Pond 2

Consulting Engineers and Scientists Legend & Notes

- Bulk Product Sample ۲ Location
- Wipe Sample Location

North Transformer Enclosure

Screen House #2

Notes

- 1. Site Plan based on State of Maine Orthophotography
- 2. Some features are approximate in location and scale
- 3. This plan has been prepared for Mason Station, LLC. All other uses are not authorized unless written permission is obtained from Ransom Consulting, Inc.

Scale & Orientation

Mason Station Birch Point Road Wiscasset, Maine

171.06108 Dec 2018 Figure 3 Wipe and Bulk Product Sample Locations

 $\label{eq:constant} X: Ransom_NewEngland \\ Maine \\ Wiscasset_ME \\ Mason \\ Station \\ MS_Wiscasset_ME \\ F3_Wipe. \\ mxd \\ Maine \\ Wiscasset_ME \\ Mason \\ Station \\ MS_Wiscasset_ME \\ Maine \\ Wiscasset_ME \\ Wiscasset_ME \\ Maine \\ Wiscasset_ME \\$

 \bullet

Surficial Soil Sample Location

Soil Vapor Sample Location

Notes

- 1. Site Plan based on State of Maine Orthophotography
- 2. Some features are approximate in location and scale
- 3. This plan has been prepared for Mason Station, LLC. All other uses are not authorized unless written permission is obtained from Ransom Consulting, Inc.

Scale & Orientation

485 West Putnam Avenue Greenwich, Connecticut

Site Address

Mason Station Birch Point Road

Wiscasset, Maine 171.06108 Dec 2018 Figure 4 Exterior Sample

Location Plan

Screen House #2

APPENDIX A

Photograph Log

ASTM Phase II Environmental Site Assessment Former Mason Station Point East Drive Wiscasset, Maine

> Ransom Consulting, Inc. Project 171.06108.002

Unit containing liquid mercury, western portion of the Powerhouse interior.

Close-up for label on mercury containing unit depicted on photo the left.

Cabinets in which mercury was reportedly drained, northeastern portion of the Powerhouse interior.

Airborne mercury detection at MV-07.

Tag within cabinets depicted on photo to the left.

Airborne mercury detection at MV-08.

Containment boom at Outfall 006.

Location of soil boring B303.

Northern exterior transformer cage.

Southwestern exterior transformer cage.

Transformer oil release, Unit 4.

Tranformer oil release, Unit 5.

APPENDIX B

Soil Boring Logs

ASTM Phase II Environmental Site Assessment Former Mason Station Point East Drive Wiscasset, Maine

> Ransom Consulting, Inc. Project 171.06108.002

	RANSOM	BORING AND	MONIT	ORING	W	'ELL	LO	G:	B301	/MV	/301
	Consulting	Reviewed by: Time	Kline	Total Depth		13 F	eet	Logged	By:		PJB
	Engineers and Scientists	Date Reviewed: 12/14	118	Boring Diam	neter:	2 Inc	ches	Date Dri	lled: 11-	12-18 to	11-12-18
ć	and Scientists	GW Elevation:	15.73 Feet	Well Stickup	o:	Flus	sh	Driller:		EPI	
DEPTH		DESCRIPTION Burmeister Soil Classificat	tion System)		SAMPLE	SAMPLE NUMBER	BLOW COUNTS (per 6 inches)	PENETRATION/ RECOVERY	PID (ppmv)	DEPTH	WELL CONSTRUCTION
-	S1 (0-2') 6" Brown TOPSOI CLAY with gravel.	L, moist, organics, over gr	ayish brown s	lty		S1	NM	24/6	<1	-1 1	>0
	S2 (2-5') No recovery.									-	
 - 5 	S3 (5-10') 23" Grayish brow	n silty CLAY, moist, trace s	sand.			S2 S3	NM	36/0	<1	- 5	
	S4 (10-13') 20" Light brown,	sandy SILT with gravel, w	ret at 11.5' bgs		\propto	S4	NM	36/20	<1	-10	
15 15 20 20 1 1 15 15 1010	Probe refusal at 13' bgs.									-15	
LUCI	Filter Sand Native		Bentonite	Grout		.≡ crete	P١	/C Scree	n Solia	 H PVC F	Riser
	g advanced using track mounted-			CLIE Masc		: ition, LL	с				
3. Well f	le desigated with soilid fill submit inished with a locking, flush-mound water encountered at 11.5 ft bo	nted roadbox, cemented in		SITE	Ξ:						
	lot applicable; NM=Not measured		ce.			Station et, Ma	ine				
		Proje	ect N	l o.:	171.	06108	Page		1		

<u></u>											
	RANSOM	BORING ANI	D MONIT	ORING	W	/ELL	LO	G:	B302	2/MV	/302
	Consulting	Reviewed by: Eak	Plense	Total Depth:		6 Fe	et	Logged	By:		PJB
E	Consulting Engineers and Scientists	Date Reviewed: 12/1	4/18	Boring Diam	eter	: 2 Inc	ches	Date Dr	illed: 11-	12-18 to	11-12-18
6	Ind Scienusus	GW Elevation:	NM	Well Stickup):	Flus		Driller:		EPI	
DEPTH		DESCRIPTION Burmeister Soil Classific	ation System)		SAMPLE	SAMPLE NUMBER	BLOW COUNTS (per 6 inches)	PENETRATION/ RECOVERY	PID (ppmv)	DEPTH	WELL CONSTRUCTION
	S1 (0-2') 6" Brown TOPSO SAND wiyh some gravel, m CLAY with gravel; moist, tra S2 (2-5') No recovery.	oist; brick debris; over gr	grayish brown s ayish brown silt	ilty Y		S1	NM	24/22	<1		50
5-	S3 (5-6') 5" Grayish brown o Probe refusal at 6' bgs. We			1	\propto	S3	NM	12/5	<1	- 5-	
10											
			[]]]			=					
	Filter Sand Native	e Fill Bentonite	Bentonite	Grout	Con	crete	P۱	/C Scree	n Soli	d PVC F	Riser
2. Sampl 3. Well fi 4.NA=No	: advanced using track mounted e desigated with soilid fill submit nished with a locking, flush-mou at applicable; NM=Not measured at 6', offest refusal at 6' again, ir	tted for laboratory analysis nted roadbox, cemented i ; bgs=below ground surfa	into the ground.	SITE Mase Wisc	in Sa E: on S cass	ation, LL Station set, Ma	ine	00400			
			Proje	ect i	NO.:	171.	06108	Page		1	

	RANSOM	BORING	ORING	W	ELL	LO	G:	B30	3/MV	V303	
	Consulting	Reviewed by:	ich Plus	Total Depth:		20 F	eet	Logged	By:		PJB
	Engineers and Scientists	Date Reviewed:	12/14/18	Boring Diam	eter	2 Inc	ches	Date Dr	illed: 11	1-12-18 t	o 11-12-18
	and Scienusis	GW Elevation:	18.25 Feet	Well Stickup):	Flus	sh	Driller:		EPI	
DEPTH	[Based on a modified]	DESCRIPTION Burmeister Soil Cl	assification System)		SAMPLE	SAMPLE NUMBER	BLOW COUNTS (per 6 inches)	PENETRATION/ RECOVERY	PID (ppmv)	DEPTH	WELL CONSTRUCTION
	S1 (0-2') 4" Brown TOPSOI well-graded SAND with grav	L, some organics, /el, moist.	moist, over light brow	n,		S1	NM	24/16	<1	-	
	S2 (2-5') No recovery.										
- 5	S3 (5-10') 7" Light brown, we	əll-graded SAND v	with gravel, moist.			S2 S3	NM	36/0 60/7	<1		
	S4 (10-13') 14" Light brown,	-	-			S4	NM	60/14	<1	— 10— — — — — — —	
	S5 (15-20') 20" Light brown, CLAY at 19.5 - 20' bgs.	well-graded SANE	D with gravel. Gray Silt	у		S5	NM	60/20	<1		
25	End of boring at 20' bgs.										
LEGEI	ND: Filter Sand Native		tonite Bentonite	Grout		:≡ crete	P۱	/C Scree	n So	 blid PVC	Riser
NOTE: 1. Borin	S: g advanced using track mounted-	Geoprobe rig.		CLIE Maso		: ation, LL	.c				
2. Samp 3. Well f	ble desigated with soilid fill submitt finished with a locking, flush-mour	ted for laboratory a ted roadbox, cem		SITE	: :						
4. Groun 5. NA=N	nd water encountered at 15 ft bgs. lot applicable; NM=Not measured	; bgs=below grour	nd surface.			Station et, Ma	ine		1		
				Proje	ect l	No.:	171.	06108	Pag	e:	1

		RANSOM	BORING AN	ORING	; W	/ELL	LO	G:	B304	4/MV	V304	
	4	Consulting	Reviewed by: Zuik	fling	Total Depth	1:	13 F	eet	Logged	By:		PJB
		Consulting Engineers and Scientists	Date Reviewed: 12/	14/18	Boring Diar	neter	: 2 In	ches	Date Dr	illed: 11	-12-18 t	o 11-12-18
			GW Elevation:	18.58 Feet	Well Sticku	p:	Flus		Driller:		EPI	
	DEPTH		DESCRIPTION Burmeister Soil Classifi	cation System)		SAMPLE	SAMPLE NUMBER	BLOW COUNTS (per 6 inches)	PENETRATION/ RECOVERY	PID (ppmv)	DEPTH	WELL CONSTRUCTION
	-	S1 (0-2') 3" ASPHALT over well-graded SAND with gra	6" coal ash debris, over vel, trace silt, moist.	r 5'' Light brown,			S1	NM	24/14			
		S2 (2-5') No recovery.					S2	NM	36/0	NA		
	- 5	S3 (5-10') No recovery.					S3	NM	60/0	NA	- 5	
	-10	S4 (10-13') 13" Gray silty C	LAY and gravel, moist.				S4	NM	60/13	<1	—10— — —	
	-15 15 	Probe refusal at 13' bgs.									15 10 20 	
		Filter Sand Native		Bentonite			:≡ crete	P١	/C Scree	n Sol	 id PVC	Riser
2	2. Samp	g advanced using track mounted le desigated with soilid fill submit	ted for laboratory analys		Mas		: ation, LL	.C				
3	3. Well 1 1. Grou	finished with a locking, flush-mou nd water encountered at 12 ft bgs lot applicable; NM=Not measured	nted roadbox, cemented	d into the ground	Mas	son S	Station set, Ma					
			Proj	ect i	No.:	171.	06108	Page):	1		

APPENDIX C

Field Data Sheets

ASTM Phase II Environmental Site Assessment Former Mason Station Point East Drive Wiscasset, Maine

> Ransom Consulting, Inc. Project 171.06108.002

Project: Noise Station Proj Site Location: Birch Point Ro	ject No.: 11.06108 Date: 11 131	8 Sampler(s): P. Brown Ientification: MW-70(
	WELL CONSTRUCTION DATA	
Total Depth (feet): 13	_ Static Depth to Ground Water (feet): 5.9	Well Diameter (inches):
Measuring Point top of cosing	Static Depth to Ground Water (feet): 5.5 Screened Interval: 3-13	Well Stick-up (feet): flish nemd
Comments:		
	PURGING DATA	
Purging Device: prop I	Pump Intake Set At (Feet): 12.5	Depth to GW after pump insertion:
	s:	
	SAMPLE DATA	
Sample Date/Time: 11 13 18 - 8:55	Sample Identification: MW-30	Laboratory: Alpha
Sample Analyses: GEPH GVPH GTPH	G VOCs (Method 8,60) G SVOCs 6 M	tetals G PCBs G Other
Comments:		
Signed by Sampler:		Date: 11 13 18

MW301

Time	Depth to Water (feet)	Pump Setting	Purge Rate (l/min)	Cumulative Volume Purged (liters)	Temperature ∀ 0.2 (°C)	Specific Conductivity ∀ 3% (mS/cm)	DO 10% or ∀ 0.10 (mg/L)	pH ∀ 0.1 (S.U.)	ORP ∀ 10 (mv)	Turbidity 10% (NTU)
8'.45	5.53				11.46	0.344	2.77	7.51	-5.5	1187.2
8:50	*				11.52	0.338	1.18	7.12	-22.4	604.2
8:55	**				11.73	0.334	0.69	7.07	-36.0	117,5
Comments	: ``````````````````````````````````	314	at miles o	A MW 303	// ×1 **	" nell, call gays molfund	d only singebe	forefutter	tubig inst	n lle trien

W:\Environmental Forms, Logs, Checklists, etc\gw sample log.docW:\Environmental Forms, Logs, Checklists, etc\gw sample log.doc April 10, 2002

Page] of ____

Project: Maser Station Proj Site Location: Brich fint Rod	ject No.: 171.06108	Date: 11 13 18 Well Identification	Sampler(s): P. Brown : MW-303	
	WELL CONST	TRUCTION DATA		şuî,
Total Depth (feet):	_Static Depth to Ground Wat	ter (feet): 5.15	Well Diameter (inches):	
Measuring Point the of casing	Screened Interval:	5-20	Well Stick-up (feet): flush round	
Comments:				
		ING DATA 14.5 Depth t	o GW after pump insertion:	
	SAMI	PLE DATA		Transfer
	_Sample Identification:		Laboratory: Alph	
Sample Analyses: GEPH G VPH G TPH G	G VOCs (Method 8260) G SVOCs G Metals G PCI	Bs G Other	
Comments:				
Signed by Sampler:			Date: 11 13 18	

W:\Environmental Forms, Logs, Checklists, etc\gw sample log.doc April 10, 2002

Page 1 of 1

Time	Depth to Water (feet)	Pump Setting	Purge Rate (l/min)	Cumulative Volume Purged (liters)	Temperature ∀ 0.2 (°C)	Specific Conductivity ∀ 3% (mS/cm)	DO 10% or ∀ 0.10 (mg/L)	pH ∀ 0.1 (S.U.)	ORP ∀ 10 (mv)	Turbidity 10% (NTU)
9:50	5.15				10.39	9.702	6.48	7.02	103.0	178.3
9:55	*				10.90	8.596	6-31	7.08	95.5	68.1
10:00	**				11.00	8.689	6.17	30.08	15.5	34.4
Comments	::	K i' well	, rait accura malfunchi	toly same w	hile tubiz in	stalled				
		5.5								

W:\Environmental Forms, Logs, Checklists, etc\gw sample log.docW:\Environmental Forms, Logs, Checklists, etc\gw sample log.doc April 10, 2002 Page ____ of ____

Musan Statian	LOW-FLOW GROUND WATER SAMPLING LOG
Project: 171.06108 Project No.: Date: Site Location:Binh Point Road Wiscosset ME	Well Identification: Nw-304
WELL CONSTRUCT	TON DATA
Total Depth (feet): 13 Static Depth to Ground Water (feet)	: 5.03 Well Diameter (inches):
Total Depth (feet): 13 Static Depth to Ground Water (feet) Measuring Point top of costro Screened Interval: 3-13 Comments:	Well Stick-up (feet):
Comments:	
PURGING DA	ATA
Purging Device: plipping Pump Intake Set At (Feet):]2.5	Depth to GW after pump insertion:
Start Time: 10:50 Comments:	
SAMPLE DA	TA
Sample Date/Time: 11 13 18 Sample Identification: MW	
Sample Analyses: GEPH GVPH G TPH GVOCs (Method 8160) GS	SVOCs G Metals G PCBs G Other
Comments:	
Signed by Sampler:	Date: 11 13 18

W:\Environmental Forms, Logs, Checklists, etc\gw sample log.doc April 10, 2002

Page _____ of _____

.

Time	Depth to Water (feet)	Pump Setting	Purge Rate (l/min)	Cumulative Volume Purged (liters)	Temperature ∀ 0.2 (°C)	Specific Conductivity ∀ 3% (mS/cm)	DO 10% or ∀ 0.10 (mg/L)	pH ∀ 0.1 (S.U.)	ORP ∀ 10 (mv)	Turbidity 10% (NTU)
10:50	5.03				9.76	0.606	8.80	7.67	49.1	433.9
10:55	*				9.65	0.345	8.48	7.3	69.1	69.7
//:.00	5.06				9.67	0.305	7.24	7.14	81.1	26-9
				×						
Comments	s: \ ¥ -	(see r	~~ 303) -	1" ~ell,	could only	-soze befa	elafter tubig	Installut	44	
		C								

W:\Environmental Forms, Logs, Checklists, etc\gw sample log.docW:\Environmental Forms, Logs, Checklists, etc\gw sample log.doc April 10, 2002

Page \land of \land

Site Name:	Mason Station			Sa	mple	Loca	tion	Sketc	h			
Town:	Wiscasset MF.	N	1		1		1	T	1		1	1 1
Date:	11/13/18	1	1								1	
Sample I.D.:	58301	1	4								1	
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)		++						1		-	
Sampling Personnel:	EPP			+	-			-	1-			
Project Manager	Steve Dyer							1				
Collection Device:	(Summa Can) (Tedlar Bag)				_			1			1	
Sample Penetration Location:	(Ashphalt) (Concrete) (Soil)	5		30	Su							
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)			sher	Supp			-1-			1	
Sample Depth:	3.5			30	120			1	11		1	
Depth to Water:	5.5			100	1			ft	Aw	301		
Suspected COCs:	(Petroleum) (Solvents)			13		-	-	1	SV3	01		
Cannister I.D.:	551				11			1				
Flow Control I.D.:	704	_						+			13	
Flow control rate:	225 MISIMIA -	_	+								11	
O ₂ Ambient	225 mls/min					-	-	-			C	-
CO ₂ Ambient	50pgm -									1	-70	
subsurface pressure/vacuum Pre-Sample: 0 ₂	NM (+/- Inches of water column)		-								1	2
Pre-Sample CO ₂ :	20.9					1		+		-	00	
Pre-Sample PID:	300 PPB 2275 -		_							1	J.	
Pre-Sample CH ₄ :	(% Volume, %LEL, PPM)							+		+		
Sample Initiation Time:	0918 =		-									
nitial Vacuum:	-29.91					-			;			
ample End Time:	0930 -			-				4				
inal Vaccum:	-4.20					1					-	
Post Sample O ₂ :	20.9 -									1		
ost Sample CO ₂ :	500 PPM -					+ +				1		
Post Sample PID	The PB											

Revison Date: September 2016

~5.

Site Name:	Mason Stution			Sa	mple L	.ocat	ion Sk	etch				
Town:	Mason Stution Wiscasset ME		1		1 1	f	Î Î			1.1	1	
Date:	11 12 18	T.						-				1
Sample I.D.:	51-307	1110				-						1
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)									-		1
Sampling Personnel:	PB					_					-	
Project Manager	Steve Dyer			1				5	-			1
Collection Device:	(Summa Can) (Tedlar Bag)				+		1.0	1	3130g	Te	0	
Sample Penetration Location:	(Ashphalt) (Concrete) (Soil)					M	ntaless	N	0	2 See	No.	-
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)		_					1			1	
Sample Depth:	2-3		_					1-1			1	
Depth to Water:	5			- 9	8.0							
Suspected COCs:	(Petroleum) (Solvents)				34							
Cannister I.D.:	417			-							d	
Flow Control I.D.:	0[85				m						+	
Flow control rate:	225			a	2		_					ż
O ₂ Ambient	10.01								-			0000
CO ₂ Ambient subsurface	Market (+/- Inches of water column)		11									あるへつ
Pre-Sample: O ₂	20,9 %			-				1				
Pre-Sample CO ₂ :	100											
Pre-Sample PID:	k.400- 1400-06		_								1-1-	_
Pre-Sample CH ₄ :	% Volume, %LEL, PPM)									-1/		
Sample Initiation Time:	15'37			-					-			
nitial Vacuum:	- 3 0.60	-										
ample End Time:	- 15.48 -											
inal Vaccum:	-4.60										$ \rangle $	-
ost Sample O ₂ :	20.9 em 1.									1-		
ost Sample CO ₂ :	150 ppm -								+	-		-
ost Sample PID	WORRN Halppon -											-

co-located ible а, indoor air sample ID.

)

Site Name:	Mason Station	1	2	S	ample	Loca	tion S	Sketch	1			
Town:	Wiscasset		Λ	1		6.4		1	1 1		1	1 1
Date:	11/12/18		KI								1	
Sample I.D.:	0000		11			+				-	-	
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)		++							-		_
Sampling Personnel:	EPP PTB								1			
Project Manager	Sfeve Dyer				mu	303		1303				
Collection Device	(Summa Can) (Tedlar Bag)					P	171				1	
Sample Penetratio Location:	ⁿ (Ashphalt) (Concrete) (Soil)							+				
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)										1	
Sample Depth:	7-8							-			1	
Depth to Water:	10'									-	1	S
Suspected COCs:		\geq			8						1ċ	3
Cannister I.D.:	1733				200	$n \parallel$					1	_
Flow Control I.D.:	0650				d. H.					+ +		10
Flow control rate:	200 MIS/Min				4 5						1	
O ₂ Ambient	20 90/0 40				36						/	Sheep
CO ₂ Ambient	200 ppm			0	2						-	4
subsurface pressure/vacuum	NM (+/- Inches of water column)									1	1	/1
Pre-Sample: O ₂	20.9%							1				-
Pre-Sample CO ₂ :	1500											
Pre-Sample PID:	1840 ppb		- l								$\left \right $	+
Pre-Sample CH ₄ :	NM (% Volume, %LEL, PPM)											
Sample Initiation Time:	1345											-
nitial Vacuum:	- 29.13				-							
ample End Time:	ANT 13:56										1	
Final Vaccum:	- 4,14										1	
Post Sample O ₂ :	20.9				1							
ost Sample CO ₂ :	1500				+-+		-				11-	1-
Post Sample PID	[8]0					-					1	

	Meson Station			San	ple Lo	cation	Sketc	h			
Town:	Wiscassed ME	A		11	11	11		1	I I	F	11
Date:	11/13/18 .	<u> </u>			11					1	1
Sample I.D.:	54304	7									1
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)					1		-			
Sampling Personnel:	EPP						513	03			
Project Manager	Steve Pyer		- 1	-	_	A	-				Ħ
Collection Device:	(Summa Can) (Tedlar Bag)								_	1	
Sample Penetration Location:	(Ashphalt) (Concrete) (Soil)						A	507	302		
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)		-							$\left \cdot \right $	
Sample Depth:	3'			SC	n		1		- dd	1	
Depth to Water:	NO			20C				50		$\left(+ \right)$	Ner
Suspected COCs:	(Petroleum) (Solvents)		4	Buildh					-		A-1
Cannister I.D.:	374			31-						\mathbb{N}	T
Flow Control I.D.:	884		1	u-			-10	SVE	301-	$ \rangle$	10
Flow control rate:	224 Mls/min		2				1			1	A.S.
O ₂ Ambient	20.9									1	ea
CO ₂ Ambient	O ppm -		L						-		Sheapse
subsurface pressure/vacuum	NM (+/- inches of water column)		-								
Pre-Sample: O ₂	20.9	-									
Pre-Sample CO ₂ :	1050 PPM -				1					1	
Pre-Sample PID:	773 PPB -					++)
Pre-Sample CH ₄ :	NM (% Volume, %LEL, PPM)									1	-
Sample Initiation Time:	10:15								-		
nitial Vacuum;	-30,72	-	-			-				1	
ample End Time:	enda 10:28 -		-								
Final Vaccum:	-2.64					++-				- \	
Post Sample O ₂ :	20.9										
ost Sample CO ₂ :	1250 DRM		+							_	-
	- pyrat -						-				

Revison Date: September 2016

	Mason Station		Sample Lo	ocation SI	tetch		
Town:	Wiscusset ME	1	TIT	I I I	11		I D F
Date:	W/13/18	N				1	
Sample I.D.:	51305						
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)			-	X		
Sampling Personnel:	EPP/PJB				$\left - \right $	<u></u>	
Project Manager	Steve Dyer						1
Collection Device:	(Summa Can) (Tedlar Bag)	<u></u>					
Sample Penetration Location:	(Ashphait) (Concrete) (Soil)			-			
Soil Type:	(Till) (Sand & Gravel) (Glacial Marine)		13 20		1		
Sample Depth:	2.5'		hood			1	
Depth to Water:	5		Build		KI		
Suspected COCs:	(Petroleum) (Solvents)		00				5
Cannister I.D.:	508				6 I		Ave
Flow Control I.D.:	0861				++++		1
Flow control rate:	200 mbs/min.				\mathcal{V}	1	0
O ₂ Ambient	20.9		AG1305				in
CO ₂ Ambient	O ppm	4	3115				hees
subsurface pressure/vacuum	NM (+/- inches of water column)					-/-	2
Pre-Sample: O ₂	20,9	-					
Pre-Sample CO ₂ :	250 ppm			//	1	+)+	
Pre-Sample PID:	831 000						
Pre-Sample CH ₄ :	NAN (% Volume, %LEL, PPM)					(
Sample Initiation Time:	13:15					\mathbf{Y}	
nitial Vacuum:	-30.24						
ample End Time:	13:27						
Final Vaccum:	-3.70						Physical
Post Sample O ₂ :	20.9		2 ¹				
Post Sample CO ₂ :	250 ppm					+(-	
Post Sample PID	NIM						

ř

Soil Gas/Subslab Soil Gas Sampling Field Sheet

-

Site Name:	Mason Station	Sample Location Sketch					
Town:	Wiscusset						
Date:	11/12/18						
Sample I.D.:	SV306						
Sampling Purpose	(Source) (Utility) (Mitigation) (Receptor) (Other)						
Sampling Personnel:	EPP/PJB						
Project Manager	Steve Dyer						
Collection Device:	(Summa Can) (Tedlar Bag)						
Sample Penetration Location:	(Ashphait) (Concrete) (Soil)						
Soil Type:	(Fill) (Till) (Sand & Gravel) (Glacial Marine)	EVER 22					
Sample Depth:	9-3-4'	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
Depth to Water:	UNKNOWA	re-					
Suspected COCs:	(Petroleum) ((Solvents)	Siz Deriver					
Cannister I.D.:	178	Scot River Reverse					
Flow Control I.D.:	539						
Flow control rate:	200 mls/min	-					
O ₂ Ambient	20.9%						
CO ₂ Ambient	200 pcm						
subsurface pressure/vacuum	NM (+/- inches of water column)						
Pre-Sample: O ₂	3300 20.9%						
Pre-Sample CO ₂ :	3300 ROM						
Pre-Sample PID:	8.3 ppm						
Pre-Sample CH₄:	NIM (% Volume, %LEL, PPM)						
Sample Initiation Time:	14:51						
nitial Vacuum:	-30.14						
ample End Time:	-5.31 15.04						
Final Vaccum:	-5.31						
Post Sample O ₂ :	10,9						
ost Sample CO ₂ :	3850						
Post Sample PID	2.6 ppm -						

×

Soil Gas/Subslab Soil Gas Sampling Field Sheet

Site Name:		the second se											
Sile Name.	Mason Station				Sam	ple L	.oca	tion S	keto	:h			
Town:	Wiscasset		11	N 1		11	1	TI	1	1	1	1	1 4
Date:	11/12/18											7	4
Sample I.D.:	SV 307			4	-								
Sampling	(Source) (Utility) (Mitigation)		+				+	+-+					
Purpose	(Receptor) (Other)		1				-						
Sampling Personnel:	EPP/PJB		-		-		-		-	-			
Project Manager	Steve Dyer		1					11	1	-	-		/
Collection Device:	(Summa Can) (Tedlar Bag)		-				_		1			-1	
Sample Penetration Location:	(Ashphalt) (Concrete) (Soil)									_	+		
Soil Type:	(Fil) (Till) (Sand & Gravel) (Glacial Marine)				Hause	اللا الم			-	-			
Sample Depth:	7-8'5-6'									-	1		11
Depth to Water:	157				Dever	62						-11	
Suspected COCs:		5N30-	4		0		-		-			+	5
Cannister I.D.:	-178 Gwat 6 stopped point							-	+	+			Rive
Flow Control I.D.:	539												14
Flow control rate:	200 mb min						-		1				10
O ₂ Ambient			+				1		1	+		+4	eepseo
CO ₂ Ambient												1	3
subsurface pressure/vacuum	(+/- inches of water column)			_			-			-		1	Sh
Pre-Sample: O ₂												1	
Pre-Sample CO ₂ :										-			
Pre-Sample PID:							÷		-	1			
Pre-Sample CH ₄ :	(% Volume, %LEL, PPM)												
Sample Initiation Time:	-						-			-			
nitial Vacuum:	-	_					-			1			
ample End Time:	-												1
Final Vaccum:							1						
Post Sample O ₂ :						_	-						
ost Sample CO ₂ :	-												(
Post Sample PID				-					+				

Revison Date: September 2016

-

APPENDIX D

Certified Laboratory Analysis

ASTM Phase II Environmental Site Assessment Former Mason Station Point East Drive Wiscasset, Maine

> Ransom Consulting, Inc. Project 171.06108.002

ANALYTICAL REPORT

7049 om Consulting, Inc.
om Consulting, Inc.
-
commercial Street
404
nd, ME 04101-4660
Dyer
772-2891
ON STATION
ON STATION 6108
C

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:MASON STATIONProject Number:171.06108

 Lab Number:
 L1847049

 Report Date:
 11/27/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1847049-01	MW301	WATER	WISCASSET, ME	11/13/18 08:55	11/15/18
L1847049-02	MW303	WATER	WISCASSET, ME	11/13/18 10:00	11/15/18
L1847049-03	MW304	WATER	WISCASSET, ME	11/13/18 11:00	11/15/18

Project Name: MASON STATION Project Number: 171.06108

 Lab Number:
 L1847049

 Report Date:
 11/27/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:MASON STATIONProject Number:171.06108

 Lab Number:
 L1847049

 Report Date:
 11/27/18

Case Narrative (continued)

Sample Receipt

The samples were received at the laboratory requiring filtration for Dissolved Metals; however, the samples were received beyond the recommended 24 hour holding time required for filtration. The samples were filtered and preserved appropriately.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Standow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 11/27/18

ORGANICS

VOLATILES

			Serial_N	o:11271819:35
Project Name:	MASON STATION		Lab Number:	L1847049
Project Number:	171.06108		Report Date:	11/27/18
		SAMPLE RESULTS		
Lab ID:	L1847049-01		Date Collected:	11/13/18 08:55
Client ID:	MW301		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	11/23/18 10:23			
Analyst:	NLK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	3.6		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	1.0		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	0.20		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	0.86		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1

					ç	Serial_No	:11271819:35	
Project Name:	MASON STATION				Lab Nu	mber:	L1847049	
Project Number:	171.06108				Report	Date:	11/27/18	
•		SAMPI		5	•			
Lab ID:	L1847049-01				Date Col	lected:	11/13/18 08:55	
Client ID:	MW301				Date Red		11/15/18	
Sample Location:	WISCASSET, ME				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborou	oh Lab						
		-						
1,2-Dichloroethene, Total		ND		ug/l	0.50		1	
Trichloroethene		ND		ug/l	0.50		1	
1,2-Dichlorobenzene		ND		ug/l	1.0		1	
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylenes, Total		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	0.50		1	
Dibromomethane		ND ND		ug/l	5.0		1	
1,4-Dichlorobutane 1,2,3-Trichloropropane		ND		ug/l	1.0		1	
Styrene		ND		ug/l ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	1.0		1	
2-Butanone		ND		ug/l	5.0		1	
Vinyl acetate		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Ethyl methacrylate		ND		ug/l	5.0		1	
Acrylonitrile		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	1.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	1.0		1	
1,2-Dibromoethane		ND		ug/l	1.0		1	
1,3-Dichloropropane		ND		ug/l	1.0		1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	0.50		1	
Bromobenzene		ND		ug/l	1.0		1	
n-Butylbenzene		ND		ug/l	0.50		1	
sec-Butylbenzene		ND		ug/l	0.50		1	
tert-Butylbenzene		ND		ug/l	1.0		1	
o-Chlorotoluene		ND		ug/l	1.0		1	
p-Chlorotoluene		ND		ug/l	1.0		1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	1.0		1	
Hexachlorobutadiene		ND		ug/l	0.50		1	

					Serial_N	o:11271819:35
Project Name:	MASON STATION				Lab Number:	L1847049
Project Number:	171.06108				Report Date:	11/27/18
		SAMP	LE RESULTS			
Lab ID:	L1847049-01				Date Collected:	11/13/18 08:55
Client ID:	MW301				Date Received:	11/15/18
Sample Location:	WISCASSET, ME				Field Prep:	Not Specified
Sample Depth:						
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	1.0		1
n-Propylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	1.0		1
1,2,4-Trichlorobenzene	ND		ug/l	1.0		1
1,3,5-Trimethylbenzene	ND		ug/l	1.0		1
1,2,4-Trimethylbenzene	ND		ug/l	1.0		1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1
Ethyl ether	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	110	70-130	
Dibromofluoromethane	94	70-130	

			Serial_N	o:11271819:35
Project Name:	MASON STATION		Lab Number:	L1847049
Project Number:	171.06108		Report Date:	11/27/18
		SAMPLE RESULTS		
Lab ID:	L1847049-02		Date Collected:	11/13/18 10:00
Client ID:	MW303		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	11/23/18 10:48			
Analyst:	NLK			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	1.0		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	0.20		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1

					ç	Serial_No	:11271819:35	
Project Name:	MASON STATION				Lab Nu	mber:	L1847049	
Project Number:	171.06108				Report	Date:	11/27/18	
,		SAMPI		S			11/2//10	
Lab ID:	L1847049-02				Date Col	lected:	11/13/18 10:00	
Client ID:	MW303				Date Red		11/15/18	
Sample Location:	WISCASSET, ME				Field Pre	ep:	Not Specified	
Sample Depthy								
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
	y GC/MS - Westborou		Quanner	Units		MDE	Dilution ractor	
volatile Organics b								
1,2-Dichloroethene, Total		ND		ug/l	0.50		1	
Trichloroethene		ND		ug/l	0.50		1	
1,2-Dichlorobenzene		ND		ug/l	1.0		1	
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylenes, Total		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	0.50		1	
Dibromomethane		ND		ug/l	1.0		1	
1,4-Dichlorobutane		ND		ug/l	5.0		1	
1,2,3-Trichloropropane		ND		ug/l	1.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	1.0		1	
2-Butanone		ND		ug/l	5.0		1	
Vinyl acetate		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Ethyl methacrylate		ND		ug/l	5.0		1	
Acrylonitrile		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	1.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	1.0		1	
1,2-Dibromoethane		ND		ug/l	1.0		1	
1,3-Dichloropropane		ND		ug/l	1.0		1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	0.50		1	
Bromobenzene		ND		ug/l	1.0		1	
n-Butylbenzene		ND		ug/l	0.50		1	
sec-Butylbenzene		ND		ug/l	0.50		1	
tert-Butylbenzene		ND		ug/l	1.0		1	
o-Chlorotoluene		ND		ug/l	1.0		1	
p-Chlorotoluene		ND		ug/l	1.0		1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	1.0		1	
Hexachlorobutadiene		ND		ug/l	0.50		1	
				-				

					Serial_N	o:11271819:35
Project Name:	MASON STATION				Lab Number:	L1847049
Project Number:	171.06108				Report Date:	11/27/18
		SAMP		6		
Lab ID:	L1847049-02				Date Collected:	11/13/18 10:00
Client ID:	MW303				Date Received:	11/15/18
Sample Location:	WISCASSET, ME				Field Prep:	Not Specified
Sample Depth:						
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor

Parameter	Result	Quaimer	Units	RL	WIDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	1.0		1
n-Propylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	1.0		1
1,2,4-Trichlorobenzene	ND		ug/l	1.0		1
1,3,5-Trimethylbenzene	ND		ug/l	1.0		1
1,2,4-Trimethylbenzene	ND		ug/l	1.0		1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1
Ethyl ether	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	110	70-130	
Dibromofluoromethane	96	70-130	

			Serial_N	o:11271819:35
Project Name:	MASON STATION		Lab Number:	L1847049
Project Number:	171.06108		Report Date:	11/27/18
		SAMPLE RESULTS		
Lab ID:	L1847049-03		Date Collected:	11/13/18 11:00
Client ID:	MW304		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	11/23/18 11:13			
Analyst:	NLK			
•				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	1.0		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	0.20		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1

					S	Serial_No	:11271819:35	
Project Name:	MASON STATION				Lab Nu	mber:	L1847049	
Project Number:	171.06108				Report	Date:	11/27/18	
•		SAMPI	E RESULTS	5	•		11/21/10	
Lab ID:	L1847049-03				Date Coll	ected:	11/13/18 11:00	
Client ID:	MW304				Date Rec		11/15/18	
Sample Location:	WISCASSET, ME				Field Pre	p:	Not Specified	
Carrala Dantha								
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
	y GC/MS - Westborou		Qualifier	Units		MDL	Dilution ractor	
volatile Organics b		yn Lau						
1,2-Dichloroethene, Total		ND		ug/l	0.50		1	
Trichloroethene		ND		ug/l	0.50		1	
1,2-Dichlorobenzene		ND		ug/l	1.0		1	
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	1.0		1	
p/m-Xylene		ND		ug/l	1.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylenes, Total		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	0.50		1	
Dibromomethane		ND		ug/l	1.0		1	
1,4-Dichlorobutane		ND		ug/l	5.0		1	
1,2,3-Trichloropropane		ND		ug/l	1.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	1.0		1	
2-Butanone		ND		ug/l	5.0		1	
Vinyl acetate		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Ethyl methacrylate		ND		ug/l	5.0		1	
Acrylonitrile		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	1.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	1.0		1	
1,2-Dibromoethane		ND		ug/l	1.0		1	
1,3-Dichloropropane		ND		ug/l	1.0		1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	0.50		1	
Bromobenzene		ND		ug/l	1.0		1	
n-Butylbenzene		ND		ug/l	0.50		1	
sec-Butylbenzene		ND		ug/l	0.50		1	
tert-Butylbenzene		ND		ug/l	1.0		1	
o-Chlorotoluene		ND		ug/l	1.0		1	
p-Chlorotoluene		ND		ug/l	1.0		1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	1.0		1	
Hexachlorobutadiene		ND		ug/l	0.50		1	

					Serial_N	o:11271819:35
Project Name:	MASON STATION				Lab Number:	L1847049
Project Number:	171.06108				Report Date:	11/27/18
		SAMP	LE RESULTS	5		
Lab ID:	L1847049-03				Date Collected:	11/13/18 11:00
Client ID:	MW304				Date Received:	11/15/18
Sample Location:	WISCASSET, ME				Field Prep:	Not Specified
Sample Depth:						
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor

Parameter	Result	Quaimer	Units	RL.	WIDE	Difution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	1.0		1
n-Propylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	1.0		1
1,2,4-Trichlorobenzene	ND		ug/l	1.0		1
1,3,5-Trimethylbenzene	ND		ug/l	1.0		1
1,2,4-Trimethylbenzene	ND		ug/l	1.0		1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5		1
Ethyl ether	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	95	70-130	

Project Name:	MASON STATION	Lab Number:	L1847049
Project Number:	171.06108	Report Date:	11/27/18

Analytical Method:	1,8260C
Analytical Date:	11/23/18 09:58
Analyst:	NLK

rameter	Result	Qualifier Units	s RL	MDL
latile Organics by GC/MS -	Westborough Lal	o for sample(s):	01-03 Batch:	WG1182176-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.0	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
1,3-Dichloropropene, Total	ND	ug/l	0.50	
1,1-Dichloropropene	ND	ug/l	1.0	
Bromoform	ND	ug/l	1.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.0	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	0.20	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
1,2-Dichloroethene, Total	ND	ug/l	0.50	

Project Name:	MASON STATION	Lab Number:	L1847049
Project Number:	171.06108	Report Date:	11/27/18

Analytical Method:	1,8260C
Analytical Date:	11/23/18 09:58
Analyst:	NLK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s): 01-	03 Batch:	WG1182176-5
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l	1.0	
1,3-Dichlorobenzene	ND	ug/l	1.0	
1,4-Dichlorobenzene	ND	ug/l	1.0	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dibromomethane	ND	ug/l	1.0	
1,4-Dichlorobutane	ND	ug/l	5.0	
1,2,3-Trichloropropane	ND	ug/l	1.0	
Styrene	ND	ug/l	1.0	
Dichlorodifluoromethane	ND	ug/l	2.0	
Acetone	ND	ug/l	5.0	
Carbon disulfide	ND	ug/l	1.0	
2-Butanone	ND	ug/l	5.0	
Vinyl acetate	ND	ug/l	5.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	
2-Hexanone	ND	ug/l	5.0	
Ethyl methacrylate	ND	ug/l	5.0	
Acrolein	ND	ug/l	5.0	
Acrylonitrile	ND	ug/l	5.0	
Bromochloromethane	ND	ug/l	1.0	
Tetrahydrofuran	ND	ug/l	2.0	
2,2-Dichloropropane	ND	ug/l	1.0	
1,2-Dibromoethane	ND	ug/l	1.0	
1,3-Dichloropropane	ND	ug/l	1.0	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	

Project Name:	MASON STATION	Lab Number:	L1847049
Project Number:	171.06108	Report Date:	11/27/18

Analytical Method:	1,8260C
Analytical Date:	11/23/18 09:58
Analyst:	NLK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - We	stborough Lat	o for sample(s): 01-03	B Batch:	WG1182176-5
Bromobenzene	ND	ug/l	1.0	
n-Butylbenzene	ND	ug/l	0.50	
sec-Butylbenzene	ND	ug/l	0.50	
tert-Butylbenzene	ND	ug/l	1.0	
o-Chlorotoluene	ND	ug/l	1.0	
p-Chlorotoluene	ND	ug/l	1.0	
1,2-Dibromo-3-chloropropane	ND	ug/l	1.0	
Hexachlorobutadiene	ND	ug/l	0.50	
Isopropylbenzene	ND	ug/l	0.50	
p-Isopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	1.0	
n-Propylbenzene	ND	ug/l	0.50	
1,2,3-Trichlorobenzene	ND	ug/l	1.0	
1,2,4-Trichlorobenzene	ND	ug/l	1.0	
1,3,5-Trimethylbenzene	ND	ug/l	1.0	
1,3,5-Trichlorobenzene	ND	ug/l	1.0	
1,2,4-Trimethylbenzene	ND	ug/l	1.0	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	
Halothane	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	1.0	
Methyl Acetate	ND	ug/l	10	
Ethyl Acetate	ND	ug/l	10	
Isopropyl Ether	ND	ug/l	1.0	
Cyclohexane	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	10	
Ethyl-Tert-Butyl-Ether	ND	ug/l	1.0	
Tertiary-Amyl Methyl Ether	ND	ug/l	1.0	
1,4-Dioxane	ND	ug/l	250	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	ug/l	10	

Project Name:	MASON STATION	Lab Number:	L1847049
Project Number:	171.06108	Report Date:	11/27/18

Analytical Method:	1,8260C
Analytical Date:	11/23/18 09:58
Analyst:	NLK

arameter	Result 0	Qualifier Units	RL	MDL
blatile Organics by GC/MS -	Westborough Lab f	or sample(s): 01-03	Batch:	WG1182176-5
Methyl cyclohexane	ND	ug/l	10	
p-Diethylbenzene	ND	ug/l	2.0	
4-Ethyltoluene	ND	ug/l	2.0	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	

		A	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	93		70-130	

Project Number: 171.06108 Lab Number: L1847049

Report Date: 11/27/18

arameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03	Batch:	WG1182176-3	WG1182176-4				
Methylene chloride	100			100		70-130	0		20	
1,1-Dichloroethane	110			110		70-130	0		20	
Chloroform	100			110		70-130	10		20	
Carbon tetrachloride	110			100		63-132	10		20	
1,2-Dichloropropane	110			110		70-130	0		20	
Dibromochloromethane	96			97		63-130	1		20	
1,1,2-Trichloroethane	100			100		70-130	0		20	
Tetrachloroethene	97			95		70-130	2		20	
Chlorobenzene	100			100		75-130	0		25	
Trichlorofluoromethane	110			100		62-150	10		20	
1,2-Dichloroethane	100			110		70-130	10		20	
1,1,1-Trichloroethane	100			100		67-130	0		20	
Bromodichloromethane	100			100		67-130	0		20	
trans-1,3-Dichloropropene	110			110		70-130	0		20	
cis-1,3-Dichloropropene	100			100		70-130	0		20	
1,1-Dichloropropene	110			100		70-130	10		20	
Bromoform	93			93		54-136	0		20	
1,1,2,2-Tetrachloroethane	100			110		67-130	10		20	
Benzene	110			100		70-130	10		25	
Toluene	110			100		70-130	10		25	
Ethylbenzene	100			100		70-130	0		20	
Chloromethane	120			120		64-130	0		20	
Bromomethane	59			58		39-139	2		20	

Project Number: 171.06108 Lab Number: L1847049

Report Date: 11/27/18

arameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03	Batch:	WG1182176-3	WG1182176-4			
Vinyl chloride	110			110		55-140	0		20
Chloroethane	110			110		55-138	0		20
1,1-Dichloroethene	99			96		61-145	3		25
trans-1,2-Dichloroethene	100			99		70-130	1		20
Trichloroethene	98			97		70-130	1		25
1,2-Dichlorobenzene	99			99		70-130	0		20
1,3-Dichlorobenzene	98			99		70-130	1		20
1,4-Dichlorobenzene	100			100		70-130	0		20
Methyl tert butyl ether	98			100		63-130	2		20
p/m-Xylene	100			100		70-130	0		20
o-Xylene	100			100		70-130	0		20
cis-1,2-Dichloroethene	100			99		70-130	1		20
Dibromomethane	98			100		70-130	2		20
1,4-Dichlorobutane	120			120		70-130	0		20
1,2,3-Trichloropropane	110			110		64-130	0		20
Styrene	100			100		70-130	0		20
Dichlorodifluoromethane	100			100		36-147	0		20
Acetone	100			100		58-148	0		20
Carbon disulfide	100			100		51-130	0		20
2-Butanone	100			120		63-138	18		20
Vinyl acetate	110			120		70-130	9		20
4-Methyl-2-pentanone	92			93		59-130	1		20
2-Hexanone	91			96		57-130	5		20

Project Number: 171.06108 Lab Number: L1847049 Report Date: 11/27/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD .imits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch: \	WG1182176-3	WG1182176-4		
Ethyl methacrylate	91		93		70-130	2	20
Acrolein	100		100		70-130	0	20
Acrylonitrile	110		110		70-130	0	20
Bromochloromethane	96		93		70-130	3	20
Tetrahydrofuran	110		110		58-130	0	20
2,2-Dichloropropane	110		110		63-133	0	20
1,2-Dibromoethane	98		100		70-130	2	20
1,3-Dichloropropane	110		110		70-130	0	20
1,1,1,2-Tetrachloroethane	100		97		64-130	3	20
Bromobenzene	97		97		70-130	0	20
n-Butylbenzene	110		110		53-136	0	20
sec-Butylbenzene	100		100		70-130	0	20
tert-Butylbenzene	100		100		70-130	0	20
o-Chlorotoluene	97		96		70-130	1	20
p-Chlorotoluene	110		110		70-130	0	20
1,2-Dibromo-3-chloropropane	79		81		41-144	3	20
Hexachlorobutadiene	84		81		63-130	4	20
Isopropylbenzene	100		100		70-130	0	20
p-lsopropyltoluene	100		100		70-130	0	20
Naphthalene	89		92		70-130	3	20
n-Propylbenzene	110		110		69-130	0	20
1,2,3-Trichlorobenzene	88		90		70-130	2	20
1,2,4-Trichlorobenzene	90		92		70-130	2	20

Project Number: 171.06108 Lab Number: L1847049 Report Date: 11/27/18

	LCS	_	LCS			%Recovery		_	RPD	
Parameter	%Recovery	Qual	%Reco	very	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough I	ab Associated	sample(s):	01-03 Ba	ch: WG1	1182176-3	WG1182176-4				
1,3,5-Trimethylbenzene	100		100)		64-130	0		20	
1,3,5-Trichlorobenzene	93		94			70-130	1		20	
1,2,4-Trimethylbenzene	100		100)		70-130	0		20	
trans-1,4-Dichloro-2-butene	110		120)		70-130	9		20	
Halothane	94		93			70-130	1		20	
Ethyl ether	100		100)		59-134	0		20	
Methyl Acetate	100		110)		70-130	10		20	
Ethyl Acetate	110		110)		70-130	0		20	
Isopropyl Ether	110		120)		70-130	9		20	
Cyclohexane	110		110)		70-130	0		20	
Tert-Butyl Alcohol	80		84			70-130	5		20	
Ethyl-Tert-Butyl-Ether	100		100)		70-130	0		20	
Tertiary-Amyl Methyl Ether	96		97			66-130	1		20	
1,4-Dioxane	86		100)		56-162	15		20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	98		99			70-130	1		20	
Methyl cyclohexane	100		100)		70-130	0		20	
p-Diethylbenzene	99		98			70-130	1		20	
4-Ethyltoluene	100		100)		70-130	0		20	
1,2,4,5-Tetramethylbenzene	97		99			70-130	2		20	

Project Name:MASON STATIONProject Number:171.06108

 Lab Number:
 L1847049

 Report Date:
 11/27/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Qual Limits		Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated s	sample(s):	01-03 Batch:	WG1182176-3	WG1182176-4				

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	104	104	70-130
Toluene-d8	106	106	70-130
4-Bromofluorobenzene	106	107	70-130
Dibromofluoromethane	98	97	70-130

PETROLEUM HYDROCARBONS

					Serial_No:11271819:35				
Project Name:	MASON STATION				Lab Nu	mber:	L	1847049	
Project Number:	171.06108				Report	Date:	1	1/27/18	
		SAMPLE R	ESULTS						
Lab ID: Client ID: Sample Location:	L1847049-01 MW301 WISCASSET, ME				Date Coll Date Rec Field Prep	eived:	11/	13/18 08:55 15/18 Specified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 131,VPH-18-2.1 11/20/18 11:27 MZ								
Trap:	EST, Carbopack B/Carl	ooxen 1000&1001			Analytical	Column:		stek, RTX-502.2, 5m, 0.53ID, 3um	
		Quality Control	Informatio	on					
Condition of sample rece	eived:				Satisfactory				
Aqueous Preservative: Sample Temperature up	on receipt:					Laboratory Container Received o		ded Preserved	
Parameter		Result	Qualifier	Units	RL	MD	Ŀ	Dilution Factor	
Volatile Petroleum	Hydrocarbons - West	borough Lab							
C5-C8 Aliphatics		ND		ug/l	50.0			1	
C9-C12 Aliphatics		ND		ug/l	50.0			1	
C9-C10 Aromatics		ND		ug/l	50.0			1	
C5-C8 Aliphatics, Adjust	ed	ND		ug/l	50.0			1	
C9-C12 Aliphatics, Adjus	sted	ND		ug/l	50.0			1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	98		70-130	
2,5-Dibromotoluene-FID	97		70-130	

				Serial_No:11271819:35			
Project Name:	MASON STATION	1		Lab Number:	L1847049		
Project Number:	171.06108			Report Date:	11/27/18		
		SAMPLE R	ESULTS				
Lab ID: Client ID: Sample Location:	L1847049-01 MW301 WISCASSET, ME			Date Collected: Date Received: Field Prep:	11/13/18 08:55 11/15/18 Not Specified		
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 98,EPH-04-1.1 11/27/18 09:38 DG	M.S. Analytical Date: M.S. Analyst:	11/27/18 16:05 DV	Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3510C 11/26/18 17:17 EPH-04-1 11/27/18		

Quality Control Inform	nation
Condition of sample received:	Satisfactory
Aqueous Preservative:	Laboratory Provided Preserv Container
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough	Lab					
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	0.400		1
2-Methylnaphthalene	ND		ug/l	0.400		1
Acenaphthylene	ND		ug/l	0.400		1
Acenaphthene	ND		ug/l	0.400		1
Fluorene	ND		ug/l	0.400		1
Phenanthrene	ND		ug/l	0.400		1
Anthracene	ND		ug/l	0.400		1
Fluoranthene	ND		ug/l	0.400		1
Pyrene	ND		ug/l	0.400		1
Benzo(a)anthracene	ND		ug/l	0.400		1
Chrysene	ND		ug/l	0.400		1
Benzo(b)fluoranthene	ND		ug/l	0.400		1
Benzo(k)fluoranthene	ND		ug/l	0.400		1
Benzo(a)pyrene	ND		ug/l	0.200		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400		1
Dibenzo(a,h)anthracene	ND		ug/l	0.400		1
Benzo(ghi)perylene	ND		ug/l	0.400		1

			Serial_No:11271819:35				
Project Name:	MASON STATION		Lab Number:	L1847049			
Project Number:	171.06108		Report Date:	11/27/18			
		SAMPLE RESULTS					
Lab ID:	L1847049-01		Date Collected:	11/13/18 08:55			
Client ID:	MW301		Date Received:	11/15/18			
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified			
Sample Depth:							

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

EPH w/MS Targets - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Chloro-Octadecane	68	40-140	
o-Terphenyl	69	40-140	
Fluorobiphenyl	71	40-140	
Bromonaphthalene	66	40-140	
-Terphenyl-MS	77	40-140	

			Serial_No:11271819:35				
Project Name:	MASON STATION				Lab Numb	er:	L1847049
Project Number:	171.06108				Report Da	te:	11/27/18
		SAMPLE	RESULTS				
Lab ID: Client ID: Sample Location:	L1847049-02 MW303 WISCASSET, ME				Date Collect Date Receiv Field Prep:		11/13/18 10:00 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Trap:	Water 131,VPH-18-2.1 11/20/18 12:07 MZ EST, Carbopack B/Carb	oxen 1000&1001	I		Analytical Co	lumn:	Restek, RTX-502.2, 105m, 0.53ID, 3um
		Quality Contro	ol Informatio	on			
Condition of sample received: Aqueous Preservative: Sample Temperature upon receipt:					Satisfactory Laboratory Provided Preserved Container Received on Ice		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons - Westborough Lab							
C5-C8 Aliphatics		ND		ug/l	50.0		1
C9-C12 Aliphatics		ND		ug/l	50.0		1
C9-C10 Aromatics		ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjuste	ed	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjus	sted	ND		ug/l	50.0		1
					Accentance		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	100		70-130	
2,5-Dibromotoluene-FID	99		70-130	

				Serial_No:	11271819:35
Project Name:	MASON STATION	1		Lab Number:	L1847049
Project Number:	171.06108			Report Date:	11/27/18
		SAMPLE RI	ESULTS		
Lab ID: Client ID: Sample Location:	L1847049-02 MW303 WISCASSET, ME			Date Collected: Date Received: Field Prep:	11/13/18 10:00 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 98,EPH-04-1.1 11/27/18 10:10 DG	M.S. Analytical Date: M.S. Analyst:	11/27/18 16:36 DV	Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3510C 11/26/18 17:17 EPH-04-1 11/27/18

Quality Control Information						
Condition of sample received:	Satisfactory					
Aqueous Preservative:	Laboratory Provided Preserv Container Received on Ice					
Sample Temperature upon receipt:						
Sample Extraction method:	Extracted Per the Method					

Peremeter	Deput	Qualifier	Unite	DI.	MDI	Dilution Foster
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough Lab						
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	0.400		1
2-Methylnaphthalene	ND		ug/l	0.400		1
Acenaphthylene	ND		ug/l	0.400		1
Acenaphthene	ND		ug/l	0.400		1
Fluorene	ND		ug/l	0.400		1
Phenanthrene	ND		ug/l	0.400		1
Anthracene	ND		ug/l	0.400		1
Fluoranthene	ND		ug/l	0.400		1
Pyrene	ND		ug/l	0.400		1
Benzo(a)anthracene	ND		ug/l	0.400		1
Chrysene	ND		ug/l	0.400		1
Benzo(b)fluoranthene	ND		ug/l	0.400		1
Benzo(k)fluoranthene	ND		ug/l	0.400		1
Benzo(a)pyrene	ND		ug/l	0.200		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400		1
Dibenzo(a,h)anthracene	ND		ug/l	0.400		1
Benzo(ghi)perylene	ND		ug/l	0.400		1

			Serial_No:11271819:35		
Project Name:	MASON STATION		Lab Number:	L1847049	
Project Number:	171.06108		Report Date:	11/27/18	
		SAMPLE RESULTS			
Lab ID: Client ID: Sample Location:	L1847049-02 MW303 WISCASSET, ME		Date Collected: Date Received: Field Prep:	11/13/18 10:00 11/15/18 Not Specified	
Sample Depth:					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

EPH w/MS Targets - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Chloro-Octadecane	70	40-140	
o-Terphenyl	83	40-140	
2-Fluorobiphenyl	84	40-140	
2-Bromonaphthalene	81	40-140	
O-Terphenyl-MS	77	40-140	

	Serial_No:11271819:35					1271819:35		
Project Name:	MASON STATION				Lab Numbe	er:	L1847049	
Project Number:	171.06108				Report Dat	e:	11/27/18	
		SAMPLE	RESULTS					
Lab ID: Client ID: Sample Location:	L1847049-03 MW304 WISCASSET, ME				Date Collecte Date Receive Field Prep:		11/13/18 11:00 11/15/18 Not Specified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 131,VPH-18-2.1 11/20/18 12:48 MZ	have 100081001			An ob the of Ool		Restek, RTX-502.2,	
Trap:	EST, Carbopack B/Car	boxen 1000&1001			Analytical Col	umn:	105m, 0.53ID, 3um	
		Quality Contro	Informatio	on				
Condition of sample rece Aqueous Preservative:	vived:				Lal	Satisfactory Laboratory Provided Preserved Container		
Sample Temperature up	on receipt:				Re	ceived or	n Ice	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Petroleum Hydrocarbons - Westborough Lab								
C5-C8 Aliphatics		ND		ug/l	50.0		1	
C9-C12 Aliphatics		ND		ug/l	50.0		1	
C9-C10 Aromatics		ND		ug/l	50.0		1	
C5-C8 Aliphatics, Adjuste	ed	ND		ug/l	50.0		1	
C9-C12 Aliphatics, Adjus	sted	ND		ug/l	50.0		1	

	Acceptance				
Surrogate	% Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	98		70-130		
2,5-Dibromotoluene-FID	97		70-130		

				Serial_No:	11271819:35
Project Name:	MASON STATION	١		Lab Number:	L1847049
Project Number:	171.06108			Report Date:	11/27/18
		SAMPLE R	ESULTS		
Lab ID: Client ID: Sample Location:	L1847049-03 MW304 WISCASSET, ME			Date Collected: Date Received: Field Prep:	11/13/18 11:00 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 98,EPH-04-1.1 11/27/18 10:42 DG	M.S. Analytical Date: M.S. Analyst:	11/27/18 17:08 DV	Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3510C 11/26/18 17:17 EPH-04-1 11/27/18

Quality Control Information						
Condition of sample received:	Satisfactory					
Aqueous Preservative: Sample Temperature upon receipt:	Laboratory Provided Preserv Container Received on Ice					
Sample Temperature upon receipt.	Extracted Per the Method					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough	Lab					
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	0.400		1
2-Methylnaphthalene	ND		ug/l	0.400		1
Acenaphthylene	ND		ug/l	0.400		1
Acenaphthene	ND		ug/l	0.400		1
Fluorene	ND		ug/l	0.400		1
Phenanthrene	ND		ug/l	0.400		1
Anthracene	ND		ug/l	0.400		1
Fluoranthene	ND		ug/l	0.400		1
Pyrene	ND		ug/l	0.400		1
Benzo(a)anthracene	ND		ug/l	0.400		1
Chrysene	ND		ug/l	0.400		1
Benzo(b)fluoranthene	ND		ug/l	0.400		1
Benzo(k)fluoranthene	ND		ug/l	0.400		1
Benzo(a)pyrene	ND		ug/l	0.200		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.400		1
Dibenzo(a,h)anthracene	ND		ug/l	0.400		1
Benzo(ghi)perylene	ND		ug/l	0.400		1

			Serial_No:11271819:35		
Project Name:	MASON STATION		Lab Number:	L1847049	
Project Number:	171.06108		Report Date:	11/27/18	
		SAMPLE RESULTS			
Lab ID:	L1847049-03		Date Collected:	11/13/18 11:00	
Client ID:	MW304		Date Received:	11/15/18	
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified	
Sample Depth:					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

EPH w/MS Targets - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Chloro-Octadecane	71	40-140	
o-Terphenyl	77	40-140	
2-Fluorobiphenyl	79	40-140	
-Bromonaphthalene	75	40-140	
D-Terphenyl-MS	75	40-140	

Project Name:	MASON STATION	Lab Number:	L1847049
Project Number:	171.06108	Report Date:	11/27/18

Method Blank Analysis Batch Quality Control

Analytical Method:131,VPH-18-2.1Analytical Date:11/20/18 10:06Analyst:MZ

Volatile Petroleum Hydrocarbons - Westborough Lab for sample(s): 01-03Batch:WG1C5-C8 AliphaticsNDug/l50.0C9-C12 AliphaticsNDug/l50.0C9-C10 AromaticsNDug/l50.0	
C9-C12 Aliphatics ND ug/l 50.0	181761-4
C9-C10 Aromatics ND ug/l 50.0	
C5-C8 Aliphatics, Adjusted ND ug/l 50.0	
C9-C12 Aliphatics, Adjusted ND ug/l 50.0	

		Acceptance
Surrogate	%Recovery Qualifier	Criteria
2,5-Dibromotoluene-PID	102	70-130
2,5-Dibromotoluene-FID	101	70-130

Project Name:	MASON STATION		Lab Number:	L1847049
Project Number:	171.06108		Report Date:	11/27/18
		Method Blank Analysis Batch Quality Control		

Analytical Method:	98,EPH-04-1.1			Extraction Method:	EPA 3510C
Analytical Date:	11/27/18 06:51	M.S. Analytical Date:	11/27/18 13:28	Extraction Date:	11/25/18 22:27
Analyst:	DG	M.S. Analyst:	DV	Cleanup Method:	EPH-04-1
				Cleanup Date:	11/26/18

arameter	Result	Qualifier	Unit	S	RL	MDL
PH w/MS Targets - Westborou	ugh Lab for samp	le(s): 01	-03	Batch:	WG118	32367-1
C9-C18 Aliphatics	ND		ug	/I	100	
C19-C36 Aliphatics	ND		ug	/I	100	
C11-C22 Aromatics	ND		ug	/I	100	
C11-C22 Aromatics, Adjusted	ND		ug	/I	100	
Naphthalene	ND		ug	/I	0.400	
2-Methylnaphthalene	ND		ug	/I	0.400	
Acenaphthylene	ND		ug	/I	0.400	
Acenaphthene	ND		ug	/I	0.400	
Fluorene	ND		ug	/I	0.400	
Phenanthrene	ND		ug	/I	0.400	
Anthracene	ND		ug	/I	0.400	
Fluoranthene	ND		ug	/I	0.400	
Pyrene	ND		ug	/I	0.400	
Benzo(a)anthracene	ND		ug	/I	0.400	
Chrysene	ND		ug	/I	0.400	
Benzo(b)fluoranthene	ND		ug	/I	0.400	
Benzo(k)fluoranthene	ND		ug	/I	0.400	
Benzo(a)pyrene	ND		ug	/I	0.200	
Indeno(1,2,3-cd)Pyrene	ND		ug	/I	0.400	
Dibenzo(a,h)anthracene	ND		ug	/I	0.400	
Benzo(ghi)perylene	ND		ug	/I	0.400	

Project Name: Project Number:	MASON STATION 171.06108		Lab Number: Report Date:	L1847049 11/27/18
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	98,EPH-04-1.1 11/27/18 06:51 DG	11/27/18 13:28 DV	Extraction Method: Extraction Date: Cleanup Method: Cleanup Date:	EPA 3510C 11/25/18 22:27 EPH-04-1 11/26/18

Parameter	Result	Qualifier	Units	RL	MDL	
EPH w/MS Targets - Westborough	Lab for sa	mple(s): 01-	03 Ba	atch: WG1182	367-1	

Surrogate	%Recovery Qua	Acceptance lifier Criteria
Chloro-Octadecane	73	40-140
o-Terphenyl	77	40-140
2-Fluorobiphenyl	80	40-140
2-Bromonaphthalene	75	40-140
O-Terphenyl-MS	80	40-140

Lab Control Sample Analysis Batch Quality Control

Project Number: 171.06108 Lab Number: L1847049 Report Date: 11/27/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Petroleum Hydrocarbons - Westboro	ugh Lab Associ	ated sample(s)	: 01-03 Batch	n: WG1181761-2 WG11817	61-3	
C5-C8 Aliphatics	103		107	70-130	4	25
C9-C12 Aliphatics	101		105	70-130	4	25
C9-C10 Aromatics	102		105	70-130	3	25
Benzene	102		105	70-130	3	25
Toluene	90		93	70-130	3	25
Ethylbenzene	104		108	70-130	4	25
p/m-Xylene	103		107	70-130	4	25
o-Xylene	102		106	70-130	4	25
Methyl tert butyl ether	101		104	70-130	3	25
Naphthalene	99		104	70-130	5	25
1,2,4-Trimethylbenzene	102		105	70-130	3	25
Pentane	106		110	70-130	4	25
2-Methylpentane	104		108	70-130	4	25
2,2,4-Trimethylpentane	105		109	70-130	4	25
n-Nonane	99		102	30-130	3	25
n-Decane	105		109	70-130	4	25
n-Butylcyclohexane	100		103	70-130	3	25

Surrogate	LCS	LCSD	Acceptance
	%Recovery Q	vual %Recovery	Qual Criteria
2,5-Dibromotoluene-PID	106	110	70-130
2,5-Dibromotoluene-FID	104	109	70-130

Lab Control Sample Analysis

Batch Quality Control

Project Number: 171.06108

Lab Number: L1847049 Report Date: 11/27/18

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual EPH w/MS Targets - Westborough Lab Associated sample(s): 01-03 Batch: WG1182367-2 WG1182367-3 C9-C18 Aliphatics 80 25 77 40-140 4 C19-C36 Aliphatics 25 92 88 40-140 4 C11-C22 Aromatics 99 87 40-140 13 25 Naphthalene 93 84 40-140 10 25 2-Methylnaphthalene 88 40-140 25 79 11 25 Acenaphthylene 99 91 40-140 8 Acenaphthene 112 102 40-140 9 25 25 Fluorene 117 107 40-140 9 Phenanthrene 115 107 40-140 7 25 25 Anthracene 122 112 40-140 9 25 Fluoranthene 123 115 40-140 7 25 Pyrene 127 118 40-140 7 Benzo(a)anthracene 25 127 113 40-140 12 122 40-140 25 Chrysene 132 8 Benzo(b)fluoranthene 126 113 40-140 11 25 25 Benzo(k)fluoranthene 130 118 40-140 10 25 Benzo(a)pyrene 128 115 40-140 11 Indeno(1,2,3-cd)Pyrene 40-140 25 130 116 11 Dibenzo(a,h)anthracene 40-140 25 116 104 11 Benzo(ghi)perylene 122 109 40-140 11 25 Nonane (C9) 61 57 30-140 7 25 Decane (C10) 25 70 66 40-140 6 Dodecane (C12) 25 77 73 40-140 5

Lab Control Sample Analysis Batch Quality Control

Project Number: 171.06108 Lab Number: L1847049 Report Date: 11/27/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
EPH w/MS Targets - Westborough Lab A	ssociated sample(s)	: 01-03	Batch: WG11823	867-2 WG1	182367-3			
Tetradecane (C14)	80		77		40-140	4		25
Hexadecane (C16)	81		79		40-140	3		25
Octadecane (C18)	88		85		40-140	3		25
Nonadecane (C19)	87		84		40-140	4		25
Eicosane (C20)	90		86		40-140	5		25
Docosane (C22)	90		86		40-140	5		25
Tetracosane (C24)	89		86		40-140	3		25
Hexacosane (C26)	89		85		40-140	5		25
Octacosane (C28)	88		84		40-140	5		25
Triacontane (C30)	87		84		40-140	4		25
Hexatriacontane (C36)	89		84		40-140	6		25

Surrogate	LCS %Recovery Qu	LCSD al %Recovery Qual	Acceptance Criteria
Gunogute			
Chloro-Octadecane	71	72	40-140
o-Terphenyl	89	80	40-140
2-Fluorobiphenyl	88	80	40-140
2-Bromonaphthalene	82	75	40-140
O-Terphenyl-MS	114	108	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

METALS

Project Name:	MASON STATION		Lab Number:	L1847049
Project Number:	171.06108		Report Date:	11/27/18
		SAMPLE RESULTS		
Lab ID:	L1847049-01		Date Collected:	11/13/18 08:55
Client ID:	MW301		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals -	Mansfield	Lab									
Arsenic, Dissolved	ND		mg/l	0.005		1	11/21/18 14:50) 11/26/18 12:46	EPA 3005A	1,6010D	LC
Barium, Dissolved	0.021		mg/l	0.010		1	11/21/18 14:50) 11/26/18 12:46	EPA 3005A	1,6010D	LC
Cadmium, Dissolved	ND		mg/l	0.005		1	11/21/18 14:50) 11/26/18 12:46	EPA 3005A	1,6010D	LC
Chromium, Dissolved	ND		mg/l	0.010		1	11/21/18 14:50) 11/26/18 12:46	EPA 3005A	1,6010D	LC
Lead, Dissolved	ND		mg/l	0.010		1	11/21/18 14:50) 11/26/18 12:46	EPA 3005A	1,6010D	LC
Mercury, Dissolved	ND		mg/l	0.00020		1	11/20/18 15:13	3 11/20/18 22:10	EPA 7470A	1,7470A	MG
Selenium, Dissolved	ND		mg/l	0.010		1	11/21/18 14:50) 11/26/18 12:46	EPA 3005A	1,6010D	LC
Silver, Dissolved	ND		mg/l	0.007		1	11/21/18 14:50) 11/26/18 12:46	EPA 3005A	1,6010D	LC

Project Name:	MASON STATION		Lab Number:	L1847049
Project Number:	171.06108		Report Date:	11/27/18
		SAMPLE RESULTS		
Lab ID:	L1847049-02		Date Collected:	11/13/18 10:00
Client ID:	MW303		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals -	Mansfield	Lab									
Arsenic, Dissolved	ND		mg/l	0.005		1	11/21/18 14:50) 11/26/18 13:00	EPA 3005A	1,6010D	LC
Barium, Dissolved	0.072		mg/l	0.010		1	11/21/18 14:50) 11/26/18 13:00	EPA 3005A	1,6010D	LC
Cadmium, Dissolved	ND		mg/l	0.005		1	11/21/18 14:50) 11/26/18 13:00	EPA 3005A	1,6010D	LC
Chromium, Dissolved	ND		mg/l	0.010		1	11/21/18 14:50) 11/26/18 13:00	EPA 3005A	1,6010D	LC
Lead, Dissolved	ND		mg/l	0.010		1	11/21/18 14:50) 11/26/18 13:00	EPA 3005A	1,6010D	LC
Mercury, Dissolved	ND		mg/l	0.00020		1	11/20/18 15:13	3 11/20/18 22:20	EPA 7470A	1,7470A	MG
Selenium, Dissolved	ND		mg/l	0.010		1	11/21/18 14:50) 11/26/18 13:00	EPA 3005A	1,6010D	LC
Silver, Dissolved	ND		mg/l	0.007		1	11/21/18 14:50) 11/26/18 13:00	EPA 3005A	1,6010D	LC

Project Name:	MASON STATION		Lab Number:	L1847049
Project Number:	171.06108		Report Date:	11/27/18
		SAMPLE RESULTS		
Lab ID:	L1847049-03		Date Collected:	11/13/18 11:00
Client ID:	MW304		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals -	Mansfield	Lab									
Arsenic, Dissolved	ND		mg/l	0.005		1	11/21/18 14:50	11/26/18 13:05	EPA 3005A	1,6010D	LC
Barium, Dissolved	0.020		mg/l	0.010		1	11/21/18 14:50	11/26/18 13:05	EPA 3005A	1,6010D	LC
Cadmium, Dissolved	ND		mg/l	0.005		1	11/21/18 14:50	11/26/18 13:05	EPA 3005A	1,6010D	LC
Chromium, Dissolved	ND		mg/l	0.010		1	11/21/18 14:50	11/26/18 13:05	EPA 3005A	1,6010D	LC
Lead, Dissolved	ND		mg/l	0.010		1	11/21/18 14:50	11/26/18 13:05	EPA 3005A	1,6010D	LC
Mercury, Dissolved	ND		mg/l	0.00020		1	11/20/18 15:13	3 11/20/18 22:26	EPA 7470A	1,7470A	MG
Selenium, Dissolved	ND		mg/l	0.010		1	11/21/18 14:50	11/26/18 13:05	EPA 3005A	1,6010D	LC
Silver, Dissolved	ND		mg/l	0.007		1	11/21/18 14:50	11/26/18 13:05	EPA 3005A	1,6010D	LC

Project Name:MASON STATIONProject Number:171.06108

 Lab Number:
 L1847049

 Report Date:
 11/27/18

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Mans	sfield Lab	for sample	e(s): 01-03	3 Batch	: WG1	181501-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	11/20/18 15:13	11/20/18 22:07	7 1,7470A	MG

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Mar	nsfield Lab for s	ample(s): 01-0	3 Batch	: WG1	181860-1				
Arsenic, Dissolved	ND	mg/l	0.005		1	11/21/18 14:50	11/26/18 11:13	1,6010D	LC
Barium, Dissolved	ND	mg/l	0.010		1	11/21/18 14:50	11/26/18 11:13	1,6010D	LC
Cadmium, Dissolved	ND	mg/l	0.005		1	11/21/18 14:50	11/26/18 11:13	1,6010D	LC
Chromium, Dissolved	ND	mg/l	0.010		1	11/21/18 14:50	11/26/18 11:13	1,6010D	LC
Lead, Dissolved	ND	mg/l	0.010		1	11/21/18 14:50	11/26/18 11:13	1,6010D	LC
Selenium, Dissolved	ND	mg/l	0.010		1	11/21/18 14:50	11/26/18 11:13	1,6010D	LC
Silver, Dissolved	ND	mg/l	0.007		1	11/21/18 14:50	11/26/18 11:13	1,6010D	LC

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: MASON STATION Project Number: 171.06108

Lab Number: L1847049 Report Date: 11/27/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Dissolved Metals - Mansfield Lab Associated	sample(s): 01-03	Batch: W	G1181501-2					
Mercury, Dissolved	93		-		80-120	-		
Dissolved Metals - Mansfield Lab Associated	sample(s): 01-03	Batch: W	G1181860-2					
Arsenic, Dissolved	101		-		80-120	-		
Barium, Dissolved	101		-		80-120	-		
Cadmium, Dissolved	104		-		80-120	-		
Chromium, Dissolved	103		-		80-120	-		
Lead, Dissolved	94		-		80-120	-		
Selenium, Dissolved	105		-		80-120	-		
Silver, Dissolved	104		-		80-120	-		

Project Name:	MASON STATION				c Spike Analys h Quality Control	Lab Number:	L1847049
Project Number:	171.06108	Me	MS	MC	MSD	 Report Date:	11/27/18 BBD

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		SD MSD und %Recovery	Qual	Recovery Limits	RPD Qual	RPD Limits
Dissolved Metals - Mansfield Lal	b Associated	d sample(s):	01-03 Q	C Batch ID: WG	61181501-3	QC Sample: L184	7049-01	Client ID:	: MW301	
Mercury, Dissolved	ND	0.005	0.00396	79				75-125	-	20

Project Name: Project Number:	MASON STATION 171.06108	La	b Duplicate Analy Batch Quality Control			ab Numbe eport Date	21047049
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Dissolved Metals - Mans	field Lab Associated sample(s): 01-03 QC Batch ID:	WG1181501-4 QC San	nple: L1847(049-01 Clier	nt ID: MW	301

Parameter	Native	e Sample	Duplicate Sa	ample Units	RPD	Qual	RPD Lim
Dissolved Metals - Mansfield Lab Associated sample(s):	01-03	QC Batch ID:	WG1181501-4	QC Sample: L18	47049-01 Clie	nt ID: MW	/301
Mercury, Dissolved		ND	ND	mg/l	NC		20

Project Name:MASON STATIONProject Number:171.06108

Serial_No:11271819:35 *Lab Number:* L1847049 *Report Date:* 11/27/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
В	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1847049-01A	Vial HCI preserved	В	NA		3.0	Y	Absent		ME-8260(14)
L1847049-01B	Vial HCI preserved	В	NA		3.0	Y	Absent		ME-8260(14)
L1847049-01C	Vial HCI preserved	В	NA		3.0	Y	Absent		ME-8260(14)
L1847049-01D	Plastic 250ml unpreserved	В	7	7	3.0	Y	Absent		-
L1847049-01E	Amber 1000ml HCI preserved	В	<2	<2	3.0	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1847049-01F	Amber 1000ml HCI preserved	В	<2	<2	3.0	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1847049-01J	Vial HCI preserved	В	NA		3.0	Υ	Absent		VPH-18(14)
L1847049-01K	Vial HCI preserved	В	NA		3.0	Υ	Absent		VPH-18(14)
L1847049-01L	Vial HCI preserved	В	NA		3.0	Υ	Absent		VPH-18(14)
L1847049-01X	Plastic 120ml HNO3 preserved Filtrates	В	NA		3.0	Y	Absent		PB-SI(180),BA-SI(180),AG-SI(180),AS- SI(180),CD-SI(180),CR-SI(180),HG-S(28),SE- SI(180)
L1847049-02A	Vial HCI preserved	В	NA		3.0	Y	Absent		ME-8260(14)
L1847049-02B	Vial HCI preserved	В	NA		3.0	Y	Absent		ME-8260(14)
L1847049-02C	Vial HCI preserved	В	NA		3.0	Y	Absent		ME-8260(14)
L1847049-02D	Plastic 250ml unpreserved	В	7	7	3.0	Y	Absent		-
L1847049-02E	Amber 1000ml HCl preserved	В	<2	<2	3.0	Y	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1847049-02F	Amber 1000ml HCl preserved	В	<2	<2	3.0	Y	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1847049-02J	Vial HCI preserved	В	NA		3.0	Y	Absent		VPH-18(14)
L1847049-02K	Vial HCI preserved	В	NA		3.0	Y	Absent		VPH-18(14)
L1847049-02L	Vial HCI preserved	В	NA		3.0	Y	Absent		VPH-18(14)
L1847049-02X	Plastic 120ml HNO3 preserved Filtrates	В	NA		3.0	Y	Absent		PB-SI(180),BA-SI(180),AG-SI(180),AS- SI(180),CD-SI(180),CR-SI(180),HG-S(28),SE- SI(180)
L1847049-03A	Vial HCI preserved	В	NA		3.0	Y	Absent		ME-8260(14)

Project Name:MASON STATIONProject Number:171.06108

Serial_No:11271819:35 *Lab Number:* L1847049 *Report Date:* 11/27/18

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1847049-03B	Vial HCI preserved	В	NA		3.0	Y	Absent		ME-8260(14)
L1847049-03C	Vial HCI preserved	В	NA		3.0	Y	Absent		ME-8260(14)
L1847049-03D	Plastic 250ml unpreserved	В	7	7	3.0	Y	Absent		-
L1847049-03E	Amber 1000ml HCl preserved	В	<2	<2	3.0	Y	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1847049-03F	Amber 1000ml HCl preserved	В	<2	<2	3.0	Y	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1847049-03J	Vial HCI preserved	В	NA		3.0	Y	Absent		VPH-18(14)
L1847049-03K	Vial HCI preserved	В	NA		3.0	Y	Absent		VPH-18(14)
L1847049-03L	Vial HCI preserved	В	NA		3.0	Y	Absent		VPH-18(14)
L1847049-03X	Plastic 120ml HNO3 preserved Filtrates	В	NA		3.0	Y	Absent		PB-SI(180),BA-SI(180),AG-SI(180),AS- SI(180),CD-SI(180),CR-SI(180),HG-S(28),SE- SI(180)

Project Name: MASON STATION

Project Number: 171.06108

Lab Number: L1847049

Report Date: 11/27/18

GLOSSARY

Acronyms

Acronyms	
EDL	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

- 1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Usability Report Report Format:

Project Name: MASON STATION

Project Number: 171.06108

Serial_	No:112	271819:35
---------	--------	-----------

 Lab Number:
 L1847049

 Report Date:
 11/27/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Project Name: MASON STATION Project Number: 171.06108
 Lab Number:
 L1847049

 Report Date:
 11/27/18

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- 131 Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene **EPA 8260C:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270D:** <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS
EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.
Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	CHAIN OF	Part of the Area Area and		AGE L	of_1	Date	e Rec'	d in Lat):	11	115	-110	6	AL	PHA	Job #:	H	84754	9
8 Walkup Drive Westboro, MA 01	320 Forbes Blvd 581 Mansfield, MA 02048	Project Infor	and the second se					nforma			a Deli	ivera	bles			nforma			
Tet: 508-898-922	20 Tel: 508-822-9300	Project Name:	Mason :	Statio	0	and the second second	ADEx	100 March 100	Sector Sector	MAIL				States and	1.7	s Client	and the owned	The Party Name of Street, or other	
Client: Ranson Address: 400 (Portla Phone: 207.77 Email: epheni Additional Pr	on Consulting Inc. ommercial St. nd ME 04101 2.2891 x@rancomenu.com oject Information:	Project Manage ALPHA Quote Turn-Around XStandard Date Due:	1.06108 <u>r: Steve</u> #: 1 Time I RUSH (mil)	3 Dyer continued it pro-aj	oproved))	ALVe.	es Alles All	No MA No Matri No GW1 No NPD tate /Fer	MCP A x Spik Stand ES R0 d Proj	nalytic e Req dards (3P gram_	al Me uired (Info F	ethods on thi Requir	of Finger print	? (Re Metal	Yes quired s & EPI	for MCP H with Ta	Inorgania	Analytical Metho cs)	
A Treservati Containe Metals ALPHA Lab ID (Lab Use Only)	ve thoroughly wa r prior to sample samples in lab to Sample ID		Collection	Sam filter uetal Sample Matrix	ple 5. Sampler Initials	VOC: XC.	SVOC: D AD.	WETALS: UMCP 13	EPH: L. DRCRAS MCP 14	PH: Co	D PCB C Tar	TPH: DQuant C	Aluo					Field Lab to do Preservation Lab to do	
47049-01	MW 301		118 8:55			X		V	X			-/	-(-	1	()	-	/ San	nple Comment	ls C
02	MW 303		18 10:00			X		x		1			+	1			-		0
03	MW 304	1 1	118 11:00		- 10 Carriel Color-	×		X		X									0
Container Type P= Plastic A= Amber glass V= Vlal G= Glass B= Bacteria cup	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄			Pr	ainer Type eservative	V B		PA	AB	¥ B									
C= Cube O= Other E= Encore D= BOD Bottle	E= NaOH F= MeOH G= NaHSO+ H = Na ₃ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ Ci K= Zn Acetate O= Other	Relinquished E	AAL	1.1 /	e/Time 18 1600 1857	l	M	Recei		the second second	И	1181	Dat n/i	e/Tim 5 / 1 185	e 600 7	Alpha's See rev	Terms ar verse side	nitted are subjend Conditions. 1. 12-Mar-2012)	ect to

ANALYTICAL REPORT

Lab Number:	L1847051
Client:	Ransom Consulting, Inc.
	400 Commercial Street
	Suite 404
	Portland, ME 04101-4660
ATTN:	Steve Dyer
Phone:	(207) 772-2891
Project Name:	MASON STATION
Project Number:	171.06108
Report Date:	11/26/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:11261816:47

Project Name:MASON STATIONProject Number:171.06108

 Lab Number:
 L1847051

 Report Date:
 11/26/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1847051-01	B301-S1	SOIL	WISCASSET, ME	11/12/18 09:00	11/15/18
L1847051-02	B301-S4	SOIL	WISCASSET, ME	11/12/18 09:20	11/15/18
L1847051-03	B302-S1	SOIL	WISCASSET, ME	11/12/18 09:45	11/15/18
L1847051-04	B303-S1	SOIL	WISCASSET, ME	11/12/18 10:25	11/15/18
L1847051-05	B303-S4	SOIL	WISCASSET, ME	11/12/18 10:40	11/15/18
L1847051-06	B304-S1	SOIL	WISCASSET, ME	11/12/18 11:25	11/15/18
L1847051-07	B304-S4	SOIL	WISCASSET, ME	11/12/18 11:45	11/15/18

Project Name: MASON STATION Project Number: 171.06108

Lab Number: L1847051 Report Date: 11/26/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:MASON STATIONProject Number:171.06108

 Lab Number:
 L1847051

 Report Date:
 11/26/18

Case Narrative (continued)

Volatile Organics

L1847051-01 through -07: The water-preserved VOA vials for Volatile Organics Low-Level analysis were received at the laboratory beyond the 48 hour holding time required for freezing. The Low-Level analysis was performed at the client's request. A High-Level analysis was performed within holding time and those results are also reported.

EPH

L1847051-04 has elevated detection limits for the target analytes only due to the dilution required by the elevated concentrations of these compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Compos Melissa Cripps

Authorized Signature:

Title: Technical Director/Representative

Date: 11/26/18

ORGANICS

VOLATILES

			Serial_N	o:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-01		Date Collected:	11/12/18 09:00
Client ID:	B301-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	11/21/18 14:07			
Analyst:	KJD			
Percent Solids:	82%			

Parameter	Result	Qualifier U	Inits	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Hi	gh - Westborough Lab					
Methylene chloride	ND	U	g/kg	530		1
1,1-Dichloroethane	ND		g/kg	110		1
Chloroform	ND		g/kg	160		1
Carbon tetrachloride	ND		g/kg	110		1
1,2-Dichloropropane	ND		g/kg	110		1
Dibromochloromethane	ND		g/kg	110		1
1,1,2-Trichloroethane	ND		g/kg	110		1
Tetrachloroethene	ND		g/kg	53		1
Chlorobenzene	ND		g/kg	53		1
Trichlorofluoromethane	ND		g/kg	430		1
1,2-Dichloroethane	ND	U	g/kg	110		1
1,1,1-Trichloroethane	ND		g/kg	53		1
Bromodichloromethane	ND	U	g/kg	53		1
trans-1,3-Dichloropropene	ND	U	g/kg	110		1
cis-1,3-Dichloropropene	ND	u	g/kg	53		1
1,3-Dichloropropene, Total	ND	u	g/kg	53		1
1,1-Dichloropropene	ND	u	g/kg	53		1
Bromoform	ND	u	g/kg	430		1
1,1,2,2-Tetrachloroethane	ND	u	g/kg	53		1
Benzene	ND	u	g/kg	53		1
Toluene	ND	u	g/kg	110		1
Ethylbenzene	ND	u	g/kg	110		1
Chloromethane	ND	u	g/kg	430		1
Bromomethane	ND	u	g/kg	210		1
Vinyl chloride	ND	u	g/kg	110		1
Chloroethane	ND	u	g/kg	210		1
1,1-Dichloroethene	ND	u	g/kg	110		1
trans-1,2-Dichloroethene	ND	U	g/kg	160		1

					ç	Serial_No	:11261816:47
Project Name:	MASON STATION				Lab Nu	mber:	L1847051
Project Number:	171.06108				Report	Date:	11/26/18
		SAMPI		S			11/20/10
Lab ID:	L1847051-01				Date Col	lected.	11/12/18 09:00
Client ID:	B301-S1				Date Red		11/15/18
Sample Location:	WISCASSET, ME				Field Pre		Not Specified
Consola Dontha							
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
	WEDA 5025 High Ma			Units		MDE	
Volatile Organics L	y EPA 5035 High - We	SIDUIUUYII LAD					
Trichloroethene		ND		ug/kg	53		1
1,2-Dichlorobenzene		ND		ug/kg	210		1
1,3-Dichlorobenzene		ND		ug/kg	210		1
1,4-Dichlorobenzene		ND		ug/kg	210		1
Methyl tert butyl ether		ND		ug/kg	210		1
p/m-Xylene		ND		ug/kg	210		1
o-Xylene		ND		ug/kg	110		1
Xylenes, Total		ND		ug/kg	110		1
cis-1,2-Dichloroethene		ND		ug/kg	110		1
1,2-Dichloroethene, Total	I	ND		ug/kg	110		1
Dibromomethane		ND		ug/kg	210		1
1,4-Dichlorobutane		ND		ug/kg	1100		1
1,2,3-Trichloropropane		ND		ug/kg	210		1
Styrene		ND		ug/kg	110		1
Dichlorodifluoromethane		ND		ug/kg	1100		1
Acetone		ND		ug/kg	1100		1
Carbon disulfide		ND		ug/kg	1100		1
2-Butanone		ND		ug/kg	1100		1
Vinyl acetate		ND		ug/kg	1100		1
4-Methyl-2-pentanone		ND		ug/kg	1100		1
2-Hexanone		ND		ug/kg	1100		1
Ethyl methacrylate		ND		ug/kg	1100		1
Acrylonitrile		ND		ug/kg	430		1
Bromochloromethane		ND		ug/kg	210		1
Tetrahydrofuran		ND		ug/kg	430		1
2,2-Dichloropropane		ND		ug/kg	210		1
1,2-Dibromoethane		ND		ug/kg	110		1
1,3-Dichloropropane		ND		ug/kg	210		1
1,1,1,2-Tetrachloroethane	9	ND		ug/kg	53		1
Bromobenzene		ND		ug/kg	210		1
n-Butylbenzene		ND		ug/kg	110		1
sec-Butylbenzene		ND		ug/kg	110		1
tert-Butylbenzene		ND		ug/kg	210		1
o-Chlorotoluene		ND		ug/kg	210		1
p-Chlorotoluene		ND		ug/kg	210		1
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	320		1
Hexachlorobutadiene		ND		ug/kg	430		1
				5.3			

			Serial_No:11261816:47		
Project Name:	MASON STATION		Lab Number:	L1847051	
Project Number:	171.06108		Report Date:	11/26/18	
		SAMPLE RESULTS			
Lab ID:	L1847051-01		Date Collected:	11/12/18 09:00	
Client ID:	B301-S1		Date Received:	11/15/18	
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified	

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by EPA 5035 High - Westborough Lab									
Isopropylbenzene	ND		ug/kg	110		1			
p-lsopropyltoluene	ND		ug/kg	110		1			
Naphthalene	ND		ug/kg	430		1			
n-Propylbenzene	ND		ug/kg	110		1			
1,2,3-Trichlorobenzene	ND		ug/kg	210		1			
1,2,4-Trichlorobenzene	ND		ug/kg	210		1			
1,3,5-Trimethylbenzene	ND		ug/kg	210		1			
1,2,4-Trimethylbenzene	ND		ug/kg	210		1			
trans-1,4-Dichloro-2-butene	ND		ug/kg	530		1			
Ethyl ether	ND		ug/kg	210		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	99	70-130	

			Serial_No	o:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-01		Date Collected:	11/12/18 09:00
Client ID:	B301-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	11/21/18 14:54			
Analyst:	MV			
Percent Solids:	82%			
Client ID: Sample Location: Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	B301-S1 WISCASSET, ME Soil 1,8260C 11/21/18 14:54 MV		Date Received:	11/15/18

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS-5035 - Westborough Lab								
Methylene chloride	ND	ug/kg	6.7		1			
1,1-Dichloroethane	ND	ug/kg	1.3		1			
Chloroform	ND	ug/kg	2.0		1			
Carbon tetrachloride	ND	ug/kg	1.3		1			
1,2-Dichloropropane	ND	ug/kg	1.3		1			
Dibromochloromethane	ND	ug/kg	1.3		1			
1,1,2-Trichloroethane	ND	ug/kg	1.3		1			
Tetrachloroethene	ND	ug/kg	0.67		1			
Chlorobenzene	ND	ug/kg	0.67		1			
Trichlorofluoromethane	ND	ug/kg	5.4		1			
1,2-Dichloroethane	ND	ug/kg	1.3		1			
1,1,1-Trichloroethane	ND	ug/kg	0.67		1			
Bromodichloromethane	ND	ug/kg	0.67		1			
trans-1,3-Dichloropropene	ND	ug/kg	1.3		1			
cis-1,3-Dichloropropene	ND	ug/kg	0.67		1			
1,3-Dichloropropene, Total	ND	ug/kg	0.67		1			
1,1-Dichloropropene	ND	ug/kg	0.67		1			
Bromoform	ND	ug/kg	5.4		1			
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.67		1			
Benzene	ND	ug/kg	0.67		1			
Toluene	ND	ug/kg	1.3		1			
Ethylbenzene	ND	ug/kg	1.3		1			
Chloromethane	ND	ug/kg	5.4		1			
Bromomethane	ND	ug/kg	2.7		1			
Vinyl chloride	ND	ug/kg	1.3		1			
Chloroethane	ND	ug/kg	2.7		1			
1,1-Dichloroethene	ND	ug/kg	1.3		1			
trans-1,2-Dichloroethene	ND	ug/kg	2.0		1			

					:	Serial_No	0:11261816:47	
Project Name:	MASON STATION				Lab Nu	mber:	L1847051	
Project Number:	171.06108				Report	Date:	11/26/18	
		SAMPI		5				
Lab ID:	L1847051-01				Date Col	lected:	11/12/18 09:00	
Client ID:	B301-S1				Date Re	ceived:	11/15/18	
Sample Location:	WISCASSET, ME				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS-5035 - Westbo	rough Lab						
Trichloroethene		ND		ug/kg	0.67		1	
1,2-Dichlorobenzene		ND		ug/kg	2.7		1	

ug/kg

2.7

2.7

2.7

2.7

1.3

1.3

1.3

1.3

2.7

13

2.7

1.3

13

13

13

13

13

13

13

13

5.4

2.7

5.4

2.7

1.3

2.7

0.67

2.7

1.3

1.3

2.7

2.7

2.7

4.0

5.4

--

--

--

--

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ND

15

ND

1,3-Dichlorobenzene

1,4-Dichlorobenzene

Methyl tert butyl ether

cis-1,2-Dichloroethene

1,2-Dichloroethene, Total

p/m-Xylene

Xylenes, Total

Dibromomethane

1,4-Dichlorobutane

1,2,3-Trichloropropane

Dichlorodifluoromethane

o-Xylene

Styrene

Acetone

Carbon disulfide

2-Butanone

Vinyl acetate

2-Hexanone

Acrylonitrile

4-Methyl-2-pentanone

Ethyl methacrylate

Bromochloromethane

2,2-Dichloropropane

1,2-Dibromoethane

1,3-Dichloropropane

Bromobenzene

n-Butylbenzene

sec-Butylbenzene

tert-Butylbenzene

o-Chlorotoluene

p-Chlorotoluene

Hexachlorobutadiene

1,2-Dibromo-3-chloropropane

1,1,1,2-Tetrachloroethane

Tetrahydrofuran

			Serial_No:11261816:47		
Project Name:	MASON STATION		Lab Number:	L1847051	
Project Number:	171.06108		Report Date:	11/26/18	
		SAMPLE RESULTS			
Lab ID:	L1847051-01		Date Collected:	11/12/18 09:00	
Client ID:	B301-S1		Date Received:	11/15/18	
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified	

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-5035 - Westborough Lab							
Isopropylbenzene	ND		ug/kg	1.3		1	
p-lsopropyltoluene	ND		ug/kg	1.3		1	
Naphthalene	ND		ug/kg	5.4		1	
n-Propylbenzene	ND		ug/kg	1.3		1	
1,2,3-Trichlorobenzene	ND		ug/kg	2.7		1	
1,2,4-Trichlorobenzene	ND		ug/kg	2.7		1	
1,3,5-Trimethylbenzene	ND		ug/kg	2.7		1	
1,2,4-Trimethylbenzene	ND		ug/kg	2.7		1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	6.7		1	
Ethyl ether	ND		ug/kg	2.7		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	82	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	95	70-130	

			Serial_N	o:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-02		Date Collected:	11/12/18 09:20
Client ID:	B301-S4		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	11/21/18 14:29			
Analyst:	MV			
Percent Solids:	87%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035	- Westborough Lab					
Methylene chloride	ND		ug/kg	4.6		1
1,1-Dichloroethane	ND		ug/kg	0.91		1
Chloroform	ND		ug/kg	1.4		1
Carbon tetrachloride	ND		ug/kg	0.91		1
1,2-Dichloropropane	ND		ug/kg	0.91		1
Dibromochloromethane	ND		ug/kg	0.91		1
1,1,2-Trichloroethane	ND		ug/kg	0.91		1
Tetrachloroethene	ND		ug/kg	0.46		1
Chlorobenzene	ND		ug/kg	0.46		1
Trichlorofluoromethane	ND		ug/kg	3.6		1
1,2-Dichloroethane	ND		ug/kg	0.91		1
1,1,1-Trichloroethane	ND		ug/kg	0.46		1
Bromodichloromethane	ND		ug/kg	0.46		1
trans-1,3-Dichloropropene	ND		ug/kg	0.91		1
cis-1,3-Dichloropropene	ND		ug/kg	0.46		1
1,3-Dichloropropene, Total	ND		ug/kg	0.46		1
1,1-Dichloropropene	ND		ug/kg	0.46		1
Bromoform	ND		ug/kg	3.6		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.46		1
Benzene	ND		ug/kg	0.46		1
Toluene	ND		ug/kg	0.91		1
Ethylbenzene	ND		ug/kg	0.91		1
Chloromethane	ND		ug/kg	3.6		1
Bromomethane	ND		ug/kg	1.8		1
Vinyl chloride	ND		ug/kg	0.91		1
Chloroethane	ND		ug/kg	1.8		1
1,1-Dichloroethene	ND		ug/kg	0.91		1
trans-1,2-Dichloroethene	ND		ug/kg	1.4		1

					Serial_No:11261816:4		
Project Name:	MASON STATION				Lab Number:	L1847051	
Project Number:	171.06108				Report Date:	11/26/18	
		SAMPLE RESULTS					
Lab ID:	L1847051-02				Date Collected:	11/12/18 09:20	
Client ID:	B301-S4				Date Received:	11/15/18	
Sample Location:	WISCASSET, ME				Field Prep:	Not Specified	
Sample Depth:							
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor	

Volatile Organics by GC/MS-5035 -	Westborough Lab				
Trichloroethene	ND	ug/kg	0.46	 1	
1,2-Dichlorobenzene	ND	ug/kg	1.8	 1	
1,3-Dichlorobenzene	ND	ug/kg	1.8	 1	
1,4-Dichlorobenzene	ND	ug/kg	1.8	 1	
Methyl tert butyl ether	ND	ug/kg	1.8	 1	
p/m-Xylene	ND	ug/kg	1.8	 1	
o-Xylene	ND	ug/kg	0.91	 1	
Xylenes, Total	ND	ug/kg	0.91	 1	
cis-1,2-Dichloroethene	ND	ug/kg	0.91	 1	
1,2-Dichloroethene, Total	ND	ug/kg	0.91	 1	
Dibromomethane	ND	ug/kg	1.8	 1	
1,4-Dichlorobutane	ND	ug/kg	9.1	 1	
1,2,3-Trichloropropane	ND	ug/kg	1.8	 1	
Styrene	ND	ug/kg	0.91	 1	
Dichlorodifluoromethane	ND	ug/kg	9.1	 1	
Acetone	26	ug/kg	9.1	 1	
Carbon disulfide	ND	ug/kg	9.1	 1	
2-Butanone	ND	ug/kg	9.1	 1	
Vinyl acetate	ND	ug/kg	9.1	 1	
4-Methyl-2-pentanone	ND	ug/kg	9.1	 1	
2-Hexanone	ND	ug/kg	9.1	 1	
Ethyl methacrylate	ND	ug/kg	9.1	 1	
Acrylonitrile	ND	ug/kg	3.6	 1	
Bromochloromethane	ND	ug/kg	1.8	 1	
Tetrahydrofuran	ND	ug/kg	3.6	 1	
2,2-Dichloropropane	ND	ug/kg	1.8	 1	
1,2-Dibromoethane	ND	ug/kg	0.91	 1	
1,3-Dichloropropane	ND	ug/kg	1.8	 1	
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.46	 1	
Bromobenzene	ND	ug/kg	1.8	 1	
n-Butylbenzene	ND	ug/kg	0.91	 1	
sec-Butylbenzene	ND	ug/kg	0.91	 1	
tert-Butylbenzene	ND	ug/kg	1.8	 1	
o-Chlorotoluene	ND	ug/kg	1.8	 1	
p-Chlorotoluene	ND	ug/kg	1.8	 1	
1,2-Dibromo-3-chloropropane	ND	ug/kg	2.7	 1	
Hexachlorobutadiene	ND	ug/kg	3.6	 1	

			Serial_No:11261816:4	
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-02		Date Collected:	11/12/18 09:20
Client ID:	B301-S4		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

borough Lab					
ND					
ND		ug/kg	0.91		1
ND		ug/kg	0.91		1
ND		ug/kg	3.6		1
ND		ug/kg	0.91		1
ND		ug/kg	1.8		1
ND		ug/kg	1.8		1
ND		ug/kg	1.8		1
ND		ug/kg	1.8		1
ND		ug/kg	4.6		1
ND		ug/kg	1.8		1
	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	NDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kg	ND ug/kg 0.91 ND ug/kg 3.6 ND ug/kg 0.91 ND ug/kg 1.8 ND ug/kg 4.6	ND ug/kg 0.91 ND ug/kg 3.6 ND ug/kg 0.91 ND ug/kg 0.91 ND ug/kg 1.8 ND ug/kg 1.8

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	78	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	93	70-130	

			Serial_No	p:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1847051-02 B301-S4 WISCASSET, ME		Date Collected: Date Received: Field Prep:	11/12/18 09:20 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260C 11/21/18 14:32 KJD 87%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High -	Westborough Lab	ı				
Methylene chloride	ND		ug/kg	540		1
1,1-Dichloroethane	ND		ug/kg	110		1
Chloroform	ND		ug/kg	160		1
Carbon tetrachloride	ND		ug/kg	110		1
1,2-Dichloropropane	ND		ug/kg	110		1
Dibromochloromethane	ND		ug/kg	110		1
1,1,2-Trichloroethane	ND		ug/kg	110		1
Tetrachloroethene	ND		ug/kg	54		1
Chlorobenzene	ND		ug/kg	54		1
Trichlorofluoromethane	ND		ug/kg	430		1
1,2-Dichloroethane	ND		ug/kg	110		1
1,1,1-Trichloroethane	ND		ug/kg	54		1
Bromodichloromethane	ND		ug/kg	54		1
trans-1,3-Dichloropropene	ND		ug/kg	110		1
cis-1,3-Dichloropropene	ND		ug/kg	54		1
1,3-Dichloropropene, Total	ND		ug/kg	54		1
1,1-Dichloropropene	ND		ug/kg	54		1
Bromoform	ND		ug/kg	430		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	54		1
Benzene	ND		ug/kg	54		1
Toluene	ND		ug/kg	110		1
Ethylbenzene	ND		ug/kg	110		1
Chloromethane	ND		ug/kg	430		1
Bromomethane	ND		ug/kg	220		1
Vinyl chloride	ND		ug/kg	110		1
Chloroethane	ND		ug/kg	220		1
1,1-Dichloroethene	ND		ug/kg	110		1
trans-1,2-Dichloroethene	ND		ug/kg	160		1

					ç	Serial_No	:11261816:47
Project Name:	MASON STATION				Lab Nu	mber:	L1847051
Project Number:	171.06108				Report	Date:	11/26/18
•		SAMP		S	•		
Lab ID:	L1847051-02				Date Col	lected:	11/12/18 09:20
Client ID:	B301-S4				Date Red		11/15/18
Sample Location:	WISCASSET, ME				Field Pre	p:	Not Specified
Sample Denthy							
Sample Depth: Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
	oy EPA 5035 High - We						
volatilo organiloo t		otoorougii Lat					
Trichloroethene		ND		ug/kg	54		1
1,2-Dichlorobenzene		ND		ug/kg	220		1
1,3-Dichlorobenzene		ND		ug/kg	220		1
1,4-Dichlorobenzene		ND		ug/kg	220		1
Methyl tert butyl ether		ND		ug/kg	220		1
p/m-Xylene		ND		ug/kg	220		1
o-Xylene		ND		ug/kg	110		1
Xylenes, Total		ND		ug/kg	110		1
cis-1,2-Dichloroethene		ND		ug/kg	110		1
1,2-Dichloroethene, Tota		ND		ug/kg	110		1
Dibromomethane		ND		ug/kg	220		1
1,4-Dichlorobutane		ND		ug/kg	1100		1
1,2,3-Trichloropropane		ND		ug/kg	220		1
Styrene		ND		ug/kg	110		1
Dichlorodifluoromethane		ND		ug/kg	1100		1
		ND		ug/kg	1100		1
Carbon disulfide		ND		ug/kg	1100		1
2-Butanone		ND		ug/kg	1100		1
Vinyl acetate		ND		ug/kg	1100		1
4-Methyl-2-pentanone 2-Hexanone		ND		ug/kg ug/kg	1100		1
Ethyl methacrylate		ND			1100		1
Acrylonitrile		ND		ug/kg ug/kg	430		1
Bromochloromethane		ND		ug/kg	220		1
Tetrahydrofuran		ND		ug/kg	430		1
2,2-Dichloropropane		ND		ug/kg	220		1
1,2-Dibromoethane		ND		ug/kg	110		1
1,3-Dichloropropane		ND		ug/kg	220		1
1,1,1,2-Tetrachloroethan	e	ND		ug/kg	54		1
Bromobenzene		ND		ug/kg	220		1
n-Butylbenzene		ND		ug/kg	110		1
sec-Butylbenzene		ND		ug/kg	110		1
tert-Butylbenzene		ND		ug/kg	220		1
o-Chlorotoluene		ND		ug/kg	220		1
p-Chlorotoluene		ND		ug/kg	220		1
1,2-Dibromo-3-chloroprop	pane	ND		ug/kg	330		1
Hexachlorobutadiene		ND		ug/kg	430		1

			Serial_No:11261816:47		
Project Name:	MASON STATION		Lab Number:	L1847051	
Project Number:	171.06108		Report Date:	11/26/18	
		SAMPLE RESULTS			
Lab ID:	L1847051-02		Date Collected:	11/12/18 09:20	
Client ID:	B301-S4		Date Received:	11/15/18	
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by EPA 5035 High - Westborough Lab								
Isopropylbenzene	ND		ug/kg	110		1		
p-Isopropyltoluene	ND		ug/kg	110		1		
Naphthalene	ND		ug/kg	430		1		
n-Propylbenzene	ND		ug/kg	110		1		
1,2,3-Trichlorobenzene	ND		ug/kg	220		1		
1,2,4-Trichlorobenzene	ND		ug/kg	220		1		
1,3,5-Trimethylbenzene	ND		ug/kg	220		1		
1,2,4-Trimethylbenzene	ND		ug/kg	220		1		
trans-1,4-Dichloro-2-butene	ND		ug/kg	540		1		
Ethyl ether	ND		ug/kg	220		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	97	70-130	

			Serial_N	o:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-03		Date Collected:	11/12/18 09:45
Client ID:	B302-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	11/21/18 14:02			
Analyst:	MV			
Percent Solids:	88%			

Parameter	Result	Qualifier Uni	ts RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035	- Westborough Lab				
Methylene chloride	ND	ug/ł	kg 4.9		1
1,1-Dichloroethane	ND	ug/ł	(g 0.98		1
Chloroform	ND	ug/ł	kg 1.5		1
Carbon tetrachloride	ND	ug/ł	(g 0.98		1
1,2-Dichloropropane	ND	ug/ł	(g 0.98		1
Dibromochloromethane	ND	ug/ł	(g 0.98		1
1,1,2-Trichloroethane	ND	ug/ł	(g 0.98		1
Tetrachloroethene	ND	ug/ł	kg 0.49		1
Chlorobenzene	ND	ug/ł	kg 0.49		1
Trichlorofluoromethane	ND	ug/ł	kg 3.9		1
1,2-Dichloroethane	ND	ug/ł	(g 0.98		1
1,1,1-Trichloroethane	ND	ug/ł	kg 0.49		1
Bromodichloromethane	ND	ug/ł	kg 0.49		1
trans-1,3-Dichloropropene	ND	ug/ł	kg 0.98		1
cis-1,3-Dichloropropene	ND	ug/ł	kg 0.49		1
1,3-Dichloropropene, Total	ND	ug/ł	kg 0.49		1
1,1-Dichloropropene	ND	ug/ł	(g 0.49		1
Bromoform	ND	ug/ł	(g 3.9		1
1,1,2,2-Tetrachloroethane	ND	ug/ł	(g 0.49		1
Benzene	ND	ug/ł	kg 0.49		1
Toluene	1.4	ug/ł	(g 0.98		1
Ethylbenzene	ND	ug/ł	kg 0.98		1
Chloromethane	ND	ug/ł	kg 3.9		1
Bromomethane	ND	ug/ł	kg 2.0		1
Vinyl chloride	ND	ug/ł	kg 0.98		1
Chloroethane	ND	ug/ł	kg 2.0		1
1,1-Dichloroethene	ND	ug/ł	kg 0.98		1
trans-1,2-Dichloroethene	ND	ug/ł	(g 1.5		1

					Serial_N	o:11261816:47
Project Name:	MASON STATION				Lab Number:	L1847051
Project Number:	171.06108				Report Date:	11/26/18
		SAMP	LE RESULTS	5		
Lab ID:	L1847051-03				Date Collected:	11/12/18 09:45
Client ID:	B302-S1				Date Received:	11/15/18
Sample Location:	WISCASSET, ME				Field Prep:	Not Specified
Sample Depth:						
Demonstration		Decult	Qualifian	l lucito		Dilution Foston

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035	- Westborough Lab					
Trichloroethene	ND		ug/kg	0.49		1
1,2-Dichlorobenzene	ND		ug/kg	2.0		1
1,3-Dichlorobenzene	ND		ug/kg	2.0		1
1,4-Dichlorobenzene	ND		ug/kg	2.0		1
Methyl tert butyl ether	ND		ug/kg	2.0		1
p/m-Xylene	ND		ug/kg	2.0		1
o-Xylene	ND		ug/kg	0.98		1
Xylenes, Total	ND		ug/kg	0.98		1
cis-1,2-Dichloroethene	ND		ug/kg	0.98		1
1,2-Dichloroethene, Total	ND		ug/kg	0.98		1
Dibromomethane	ND		ug/kg	2.0		1
1,4-Dichlorobutane	ND		ug/kg	9.8		1
1,2,3-Trichloropropane	ND		ug/kg	2.0		1
Styrene	ND		ug/kg	0.98		1
Dichlorodifluoromethane	ND		ug/kg	9.8		1
Acetone	30		ug/kg	9.8		1
Carbon disulfide	ND		ug/kg	9.8		1
2-Butanone	ND		ug/kg	9.8		1
Vinyl acetate	ND		ug/kg	9.8		1
4-Methyl-2-pentanone	ND		ug/kg	9.8		1
2-Hexanone	ND		ug/kg	9.8		1
Ethyl methacrylate	ND		ug/kg	9.8		1
Acrylonitrile	ND		ug/kg	3.9		1
Bromochloromethane	ND		ug/kg	2.0		1
Tetrahydrofuran	ND		ug/kg	3.9		1
2,2-Dichloropropane	ND		ug/kg	2.0		1
1,2-Dibromoethane	ND		ug/kg	0.98		1
1,3-Dichloropropane	ND		ug/kg	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.49		1
Bromobenzene	ND		ug/kg	2.0		1
n-Butylbenzene	ND		ug/kg	0.98		1
sec-Butylbenzene	ND		ug/kg	0.98		1
tert-Butylbenzene	ND		ug/kg	2.0		1
o-Chlorotoluene	ND		ug/kg	2.0		1
p-Chlorotoluene	ND		ug/kg	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/kg	2.9		1
Hexachlorobutadiene	ND		ug/kg	3.9		1

			Serial_N	0:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-03		Date Collected:	11/12/18 09:45
Client ID:	B302-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS-5035 - Westborough Lab									
Isopropylbenzene	ND		ug/kg	0.98		1			
p-lsopropyltoluene	ND		ug/kg	0.98		1			
Naphthalene	ND		ug/kg	3.9		1			
n-Propylbenzene	ND		ug/kg	0.98		1			
1,2,3-Trichlorobenzene	ND		ug/kg	2.0		1			
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		1			
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		1			
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		1			
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.9		1			
Ethyl ether	ND		ug/kg	2.0		1			
trans-1,4-Dichloro-2-butene Ethyl ether						1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	80	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	95	70-130	

			Serial_No	o:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-03		Date Collected:	11/12/18 09:45
Client ID:	B302-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	11/21/18 14:58			
Analyst:	KJD			
Percent Solids:	88%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Hig	h - Westborough Lab					
Methylene chloride	ND		ug/kg	410		1
1,1-Dichloroethane	ND		ug/kg	82		1
Chloroform	ND		ug/kg	120		1
Carbon tetrachloride	ND		ug/kg	82		1
1,2-Dichloropropane	ND		ug/kg	82		1
Dibromochloromethane	ND		ug/kg	82		1
1,1,2-Trichloroethane	ND		ug/kg	82		1
Tetrachloroethene	ND		ug/kg	41		1
Chlorobenzene	ND		ug/kg	41		1
Trichlorofluoromethane	ND		ug/kg	330		1
1,2-Dichloroethane	ND		ug/kg	82		1
1,1,1-Trichloroethane	ND		ug/kg	41		1
Bromodichloromethane	ND		ug/kg	41		1
trans-1,3-Dichloropropene	ND		ug/kg	82		1
cis-1,3-Dichloropropene	ND		ug/kg	41		1
1,3-Dichloropropene, Total	ND		ug/kg	41		1
1,1-Dichloropropene	ND		ug/kg	41		1
Bromoform	ND		ug/kg	330		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	41		1
Benzene	ND		ug/kg	41		1
Toluene	ND		ug/kg	82		1
Ethylbenzene	ND		ug/kg	82		1
Chloromethane	ND		ug/kg	330		1
Bromomethane	ND		ug/kg	160		1
Vinyl chloride	ND		ug/kg	82		1
Chloroethane	ND		ug/kg	160		1
1,1-Dichloroethene	ND		ug/kg	82		1
trans-1,2-Dichloroethene	ND		ug/kg	120		1

					ç	Serial_No	:11261816:47
Project Name:	MASON STATION				Lab Nu	mber:	L1847051
Project Number:	171.06108				Report	Date:	11/26/18
		SAMP		S			11/20/10
Lab ID:	L1847051-03				Date Col	lected:	11/12/18 09:45
Client ID:	B302-S1				Date Red		11/15/18
Sample Location:	WISCASSET, ME				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y EPA 5035 High - We	stborough Lab	I				
	, 3						
Trichloroethene		ND		ug/kg	41		1
1,2-Dichlorobenzene		ND		ug/kg	160		1
1,3-Dichlorobenzene		ND		ug/kg	160		1
1,4-Dichlorobenzene		ND		ug/kg	160		1
Methyl tert butyl ether		ND		ug/kg	160		1
p/m-Xylene		ND		ug/kg	160		1
o-Xylene		ND		ug/kg	82		1
Xylenes, Total		ND		ug/kg	82		1
cis-1,2-Dichloroethene		ND		ug/kg	82		1
1,2-Dichloroethene, Total		ND		ug/kg	82		1
Dibromomethane		ND		ug/kg	160		1
1,4-Dichlorobutane		ND		ug/kg	820		1
1,2,3-Trichloropropane		ND		ug/kg	160		1
Styrene		ND		ug/kg	82		1
Dichlorodifluoromethane		ND		ug/kg	820		1
Acetone		ND		ug/kg	820		1
Carbon disulfide		ND		ug/kg	820		1
2-Butanone		ND		ug/kg	820		1
Vinyl acetate		ND		ug/kg	820		1
4-Methyl-2-pentanone		ND		ug/kg	820		1
2-Hexanone		ND		ug/kg	820		1
Ethyl methacrylate		ND		ug/kg	820		1
Acrylonitrile		ND		ug/kg	330		1
Bromochloromethane		ND		ug/kg	160		1
Tetrahydrofuran		ND		ug/kg	330		1
2,2-Dichloropropane		ND		ug/kg	160		1
1,2-Dibromoethane		ND		ug/kg	82		1
1,3-Dichloropropane		ND		ug/kg	160		1
1,1,1,2-Tetrachloroethane	e	ND		ug/kg	41		1
Bromobenzene		ND		ug/kg	160		1
n-Butylbenzene		ND		ug/kg	82		1
sec-Butylbenzene		ND		ug/kg	82		1
tert-Butylbenzene		ND		ug/kg	160		1
o-Chlorotoluene		ND		ug/kg	160		1
p-Chlorotoluene		ND		ug/kg	160		1
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	240		1
Hexachlorobutadiene		ND		ug/kg	330		1

Lab Number: L1847051 Report Date: 11/26/18
Report Date: 11/26/18
RESULTS
Date Collected: 11/12/18 09:45
Date Received: 11/15/18
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High - Wes	tborough Lab	I				
Isopropylbenzene	ND		ug/kg	82		1
p-lsopropyltoluene	ND		ug/kg	82		1
Naphthalene	ND		ug/kg	330		1
n-Propylbenzene	ND		ug/kg	82		1
1,2,3-Trichlorobenzene	ND		ug/kg	160		1
1,2,4-Trichlorobenzene	ND		ug/kg	160		1
1,3,5-Trimethylbenzene	ND		ug/kg	160		1
1,2,4-Trimethylbenzene	ND		ug/kg	160		1
trans-1,4-Dichloro-2-butene	ND		ug/kg	410		1
Ethyl ether	ND		ug/kg	160		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	99	70-130	

			Serial_No	p:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1847051-04 B303-S1 WISCASSET, ME		Date Collected: Date Received: Field Prep:	11/12/18 10:25 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260C 11/21/18 15:23 KJD 69%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	- Westborough Lab					
Methylene chloride	ND		ug/kg	750		1
1,1-Dichloroethane	ND		ug/kg	150		1
Chloroform	ND		ug/kg	220		1
Carbon tetrachloride	ND		ug/kg	150		1
1,2-Dichloropropane	ND		ug/kg	150		1
Dibromochloromethane	ND		ug/kg	150		1
1,1,2-Trichloroethane	ND		ug/kg	150		1
Tetrachloroethene	ND		ug/kg	75		1
Chlorobenzene	ND		ug/kg	75		1
Trichlorofluoromethane	ND		ug/kg	600		1
1,2-Dichloroethane	ND		ug/kg	150		1
1,1,1-Trichloroethane	ND		ug/kg	75		1
Bromodichloromethane	ND		ug/kg	75		1
trans-1,3-Dichloropropene	ND		ug/kg	150		1
cis-1,3-Dichloropropene	ND		ug/kg	75		1
1,3-Dichloropropene, Total	ND		ug/kg	75		1
1,1-Dichloropropene	ND		ug/kg	75		1
Bromoform	ND		ug/kg	600		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	75		1
Benzene	ND		ug/kg	75		1
Toluene	ND		ug/kg	150		1
Ethylbenzene	ND		ug/kg	150		1
Chloromethane	ND		ug/kg	600		1
Bromomethane	ND		ug/kg	300		1
Vinyl chloride	ND		ug/kg	150		1
Chloroethane	ND		ug/kg	300		1
1,1-Dichloroethene	ND		ug/kg	150		1
trans-1,2-Dichloroethene	ND		ug/kg	220		1

Project Name: MASON STATION Lab Nume: Lab Nume: <thlab nume:<="" th=""> Lab Nume: Lab Nume: <t< th=""><th></th><th></th><th></th><th></th><th></th><th>ç</th><th>Serial_No</th><th>:11261816:47</th><th></th></t<></thlab>						ç	Serial_No	:11261816:47	
Lab LD : L147/051-04 Client LD : B33.5-1 Sample Location WISCASSET, ME Termoter Result Qualifier Vision Preserve Server Serve	Project Name:	MASON STATION							
Lab LD : L147/051-04 Client LD : B33.5-1 Sample Location WISCASSET, ME Termoter Result Qualifier Vision Preserve Server Serve	Project Number:	171.06108				Report	Date:	11/26/18	
Client ID:B303-S1 WISCASSET, MEData ReceiveNot SpecifiedSample Deptit:ParametorReavitoutiferNotMot InterfectorValatile Organics by EPA 5035 High - Westberugitg73-11.2-ChichocobargeneNDugitg73-11.2-ChichocobargeneNDugitg30011.2-ChichocobargeneNDugitg30011.2-ChichocobargeneNDugitg30011.2-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-Chichoco			SAMP		S	•		11/20/10	
Client ID:B303-S1 WISCASSET, MEData ReceiveNot SpecifiedSample Deptit:ParametorReavitoutiferNotMot InterfectorValatile Organics by EPA 5035 High - Westberugitg73-11.2-ChichocobargeneNDugitg73-11.2-ChichocobargeneNDugitg30011.2-ChichocobargeneNDugitg30011.2-ChichocobargeneNDugitg30011.2-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-ChichocobargeneNDugitg15012-Chichoco	Lab ID:	L1847051-04				Date Col	lected:	11/12/18 10:25	
Sample Depth: Paranter Realk Qualiter N.R. R.M. M.D. Dubor Paranter Valatie Organices by EPA 5035 High - Vestores Latter State									
ParameterResultQualifierUnitsRLMDLDiutor PactorUdatile Organics by EPA 5035 High - Westborough LabTrichorochonoNDug/q30011.2 blochorochonoNDug/q30011.3 blochorochonoNDug/q30011.4 blochorochonoNDug/q30011.4 blochorochonoNDug/q30011.4 blochorochonoNDug/q30011.4 blochorochonoNDug/q15010.5 yleneNDug/q15011.4 blochorochonoNDug/q15011.4 blochoroch	Sample Location:	WISCASSET, ME				Field Pre	p:	Not Specified	
ParameterResultQualifierUnitsRLMDLDiutor PactorUdatile Organics by EPA 5035 High - Westborough LabTrichorochonoNDug/q30011.2 blochorochonoNDug/q30011.3 blochorochonoNDug/q30011.4 blochorochonoNDug/q30011.4 blochorochonoNDug/q30011.4 blochorochonoNDug/q30011.4 blochorochonoNDug/q15010.5 yleneNDug/q15011.4 blochorochonoNDug/q15011.4 blochoroch	Sample Denth								
Tichloroshnzene ND ug/kg 75 - 1 1.3 Dichloroshnzene ND ug/kg 300 - 1 1.4 Dichloroshnzene ND ug/kg 150 - 1 p/m-Xylene ND ug/kg 150 - 1 oxXjene ND ug/kg 150 - 1 1.2 Dichloroshnen ND ug/kg 150 - 1 1.4 D			Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,2-Dichlorobenzene ND ug/kg 300 1 1,3-Dichlorobenzene ND ug/kg 300 1 1,4-Dichlorobenzene ND ug/kg 300 1 Herhy ter buly der ND ug/kg 300 1 pm-Xylene ND ug/kg 150 1 o/Xylene ND ug/kg 150 1 (Sel-1.2-Dichlorobene ND ug/kg 150 1 1.2-Dichlorobene ND ug/kg 300 1 1.2-Dichlorobene ND ug/kg 300 1 1.2-Dichlorobene ND ug/kg 300 1 1.2-Dichlorobene ND ug/kg 1500 1 1.2-Dichlorobene ND ug/kg 1500 1 1.2-Dichlorobene ND ug/kg 1500 1	Volatile Organics b	y EPA 5035 High - We	stborough Lab	1					
1,2-Dichlorobenzene ND ug/kg 300 1 1,3-Dichlorobenzene ND ug/kg 300 1 1,4-Dichlorobenzene ND ug/kg 300 1 Herhy ter buly der ND ug/kg 300 1 pm-Xylene ND ug/kg 150 1 o/Xylene ND ug/kg 150 1 (Sel-1.2-Dichlorobene ND ug/kg 150 1 1.2-Dichlorobene ND ug/kg 300 1 1.2-Dichlorobene ND ug/kg 300 1 1.2-Dichlorobene ND ug/kg 300 1 1.2-Dichlorobene ND ug/kg 1500 1 1.2-Dichlorobene ND ug/kg 1500 1 1.2-Dichlorobene ND ug/kg 1500 1	-		-						
1.3-Dichloroberzene ND ug/kg 300 - 1 1.4-Dichloroberzene ND ug/kg 300 - 1 Methyl terb uryl ether ND ug/kg 300 - 1 mir-Xylene ND ug/kg 300 - 1 o-Xylene ND ug/kg 150 - 1 Xylenes, Total ND ug/kg 150 - 1 L2-Dichlorobethene ND ug/kg 150 - 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
1.4-Dichloroberzene ND ug/kg 300 1 Methyl tert Lutyl othar ND ug/kg 300 1 pim Xylene ND ug/kg 300 1 cxylene ND ug/kg 100 1 Xylenes, Total ND ug/kg 150 1 1.2-Dichloroethene, Total ND ug/kg 150 1 1.4-Dichloroethene, Total ND ug/kg 150 1 1.4-Dichloroethene, Total ND ug/kg 1500 1 1.2-Dichloroethene, Total ND ug/kg 1500 1 1.2-Si Trichloropropane ND ug/kg 1500 1 2.4-Si Trichloropropane ND ug/kg 1500 1 2.4-Si Trichloropropane ND ug/kg 1500 1 2.4-Si Trichloropropane ND ug/kg 1500									
NP ug/kg 300 1 p/m-Xylene ND ug/kg 300 1 o-Xylene ND ug/kg 150 1 o-Xylene ND ug/kg 150 1 cis-1,2-Dichforcethene ND ug/kg 150 1 1,2-Dichforcethene, Total ND ug/kg 300 1 1,4-Dichforcethene, Total ND ug/kg 300 1 1,4-Dichforcethene, Total ND ug/kg 300 1 1,4-Dichforcethene ND ug/kg 300 1 1,4-Dichforcethene ND ug/kg 150 1 2,4-Exto									
pinx Xylene ND ugkg 300 - 1 c-Xylene ND ugkg 150 - 1 Xylenes, Total ND ugkg 150 - 1 cls-1.2-Dichoroothene ND ugkg 150 - 1 1.2-Dichoroothene ND ugkg 300 - 1 1.2-Dichoroothene ND ugkg 300 - 1 1.2-Dichoroothene ND ugkg 150 - 1 1.2-Strichoroopropane ND ugkg 1500 - 1 2.3-Tichoroopropane ND ugkg 1500 - 1 2.4-Dichoroothene ND ugkg 1500 - 1 2.4-Butanone<									
o-Xylene ND ug/kg 150 - 1 Xylenes, Total ND ug/kg 150 - 1 Aylenes, Total ND ug/kg 150 - 1 1.2-Dichloroethene, Total ND ug/kg 150 - 1 1.4-Dichloroethene, Total ND ug/kg 300 - 1 1.4-Dichloroethene, Total ND ug/kg 300 - 1 1.4-Dichloroethene, Total ND ug/kg 300 - 1 1.4-Dichloroethene ND ug/kg 150 - 1 1.2-Dichloroethene ND ug/kg 150 - 1 1.2-Dichloroethene ND ug/kg 1500 - 1 2-Butanone ND ug/kg 1500 - 1 2-Hexanone ND ug/kg 1500 - 1 2-Hexanone ND ug/kg 600 - 1									
Xylenes, Total ND ug/kg 150 1 cis-1,2-Dichlorcethene ND ug/kg 150 1 1,2-Dichlorcethene, Total ND ug/kg 150 1 Dibromomethane ND ug/kg 150 1 1,2-Dichlorcethene, Total ND ug/kg 150 1 1,4-Dichlorotulane ND ug/kg 150 1 1,4-Dichlorotulane ND ug/kg 150 1 Syrene ND ug/kg 1500 1 Carbon disulfide ND ug/kg 1600 1 2-Butanone ND ug/kg 1500 1 Vinyl acetate ND ug/kg 1500 1 2-Hexanone ND ug/kg 1600 1 2-Hexanone ND ug/kg 300 1 <									
bill ND ugkg 150 1 1.2-Dichloroethene, Total ND ugkg 150 1 Dibromorethane ND ugkg 300 1 1.4-Dichlorobutane ND ugkg 300 1 1.3-Trichloropropane ND ugkg 150 1 Dictorodfluoromethane ND ugkg 150 1 Actone ND ugkg 1500 1 Carbon disulfide ND ugkg 1500 1 2-Butanone ND ugkg 1500 1 2-Butanone ND ugkg 1500 1 2-Butanone ND ugkg 1500 1 2-Hexanone ND ugkg 1500 1 2-Hexanone ND ugkg 300 1 2-Hothoromethane ND									
1.2-Dichloroethene, Total ND ug/kg 150 - 1 Dibromomethane ND ug/kg 300 - 1 1.4-Dichlorobutane ND ug/kg 1500 - 1 1.2.3-Tirchloropropane ND ug/kg 1500 - 1 Styrene ND ug/kg 1500 - 1 Dichlorodifluoromethane ND ug/kg 1500 - 1 Acetone ND ug/kg 1500 - 1 Carbon disulfide ND ug/kg 1500 - 1 2-Butanone ND ug/kg 1500 - 1 Viryl acetate ND ug/kg 1500 - 1 2-Hoxanone ND ug/kg 1500 - 1 Ethyl methacylate ND ug/kg 1600 - 1 Areylonitrile ND ug/kg 600 - 1 Bromochloromethane ND ug/kg 300 - 1 1.2-Dibloropro									
Dibromomethane ND ug/kg 300 - 1 1,4-Dichlorobutane ND ug/kg 1500 - 1 1,2,3-Trichloropropane ND ug/kg 160 - 1 Styrone ND ug/kg 150 - 1 Styrone ND ug/kg 1500 - 1 Carbon disulfide ND ug/kg 1500 - 1 2-Butanone ND ug/kg 1500 - 1 Viryl acetate ND ug/kg 1500 - 1 4-Methyl-2-pentanone ND ug/kg 1500 - 1 2-Haxanone ND ug/kg 1500 - 1 Ehvl methacylate ND ug/kg 1600 - 1 Acylonitrile ND ug/kg 300 - 1 1,2-Dichloropropane ND ug/kg 300 - 1 1,2-Dichloropropane									
1.4-Dichlorobutane ND ug/kg 1500 1 1.2.3-Trichloropropane ND ug/kg 150 1 Styrene ND ug/kg 150 1 Dichlorodifluoromethane ND ug/kg 1500 1 Acetone ND ug/kg 1500 1 Carbon disulfide ND ug/kg 1500 1 2-Butanone ND ug/kg 1500 1 Virvl acetate ND ug/kg 1500 1 4-Methyl-2-pentanone ND ug/kg 1500 1 2-Hexanone ND ug/kg 1500 1 Carbon disulfide ND ug/kg 600 1 2-Hexanone ND ug/kg 1500 1 2-Hexanone ND ug/kg 300 1 2-Dichloropropane ND ug/kg 300 1 2-Dichloropropa									
1.2.3-Trichloropropane ND ug/kg 300 1 Styrene ND ug/kg 150 1 Dichlorodifluoromethane ND ug/kg 1500 1 Acetone ND ug/kg 1500 1 Carbon disulfide ND ug/kg 1500 1 2-Butanone ND ug/kg 1500 1 2-Butanone ND ug/kg 1500 1 4-Methyl-2-pentanone ND ug/kg 1500 1 2-Hexanone ND ug/kg 1500 1 2-Hexanone ND ug/kg 600 1 Actrylonitrile ND ug/kg 600 1 Bromochiloromethane ND ug/kg 300 1 1.2-Dibromothane ND ug/kg 300 1 1.2-Dibromot									
Styrene ND ug/kg 150 1 Dichlorodfluoromethane ND ug/kg 1500 1 Acetone ND ug/kg 1500 1 Carbon disulfide ND ug/kg 1500 1 2-Butanone ND ug/kg 1500 1 2-Butanone ND ug/kg 1500 1 4-Methyl-2-pentanone ND ug/kg 1500 1 2-Hexanone ND ug/kg 1500 1 2-Hexanone ND ug/kg 600 1 Actylontrile ND ug/kg 600 1 Bromochicornethane ND ug/kg 300 1 1.2-Dibromothane ND ug/kg 300 1 1.2-Dibromothane ND ug/kg 300 1 1.1.2-Ditkoropropane </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Dichlorodifluoromethane ND ug/kg 1500 1 Acetone ND ug/kg 1500 1 Carbon disulfide ND ug/kg 1500 1 2-Butanone ND ug/kg 1500 1 Viny acetate ND ug/kg 1500 1 4-Methyl-2-pentanone ND ug/kg 1500 1 2-Hexanone ND ug/kg 1500 1 2-Hexanone ND ug/kg 1500 1 Acrytonitrile ND ug/kg 600 1 Bromochloromethane ND ug/kg 300 1 1.2-Dibromotehane ND ug/kg 300 1 1.2-Dibromotehane ND ug/kg 300 1 1.2-Dibromotehane ND ug/kg 300 1 1.2-D									
Acetone ND ug/kg 1500 1 Carbon disulfide ND ug/kg 1500 1 2-Butanone ND ug/kg 1500 1 Vinyl acetate ND ug/kg 1500 1 4-Methyl-2-pentanone ND ug/kg 1500 1 2-Hexanone ND ug/kg 1500 1 Ethyl methacrylate ND ug/kg 1500 1 Acrylonitrile ND ug/kg 600 1 Bromochloromethane ND ug/kg 300 1 1,2-Dibromoethane ND ug/kg 300 1 1,2-Dibromoethane ND ug/kg 300 1 1,2-Dibromoethane ND ug/kg 300 1 1,1,1-2-Tetrachloroethane ND ug/kg 300 1									
Carbon disulfide ND ug/kg 1500 1 2-Butanone ND ug/kg 1500 1 4-Methyl-2-pentanone ND ug/kg 1500 1 2-Hexanone ND ug/kg 1500 1 2-Hexanone ND ug/kg 1500 1 Ethyl methacrylate ND ug/kg 600 1 Acrylonitrile ND ug/kg 600 1 Bromochloromethane ND ug/kg 600 1 2,2-Dichloropropane ND ug/kg 300 1 1,2-Dibromoethane ND ug/kg 300 1 1,1,1,2-Tetrachloroethane ND ug/kg 300 1 1,1,1,2-Tetrachloroethane ND ug/kg 300 1 n-Butylbenzene ND ug/kg 300 1									
2-Butanone ND ug/kg 1500 1 Vinyl acetate ND ug/kg 1500 1 4-Methyl-2-pentanone ND ug/kg 1500 1 2-Hexanone ND ug/kg 1500 1 Ethyl methacrylate ND ug/kg 600 1 Acrylonitrile ND ug/kg 600 1 Bromochloromethane ND ug/kg 600 1 2,2-Dichloropropane ND ug/kg 300 1 1,2-Dibromoethane ND ug/kg 300 1 1,2-Dichloropropane ND ug/kg 300 1 1,1,1,2-Tetrachloroethane ND ug/kg 300 1 1,1,1,2-Tetrachloroethane ND ug/kg 300 1 n-Butylbenzene ND ug/kg 300 1									
Vinyl acetate ND ug/kg 1500 1 4-Methyl-2-pentanone ND ug/kg 1500 1 2-Hexanone ND ug/kg 1500 1 Ethyl methacrytate ND ug/kg 1500 1 Acrylonitrile ND ug/kg 600 1 Bromochloromethane ND ug/kg 600 1 2,2-Dichloropropane ND ug/kg 300 1 1,2-Dibromoethane ND ug/kg 300 1 1,2-Dichloropropane ND ug/kg 300 1 1,3-Dichloropropane ND ug/kg 300 1 1,1,1,1,2-Tetrachloroethane ND ug/kg 300 1 n-Butylbenzene ND ug/kg 300 1 ec-Butylbenzene ND ug/kg 300 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
4-Methyl-2-pentanone ND ug/kg 1500 1 2-Hexanone ND ug/kg 1500 1 Ethyl methacrylate ND ug/kg 1500 1 Acrylonitrile ND ug/kg 600 1 Bromochloromethane ND ug/kg 300 1 2,2-Dichloropropane ND ug/kg 300 1 1,2-Dibromoethane ND ug/kg 300 1 1,1,2-Tetrachloroethane ND ug/kg 300 1 1,1,2-Tetrachloroethane ND ug/kg 300 1 n-Butylbenzene ND ug/kg 300 1 <	Vinyl acetate		ND			1500		1	
2-Hexanone ND ug/kg 1500 1 Ethyl methacrylate ND ug/kg 1500 1 Acrylonitrile ND ug/kg 600 1 Bromochloromethane ND ug/kg 600 1 2-Dichloropropane ND ug/kg 600 1 1,2-Dibromoethane ND ug/kg 300 1 1,2-Dibromoethane ND ug/kg 300 1 1,2-Dibromoethane ND ug/kg 300 1 1,3-Dichloropropane ND ug/kg 300 1 1,1,1,2-Tetrachloroethane ND ug/kg 300 1 n-Butylbenzene ND ug/kg 300 1 n-Butylbenzene ND ug/kg 300 1 o-Chlorotoluene ND ug/kg 300 1			ND			1500		1	
Ethyl methacrylate ND ug/kg 1500 1 Acrylonitrile ND ug/kg 600 1 Bromochloromethane ND ug/kg 300 1 Z-Dichloropropane ND ug/kg 300 1 2.2-Dichloropropane ND ug/kg 300 1 1.2-Dibromoethane ND ug/kg 300 1 1.2-Dibromoethane ND ug/kg 300 1 1.3-Dichloropropane ND ug/kg 300 1 1.1,1,2-Tetrachloroethane ND ug/kg 300 1 n-Butylbenzene ND ug/kg 300 1 n-Butylbenzene ND ug/kg 300 1 o-Chlorotoluene ND ug/kg 300 1 o-Chlorotoluene ND ug/kg 300 1						1500		1	
Acrylonitrile ND ug/kg 600 1 Bromochloromethane ND ug/kg 300 1 Tetrahydrofuran ND ug/kg 600 1 2,2-Dichloropropane ND ug/kg 300 1 1,2-Dibromoethane ND ug/kg 150 1 1,3-Dichloropropane ND ug/kg 300 1 1,3-Dichloropropane ND ug/kg 300 1 1,1,1,2-Tetrachloroethane ND ug/kg 300 1 1,1,1,2-Tetrachloroethane ND ug/kg 300 1 n-Butylbenzene ND ug/kg 300 1 n-Butylbenzene ND ug/kg 150 1 o-Chlorotoluene ND ug/kg 300 1 o-Chlorotoluene ND ug/kg 300 1 </td <td>Ethyl methacrylate</td> <td></td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>	Ethyl methacrylate		ND					1	
BromochloromethaneNDug/kg3001TetrahydrofuranNDug/kg60012,2-DichloropropaneNDug/kg30011,2-DibromoethaneNDug/kg15011,3-DichloropropaneNDug/kg30011,1,1,2-TetrachloroethaneNDug/kg30011,1,1,2-TetrachloroethaneNDug/kg3001n-ButylbenzeneNDug/kg3001n-ButylbenzeneNDug/kg1501tert-ButylbenzeneNDug/kg3001o-ChlorotolueneNDug/kg3001p-ChlorotolueneNDug/kg30011,2-Dibromo-3-chloropropaneNDug/kg4501	Acrylonitrile		ND			600		1	
Tetrahydrofuran ND ug/kg 600 1 2,2-Dichloropropane ND ug/kg 300 1 1,2-Dibromoethane ND ug/kg 150 1 1,3-Dichloropropane ND ug/kg 300 1 1,3-Dichloropropane ND ug/kg 300 1 1,1,1,2-Tetrachloroethane ND ug/kg 75 1 Bromobenzene ND ug/kg 300 1 n-Butylbenzene ND ug/kg 150 1 sec-Butylbenzene ND ug/kg 150 1 tert-Butylbenzene ND ug/kg 300 1 o-Chlorotoluene ND ug/kg 300 1 p-Chlorotoluene ND ug/kg 300 1 p-Chlorotoluene ND ug/kg 300 1 <tr< td=""><td>Bromochloromethane</td><td></td><td>ND</td><td></td><td></td><td>300</td><td></td><td>1</td><td></td></tr<>	Bromochloromethane		ND			300		1	
1,2-Dibromoethane ND ug/kg 150 1 1,3-Dichloropropane ND ug/kg 300 1 1,1,1,2-Tetrachloroethane ND ug/kg 75 1 Bromobenzene ND ug/kg 300 1 n-Butylbenzene ND ug/kg 150 1 sec-Butylbenzene ND ug/kg 150 1 o-Chlorotoluene ND ug/kg 300 1 p-Chlorotoluene ND ug/kg 300 1 1,2-Dibromo-3-chloropropane ND ug/kg 300 1	Tetrahydrofuran		ND			600		1	
1,3-DichloropropaneNDug/kg30011,1,1,2-TetrachloroethaneNDug/kg751BromobenzeneNDug/kg3001n-ButylbenzeneNDug/kg1501sec-ButylbenzeneNDug/kg1501tert-ButylbenzeneNDug/kg3001o-ChlorotolueneNDug/kg3001p-ChlorotolueneNDug/kg30011,2-Dibromo-3-chloropropaneNDug/kg4501	2,2-Dichloropropane		ND		ug/kg	300		1	
1,1,1,2-TetrachloroethaneNDug/kg751BromobenzeneNDug/kg3001n-ButylbenzeneNDug/kg1501sec-ButylbenzeneNDug/kg1501tetr-ButylbenzeneNDug/kg3001o-ChlorotolueneNDug/kg3001p-ChlorotolueneNDug/kg30011,2-Dibromo-3-chloropropaneNDug/kg4501	1,2-Dibromoethane		ND		ug/kg	150		1	
BromobenzeneNDug/kg3001n-ButylbenzeneNDug/kg1501sec-ButylbenzeneNDug/kg1501tert-ButylbenzeneNDug/kg3001o-ChlorotolueneNDug/kg3001p-ChlorotolueneNDug/kg30011,2-Dibromo-3-chloropropaneNDug/kg4501	1,3-Dichloropropane		ND		ug/kg	300		1	
n-ButylbenzeneNDug/kg1501sec-ButylbenzeneNDug/kg1501tert-ButylbenzeneNDug/kg3001o-ChlorotolueneNDug/kg3001p-ChlorotolueneNDug/kg30011,2-Dibromo-3-chloropropaneNDug/kg4501	1,1,1,2-Tetrachloroethane	e	ND		ug/kg	75		1	
sec-ButylbenzeneNDug/kg1501tert-ButylbenzeneNDug/kg3001o-ChlorotolueneNDug/kg3001p-ChlorotolueneNDug/kg30011,2-Dibromo-3-chloropropaneNDug/kg4501	Bromobenzene		ND		ug/kg	300		1	
tert-ButylbenzeneNDug/kg3001o-ChlorotolueneNDug/kg3001p-ChlorotolueneNDug/kg30011,2-Dibromo-3-chloropropaneNDug/kg4501	n-Butylbenzene		ND		ug/kg	150		1	
o-ChlorotolueneNDug/kg3001p-ChlorotolueneNDug/kg30011,2-Dibromo-3-chloropropaneNDug/kg4501	sec-Butylbenzene		ND		ug/kg	150		1	
p-Chlorotoluene ND ug/kg 300 1 1,2-Dibromo-3-chloropropane ND ug/kg 450 1	tert-Butylbenzene		ND		ug/kg	300		1	
1,2-Dibromo-3-chloropropane ND ug/kg 450 1	o-Chlorotoluene		ND		ug/kg	300		1	
	p-Chlorotoluene		ND		ug/kg	300		1	
Hexachlorobutadiene ND ug/kg 600 1	1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	450		1	
	Hexachlorobutadiene		ND		ug/kg	600		1	

			Serial_N	o:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-04		Date Collected:	11/12/18 10:25
Client ID:	B303-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by EPA 5035 High - Westborough Lab									
Isopropylbenzene	ND		ug/kg	150		1			
p-IsopropyItoluene	ND		ug/kg	150		1			
Naphthalene	ND		ug/kg	600		1			
n-Propylbenzene	ND		ug/kg	150		1			
1,2,3-Trichlorobenzene	ND		ug/kg	300		1			
1,2,4-Trichlorobenzene	ND		ug/kg	300		1			
1,3,5-Trimethylbenzene	ND		ug/kg	300		1			
1,2,4-Trimethylbenzene	ND		ug/kg	300		1			
trans-1,4-Dichloro-2-butene	ND		ug/kg	750		1			
Ethyl ether	ND		ug/kg	300		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	97	70-130	

			Serial_N	o:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-04		Date Collected:	11/12/18 10:25
Client ID:	B303-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	11/21/18 21:39			
Analyst:	MV			
Percent Solids:	69%			
•				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035	- Westborough Lab					
Methylene chloride	ND		ug/kg	8.2		1
1,1-Dichloroethane	ND		ug/kg	1.6		1
Chloroform	ND		ug/kg	2.4		1
Carbon tetrachloride	ND		ug/kg	1.6		1
1,2-Dichloropropane	ND		ug/kg	1.6		1
Dibromochloromethane	ND		ug/kg	1.6		1
1,1,2-Trichloroethane	ND		ug/kg	1.6		1
Tetrachloroethene	ND		ug/kg	0.82		1
Chlorobenzene	ND		ug/kg	0.82		1
Trichlorofluoromethane	ND		ug/kg	6.5		1
1,2-Dichloroethane	ND		ug/kg	1.6		1
1,1,1-Trichloroethane	ND		ug/kg	0.82		1
Bromodichloromethane	ND		ug/kg	0.82		1
trans-1,3-Dichloropropene	ND		ug/kg	1.6		1
cis-1,3-Dichloropropene	ND		ug/kg	0.82		1
1,3-Dichloropropene, Total	ND		ug/kg	0.82		1
1,1-Dichloropropene	ND		ug/kg	0.82		1
Bromoform	ND		ug/kg	6.5		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.82		1
Benzene	ND		ug/kg	0.82		1
Toluene	2.8		ug/kg	1.6		1
Ethylbenzene	ND		ug/kg	1.6		1
Chloromethane	ND		ug/kg	6.5		1
Bromomethane	ND		ug/kg	3.3		1
Vinyl chloride	ND		ug/kg	1.6		1
Chloroethane	ND		ug/kg	3.3		1
1,1-Dichloroethene	ND		ug/kg	1.6		1
trans-1,2-Dichloroethene	ND		ug/kg	2.4		1

		Serial_No:11261816:47					
Project Name:	MASON STATION				Lab Nu	umber:	L1847051
Project Number:	171.06108				Repor	t Date:	11/26/18
		SAMPL	E RESULTS	5			
Lab ID:	L1847051-04				Date Co	llected:	11/12/18 10:25
Client ID:	B303-S1				Date Re	ceived:	11/15/18
Sample Location:	WISCASSET, ME				Field Pro	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS-5035 - Westbo	ough Lab					

Volatile Organics by GC/MS-5035	- wesibolough Lab			
Trichloroethene	ND	ug/kg	0.82	 1
1,2-Dichlorobenzene	ND	ug/kg	3.3	 1
1,3-Dichlorobenzene	ND	ug/kg	3.3	 1
1,4-Dichlorobenzene	ND	ug/kg	3.3	 1
Methyl tert butyl ether	ND	ug/kg	3.3	 1
o/m-Xylene	ND	ug/kg	3.3	 1
o-Xylene	ND	ug/kg	1.6	 1
Kylenes, Total	ND	ug/kg	1.6	 1
sis-1,2-Dichloroethene	ND	ug/kg	1.6	 1
I,2-Dichloroethene, Total	ND	ug/kg	1.6	 1
Dibromomethane	ND	ug/kg	3.3	 1
1,4-Dichlorobutane	ND	ug/kg	16	 1
1,2,3-Trichloropropane	ND	ug/kg	3.3	 1
Styrene	ND	ug/kg	1.6	 1
Dichlorodifluoromethane	ND	ug/kg	16	 1
Acetone	48	ug/kg	16	 1
Carbon disulfide	ND	ug/kg	16	 1
2-Butanone	ND	ug/kg	16	 1
/inyl acetate	ND	ug/kg	16	 1
1-Methyl-2-pentanone	ND	ug/kg	16	 1
P-Hexanone	ND	ug/kg	16	 1
Ethyl methacrylate	ND	ug/kg	16	 1
Acrylonitrile	ND	ug/kg	6.5	 1
Bromochloromethane	ND	ug/kg	3.3	 1
Tetrahydrofuran	ND	ug/kg	6.5	 1
2,2-Dichloropropane	ND	ug/kg	3.3	 1
1,2-Dibromoethane	ND	ug/kg	1.6	 1
1,3-Dichloropropane	ND	ug/kg	3.3	 1
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.82	 1
Bromobenzene	ND	ug/kg	3.3	 1
n-Butylbenzene	ND	ug/kg	1.6	 1
sec-Butylbenzene	ND	ug/kg	1.6	 1
ert-Butylbenzene	ND	ug/kg	3.3	 1
o-Chlorotoluene	ND	ug/kg	3.3	 1
o-Chlorotoluene	ND	ug/kg	3.3	 1
1,2-Dibromo-3-chloropropane	ND	ug/kg	4.9	 1
Hexachlorobutadiene	ND	ug/kg	6.5	 1

			Serial_No:11261816:47		
Project Name:	MASON STATION		Lab Number:	L1847051	
Project Number:	171.06108		Report Date:	11/26/18	
		SAMPLE RESULTS			
Lab ID:	L1847051-04		Date Collected:	11/12/18 10:25	
Client ID:	B303-S1		Date Received:	11/15/18	
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
/olatile Organics by GC/MS-5035 - Westborough Lab										
Isopropylbenzene	ND		ug/kg	1.6		1				
p-lsopropyltoluene	ND		ug/kg	1.6		1				
Naphthalene	ND		ug/kg	6.5		1				
n-Propylbenzene	ND		ug/kg	1.6		1				
1,2,3-Trichlorobenzene	ND		ug/kg	3.3		1				
1,2,4-Trichlorobenzene	ND		ug/kg	3.3		1				
1,3,5-Trimethylbenzene	ND		ug/kg	3.3		1				
1,2,4-Trimethylbenzene	ND		ug/kg	3.3		1				
trans-1,4-Dichloro-2-butene	ND		ug/kg	8.2		1				
Ethyl ether	ND		ug/kg	3.3		1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	102	70-130	

			Serial_N	o:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1847051-05 B303-S4 WISCASSET, ME		Date Collected: Date Received: Field Prep:	11/12/18 10:40 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260C 11/21/18 15:48 KJD 92%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	n - Westborough Lab					
Methylene chloride	ND		ug/kg	380		1
1,1-Dichloroethane	ND		ug/kg	77		1
Chloroform	ND		ug/kg	120		1
Carbon tetrachloride	ND		ug/kg	77		1
1,2-Dichloropropane	ND		ug/kg	77		1
Dibromochloromethane	ND		ug/kg	77		1
1,1,2-Trichloroethane	ND		ug/kg	77		1
Tetrachloroethene	ND		ug/kg	38		1
Chlorobenzene	ND		ug/kg	38		1
Trichlorofluoromethane	ND		ug/kg	310		1
1,2-Dichloroethane	ND		ug/kg	77		1
1,1,1-Trichloroethane	ND		ug/kg	38		1
Bromodichloromethane	ND		ug/kg	38		1
trans-1,3-Dichloropropene	ND		ug/kg	77		1
cis-1,3-Dichloropropene	ND		ug/kg	38		1
1,3-Dichloropropene, Total	ND		ug/kg	38		1
1,1-Dichloropropene	ND		ug/kg	38		1
Bromoform	ND		ug/kg	310		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	38		1
Benzene	ND		ug/kg	38		1
Toluene	ND		ug/kg	77		1
Ethylbenzene	ND		ug/kg	77		1
Chloromethane	ND		ug/kg	310		1
Bromomethane	ND		ug/kg	150		1
Vinyl chloride	ND		ug/kg	77		1
Chloroethane	ND		ug/kg	150		1
1,1-Dichloroethene	ND		ug/kg	77		1
trans-1,2-Dichloroethene	ND		ug/kg	120		1

						Serial_No	:11261816:47
Project Name:	MASON STATION				Lab Nu	mber:	L1847051
Project Number:	171.06108				Report	Date:	11/26/18
•		SAMP		S	•		
Lab ID:	L1847051-05				Date Col	lected:	11/12/18 10:40
Client ID:	B303-S4				Date Red		11/15/18
Sample Location:	WISCASSET, ME				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y EPA 5035 High - We	stborough Lab	I				
Trichloroethene		ND		ug/kg	38		1
1,2-Dichlorobenzene		ND		ug/kg	150		1
1,3-Dichlorobenzene		ND		ug/kg	150		1
1,4-Dichlorobenzene		ND		ug/kg	150		1
Methyl tert butyl ether		ND		ug/kg	150		1
p/m-Xylene		ND		ug/kg	150		1
o-Xylene		ND		ug/kg	77		1
Xylenes, Total		ND		ug/kg	77		1
cis-1,2-Dichloroethene		ND		ug/kg	77		1
1,2-Dichloroethene, Total		ND		ug/kg	77		1
Dibromomethane		ND		ug/kg	150		1
1,4-Dichlorobutane		ND		ug/kg	770		1
1,2,3-Trichloropropane		ND		ug/kg	150		1
Styrene		ND		ug/kg	77		1
Dichlorodifluoromethane		ND		ug/kg	770		1
Acetone		ND		ug/kg	770		1
Carbon disulfide		ND		ug/kg	770		1
2-Butanone		ND		ug/kg	770		1
Vinyl acetate		ND		ug/kg	770		1
4-Methyl-2-pentanone		ND		ug/kg	770		1
2-Hexanone		ND		ug/kg	770		1
Ethyl methacrylate		ND		ug/kg	770		1
Acrylonitrile		ND		ug/kg	310		1
Bromochloromethane		ND		ug/kg	150		1
Tetrahydrofuran		ND		ug/kg	310		1
2,2-Dichloropropane		ND		ug/kg	150		1
1,2-Dibromoethane		ND		ug/kg	77		1
1,3-Dichloropropane		ND		ug/kg	150		1
1,1,1,2-Tetrachloroethane	9	ND		ug/kg	38		1
Bromobenzene		ND		ug/kg	150		1
n-Butylbenzene		ND		ug/kg	77		1
sec-Butylbenzene		ND		ug/kg	77		1
tert-Butylbenzene		ND		ug/kg	150		1
o-Chlorotoluene		ND		ug/kg	150		1
p-Chlorotoluene		ND		ug/kg	150		1
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	230		1
Hexachlorobutadiene		ND		ug/kg	310		1

			Serial_No:11261816:47		
Project Name:	MASON STATION		Lab Number:	L1847051	
Project Number:	171.06108		Report Date:	11/26/18	
		SAMPLE RESULTS			
Lab ID:	L1847051-05		Date Collected:	11/12/18 10:40	
Client ID:	B303-S4		Date Received:	11/15/18	
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High - W	/estborough Lab	1				
Isopropylbenzene	ND		ug/kg	77		1
p-lsopropyltoluene	ND		ug/kg	77		1
Naphthalene	ND		ug/kg	310		1
n-Propylbenzene	ND		ug/kg	77		1
1,2,3-Trichlorobenzene	ND		ug/kg	150		1
1,2,4-Trichlorobenzene	ND		ug/kg	150		1
1,3,5-Trimethylbenzene	ND		ug/kg	150		1
1,2,4-Trimethylbenzene	ND		ug/kg	150		1
trans-1,4-Dichloro-2-butene	ND		ug/kg	380		1
Ethyl ether	ND		ug/kg	150		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	97	70-130	

			Serial_N	o:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1847051-05 B303-S4 WISCASSET, ME		Date Collected: Date Received: Field Prep:	11/12/18 10:40 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260C 11/21/18 22:05 MV 92%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035	- Westborough Lab					
Methylene chloride	ND		ug/kg	5.6		1
1,1-Dichloroethane	ND		ug/kg	1.1		1
Chloroform	ND		ug/kg	1.7		1
Carbon tetrachloride	ND		ug/kg	1.1		1
1,2-Dichloropropane	ND		ug/kg	1.1		1
Dibromochloromethane	ND		ug/kg	1.1		1
1,1,2-Trichloroethane	ND		ug/kg	1.1		1
Tetrachloroethene	ND		ug/kg	0.56		1
Chlorobenzene	ND		ug/kg	0.56		1
Trichlorofluoromethane	ND		ug/kg	4.4		1
1,2-Dichloroethane	ND		ug/kg	1.1		1
1,1,1-Trichloroethane	ND		ug/kg	0.56		1
Bromodichloromethane	ND		ug/kg	0.56		1
trans-1,3-Dichloropropene	ND		ug/kg	1.1		1
cis-1,3-Dichloropropene	ND		ug/kg	0.56		1
1,3-Dichloropropene, Total	ND		ug/kg	0.56		1
1,1-Dichloropropene	ND		ug/kg	0.56		1
Bromoform	ND		ug/kg	4.4		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.56		1
Benzene	ND		ug/kg	0.56		1
Toluene	ND		ug/kg	1.1		1
Ethylbenzene	ND		ug/kg	1.1		1
Chloromethane	ND		ug/kg	4.4		1
Bromomethane	ND		ug/kg	2.2		1
Vinyl chloride	ND		ug/kg	1.1		1
Chloroethane	ND		ug/kg	2.2		1
1,1-Dichloroethene	ND		ug/kg	1.1		1
trans-1,2-Dichloroethene	ND		ug/kg	1.7		1

Parameter		Result	Qualifier	Units	RL N	IDL Dilution Factor
Sample Depth:						
Sample Location:	WISCASSET, ME				Field Prep:	Not Specified
Client ID:	B303-S4				Date Receive	ed: 11/15/18
Lab ID:	L1847051-05				Date Collecte	ed: 11/12/18 10:40
		SAMP	LE RESULTS	5		
Project Number:	171.06108				Report Date	e: 11/26/18
Project Name:	MASON STATION				Lab Numbe	er: L1847051
				Serial_No:11261816:4		

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 - \	Westborough Lab				
Trichloroethene	ND	ug/kg	0.56		1
1,2-Dichlorobenzene	ND	ug/kg	2.2		1
1,3-Dichlorobenzene	ND	ug/kg	2.2		1
1,4-Dichlorobenzene	ND	ug/kg	2.2		1
Methyl tert butyl ether	ND	ug/kg	2.2		1
p/m-Xylene	ND	ug/kg	2.2		1
o-Xylene	ND	ug/kg	1.1		1
Xylenes, Total	ND	ug/kg	1.1		1
cis-1,2-Dichloroethene	ND	ug/kg	1.1		1
1,2-Dichloroethene, Total	ND	ug/kg	1.1		1
Dibromomethane	ND	ug/kg	2.2		1
1,4-Dichlorobutane	ND	ug/kg	11		1
1,2,3-Trichloropropane	ND	ug/kg	2.2		1
Styrene	ND	ug/kg	1.1		1
Dichlorodifluoromethane	ND	ug/kg	11		1
Acetone	20	ug/kg	11		1
Carbon disulfide	ND	ug/kg	11		1
2-Butanone	ND	ug/kg	11		1
Vinyl acetate	ND	ug/kg	11		1
4-Methyl-2-pentanone	ND	ug/kg	11		1
2-Hexanone	ND	ug/kg	11		1
Ethyl methacrylate	ND	ug/kg	11		1
Acrylonitrile	ND	ug/kg	4.4		1
Bromochloromethane	ND	ug/kg	2.2		1
Tetrahydrofuran	ND	ug/kg	4.4		1
2,2-Dichloropropane	ND	ug/kg	2.2		1
1,2-Dibromoethane	ND	ug/kg	1.1		1
1,3-Dichloropropane	ND	ug/kg	2.2		1
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.56		1
Bromobenzene	ND	ug/kg	2.2		1
n-Butylbenzene	ND	ug/kg	1.1		1
sec-Butylbenzene	ND	ug/kg	1.1		1
ert-Butylbenzene	ND	ug/kg	2.2		1
o-Chlorotoluene	ND	ug/kg	2.2		1
o-Chlorotoluene	ND	ug/kg	2.2		1
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.3		1
Hexachlorobutadiene	ND	ug/kg	4.4		1

			Serial_No:11261816:47		
Project Name:	MASON STATION		Lab Number:	L1847051	
Project Number:	171.06108		Report Date:	11/26/18	
		SAMPLE RESULTS			
Lab ID:	L1847051-05		Date Collected:	11/12/18 10:40	
Client ID:	B303-S4		Date Received:	11/15/18	
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 - We	estborough Lab					
Isopropylbenzene	ND		ug/kg	1.1		1
p-lsopropyltoluene	ND		ug/kg	1.1		1
Naphthalene	ND		ug/kg	4.4		1
n-Propylbenzene	ND		ug/kg	1.1		1
1,2,3-Trichlorobenzene	ND		ug/kg	2.2		1
1,2,4-Trichlorobenzene	ND		ug/kg	2.2		1
1,3,5-Trimethylbenzene	ND		ug/kg	2.2		1
1,2,4-Trimethylbenzene	ND		ug/kg	2.2		1
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.6		1
Ethyl ether	ND		ug/kg	2.2		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	101	70-130	

			Serial_N	o:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-06		Date Collected:	11/12/18 11:25
Client ID:	B304-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	11/21/18 17:05			
Analyst:	KJD			
Percent Solids:	97%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	- Westborough Lab					
Methylene chloride	ND		ug/kg	470		1
1,1-Dichloroethane	ND		ug/kg	94		1
Chloroform	ND		ug/kg	140		1
Carbon tetrachloride	ND		ug/kg	94		1
1,2-Dichloropropane	ND		ug/kg	94		1
Dibromochloromethane	ND		ug/kg	94		1
1,1,2-Trichloroethane	ND		ug/kg	94		1
Tetrachloroethene	ND		ug/kg	47		1
Chlorobenzene	ND		ug/kg	47		1
Trichlorofluoromethane	ND		ug/kg	370		1
1,2-Dichloroethane	ND		ug/kg	94		1
1,1,1-Trichloroethane	ND		ug/kg	47		1
Bromodichloromethane	ND		ug/kg	47		1
trans-1,3-Dichloropropene	ND		ug/kg	94		1
cis-1,3-Dichloropropene	ND		ug/kg	47		1
1,3-Dichloropropene, Total	ND		ug/kg	47		1
1,1-Dichloropropene	ND		ug/kg	47		1
Bromoform	ND		ug/kg	370		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	47		1
Benzene	ND		ug/kg	47		1
Toluene	ND		ug/kg	94		1
Ethylbenzene	ND		ug/kg	94		1
Chloromethane	ND		ug/kg	370		1
Bromomethane	ND		ug/kg	190		1
Vinyl chloride	ND		ug/kg	94		1
Chloroethane	ND		ug/kg	190		1
1,1-Dichloroethene	ND		ug/kg	94		1
trans-1,2-Dichloroethene	ND		ug/kg	140		1

					ç	Serial_No	0:11261816:47	
Project Name:	MASON STATION				Lab Nu	mber:	L1847051	
Project Number:	171.06108				Report	Date:	11/26/18	
,		SAMP		S			11/20/10	
Lab ID:	L1847051-06				Date Col	lected:	11/12/18 11:25	
Client ID:	B304-S1				Date Red		11/15/18	
Sample Location:	WISCASSET, ME				Field Pre		Not Specified	
·								
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	by EPA 5035 High - Wes	tborough Lab)					
Trichloroethene		ND		ug/kg	47		1	
1,2-Dichlorobenzene		ND		ug/kg	190		1	
1,3-Dichlorobenzene		ND		ug/kg	190		1	
1,4-Dichlorobenzene		ND		ug/kg	190		1	
Methyl tert butyl ether		ND		ug/kg	190		1	
p/m-Xylene		ND		ug/kg	190		1	
o-Xylene		ND		ug/kg	94		1	
Xylenes, Total		ND		ug/kg	94		1	
cis-1,2-Dichloroethene		ND		ug/kg	94		1	
1,2-Dichloroethene, Tota	l	ND		ug/kg	94		1	
Dibromomethane		ND		ug/kg	190		1	
1,4-Dichlorobutane		ND		ug/kg	940		1	
1,2,3-Trichloropropane		ND		ug/kg	190		1	
Styrene		ND		ug/kg	94		1	
Dichlorodifluoromethane		ND		ug/kg	940		1	
Acetone		ND		ug/kg	940		1	
Carbon disulfide		ND		ug/kg	940		1	
2-Butanone		ND		ug/kg	940		1	
Vinyl acetate		ND		ug/kg	940		1	
4-Methyl-2-pentanone		ND		ug/kg	940		1	
2-Hexanone		ND		ug/kg	940		1	
Ethyl methacrylate		ND		ug/kg	940		1	
Acrylonitrile		ND		ug/kg	370		1	
Bromochloromethane		ND		ug/kg	190		1	
Tetrahydrofuran		ND		ug/kg	370		1	
2,2-Dichloropropane		ND		ug/kg	190		1	
1,2-Dibromoethane		ND		ug/kg	94		1	
1,3-Dichloropropane		ND		ug/kg	190		1	
1,1,1,2-Tetrachloroethan	e	ND		ug/kg	47		1	
Bromobenzene		ND		ug/kg	190		1	
n-Butylbenzene		ND		ug/kg	94		1	
sec-Butylbenzene		ND		ug/kg	94		1	
tert-Butylbenzene		ND		ug/kg	190		1	
o-Chlorotoluene		ND		ug/kg	190		1	
p-Chlorotoluene		ND		ug/kg	190		1	
1,2-Dibromo-3-chloropro	pane	ND		ug/kg	280		1	
Hexachlorobutadiene		ND		ug/kg	370		1	

			Serial_N	o:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-06		Date Collected:	11/12/18 11:25
Client ID:	B304-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by EPA 5035 High - We	/olatile Organics by EPA 5035 High - Westborough Lab								
Isopropylbenzene	ND		ug/kg	94		1			
p-Isopropyltoluene	ND		ug/kg	94		1			
Naphthalene	ND		ug/kg	370		1			
n-Propylbenzene	ND		ug/kg	94		1			
1,2,3-Trichlorobenzene	ND		ug/kg	190		1			
1,2,4-Trichlorobenzene	ND		ug/kg	190		1			
1,3,5-Trimethylbenzene	ND		ug/kg	190		1			
1,2,4-Trimethylbenzene	ND		ug/kg	190		1			
trans-1,4-Dichloro-2-butene	ND		ug/kg	470		1			
Ethyl ether	ND		ug/kg	190		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	100	70-130	

			Serial_N	p:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-06		Date Collected:	11/12/18 11:25
Client ID:	B304-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	11/21/18 22:30			
Analyst:	MV			
Percent Solids:	97%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-503	5 - Westborough Lab					
Methylene chloride	ND		ug/kg	5.2		1
1,1-Dichloroethane	ND		ug/kg	1.0		1
Chloroform	ND		ug/kg	1.6		1
Carbon tetrachloride	ND		ug/kg	1.0		1
1,2-Dichloropropane	ND		ug/kg	1.0		1
Dibromochloromethane	ND		ug/kg	1.0		1
1,1,2-Trichloroethane	ND		ug/kg	1.0		1
Tetrachloroethene	ND		ug/kg	0.52		1
Chlorobenzene	ND		ug/kg	0.52		1
Trichlorofluoromethane	ND		ug/kg	4.2		1
1,2-Dichloroethane	ND		ug/kg	1.0		1
1,1,1-Trichloroethane	ND		ug/kg	0.52		1
Bromodichloromethane	ND		ug/kg	0.52		1
trans-1,3-Dichloropropene	ND		ug/kg	1.0		1
cis-1,3-Dichloropropene	ND		ug/kg	0.52		1
1,3-Dichloropropene, Total	ND		ug/kg	0.52		1
1,1-Dichloropropene	ND		ug/kg	0.52		1
Bromoform	ND		ug/kg	4.2		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.52		1
Benzene	ND		ug/kg	0.52		1
Toluene	ND		ug/kg	1.0		1
Ethylbenzene	ND		ug/kg	1.0		1
Chloromethane	ND		ug/kg	4.2		1
Bromomethane	ND		ug/kg	2.1		1
Vinyl chloride	ND		ug/kg	1.0		1
Chloroethane	ND		ug/kg	2.1		1
1,1-Dichloroethene	ND		ug/kg	1.0		1
trans-1,2-Dichloroethene	ND		ug/kg	1.6		1

					S	erial_No	:11261816:47
Project Name:	MASON STATION				Lab Nun	nber:	L1847051
Project Number:	171.06108				Report D	Date:	11/26/18
		SAMP	LE RESULTS	5			
Lab ID:	L1847051-06				Date Colle	ected:	11/12/18 11:25
Client ID:	B304-S1				Date Rece	eived:	11/15/18
Sample Location:	WISCASSET, ME				Field Prep):	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035	- Westborough Lab				
Trichloroethene	ND	ug/kg	0.52		1
1,2-Dichlorobenzene	ND	ug/kg	2.1		1
1,3-Dichlorobenzene	ND	ug/kg	2.1		1
1,4-Dichlorobenzene	ND	ug/kg	2.1		1
Methyl tert butyl ether	ND	ug/kg	2.1		1
p/m-Xylene	ND	ug/kg	2.1		1
o-Xylene	ND	ug/kg	1.0		1
Xylenes, Total	ND	ug/kg	1.0		1
cis-1,2-Dichloroethene	ND	ug/kg	1.0		1
1,2-Dichloroethene, Total	ND	ug/kg	1.0		1
Dibromomethane	ND	ug/kg	2.1		1
1,4-Dichlorobutane	ND	ug/kg	10		1
1,2,3-Trichloropropane	ND	ug/kg	2.1		1
Styrene	ND	ug/kg	1.0		1
Dichlorodifluoromethane	ND	ug/kg	10		1
Acetone	12	ug/kg	10		1
Carbon disulfide	ND	ug/kg	10		1
2-Butanone	ND	ug/kg	10		1
Vinyl acetate	ND	ug/kg	10		1
4-Methyl-2-pentanone	ND	ug/kg	10		1
2-Hexanone	ND	ug/kg	10		1
Ethyl methacrylate	ND	ug/kg	10		1
Acrylonitrile	ND	ug/kg	4.2		1
Bromochloromethane	ND	ug/kg	2.1		1
Tetrahydrofuran	ND	ug/kg	4.2		1
2,2-Dichloropropane	ND	ug/kg	2.1		1
1,2-Dibromoethane	ND	ug/kg	1.0		1
1,3-Dichloropropane	ND	ug/kg	2.1		1
1,1,1,2-Tetrachloroethane	ND	ug/kg	0.52		1
Bromobenzene	ND	ug/kg	2.1		1
n-Butylbenzene	ND	ug/kg	1.0		1
sec-Butylbenzene	ND	ug/kg	1.0		1
tert-Butylbenzene	ND	ug/kg	2.1		1
o-Chlorotoluene	ND	ug/kg	2.1		1
p-Chlorotoluene	ND	ug/kg	2.1		1
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.1		1
Hexachlorobutadiene	ND	ug/kg	4.2		1

			Serial_N	o:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-06		Date Collected:	11/12/18 11:25
Client ID:	B304-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
olatile Organics by GC/MS-5035 - Westborough Lab									
Isopropylbenzene	ND		ug/kg	1.0		1			
p-lsopropyltoluene	ND		ug/kg	1.0		1			
Naphthalene	ND		ug/kg	4.2		1			
n-Propylbenzene	ND		ug/kg	1.0		1			
1,2,3-Trichlorobenzene	ND		ug/kg	2.1		1			
1,2,4-Trichlorobenzene	ND		ug/kg	2.1		1			
1,3,5-Trimethylbenzene	ND		ug/kg	2.1		1			
1,2,4-Trimethylbenzene	ND		ug/kg	2.1		1			
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.2		1			
Ethyl ether	ND		ug/kg	2.1		1			
Ethyl ether						1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	102	70-130	

			Serial_No	p:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1847051-07 B304-S4 WISCASSET, ME		Date Collected: Date Received: Field Prep:	11/12/18 11:45 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260C 11/21/18 15:20 MV 83%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by EPA 5035 High - Westborough Lab								
Methylene chloride	ND		ug/kg	580		1		
1,1-Dichloroethane	ND		ug/kg	120		1		
Chloroform	ND		ug/kg	170		1		
Carbon tetrachloride	ND		ug/kg	120		1		
1,2-Dichloropropane	ND		ug/kg	120		1		
Dibromochloromethane	ND		ug/kg	120		1		
1,1,2-Trichloroethane	ND		ug/kg	120		1		
Tetrachloroethene	ND		ug/kg	58		1		
Chlorobenzene	ND		ug/kg	58		1		
Trichlorofluoromethane	ND		ug/kg	470		1		
1,2-Dichloroethane	ND		ug/kg	120		1		
1,1,1-Trichloroethane	ND		ug/kg	58		1		
Bromodichloromethane	ND		ug/kg	58		1		
trans-1,3-Dichloropropene	ND		ug/kg	120		1		
cis-1,3-Dichloropropene	ND		ug/kg	58		1		
1,3-Dichloropropene, Total	ND		ug/kg	58		1		
1,1-Dichloropropene	ND		ug/kg	58		1		
Bromoform	ND		ug/kg	470		1		
1,1,2,2-Tetrachloroethane	ND		ug/kg	58		1		
Benzene	ND		ug/kg	58		1		
Toluene	ND		ug/kg	120		1		
Ethylbenzene	ND		ug/kg	120		1		
Chloromethane	ND		ug/kg	470		1		
Bromomethane	ND		ug/kg	230		1		
Vinyl chloride	ND		ug/kg	120		1		
Chloroethane	ND		ug/kg	230		1		
1,1-Dichloroethene	ND		ug/kg	120		1		
trans-1,2-Dichloroethene	ND		ug/kg	170		1		

					S	Serial_No	:11261816:47	
Project Name:	MASON STATION				Lab Nu		L1847051	
Project Number:	171.06108				Report	Date:	11/26/18	
•		SAMP		5	•			
Lab ID:	L1847051-07				Date Col	lected:	11/12/18 11:45	
Client ID:	B304-S4				Date Rec		11/15/18	
Sample Location:	WISCASSET, ME				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y EPA 5035 High - We	stborough Lab	1					
-	, ,	-						
Trichloroethene		ND		ug/kg	58		1	
1,2-Dichlorobenzene		ND		ug/kg	230		1	
1,3-Dichlorobenzene		ND		ug/kg	230		1	
1,4-Dichlorobenzene		ND		ug/kg	230		1	
Methyl tert butyl ether		ND		ug/kg	230		1	
p/m-Xylene o-Xylene		ND		ug/kg	230 120		1	
Xylenes, Total		ND		ug/kg	120		1	
cis-1,2-Dichloroethene		ND		ug/kg ug/kg	120		1	
1,2-Dichloroethene, Total		ND		ug/kg	120		1	
Dibromomethane		ND		ug/kg	230		1	
1,4-Dichlorobutane		ND		ug/kg	1200		1	
1,2,3-Trichloropropane		ND		ug/kg	230		1	
Styrene		ND		ug/kg	120		1	
Dichlorodifluoromethane		ND		ug/kg	1200		1	
Acetone		ND		ug/kg	1200		1	
Carbon disulfide		ND		ug/kg	1200		1	
2-Butanone		ND		ug/kg	1200		1	
Vinyl acetate		ND		ug/kg	1200		1	
4-Methyl-2-pentanone		ND		ug/kg	1200		1	
2-Hexanone		ND		ug/kg	1200		1	
Ethyl methacrylate		ND		ug/kg	1200		1	
Acrylonitrile		ND		ug/kg	470		1	
Bromochloromethane		ND		ug/kg	230		1	
Tetrahydrofuran		ND		ug/kg	470		1	
2,2-Dichloropropane		ND		ug/kg	230		1	
1,2-Dibromoethane		ND		ug/kg	120		1	
1,3-Dichloropropane		ND		ug/kg	230		1	
1,1,1,2-Tetrachloroethane	e	ND		ug/kg	58		1	
Bromobenzene		ND		ug/kg	230		1	
n-Butylbenzene		ND		ug/kg	120		1	
sec-Butylbenzene		ND		ug/kg	120		1	
tert-Butylbenzene		ND		ug/kg	230		1	
o-Chlorotoluene		ND		ug/kg	230		1	
p-Chlorotoluene		ND		ug/kg	230		1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	350		1	
Hexachlorobutadiene		ND		ug/kg	470		1	

			Serial_N	0:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-07		Date Collected:	11/12/18 11:45
Client ID:	B304-S4		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
/olatile Organics by EPA 5035 High - Westborough Lab									
Isopropylbenzene	ND		ug/kg	120		1			
p-Isopropyltoluene	ND		ug/kg	120		1			
Naphthalene	ND		ug/kg	470		1			
n-Propylbenzene	ND		ug/kg	120		1			
1,2,3-Trichlorobenzene	ND		ug/kg	230		1			
1,2,4-Trichlorobenzene	ND		ug/kg	230		1			
1,3,5-Trimethylbenzene	ND		ug/kg	230		1			
1,2,4-Trimethylbenzene	ND		ug/kg	230		1			
trans-1,4-Dichloro-2-butene	ND		ug/kg	580		1			
Ethyl ether	ND		ug/kg	230		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	103	70-130	

			Serial_N	o:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1847051-07 B304-S4 WISCASSET, ME		Date Collected: Date Received: Field Prep:	11/12/18 11:45 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260C 11/21/18 22:56 MV 83%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 -	Westborough Lab					
Methylene chloride	ND		ug/kg	5.0		1
1,1-Dichloroethane	ND		ug/kg	1.0		1
Chloroform	ND		ug/kg	1.5		1
Carbon tetrachloride	ND		ug/kg	1.0		1
1,2-Dichloropropane	ND		ug/kg	1.0		1
Dibromochloromethane	ND		ug/kg	1.0		1
1,1,2-Trichloroethane	ND		ug/kg	1.0		1
Tetrachloroethene	ND		ug/kg	0.50		1
Chlorobenzene	ND		ug/kg	0.50		1
Trichlorofluoromethane	ND		ug/kg	4.0		1
1,2-Dichloroethane	ND		ug/kg	1.0		1
1,1,1-Trichloroethane	ND		ug/kg	0.50		1
Bromodichloromethane	ND		ug/kg	0.50		1
trans-1,3-Dichloropropene	ND		ug/kg	1.0		1
cis-1,3-Dichloropropene	ND		ug/kg	0.50		1
1,3-Dichloropropene, Total	ND		ug/kg	0.50		1
1,1-Dichloropropene	ND		ug/kg	0.50		1
Bromoform	ND		ug/kg	4.0		1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		1
Benzene	ND		ug/kg	0.50		1
Toluene	1.2		ug/kg	1.0		1
Ethylbenzene	ND		ug/kg	1.0		1
Chloromethane	ND		ug/kg	4.0		1
Bromomethane	ND		ug/kg	2.0		1
Vinyl chloride	ND		ug/kg	1.0		1
Chloroethane	ND		ug/kg	2.0		1
1,1-Dichloroethene	ND		ug/kg	1.0		1
trans-1,2-Dichloroethene	ND		ug/kg	1.5		1

					S	Serial_No	0:11261816:47	
Project Name:	MASON STATION				Lab Nu	mber:	L1847051	
Project Number:	171.06108				Report	Date:	11/26/18	
		SAMPL	E RESULTS	5				
Lab ID:	L1847051-07				Date Col	lected:	11/12/18 11:45	
Client ID:	B304-S4				Date Rec		11/15/18	
Sample Location:	WISCASSET, ME				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS-5035 - Westbo	rough Lab						

TrichoroscheneNDugkg0.50-11.2-DichlorobenzeneNDugkg2.0-11.3-DichlorobenzeneNDugkg2.0-1Methy tert buly otherNDugkg2.0-1Methy tert buly otherNDugkg2.0-1Methy tert buly otherNDugkg2.0-1o'syleneNDugkg1.0-1o'sylenes. TotalNDugkg1.0-11.2-DichlorobetheneNDugkg1.0-11.2-DichlorobetheneNDugkg1.0-11.2-DichlorobetheneNDugkg1.0-11.2-DichlorobetheneNDugkg1.0-11.2-DichlorobetheneNDugkg1.0-11.2-DichlorobetheneNDugkg1.0-11.2-DichlorobetheneNDugkg1.0-11.2-DichlorobetheneNDugkg1.0-11.2-DichlorobetheneNDugkg1.0-11.2-DichlorobetheneNDugkg1.0-11.2-DichlorobetheneNDugkg1.0-12.2-DichlorobetheneNDugkg1.0-12.2-DichlorobetheneNDugkg1.0-12.2-DichlorobetheneNDugkg1.0-1					
1.2.DichlorobenzeneNDug/kg2.011.3.DichlorobenzeneNDug/kg2.011.4.DichlorobenzeneNDug/kg2.01Mehyl ter bulyl etherNDug/kg2.01o.Xylene,NDug/kg1.01o.Xylene,NDug/kg1.01o.Xylene,NDug/kg1.01o.Xylene,NDug/kg1.011.2.DichlorobethereNDug/kg1.011.2.DichlorobetheneNDug/kg1.011.4.DichlorobetheneNDug/kg1.011.4.DichlorobetheneNDug/kg1.011.4.DichlorobetheneNDug/kg1.011.4.DichlorobetheneNDug/kg1.011.4.DichlorobetheneNDug/kg1.011.4.DichlorobetheneNDug/kg1.011.4.DichlorobetheneNDug/kg1.012.5.CirchorobetheneNDug/kg1.012.4.DichlorobetheneNDug/kg1.012.4.DichlorobetheneNDug/kg1.012.4.DichlorobetheneNDug/kg1.012.4.DichlorobetheneNDug/kg1.0<	Trichloroethene	ND	ug/kg	0.50	 1
1.3-DichlorobenzeneNDugkg2.0-11.4-DichlorobenzeneNDugkg2.0-1Mehtyl tert bulyl etherNDugkg2.0-1Pin-XyleneNDugkg2.0-1o-XyleneNDugkg1.0-1cis1.2-Dichlorobenen, TotalNDugkg1.0-1DibromenthaneNDugkg2.0-11.2-Dichlorobenen, TotalNDugkg2.0-1DibromomethaneNDugkg2.0-11.2-Strichlorobenen, TotalNDugkg1.0-1DibromomethaneNDugkg1.0-12.5-Strichlorobenen, TotalNDugkg1.0-1DichlorobenzenNDugkg1.0-12.5-StrichlorobenzenNDugkg1.0-1DichlorobenzenNDugkg1.0-1DichlorobenzenNDugkg1.0-1DichlorobenzenNDugkg1.0-1DichlorobenzenNDugkg1.0-1DichlorobenzenNDugkg1.0-1DichlorobenzenNDugkg1.0-1DichlorobenzenNDugkg1.0-1DichlorobenzenNDugkg1.0-1DichlorobenzenND <td< td=""><td>1,2-Dichlorobenzene</td><td>ND</td><td></td><td>2.0</td><td> 1</td></td<>	1,2-Dichlorobenzene	ND		2.0	 1
1.4-DichlorobenzeneNDug/kg2.01Methyl tor bulyl etherNDug/kg2.01p/m-XyleneNDug/kg1.01c/NoneNDug/kg1.01Xylenes, TotalNDug/kg1.011.2-Dichloroethene, TotalNDug/kg1.011.2-Dichloroethene, TotalNDug/kg1.011.2-Dichloroethene, TotalNDug/kg1.011.2-Dichloroethene, TotalNDug/kg1.011.2-Dichloroethene, TotalNDug/kg1.011.2-Dichloroethene, TotalNDug/kg1.011.2-DichloroetheneNDug/kg1.011.2-DichloroetheneNDug/kg1.011.2-DichloroetheneNDug/kg1.012.4-DichloroetheneNDug/kg1.012.4-DichloroetheneNDug/kg1.012.4-DichloroetheneNDug/kg1.012.4-DichloroetheneNDug/kg1.012.4-DichloroetheneNDug/kg1.012.4-DichloroetheneNDug/kg1.012.4-DichloroetheneNDug/kg2.012.4-DichloroetheneND <td>1,3-Dichlorobenzene</td> <td>ND</td> <td></td> <td>2.0</td> <td> 1</td>	1,3-Dichlorobenzene	ND		2.0	 1
Methyl terhNDug/kg2.0-1p/m.XyleneNDug/kg2.0-1o.Xylene, TotalNDug/kg1.0-1cis-1,2.Dichlorothene, TotalNDug/kg1.0-11,2.Dichlorothene, TotalNDug/kg1.0-11,4.Dichlorothene, TotalNDug/kg2.0-11,4.Dichlorothene, TotalNDug/kg2.0-11,4.Dichlorothene, TotalNDug/kg1.0-11,4.Dichlorothene, TotalNDug/kg1.0-11,4.Dichlorothene, TotalNDug/kg1.0-11,4.DichlorotheneNDug/kg1.0-12,3.TirkhoropropaneNDug/kg1.0-1DichlorotheneNDug/kg1.0-12,3.TirkhoropropaneNDug/kg1.0-12,3.TirkhoropropaneNDug/kg1.0-12,3.TirkhoropropaneNDug/kg1.0-12,3.TirkhoropropaneNDug/kg1.0-12,3.TirkhoropropaneNDug/kg1.0-12,3.TirkhoropropaneNDug/kg1.0-12,4.DichloropropaneNDug/kg1.0-12,4.DichloropropaneNDug/kg2.0-11,1.1.2.TirtkhoropropaneNDug	1,4-Dichlorobenzene	ND		2.0	 1
pm-XylaneNDug/kg2.0-1o-XyleneNDug/kg1.0-1Xylenes, TotalNDug/kg1.0-1isi-1.2-bichloroethene, TotalNDug/kg1.0-1DibromomethaneNDug/kg1.0-11.4-DichlorobtareNDug/kg1.0-11.4-DichlorobtareNDug/kg2.0-11.2.3-TrichloropropaneNDug/kg1.0-1DibromomethaneNDug/kg1.0-1DichorodifuoromethaneNDug/kg1.0-1DichorodifuoromethaneNDug/kg1.0-1Carbon GisulfideNDug/kg1.0-12-BuanoneNDug/kg1.0-1Vinyl acetaleNDug/kg1.0-12-HexanoneNDug/kg1.0-1Elnyl methacytateNDug/kg1.0-12-DichoropropaneNDug/kg2.0-12-DichoropropaneNDug/kg1.0-12-DichoropropaneNDug/kg1.0-12-DichoropropaneNDug/kg2.0-12-DichoropropaneNDug/kg2.0-11.1.1.2-TetrachtorothaneNDug/kg1.0-11.1.1.2-Tetrachtorothane<	Methyl tert butyl ether	ND		2.0	 1
NVug/kg1.0-1Xylenes, TotalNDug/kg1.0-1xisi-1.2.bichloroethene, TotalNDug/kg1.0-11.2.bichloroethene, TotalNDug/kg1.0-11.4.bichlorobtaneNDug/kg1.0-11.4.bichlorobtaneNDug/kg1.0-11.2.J.TrichloropropaneNDug/kg1.0-1StyreneNDug/kg1.0-1DichlorofilluoromethaneNDug/kg1.0-1Acetone100ug/kg1.0-12.BuanoneNDug/kg1.0-1Vinyl acetateNDug/kg1.0-14.Methyl-2pentanoneNDug/kg1.0-1Einyl metharylateNDug/kg1.0-1AcronoficinorophaneNDug/kg1.0-12.HexanoneNDug/kg1.0-12.HexanoneNDug/kg2.0-12.HexanoneNDug/kg2.0-12.HexanoneNDug/kg2.0-12.HexanoneNDug/kg2.0-12.HexanoneNDug/kg2.0-12.HexanoneNDug/kg2.0-12.HexanoneNDug/kg2.0-1 <t< td=""><td>p/m-Xylene</td><td>ND</td><td></td><td>2.0</td><td> 1</td></t<>	p/m-Xylene	ND		2.0	 1
ND Ug/kg 1.0 - 1 1.2-Dichloroethene, Total ND ug/kg 1.0 - 1 1.2-Dichloroethene, Total ND ug/kg 2.0 1 1.4-Dichloroptane ND ug/kg 10 1 1.2.3-Trichloropropane ND ug/kg 10 1 Dichlorodifluoromethane ND ug/kg 10 1 Acetone 100 ug/kg 10 1 Carbon disulfde ND ug/kg 10 1 2-Butanone ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 2-Hoxanone ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 2-Hoxanone ND ug/kg 10 1 1.2-Hoxanone <t< td=""><td>o-Xylene</td><td>ND</td><td></td><td>1.0</td><td> 1</td></t<>	o-Xylene	ND		1.0	 1
1.2-Dichloroethene, Total ND ug/kg 1.0 1 Dibromomethane ND ug/kg 2.0 1 1.4-Dichlorobutane ND ug/kg 1.0 1 1.2.3-Trichloropropane ND ug/kg 1.0 1 Styrene ND ug/kg 1.0 1 Carbon disulfide ND ug/kg 10 1 2-Butanone ND ug/kg 10 1 2-Hexanone ND ug/kg 2.0 1 2-Hexanone ND ug/kg 4.0 1 2-Hexanone ND ug/k	Xylenes, Total	ND	ug/kg	1.0	 1
DibromomethaneNDug/kg2.0-11.4-DichlorobutaneNDug/kg10-11.2.3-TrichloropropaneNDug/kg2.0-1StyreneNDug/kg1.0-1DichlorodifluoromethaneNDug/kg1.0-1Acetone100ug/kg10-12-ButanoneNDug/kg10-12-ButanoneNDug/kg10-12-HexanoneNDug/kg10-12-HexanoneNDug/kg10-12-HexanoneNDug/kg10-12-HexanoneNDug/kg10-12-HexanoneNDug/kg10-12-HexanoneNDug/kg4.0-1Ethyl methacrylateNDug/kg4.0-12-DichloropropaneNDug/kg2.0-12-DichloropropaneNDug/kg2.0-12-DichloropropaneNDug/kg0.0-11.1.2-TetrachloroethaneNDug/kg0.0-11.1.2-TetrachloroethaneNDug/kg0.0-11.1.2-TetrachloroethaneNDug/kg0.0-11.1.2-TetrachloroethaneNDug/kg1.0-11.1.2-TetrachloroethaneNDug/kg <td< td=""><td>cis-1,2-Dichloroethene</td><td>ND</td><td>ug/kg</td><td>1.0</td><td> 1</td></td<>	cis-1,2-Dichloroethene	ND	ug/kg	1.0	 1
I.A. Dichlorobutane ND ug/kg 10 1 1,2,3-Trichloropropane ND ug/kg 1.0 1 Styrene ND ug/kg 1.0 1 Dichlorodifluoromethane ND ug/kg 1.0 1 Acetone 100 ug/kg 1.0 1 Carbon disulfide ND ug/kg 1.0 1 2.Butanone ND ug/kg 1.0 1 2.Butanone ND ug/kg 1.0 1 2.Hexanone ND ug/kg 1.0 1 2.Hexanone ND ug/kg 1.0 1 2.Hexanone ND ug/kg 1.0 1 Ethy methacylate ND ug/kg 2.0 1 Acrylonitrile ND ug/kg 2.0 1 1.2-Dicromethane	1,2-Dichloroethene, Total	ND	ug/kg	1.0	 1
ND ug/kg 2.0 1 Styrene ND ug/kg 1.0 1 Dichlorodiffuoromethane ND ug/kg 10 1 Acetone 100 ug/kg 10 1 Carbon disulfide ND ug/kg 10 1 2-Butanone ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 2-Hexanone ND ug/kg 4.0 1 2-Hexanone ND ug/kg 4.0 1 2-Hexanone ND ug/kg 1.0 1 2-Hexanone ND ug/kg 2.0	Dibromomethane	ND	ug/kg	2.0	 1
ND ug/kg 1.0 1 Dichlorodifluoromethane ND ug/kg 10 1 Acetone 100 ug/kg 10 1 Carbon disulfide ND ug/kg 10 1 2-Butanone ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 2-Hoxanone ND ug/kg 2.0	1,4-Dichlorobutane	ND	ug/kg	10	 1
Dichlorodifluoromethane ND ug/kg 10 1 Acetone 100 ug/kg 10 1 Carbon disulfide ND ug/kg 10 1 2-Butanone ND ug/kg 10 1 2-Butanone ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 2-Hexanone ND ug/kg 10 1 2-Hexanone ND ug/kg 10 1 Ethyl methacrylate ND ug/kg 4.0 1 Bromochloromethane ND ug/kg 2.0 1 2.2-Dichloropropane ND ug/kg 2.0 1 1.3-Dichloropropane ND ug/kg 2.0 1 1.1.1.2-Tetrachloroethane ND ug/kg 0.50 1 1.3-	1,2,3-Trichloropropane	ND	ug/kg	2.0	 1
Acetone 100 ug/kg 10 - 1 Carbon disulfide ND ug/kg 10 1 2-Butanone ND ug/kg 10 1 2-Butanone ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 2-Hexanone ND ug/kg 4.0 1 Ethyl methacrylate ND ug/kg 2.0 1 Bromochloromethane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 1.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.0 1 Bromobenzene	Styrene	ND	ug/kg	1.0	 1
Carbon disulfide ND ug/kg 10 - 1 2-Butanone ND ug/kg 10 - 1 Vinyl acetate ND ug/kg 10 - 1 4-Methyl-2-pentanone ND ug/kg 10 - 1 2-Hexanone ND ug/kg 10 - 1 Ethyl methacrylate ND ug/kg 10 - 1 Ethyl methacrylate ND ug/kg 4.0 - 1 Bromochloromethane ND ug/kg 4.0 - 1 Lethyl methacrylate ND ug/kg 2.0 - 1 Bromochloromethane ND ug/kg 2.0 - 1 Lethyl methacrylate ND ug/kg 2.0 - 1 J.2-Dichoropropane ND ug/kg 2.0 - 1 J.3-Dichloropropane ND ug/kg 0.50 - 1 I.1,1	Dichlorodifluoromethane	ND	ug/kg	10	 1
2-Butanone ND ug/kg 10 1 Vinyl acetate ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 2-Hexanone ND ug/kg 10 1 Ethyl methacrylate ND ug/kg 4.0 1 Acrylonitrile ND ug/kg 4.0 1 Bromochloromethane ND ug/kg 4.0 1 2.2-Dichloropropane ND ug/kg 2.0 1 1.2-Dibromoethane ND ug/kg 1.0 1 1.2-Dibromoethane ND ug/kg 1.0 1 1.3-Dichloropropane ND ug/kg 0.50 1 1.1.1.2-Tetrachloroethane ND ug/kg 1.0 1 n=Butylbenzene ND ug/kg 1.0 1	Acetone	100	ug/kg	10	 1
ND ug/kg 10 1 4-Methyl-2-pentanone ND ug/kg 10 1 2-Hexanone ND ug/kg 10 1 2-Hexanone ND ug/kg 10 1 Ethyl methacrylate ND ug/kg 4.0 1 Acrylonitrile ND ug/kg 2.0 1 Bromochloromethane ND ug/kg 2.0 1 2,2-Dichloropropane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 2.0 1 1,1,2-Tetrachloroethane ND ug/kg 0.50 1 1,1,1,2-Tetrachloroethane ND ug/kg 1.0 1 n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene <td>Carbon disulfide</td> <td>ND</td> <td>ug/kg</td> <td>10</td> <td> 1</td>	Carbon disulfide	ND	ug/kg	10	 1
4-Methyl-2-pentanone ND ug/kg 10 1 2-Hexanone ND ug/kg 10 1 Ethyl methacrylate ND ug/kg 10 1 Acrylonitrile ND ug/kg 4.0 1 Bromochloromethane ND ug/kg 2.0 1 2,2-Dichloropropane ND ug/kg 2.0 1 2,2-Dichloropropane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 2.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.50 1 1,1,1,2-Tetrachloroethane ND ug/kg 1.0 1 Bromobenzene ND ug/kg 1.0 1 </td <td>2-Butanone</td> <td>ND</td> <td>ug/kg</td> <td>10</td> <td> 1</td>	2-Butanone	ND	ug/kg	10	 1
2-Hexanone ND ug/kg 10 1 Ethyl methacrylate ND ug/kg 10 1 Acrylonitrile ND ug/kg 4.0 1 Bromochloromethane ND ug/kg 2.0 1 Tetrahydrofuran ND ug/kg 2.0 1 2,2-Dichloropropane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 1.0 1 1,2-Dibromoethane ND ug/kg 2.0 1 1,3-Dichloropropane ND ug/kg 2.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.50 1 Bromobenzene ND ug/kg 1.0 1 n-Butylbenzene ND ug/kg 1.0 1	Vinyl acetate	ND	ug/kg	10	 1
Ethyl methacrylate ND ug/kg 10 1 Acrylonitrile ND ug/kg 4.0 1 Bromochloromethane ND ug/kg 2.0 1 Tetrahydrofuran ND ug/kg 4.0 1 2,2-Dichloropropane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 1.0 1 1,3-Dichloropropane ND ug/kg 0.0 1 1,1.1,2-Tetrachloroethane ND ug/kg 0.50 1 Bromobenzene ND ug/kg 0.0 1 n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 2.0 1 tert-Butylbenzene ND ug/kg 2.0 1	4-Methyl-2-pentanone	ND	ug/kg	10	 1
Acrylonitrile ND ug/kg 4.0 1 Bromochloromethane ND ug/kg 2.0 1 Tetrahydrofuran ND ug/kg 4.0 1 2,2-Dichloropropane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 1.0 1 1,2-Dibromoethane ND ug/kg 2.0 1 1,3-Dichloropropane ND ug/kg 2.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.50 1 Bromobenzene ND ug/kg 1.0 1 n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 2.0 1 tert-Butylbenzene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1 <td>2-Hexanone</td> <td>ND</td> <td>ug/kg</td> <td>10</td> <td> 1</td>	2-Hexanone	ND	ug/kg	10	 1
Bronochloromethane ND ug/kg 2.0 1 Tetrahydrofuran ND ug/kg 4.0 1 2,2-Dichloropropane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 2.0 1 1,3-Dichloropropane ND ug/kg 2.0 1 1,3-Dichloropropane ND ug/kg 2.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.50 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.50 1 n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 1.0 1 tert-Butylbenzene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1	Ethyl methacrylate	ND	ug/kg	10	 1
Tetrahydrofuran ND ug/kg 4.0 1 2,2-Dichloropropane ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 1.0 1 1,3-Dichloropropane ND ug/kg 2.0 1 1,3-Dichloropropane ND ug/kg 0.50 1 1,1,1,2-Tetrachloroethane ND ug/kg 2.0 1 Bromobenzene ND ug/kg 0.50 1 n-Butylbenzene ND ug/kg 1.0 1 ec-Butylbenzene ND ug/kg 1.0 1 o-Chlorotoluene ND ug/kg 2.0 1	Acrylonitrile	ND	ug/kg	4.0	 1
ND ug/kg 2.0 1 1,2-Dibromoethane ND ug/kg 1.0 1 1,3-Dichloropropane ND ug/kg 2.0 1 1,3-Dichloropropane ND ug/kg 2.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.50 1 Bromobenzene ND ug/kg 2.0 1 n-Butylbenzene ND ug/kg 1.0 1 ec-Butylbenzene ND ug/kg 1.0 1 o-Chlorotoluene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1	Bromochloromethane	ND	ug/kg	2.0	 1
1,2-Dibromoethane ND ug/kg 1.0 1 1,3-Dichloropropane ND ug/kg 2.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.50 1 Bromobenzene ND ug/kg 2.0 1 n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 1.0 1 tert-Butylbenzene ND ug/kg 1.0 1 o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.0 1	Tetrahydrofuran	ND	ug/kg	4.0	 1
1,3-Dichloropropane ND ug/kg 2.0 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.50 1 Bromobenzene ND ug/kg 2.0 1 n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 1.0 1 tert-Butylbenzene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.0 1	2,2-Dichloropropane	ND	ug/kg	2.0	 1
1,1,1,2-Tetrachloroethane ND ug/kg 0.50 1 Bromobenzene ND ug/kg 2.0 1 n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 1.0 1 tert-Butylbenzene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.0 1	1,2-Dibromoethane	ND	ug/kg	1.0	 1
BromobenzeneNDug/kg2.01n-ButylbenzeneNDug/kg1.01sec-ButylbenzeneNDug/kg1.01tert-ButylbenzeneNDug/kg2.01o-ChlorotolueneNDug/kg2.01p-ChlorotolueneNDug/kg2.01	1,3-Dichloropropane	ND	ug/kg	2.0	 1
n-Butylbenzene ND ug/kg 1.0 1 sec-Butylbenzene ND ug/kg 1.0 1 tert-Butylbenzene ND ug/kg 2.0 1 o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.0 1	1,1,1,2-Tetrachloroethane	ND	ug/kg	0.50	 1
sec-ButylbenzeneNDug/kg1.01tert-ButylbenzeneNDug/kg2.01o-ChlorotolueneNDug/kg2.01p-ChlorotolueneNDug/kg2.01	Bromobenzene	ND	ug/kg	2.0	 1
tert-ButylbenzeneNDug/kg2.01o-ChlorotolueneNDug/kg2.01p-ChlorotolueneNDug/kg2.01	n-Butylbenzene	ND	ug/kg	1.0	 1
o-Chlorotoluene ND ug/kg 2.0 1 p-Chlorotoluene ND ug/kg 2.0 1	sec-Butylbenzene	ND	ug/kg	1.0	 1
p-Chlorotoluene ND ug/kg 2.0 1	tert-Butylbenzene	ND	ug/kg	2.0	 1
	o-Chlorotoluene	ND	ug/kg	2.0	 1
1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1	p-Chlorotoluene	ND	ug/kg	2.0	 1
	1,2-Dibromo-3-chloropropane	ND	ug/kg	3.0	 1
Hexachlorobutadiene ND ug/kg 4.0 1	Hexachlorobutadiene	ND	ug/kg	4.0	 1

			Serial_N	0:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-07		Date Collected:	11/12/18 11:45
Client ID:	B304-S4		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

			RL	MDL	Dilution Factor		
Volatile Organics by GC/MS-5035 - Westborough Lab							
ND		ug/kg	1.0		1		
ND		ug/kg	1.0		1		
ND		ug/kg	4.0		1		
ND		ug/kg	1.0		1		
ND		ug/kg	2.0		1		
ND		ug/kg	2.0		1		
ND		ug/kg	2.0		1		
ND		ug/kg	2.0		1		
ND		ug/kg	5.0		1		
ND		ug/kg	2.0		1		
	ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	NDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kgNDug/kg	ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 4.0 ND ug/kg 1.0 ND ug/kg 2.0 ND ug/kg 5.0	ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 1.0 ND ug/kg 4.0 ND ug/kg 1.0 ND ug/kg 2.0 ND ug/kg 5.0		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	103	70-130	

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:11/21/18 07:05Analyst:MV

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by GC/MS-5	035 - Westborou	igh Lab for	sample(s):	01-03	Batch:	WG1182089-5
Methylene chloride	ND		ug/kg	5.0		
1,1-Dichloroethane	ND		ug/kg	1.0		
Chloroform	ND		ug/kg	1.5		
Carbon tetrachloride	ND		ug/kg	1.0		
1,2-Dichloropropane	ND		ug/kg	1.0		
Dibromochloromethane	ND		ug/kg	1.0		
1,1,2-Trichloroethane	ND		ug/kg	1.0		
2-Chloroethylvinyl ether	ND		ug/kg	20		
Tetrachloroethene	ND		ug/kg	0.50		
Chlorobenzene	ND		ug/kg	0.50		
Trichlorofluoromethane	ND		ug/kg	4.0		
1,2-Dichloroethane	ND		ug/kg	1.0		
1,1,1-Trichloroethane	ND		ug/kg	0.50		
Bromodichloromethane	ND		ug/kg	0.50		
trans-1,3-Dichloropropene	ND		ug/kg	1.0		
cis-1,3-Dichloropropene	ND		ug/kg	0.50		
1,3-Dichloropropene, Total	ND		ug/kg	0.50		
1,1-Dichloropropene	ND		ug/kg	0.50		
Bromoform	ND		ug/kg	4.0		
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		
Benzene	ND		ug/kg	0.50		
Toluene	ND		ug/kg	1.0		
Ethylbenzene	ND		ug/kg	1.0		
Chloromethane	ND		ug/kg	4.0		
Bromomethane	ND		ug/kg	2.0		
Vinyl chloride	ND		ug/kg	1.0		
Chloroethane	ND		ug/kg	2.0		
1,1-Dichloroethene	ND		ug/kg	1.0		
trans-1,2-Dichloroethene	ND		ug/kg	1.5		

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	11/21/18 07:05
Analyst:	MV

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS-503	5 - Westborou	igh Lab for	sample(s):	01-03	Batch: WG1182089-5
Trichloroethene	ND		ug/kg	0.50	
1,2-Dichlorobenzene	ND		ug/kg	2.0	
1,3-Dichlorobenzene	ND		ug/kg	2.0	
1,4-Dichlorobenzene	ND		ug/kg	2.0	
Methyl tert butyl ether	ND		ug/kg	2.0	
p/m-Xylene	ND		ug/kg	2.0	
o-Xylene	ND		ug/kg	1.0	
Xylenes, Total	ND		ug/kg	1.0	
cis-1,2-Dichloroethene	ND		ug/kg	1.0	
1,2-Dichloroethene, Total	ND		ug/kg	1.0	
Dibromomethane	ND		ug/kg	2.0	
1,4-Dichlorobutane	ND		ug/kg	10	
1,2,3-Trichloropropane	ND		ug/kg	2.0	
Styrene	ND		ug/kg	1.0	
Dichlorodifluoromethane	ND		ug/kg	10	
Acetone	ND		ug/kg	10	
Carbon disulfide	ND		ug/kg	10	
2-Butanone	ND		ug/kg	10	
Vinyl acetate	ND		ug/kg	10	
4-Methyl-2-pentanone	ND		ug/kg	10	
2-Hexanone	ND		ug/kg	10	
Ethyl methacrylate	ND		ug/kg	10	
Acrolein	ND		ug/kg	25	
Acrylonitrile	ND		ug/kg	4.0	
Bromochloromethane	ND		ug/kg	2.0	
Tetrahydrofuran	ND		ug/kg	4.0	
2,2-Dichloropropane	ND		ug/kg	2.0	
1,2-Dibromoethane	ND		ug/kg	1.0	
1,3-Dichloropropane	ND		ug/kg	2.0	

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by GC/MS-50	35 - Westborou	igh Lab for	sample(s):	01-03	Batch:	WG1182089-5
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.50		
Bromobenzene	ND		ug/kg	2.0		
n-Butylbenzene	ND		ug/kg	1.0		
sec-Butylbenzene	ND		ug/kg	1.0		
tert-Butylbenzene	ND		ug/kg	2.0		
1,3,5-Trichlorobenzene	ND		ug/kg	2.0		
o-Chlorotoluene	ND		ug/kg	2.0		
p-Chlorotoluene	ND		ug/kg	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		
Hexachlorobutadiene	ND		ug/kg	4.0		
Isopropylbenzene	ND		ug/kg	1.0		
p-lsopropyltoluene	ND		ug/kg	1.0		
Naphthalene	ND		ug/kg	4.0		
n-Propylbenzene	ND		ug/kg	1.0		
1,2,3-Trichlorobenzene	ND		ug/kg	2.0		
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0		
Ethyl ether	ND		ug/kg	2.0		
Methyl Acetate	ND		ug/kg	4.0		
Ethyl Acetate	ND		ug/kg	10		
Isopropyl Ether	ND		ug/kg	2.0		
Cyclohexane	ND		ug/kg	10		
Tert-Butyl Alcohol	ND		ug/kg	20		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/kg	2.0		
1,4-Dioxane	ND		ug/kg	100		
Methyl cyclohexane	ND		ug/kg	4.0		

Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18

Analytical Method:	1,8260C
Analytical Date:	11/21/18 07:05
Analyst:	MV

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS-5035	- Westboroug	gh Lab for	sample(s):	01-03	Batch: WG1182089-5
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	4.0	

		ŀ	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	92		70-130
Toluene-d8	97		70-130
4-Bromofluorobenzene	99		70-130
Dibromofluoromethane	96		70-130

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035	High - Westbor	ough Lab f	or sample(s):	07	Batch:	WG1182090-5
Methylene chloride	ND		ug/kg	250		
1,1-Dichloroethane	ND		ug/kg	50		
Chloroform	ND		ug/kg	75		
Carbon tetrachloride	ND		ug/kg	50		
1,2-Dichloropropane	ND		ug/kg	50		
Dibromochloromethane	ND		ug/kg	50		
1,1,2-Trichloroethane	ND		ug/kg	50		
2-Chloroethylvinyl ether	ND		ug/kg	1000		
Tetrachloroethene	ND		ug/kg	25		
Chlorobenzene	ND		ug/kg	25		
Trichlorofluoromethane	ND		ug/kg	200		
1,2-Dichloroethane	ND		ug/kg	50		
1,1,1-Trichloroethane	ND		ug/kg	25		
Bromodichloromethane	ND		ug/kg	25		
trans-1,3-Dichloropropene	ND		ug/kg	50		
cis-1,3-Dichloropropene	ND		ug/kg	25		
1,3-Dichloropropene, Total	ND		ug/kg	25		
1,1-Dichloropropene	ND		ug/kg	25		
Bromoform	ND		ug/kg	200		
1,1,2,2-Tetrachloroethane	ND		ug/kg	25		
Benzene	ND		ug/kg	25		
Toluene	ND		ug/kg	50		
Ethylbenzene	ND		ug/kg	50		
Chloromethane	ND		ug/kg	200		
Bromomethane	ND		ug/kg	100		
Vinyl chloride	ND		ug/kg	50		
Chloroethane	ND		ug/kg	100		
1,1-Dichloroethene	ND		ug/kg	50		
trans-1,2-Dichloroethene	ND		ug/kg	75		

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035	5 High - Westbor	ough Lab f	or sample(s):	07	Batch:	WG1182090-5
Trichloroethene	ND		ug/kg	25		
1,2-Dichlorobenzene	ND		ug/kg	100		
1,3-Dichlorobenzene	ND		ug/kg	100		
1,4-Dichlorobenzene	ND		ug/kg	100		
Methyl tert butyl ether	ND		ug/kg	100		
p/m-Xylene	ND		ug/kg	100		
o-Xylene	ND		ug/kg	50		
Xylenes, Total	ND		ug/kg	50		
cis-1,2-Dichloroethene	ND		ug/kg	50		
1,2-Dichloroethene, Total	ND		ug/kg	50		
Dibromomethane	ND		ug/kg	100		
1,4-Dichlorobutane	ND		ug/kg	500		
1,2,3-Trichloropropane	ND		ug/kg	100		
Styrene	ND		ug/kg	50		
Dichlorodifluoromethane	ND		ug/kg	500		
Acetone	ND		ug/kg	500		
Carbon disulfide	ND		ug/kg	500		
2-Butanone	ND		ug/kg	500		
Vinyl acetate	ND		ug/kg	500		
4-Methyl-2-pentanone	ND		ug/kg	500		
2-Hexanone	ND		ug/kg	500		
Ethyl methacrylate	ND		ug/kg	500		
Acrolein	ND		ug/kg	1200		
Acrylonitrile	ND		ug/kg	200		
Bromochloromethane	ND		ug/kg	100		
Tetrahydrofuran	ND		ug/kg	200		
2,2-Dichloropropane	ND		ug/kg	100		
1,2-Dibromoethane	ND		ug/kg	50		
1,3-Dichloropropane	ND		ug/kg	100		

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035	High - Westbor	ough Lab f	or sample(s):	07	Batch:	WG1182090-5
1,1,1,2-Tetrachloroethane	ND		ug/kg	25		
Bromobenzene	ND		ug/kg	100		
n-Butylbenzene	ND		ug/kg	50		
sec-Butylbenzene	ND		ug/kg	50		
tert-Butylbenzene	ND		ug/kg	100		
1,3,5-Trichlorobenzene	ND		ug/kg	100		
o-Chlorotoluene	ND		ug/kg	100		
p-Chlorotoluene	ND		ug/kg	100		
1,2-Dibromo-3-chloropropane	ND		ug/kg	150		
Hexachlorobutadiene	ND		ug/kg	200		
Isopropylbenzene	ND		ug/kg	50		
p-Isopropyltoluene	ND		ug/kg	50		
Naphthalene	ND		ug/kg	200		
n-Propylbenzene	ND		ug/kg	50		
1,2,3-Trichlorobenzene	ND		ug/kg	100		
1,2,4-Trichlorobenzene	ND		ug/kg	100		
1,3,5-Trimethylbenzene	ND		ug/kg	100		
1,2,4-Trimethylbenzene	ND		ug/kg	100		
trans-1,4-Dichloro-2-butene	ND		ug/kg	250		
Halothane	ND		ug/kg	500		
Ethyl ether	ND		ug/kg	100		
Methyl Acetate	ND		ug/kg	200		
Ethyl Acetate	ND		ug/kg	500		
Isopropyl Ether	ND		ug/kg	100		
Cyclohexane	ND		ug/kg	500		
Tert-Butyl Alcohol	ND		ug/kg	1000		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	100		
Tertiary-Amyl Methyl Ether	ND		ug/kg	100		
1,4-Dioxane	ND		ug/kg	5000		

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

Analytical Method:	1,8260C
Analytical Date:	11/21/18 07:05
Analyst:	MV

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 High	- Westbor	ough Lab fo	or sample(s):	07	Batch:	WG1182090-5
Methyl cyclohexane	ND		ug/kg	200		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	200		
p-Diethylbenzene	ND		ug/kg	100		
4-Ethyltoluene	ND		ug/kg	100		
1,2,4,5-Tetramethylbenzene	ND		ug/kg	100		

		A	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	96		70-130	

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

Analytical Method:	1,8260C
Analytical Date:	11/21/18 08:11
Analyst:	MV

arameter	Result	Qualifier Units	RL	MD	L
olatile Organics by EPA 5035	5 High - Westbor	ough Lab for sample(s):	01-06	Batch:	WG1182093-5
Methylene chloride	ND	ug/kg	250		
1,1-Dichloroethane	ND	ug/kg	50		•
Chloroform	ND	ug/kg	75		•
Carbon tetrachloride	ND	ug/kg	50		
1,2-Dichloropropane	ND	ug/kg	50		
Dibromochloromethane	ND	ug/kg	50		
1,1,2-Trichloroethane	ND	ug/kg	50		
2-Chloroethylvinyl ether	ND	ug/kg	1000		
Tetrachloroethene	ND	ug/kg	25		
Chlorobenzene	ND	ug/kg	25		
Trichlorofluoromethane	ND	ug/kg	200		
1,2-Dichloroethane	ND	ug/kg	50		
1,1,1-Trichloroethane	ND	ug/kg	25		
Bromodichloromethane	ND	ug/kg	25		
trans-1,3-Dichloropropene	ND	ug/kg	50		
cis-1,3-Dichloropropene	ND	ug/kg	25		
1,3-Dichloropropene, Total	ND	ug/kg	25		
1,1-Dichloropropene	ND	ug/kg	25		
Bromoform	ND	ug/kg	200		
1,1,2,2-Tetrachloroethane	ND	ug/kg	25		
Benzene	ND	ug/kg	25		
Toluene	ND	ug/kg	50		
Ethylbenzene	ND	ug/kg	50		
Chloromethane	ND	ug/kg	200		
Bromomethane	ND	ug/kg	100		
Vinyl chloride	ND	ug/kg	50		
Chloroethane	ND	ug/kg	100		
1,1-Dichloroethene	ND	ug/kg	50		
trans-1,2-Dichloroethene	ND	ug/kg	75		

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

Analytical Method:	1,8260C
Analytical Date:	11/21/18 08:11
Analyst:	MV

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by EPA 5035 Hi	igh - Westboi	rough Lab fo	or sample(s):	01-06	Batch: WG1182093-5
Trichloroethene	ND		ug/kg	25	
1,2-Dichlorobenzene	ND		ug/kg	100	-
1,3-Dichlorobenzene	ND		ug/kg	100	
1,4-Dichlorobenzene	ND		ug/kg	100	
Methyl tert butyl ether	ND		ug/kg	100	
p/m-Xylene	ND		ug/kg	100	
o-Xylene	ND		ug/kg	50	
Xylenes, Total	ND		ug/kg	50	
cis-1,2-Dichloroethene	ND		ug/kg	50	
1,2-Dichloroethene, Total	ND		ug/kg	50	
Dibromomethane	ND		ug/kg	100	
1,4-Dichlorobutane	ND		ug/kg	500	
1,2,3-Trichloropropane	ND		ug/kg	100	
Styrene	ND		ug/kg	50	
Dichlorodifluoromethane	ND		ug/kg	500	
Acetone	ND		ug/kg	500	
Carbon disulfide	ND		ug/kg	500	
2-Butanone	ND		ug/kg	500	
Vinyl acetate	ND		ug/kg	500	
4-Methyl-2-pentanone	ND		ug/kg	500	
2-Hexanone	ND		ug/kg	500	
Ethyl methacrylate	ND		ug/kg	500	
Acrolein	ND		ug/kg	1200	
Acrylonitrile	ND		ug/kg	200	
Bromochloromethane	ND		ug/kg	100	
Tetrahydrofuran	ND		ug/kg	200	
2,2-Dichloropropane	ND		ug/kg	100	
1,2-Dibromoethane	ND		ug/kg	50	
1,3-Dichloropropane	ND		ug/kg	100	

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

Analytical Method:	1,8260C
Analytical Date:	11/21/18 08:11
Analyst:	MV

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by EPA 5035	High - Westbore	ough Lab fo	or sample(s):	01-06	Batch: WG1182093-5
1,1,1,2-Tetrachloroethane	ND		ug/kg	25	
Bromobenzene	ND		ug/kg	100	
n-Butylbenzene	ND		ug/kg	50	
sec-Butylbenzene	ND		ug/kg	50	
tert-Butylbenzene	ND		ug/kg	100	
1,3,5-Trichlorobenzene	ND		ug/kg	100	
o-Chlorotoluene	ND		ug/kg	100	
p-Chlorotoluene	ND		ug/kg	100	
1,2-Dibromo-3-chloropropane	ND		ug/kg	150	
Hexachlorobutadiene	ND		ug/kg	200	
Isopropylbenzene	ND		ug/kg	50	
p-Isopropyltoluene	ND		ug/kg	50	
Naphthalene	ND		ug/kg	200	
n-Propylbenzene	ND		ug/kg	50	
1,2,3-Trichlorobenzene	ND		ug/kg	100	
1,2,4-Trichlorobenzene	ND		ug/kg	100	
1,3,5-Trimethylbenzene	ND		ug/kg	100	
1,2,4-Trimethylbenzene	ND		ug/kg	100	
trans-1,4-Dichloro-2-butene	ND		ug/kg	250	
Halothane	ND		ug/kg	500	
Ethyl ether	ND		ug/kg	100	
Methyl Acetate	ND		ug/kg	200	
Ethyl Acetate	ND		ug/kg	500	
Isopropyl Ether	ND		ug/kg	100	
Cyclohexane	ND		ug/kg	500	
Tert-Butyl Alcohol	ND		ug/kg	1000	
Ethyl-Tert-Butyl-Ether	ND		ug/kg	100	
Tertiary-Amyl Methyl Ether	ND		ug/kg	100	
1,4-Dioxane	ND		ug/kg	5000	

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

Analytical Method:	1,8260C
Analytical Date:	11/21/18 08:11
Analyst:	MV

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by EPA 5035 Higl	n - Westbor	ough Lab fo	or sample(s):	01-06	Batch: WG1182093-5
Methyl cyclohexane	ND		ug/kg	200	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	200	
p-Diethylbenzene	ND		ug/kg	100	
4-Ethyltoluene	ND		ug/kg	100	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	100	

		A	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	98		70-130	

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

Analytical Method:	1,8260C
Analytical Date:	11/21/18 19:58
Analyst:	KJD

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS-5	035 - Westborou	gh Lab for	sample(s):	04-07	Batch: WG1182096-5
Methylene chloride	ND		ug/kg	5.0	
1,1-Dichloroethane	ND		ug/kg	1.0	
Chloroform	ND		ug/kg	1.5	
Carbon tetrachloride	ND		ug/kg	1.0	
1,2-Dichloropropane	ND		ug/kg	1.0	
Dibromochloromethane	ND		ug/kg	1.0	
1,1,2-Trichloroethane	ND		ug/kg	1.0	
2-Chloroethylvinyl ether	ND		ug/kg	20	
Tetrachloroethene	ND		ug/kg	0.50	
Chlorobenzene	ND		ug/kg	0.50	
Trichlorofluoromethane	ND		ug/kg	4.0	
1,2-Dichloroethane	ND		ug/kg	1.0	
1,1,1-Trichloroethane	ND		ug/kg	0.50	
Bromodichloromethane	ND		ug/kg	0.50	
trans-1,3-Dichloropropene	ND		ug/kg	1.0	
cis-1,3-Dichloropropene	ND		ug/kg	0.50	
1,3-Dichloropropene, Total	ND		ug/kg	0.50	
1,1-Dichloropropene	ND		ug/kg	0.50	
Bromoform	ND		ug/kg	4.0	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	
Benzene	ND		ug/kg	0.50	
Toluene	ND		ug/kg	1.0	
Ethylbenzene	ND		ug/kg	1.0	
Chloromethane	ND		ug/kg	4.0	
Bromomethane	ND		ug/kg	2.0	
Vinyl chloride	ND		ug/kg	1.0	
Chloroethane	ND		ug/kg	2.0	
1,1-Dichloroethene	ND		ug/kg	1.0	
trans-1,2-Dichloroethene	ND		ug/kg	1.5	

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

Analytical Method:	1,8260C
Analytical Date:	11/21/18 19:58
Analyst:	KJD

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by GC/MS-5	6035 - Westborou	gh Lab for	sample(s):	04-07	Batch:	WG1182096-5
Trichloroethene	ND		ug/kg	0.50		
1,2-Dichlorobenzene	ND		ug/kg	2.0		
1,3-Dichlorobenzene	ND		ug/kg	2.0		
1,4-Dichlorobenzene	ND		ug/kg	2.0		
Methyl tert butyl ether	ND		ug/kg	2.0		
p/m-Xylene	ND		ug/kg	2.0		
o-Xylene	ND		ug/kg	1.0		
Xylenes, Total	ND		ug/kg	1.0		
cis-1,2-Dichloroethene	ND		ug/kg	1.0		
1,2-Dichloroethene, Total	ND		ug/kg	1.0		
Dibromomethane	ND		ug/kg	2.0		
1,4-Dichlorobutane	ND		ug/kg	10		
1,2,3-Trichloropropane	ND		ug/kg	2.0		
Styrene	ND		ug/kg	1.0		
Dichlorodifluoromethane	ND		ug/kg	10		
Acetone	ND		ug/kg	10		
Carbon disulfide	ND		ug/kg	10		
2-Butanone	ND		ug/kg	10		
Vinyl acetate	ND		ug/kg	10		
4-Methyl-2-pentanone	ND		ug/kg	10		
2-Hexanone	ND		ug/kg	10		
Ethyl methacrylate	ND		ug/kg	10		
Acrolein	ND		ug/kg	25		
Acrylonitrile	ND		ug/kg	4.0		
Bromochloromethane	ND		ug/kg	2.0		
Tetrahydrofuran	ND		ug/kg	4.0		
2,2-Dichloropropane	ND		ug/kg	2.0		
1,2-Dibromoethane	ND		ug/kg	1.0		
1,3-Dichloropropane	ND		ug/kg	2.0		

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

Analytical Method:	1,8260C
Analytical Date:	11/21/18 19:58
Analyst:	KJD

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by GC/MS-503	35 - Westborou	igh Lab for	sample(s):	04-07	Batch:	WG1182096-5
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.50		
Bromobenzene	ND		ug/kg	2.0		
n-Butylbenzene	ND		ug/kg	1.0		
sec-Butylbenzene	ND		ug/kg	1.0		
tert-Butylbenzene	ND		ug/kg	2.0		
1,3,5-Trichlorobenzene	ND		ug/kg	2.0		
o-Chlorotoluene	ND		ug/kg	2.0		
p-Chlorotoluene	ND		ug/kg	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		
Hexachlorobutadiene	ND		ug/kg	4.0		
Isopropylbenzene	ND		ug/kg	1.0		
p-Isopropyltoluene	ND		ug/kg	1.0		
Naphthalene	ND		ug/kg	4.0		
n-Propylbenzene	ND		ug/kg	1.0		
1,2,3-Trichlorobenzene	ND		ug/kg	2.0		
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0		
Ethyl ether	ND		ug/kg	2.0		
Methyl Acetate	ND		ug/kg	4.0		
Ethyl Acetate	ND		ug/kg	10		
Isopropyl Ether	ND		ug/kg	2.0		
Cyclohexane	ND		ug/kg	10		
Tert-Butyl Alcohol	ND		ug/kg	20		
Ethyl-Tert-Butyl-Ether	ND		ug/kg	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/kg	2.0		
1,4-Dioxane	ND		ug/kg	100		
Methyl cyclohexane	ND		ug/kg	4.0		

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

Analytical Method:	1,8260C
Analytical Date:	11/21/18 19:58
Analyst:	KJD

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by GC/MS-5035	- Westborou	gh Lab for	sample(s):	04-07	Batch:	WG1182096-5
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/kg	4.0		

	Acceptance				
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	108		70-130		
Toluene-d8	98		70-130		
4-Bromofluorobenzene	102		70-130		
Dibromofluoromethane	99		70-130		

Project Number: 171.06108

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS-5035 - Westborough Lab Associated sample(s): 01-03 Batch: WG1182089-3 WG1182089-4								
Methylene chloride	97		93		70-130	4		30
1,1-Dichloroethane	99		94		70-130	5		30
Chloroform	100		98		70-130	2		30
Carbon tetrachloride	108		109		70-130	1		30
1,2-Dichloropropane	96		94		70-130	2		30
Dibromochloromethane	95		93		70-130	2		30
1,1,2-Trichloroethane	95		94		70-130	1		30
2-Chloroethylvinyl ether	93		92		70-130	1		30
Tetrachloroethene	104		102		70-130	2		30
Chlorobenzene	94		92		70-130	2		30
Trichlorofluoromethane	106		104		70-139	2		30
1,2-Dichloroethane	94		92		70-130	2		30
1,1,1-Trichloroethane	105		103		70-130	2		30
Bromodichloromethane	100		99		70-130	1		30
trans-1,3-Dichloropropene	96		94		70-130	2		30
cis-1,3-Dichloropropene	101		98		70-130	3		30
1,1-Dichloropropene	105		104		70-130	1		30
Bromoform	95		96		70-130	1		30
1,1,2,2-Tetrachloroethane	93		91		70-130	2		30
Benzene	99		98		70-130	1		30
Toluene	97		94		70-130	3		30
Ethylbenzene	97		94		70-130	3		30
Chloromethane	94		90		52-130	4		30

Project Number: 171.06108

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
							quui		
Volatile Organics by GC/MS-5035 - Westbord	olatile Organics by GC/MS-5035 - Westborough Lab Associated sample(s): 01-03 Batch: WG1182089-3 WG1182089-4								
Bromomethane	110		100		57-147	10		30	
Vinyl chloride	107		103		67-130	4		30	
Chloroethane	108		106		50-151	2		30	
1,1-Dichloroethene	108		104		65-135	4		30	
trans-1,2-Dichloroethene	105		103		70-130	2		30	
Trichloroethene	102		101		70-130	1		30	
1,2-Dichlorobenzene	95		95		70-130	0		30	
1,3-Dichlorobenzene	94		96		70-130	2		30	
1,4-Dichlorobenzene	96		96		70-130	0		30	
Methyl tert butyl ether	100		97		66-130	3		30	
p/m-Xylene	97		95		70-130	2		30	
o-Xylene	96		94		70-130	2		30	
cis-1,2-Dichloroethene	101		100		70-130	1		30	
Dibromomethane	101		101		70-130	0		30	
1,4-Dichlorobutane	85		86		70-130	1		30	
1,2,3-Trichloropropane	92		90		68-130	2		30	
Styrene	96		93		70-130	3		30	
Dichlorodifluoromethane	103		97		30-146	6		30	
Acetone	106		92		54-140	14		30	
Carbon disulfide	97		95		59-130	2		30	
2-Butanone	94		92		70-130	2		30	
Vinyl acetate	92		89		70-130	3		30	
4-Methyl-2-pentanone	90		81		70-130	11		30	

Project Number: 171.06108

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits				
Volatile Organics by GC/MS-5035 - We	/olatile Organics by GC/MS-5035 - Westborough Lab Associated sample(s): 01-03 Batch: WG1182089-3 WG1182089-4								
2-Hexanone	88	80	70-130	10	30				
Ethyl methacrylate	90	86	70-130	5	30				
Acrolein	93	84	70-130	10	30				
Acrylonitrile	94	86	70-130	9	30				
Bromochloromethane	107	103	70-130	4	30				
Tetrahydrofuran	93	88	66-130	6	30				
2,2-Dichloropropane	103	100	70-130	3	30				
1,2-Dibromoethane	97	96	70-130	1	30				
1,3-Dichloropropane	96	92	69-130	4	30				
1,1,1,2-Tetrachloroethane	97	98	70-130	1	30				
Bromobenzene	93	96	70-130	3	30				
n-Butylbenzene	94	95	70-130	1	30				
sec-Butylbenzene	95	96	70-130	1	30				
tert-Butylbenzene	96	98	70-130	2	30				
1,3,5-Trichlorobenzene	95	97	70-139	2	30				
o-Chlorotoluene	93	95	70-130	2	30				
p-Chlorotoluene	93	93	70-130	0	30				
1,2-Dibromo-3-chloropropane	92	86	68-130	7	30				
Hexachlorobutadiene	100	98	67-130	2	30				
Isopropylbenzene	94	97	70-130	3	30				
p-Isopropyltoluene	96	98	70-130	2	30				
Naphthalene	93	90	70-130	3	30				
n-Propylbenzene	93	95	70-130	2	30				

Project Number: 171.06108

	LCS		LCSD		%Recovery		RPD	
arameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual Limits	
olatile Organics by GC/MS-5035 - Westborough Lab Associated sample(s): 01-03 Batch: WG1182089-3 WG1182089-4								
1,2,3-Trichlorobenzene	94		90		70-130	4	30	
1,2,4-Trichlorobenzene	96		98		70-130	2	30	
1,3,5-Trimethylbenzene	95		96		70-130	1	30	
1,2,4-Trimethylbenzene	95		97		70-130	2	30	
trans-1,4-Dichloro-2-butene	88		80		70-130	10	30	
Ethyl ether	106		99		67-130	7	30	
Methyl Acetate	91		87		65-130	4	30	
Ethyl Acetate	94		89		70-130	5	30	
Isopropyl Ether	88		86		66-130	2	30	
Cyclohexane	96		94		70-130	2	30	
Tert-Butyl Alcohol	99		91		70-130	8	30	
Ethyl-Tert-Butyl-Ether	95		93		70-130	2	30	
Tertiary-Amyl Methyl Ether	99		96		70-130	3	30	
1,4-Dioxane	100		94		65-136	6	30	
Methyl cyclohexane	108		104		70-130	4	30	
1,1,2-Trichloro-1,2,2-Trifluoroethane	106		105		70-130	1	30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	95	93	70-130
Toluene-d8	97	97	70-130
4-Bromofluorobenzene	97	100	70-130
Dibromofluoromethane	101	101	70-130

Project Number: 171.06108

Parameter	LCS %Recovery G	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits			
olatile Organics by EPA 5035 High - Westborough Lab Associated sample(s): 07 Batch: WG1182090-3 WG1182090-4								
Methylene chloride	97	93	70-130	4	30			
1,1-Dichloroethane	99	94	70-130	5	30			
Chloroform	100	98	70-130	2	30			
Carbon tetrachloride	108	109	70-130	1	30			
1,2-Dichloropropane	96	94	70-130	2	30			
Dibromochloromethane	95	93	70-130	2	30			
1,1,2-Trichloroethane	95	94	70-130	1	30			
2-Chloroethylvinyl ether	93	92	70-130	1	30			
Tetrachloroethene	104	102	70-130	2	30			
Chlorobenzene	94	92	70-130	2	30			
Trichlorofluoromethane	106	104	70-139	2	30			
1,2-Dichloroethane	94	92	70-130	2	30			
1,1,1-Trichloroethane	105	103	70-130	2	30			
Bromodichloromethane	100	99	70-130	1	30			
trans-1,3-Dichloropropene	96	94	70-130	2	30			
cis-1,3-Dichloropropene	101	98	70-130	3	30			
1,1-Dichloropropene	105	104	70-130	1	30			
Bromoform	95	96	70-130	1	30			
1,1,2,2-Tetrachloroethane	93	91	70-130	2	30			
Benzene	99	98	70-130	1	30			
Toluene	97	94	70-130	3	30			
Ethylbenzene	97	94	70-130	3	30			
Chloromethane	94	90	52-130	4	30			

Project Number: 171.06108

Parameter	LCS %Recovery	LC Qual %Rec	SD overy Qual	%Recovery Limits	RPD	RPD .imits
Volatile Organics by EPA 5035 High	- Westborough Lab Asso	ciated sample(s): 0	7 Batch: WG1	182090-3 WG118209	00-4	
Bromomethane	110	1	00	57-147	10	30
Vinyl chloride	107	1	03	67-130	4	30
Chloroethane	108	1	06	50-151	2	30
1,1-Dichloroethene	108	1	04	65-135	4	30
trans-1,2-Dichloroethene	105	1	03	70-130	2	30
Trichloroethene	102	1	01	70-130	1	30
1,2-Dichlorobenzene	95	Ş	95	70-130	0	30
1,3-Dichlorobenzene	94	Ş	96	70-130	2	30
1,4-Dichlorobenzene	96	Ş	96	70-130	0	30
Methyl tert butyl ether	100	Ş	97	66-130	3	30
p/m-Xylene	97	Ş	95	70-130	2	30
o-Xylene	96	Ş	94	70-130	2	30
cis-1,2-Dichloroethene	101	1	00	70-130	1	30
Dibromomethane	101	1	01	70-130	0	30
1,4-Dichlorobutane	85	ξ	36	70-130	1	30
1,2,3-Trichloropropane	92	Ş	90	68-130	2	30
Styrene	96	Ş	93	70-130	3	30
Dichlorodifluoromethane	103	Ş	97	30-146	6	30
Acetone	106	Ş	92	54-140	14	30
Carbon disulfide	97	Ş	95	59-130	2	30
2-Butanone	94	Ş	92	70-130	2	30
Vinyl acetate	92	8	39	70-130	3	30
4-Methyl-2-pentanone	90	ξ	31	70-130	11	30

Project Number: 171.06108

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by EPA 5035 High -	Westborough Lab Asso	ciated sample((s): 07 Batch	: WG1182090-3 WG11	82090-4		
2-Hexanone	88		80	70-130	10	30	
Ethyl methacrylate	90		86	70-130	5	30	
Acrolein	93		84	70-130	10	30	
Acrylonitrile	94		86	70-130	9	30	
Bromochloromethane	107		103	70-130	4	30	
Tetrahydrofuran	93		88	66-130	6	30	
2,2-Dichloropropane	103		100	70-130	3	30	
1,2-Dibromoethane	97		96	70-130	1	30	
1,3-Dichloropropane	96		92	69-130	4	30	
1,1,1,2-Tetrachloroethane	97		98	70-130	1	30	
Bromobenzene	93		96	70-130	3	30	
n-Butylbenzene	94		95	70-130	1	30	
sec-Butylbenzene	95		96	70-130	1	30	
tert-Butylbenzene	96		98	70-130	2	30	
1,3,5-Trichlorobenzene	95		97	70-139	2	30	
o-Chlorotoluene	93		95	70-130	2	30	
p-Chlorotoluene	93		93	70-130	0	30	
1,2-Dibromo-3-chloropropane	92		86	68-130	7	30	
Hexachlorobutadiene	100		98	67-130	2	30	
Isopropylbenzene	94		97	70-130	3	30	
p-lsopropyltoluene	96		98	70-130	2	30	
Naphthalene	93		90	70-130	3	30	
n-Propylbenzene	93		95	70-130	2	30	

Project Number: 171.06108

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 High - Wes	tborough Lab Asso	ciated sample	(s): 07 Batch	: WG1182090-3 WG118209	90-4	
1,2,3-Trichlorobenzene	94		90	70-130	4	30
1,2,4-Trichlorobenzene	96		98	70-130	2	30
1,3,5-Trimethylbenzene	95		96	70-130	1	30
1,2,4-Trimethylbenzene	95		97	70-130	2	30
trans-1,4-Dichloro-2-butene	88		80	70-130	10	30
Halothane	108		108	70-130	0	20
Ethyl ether	106		99	67-130	7	30
Methyl Acetate	91		87	65-130	4	30
Ethyl Acetate	94		89	70-130	5	30
Isopropyl Ether	88		86	66-130	2	30
Cyclohexane	96		94	70-130	2	30
Tert-Butyl Alcohol	99		91	70-130	8	30
Ethyl-Tert-Butyl-Ether	95		93	70-130	2	30
Tertiary-Amyl Methyl Ether	99		96	70-130	3	30
1,4-Dioxane	100		94	65-136	6	30
Methyl cyclohexane	108		104	70-130	4	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	106		105	70-130	1	30
p-Diethylbenzene	95		97	70-130	2	30
4-Ethyltoluene	96		96	70-130	0	30
1,2,4,5-Tetramethylbenzene	94		95	70-130	1	30

Project Name:MASON STATIONProject Number:171.06108

 Lab Number:
 L1847051

 Report Date:
 11/26/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by EPA 5035 High - Wes	tborough Lab Asso	ciated sam	ple(s): 07 Batch:	WG118	2090-3 WG118209	90-4			

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	95	94	70-130
Toluene-d8	97	97	70-130
4-Bromofluorobenzene	97	100	70-130
Dibromofluoromethane	100	101	70-130

Project Number: 171.06108

Parameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	6Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 High - W	estborough Lab Asso	ciated sample	e(s): 01-06 E	Batch: WG1182	2093-3 WG118	32093-4		
Methylene chloride	98		101		70-130	3		30
1,1-Dichloroethane	104		107		70-130	3		30
Chloroform	105		107		70-130	2		30
Carbon tetrachloride	111		116		70-130	4		30
1,2-Dichloropropane	102		106		70-130	4		30
Dibromochloromethane	102		104		70-130	2		30
1,1,2-Trichloroethane	99		103		70-130	4		30
2-Chloroethylvinyl ether	97		103		70-130	6		30
Tetrachloroethene	90		90		70-130	0		30
Chlorobenzene	98		100		70-130	2		30
Trichlorofluoromethane	88		90		70-139	2		30
1,2-Dichloroethane	112		115		70-130	3		30
1,1,1-Trichloroethane	111		112		70-130	1		30
Bromodichloromethane	106		110		70-130	4		30
trans-1,3-Dichloropropene	101		103		70-130	2		30
cis-1,3-Dichloropropene	101		103		70-130	2		30
1,1-Dichloropropene	96		98		70-130	2		30
Bromoform	94		98		70-130	4		30
1,1,2,2-Tetrachloroethane	101		104		70-130	3		30
Benzene	95		97		70-130	2		30
Toluene	93		95		70-130	2		30
Ethylbenzene	97		99		70-130	2		30
Chloromethane	83		86		52-130	4		30

Project Number: 171.06108

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD .imits
Volatile Organics by EPA 5035 High - '	Westborough Lab Ass	ociated sample	e(s): 01-06 E	Batch: WG1	182093-3 WG118	32093-4	
Bromomethane	72		74		57-147	3	30
Vinyl chloride	64	Q	64	Q	67-130	0	30
Chloroethane	54		55		50-151	2	30
1,1-Dichloroethene	95		96		65-135	1	30
trans-1,2-Dichloroethene	98		101		70-130	3	30
Trichloroethene	101		104		70-130	3	30
1,2-Dichlorobenzene	98		98		70-130	0	30
1,3-Dichlorobenzene	96		96		70-130	0	30
1,4-Dichlorobenzene	97		98		70-130	1	30
Methyl tert butyl ether	99		104		66-130	5	30
p/m-Xylene	95		98		70-130	3	30
o-Xylene	94		96		70-130	2	30
cis-1,2-Dichloroethene	101		104		70-130	3	30
Dibromomethane	107		113		70-130	5	30
1,4-Dichlorobutane	106		108		70-130	2	30
1,2,3-Trichloropropane	104		107		68-130	3	30
Styrene	94		97		70-130	3	30
Dichlorodifluoromethane	77		78		30-146	1	30
Acetone	133		142	Q	54-140	7	30
Carbon disulfide	79		81		59-130	3	30
2-Butanone	121		131	Q	70-130	8	30
Vinyl acetate	113		120		70-130	6	30
4-Methyl-2-pentanone	98		104		70-130	6	30

Project Number: 171.06108

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by EPA 5035 High - \	Westborough Lab Ass	ociated sample	e(s): 01-06 I	Batch: WG	1182093-3 WG	1182093-4		
2-Hexanone	112		119		70-130	6	30	
Ethyl methacrylate	90		92		70-130	2	30	
Acrolein	68	Q	72		70-130	6	30	
Acrylonitrile	111		119		70-130	7	30	
Bromochloromethane	103		107		70-130	4	30	
Tetrahydrofuran	128		134	Q	66-130	5	30	
2,2-Dichloropropane	105		106		70-130	1	30	
1,2-Dibromoethane	101		106		70-130	5	30	
1,3-Dichloropropane	99		103		69-130	4	30	
1,1,1,2-Tetrachloroethane	101		105		70-130	4	30	
Bromobenzene	94		95		70-130	1	30	
n-Butylbenzene	102		102		70-130	0	30	
sec-Butylbenzene	102		102		70-130	0	30	
tert-Butylbenzene	101		102		70-130	1	30	
1,3,5-Trichlorobenzene	92		92		70-139	0	30	
o-Chlorotoluene	118		120		70-130	2	30	
p-Chlorotoluene	101		102		70-130	1	30	
1,2-Dibromo-3-chloropropane	92		93		68-130	1	30	
Hexachlorobutadiene	91		93		67-130	2	30	
Isopropylbenzene	101		101		70-130	0	30	
p-Isopropyltoluene	101		102		70-130	1	30	
Naphthalene	100		104		70-130	4	30	
n-Propylbenzene	101		101		70-130	0	30	

Project Number: 171.06108

	LCS		LCSD		%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual Limits	
Volatile Organics by EPA 5035 High - We	estborough Lab Ass	ociated sampl	e(s): 01-06 B	atch: WG	1182093-3 WG118	32093-4		
1,2,3-Trichlorobenzene	95		98		70-130	3	30	
1,2,4-Trichlorobenzene	96		96		70-130	0	30	
1,3,5-Trimethylbenzene	103		104		70-130	1	30	
1,2,4-Trimethylbenzene	101		103		70-130	2	30	
trans-1,4-Dichloro-2-butene	112		115		70-130	3	30	
Halothane	95		99		70-130	4	20	
Ethyl ether	97		101		67-130	4	30	
Methyl Acetate	137	Q	142	Q	65-130	4	30	
Ethyl Acetate	131	Q	138	Q	70-130	5	30	
Isopropyl Ether	124		128		66-130	3	30	
Cyclohexane	99		101		70-130	2	30	
Tert-Butyl Alcohol	103		106		70-130	3	30	
Ethyl-Tert-Butyl-Ether	104		108		70-130	4	30	
Tertiary-Amyl Methyl Ether	95		99		70-130	4	30	
1,4-Dioxane	95		101		65-136	6	30	
Methyl cyclohexane	91		95		70-130	4	30	
1,1,2-Trichloro-1,2,2-Trifluoroethane	98		102		70-130	4	30	
p-Diethylbenzene	96		96		70-130	0	30	
4-Ethyltoluene	98		99		70-130	1	30	
1,2,4,5-Tetramethylbenzene	99		99		70-130	0	30	

Project Name:MASON STATIONProject Number:171.06108

 Lab Number:
 L1847051

 Report Date:
 11/26/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by EPA 5035 High - Westl	oorough Lab Assoc	ciated samp	ole(s): 01-06 Ba	tch: WG1	182093-3 WG118	2093-4			

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	109	108	70-130
Toluene-d8	99	99	70-130
4-Bromofluorobenzene	108	106	70-130
Dibromofluoromethane	104	103	70-130

Project Number: 171.06108

v Qual sociated sample(103 105 107 119 105 102 98 97 96	tch: WG1182096	Limits 5-3 WG11820 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	RPD 096-4 0 4 3 1 2 1 1 1 2	Qual Lim 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 0 0 0 0 0
	105 107 119 105 102 98 97 96		70-130 70-130 70-130 70-130 70-130 70-130 70-130	4 3 1 2 1 1 1 1	3 3 3 3 3 3 3 3 3 3	0 0 0 0 0
	105 107 119 105 102 98 97 96		70-130 70-130 70-130 70-130 70-130 70-130 70-130	4 3 1 2 1 1 1 1	3 3 3 3 3 3 3 3 3 3	0 0 0 0 0
	107 119 105 102 98 97 96		70-130 70-130 70-130 70-130 70-130 70-130	3 1 2 1 1 1 1	3 3 3 3 3 3 3 3 3	0 0 0 0
	119 105 102 98 97 96		70-130 70-130 70-130 70-130 70-130	1 2 1 1 1	3 3 3 3 3 3	0 0 0 0
	105 102 98 97 96		70-130 70-130 70-130 70-130	2 1 1 1	3 3 3 3	0 0 0
	102 98 97 96		70-130 70-130 70-130	1 1 1	3	0
	98 97 96		70-130 70-130	1 1	3	0
	97 96		70-130	1	3	
-	96					0
			70-130	2		
	07				3	0
	97		70-130	2	3	0
	94		70-139	3	3	0
	112		70-130	4	3	0
	115		70-130	3	3	0
	107		70-130	0	3	0
	100		70-130	0	3	0
	102		70-130	2	3	0
	102		70-130	2	3	0
	93		70-130	2	3	0
	93		70-130	2	3	0
	98		70-130	2	3	0
		102 102 93 94 98	102 102 93 94 98 98	102 70-130 102 70-130 93 70-130 93 70-130 98 70-130 994 70-130 98 70-130 98 70-130	102 70-130 2 93 70-130 2 93 70-130 2 93 70-130 2 93 70-130 2 98 70-130 2 994 70-130 2	102 70-130 2 3 102 70-130 2 3 102 93 70-130 2 3 102 93 70-130 2 3 103 93 70-130 2 3 104 98 70-130 2 3 105 94 70-130 2 3 105 98 70-130 2 3

Project Number: 171.06108

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS-5035 - Westborough Lab Associated sample(s): 04-07 Batch: WG1182096-3 WG1182096-4								
Bromomethane	80		79		57-147	1		30
Vinyl chloride	71		68		67-130	4		30
Chloroethane	58		57		50-151	2		30
1,1-Dichloroethene	103		101		65-135	2		30
trans-1,2-Dichloroethene	106		102		70-130	4		30
Trichloroethene	109		106		70-130	3		30
1,2-Dichlorobenzene	98		96		70-130	2		30
1,3-Dichlorobenzene	98		95		70-130	3		30
1,4-Dichlorobenzene	97		96		70-130	1		30
Methyl tert butyl ether	101		100		66-130	1		30
p/m-Xylene	99		97		70-130	2		30
o-Xylene	96		95		70-130	1		30
cis-1,2-Dichloroethene	108		104		70-130	4		30
Dibromomethane	111		108		70-130	3		30
1,4-Dichlorobutane	100		99		70-130	1		30
1,2,3-Trichloropropane	97		95		68-130	2		30
Styrene	97		95		70-130	2		30
Dichlorodifluoromethane	85		82		30-146	4		30
Acetone	123		122		54-140	1		30
Carbon disulfide	85		81		59-130	5		30
2-Butanone	116		113		70-130	3		30
Vinyl acetate	115		113		70-130	2		30
4-Methyl-2-pentanone	93		94		70-130	1		30

Project Number: 171.06108

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits		
Volatile Organics by GC/MS-5035 - Westborough Lab Associated sample(s): 04-07 Batch: WG1182096-3 WG1182096-4									
2-Hexanone	108		106		70-130	2	30		
Ethyl methacrylate	88		86		70-130	2	30		
Acrolein	69	Q	68	Q	70-130	1	30		
Acrylonitrile	112		109		70-130	3	30		
Bromochloromethane	107		104		70-130	3	30		
Tetrahydrofuran	125		123		66-130	2	30		
2,2-Dichloropropane	110		110		70-130	0	30		
1,2-Dibromoethane	102		100		70-130	2	30		
1,3-Dichloropropane	99		98		69-130	1	30		
1,1,1,2-Tetrachloroethane	104		102		70-130	2	30		
Bromobenzene	96		95		70-130	1	30		
n-Butylbenzene	103		101		70-130	2	30		
sec-Butylbenzene	104		101		70-130	3	30		
tert-Butylbenzene	102		100		70-130	2	30		
1,3,5-Trichlorobenzene	94		92		70-139	2	30		
o-Chlorotoluene	101		102		70-130	1	30		
p-Chlorotoluene	100		98		70-130	2	30		
1,2-Dibromo-3-chloropropane	86		85		68-130	1	30		
Hexachlorobutadiene	98		96		67-130	2	30		
Isopropylbenzene	103		100		70-130	3	30		
p-Isopropyltoluene	102		101		70-130	1	30		
Naphthalene	98		97		70-130	1	30		
n-Propylbenzene	101		98		70-130	3	30		

Project Number: 171.06108

	LCS		LCSD		%Recovery		RPD	
arameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual Limits	
platile Organics by GC/MS-5035 - Westb	orough Lab Assoc	iated sample(s): 04-07 Batc	h: WG118	32096-3 WG11820)96-4		
1,2,3-Trichlorobenzene	98		97		70-130	1	30	
1,2,4-Trichlorobenzene	99		97		70-130	2	30	
1,3,5-Trimethylbenzene	103		101		70-130	2	30	
1,2,4-Trimethylbenzene	102		100		70-130	2	30	
trans-1,4-Dichloro-2-butene	106		100		70-130	6	30	
Ethyl ether	97		98		67-130	1	30	
Methyl Acetate	134	Q	134	Q	65-130	0	30	
Ethyl Acetate	127		126		70-130	1	30	
Isopropyl Ether	128		126		66-130	2	30	
Cyclohexane	108		105		70-130	3	30	
Tert-Butyl Alcohol	99		96		70-130	3	30	
Ethyl-Tert-Butyl-Ether	106		106		70-130	0	30	
Tertiary-Amyl Methyl Ether	98		96		70-130	2	30	
1,4-Dioxane	97		94		65-136	3	30	
Methyl cyclohexane	101		100		70-130	1	30	
1,1,2-Trichloro-1,2,2-Trifluoroethane	109		106		70-130	3	30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	107	107	70-130
Toluene-d8	97	98	70-130
4-Bromofluorobenzene	104	104	70-130
Dibromofluoromethane	104	104	70-130

PETROLEUM HYDROCARBONS

					5	Serial_No:	11261816	:47
Project Name:	MASON STATION				Lab Nu	mber:	L1847(051
Project Number:	171.06108				Report	Date:	11/26/1	18
		SAMPLE	RESULTS					
Lab ID: Client ID: Sample Location:	L1847051-01 B301-S1 WISCASSET, ME				Date Coll Date Rec Field Prep	eived:	11/12/18 11/15/18 Not Spec	3
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 131,VPH-18-2.1 11/17/18 14:58 MZ 82%							
Trap:	EST, Carbopack B/Car	boxen 1000&100	1		Analytical	Column:		RTX-502.2, 53ID, 3um
		Quality Control	ol Informatio	on				
Condition of sample rece						Satisfactor	ry	
Sample Temperature up						Received		
Were samples received i Methanol ratio:	in methanol?					Yes (Cove 1.5:1	ering the Soil)	
Parameter		Result	Qualifier	Units	RL	MD	Dilut	tion Factor
Volatile Petroleum	Hydrocarbons - West	borough Lab						
C5-C8 Aliphatics		ND		mg/kg	5.35			1
C9-C12 Aliphatics		ND		mg/kg	5.35			1

		ing/kg	0.00	
C9-C12 Aliphatics, Adjusted	ND	mg/kg	5.35	 1
C5-C8 Aliphatics, Adjusted	ND	mg/kg	5.35	 1
C9-C10 Aromatics	ND	mg/kg	5.35	 1

Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	106		70-130	
2,5-Dibromotoluene-FID	110		70-130	

		Serial_No:11261816:			
Project Name:	MASON STATION	1		Lab Number:	L1847051
Project Number:	171.06108			Report Date:	11/26/18
		SAMPLE RE	ESULTS		
Lab ID: Client ID: Sample Location:	L1847051-01 B301-S1 WISCASSET, ME			Date Collected: Date Received: Field Prep:	11/12/18 09:00 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 98,EPH-04-1.1 11/21/18 20:48 SC 82%	M.S. Analytical Date: M.S. Analyst:	11/26/18 04:51 DV	Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3546 11/19/18 20:52 EPH-04-1 11/21/18

Quality Control Information						
Condition of sample received:	Satisfactory					
Sample Temperature upon receipt:	Received on Ice					
Sample Extraction method:	Extracted Per the Method					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
		Quanner	Units			Dilution ractor
EPH w/MS Targets - Westborough	Lab					
C9-C18 Aliphatics	ND		mg/kg	7.89		1
C19-C36 Aliphatics	ND		mg/kg	7.89		1
C11-C22 Aromatics	13.1		mg/kg	7.89		1
C11-C22 Aromatics, Adjusted	10.5		mg/kg	7.89		1
Naphthalene	ND		mg/kg	0.032		1
2-Methylnaphthalene	ND		mg/kg	0.032		1
Acenaphthylene	ND		mg/kg	0.032		1
Acenaphthene	0.041		mg/kg	0.032		1
Fluorene	0.033		mg/kg	0.032		1
Phenanthrene	0.294		mg/kg	0.032		1
Anthracene	0.062		mg/kg	0.032		1
Fluoranthene	0.406		mg/kg	0.032		1
Pyrene	0.421		mg/kg	0.032		1
Benzo(a)anthracene	0.211		mg/kg	0.032		1
Chrysene	0.278		mg/kg	0.032		1
Benzo(b)fluoranthene	0.259		mg/kg	0.032		1
Benzo(k)fluoranthene	0.112		mg/kg	0.032		1
Benzo(a)pyrene	0.195		mg/kg	0.032		1
Indeno(1,2,3-cd)Pyrene	0.135		mg/kg	0.032		1
Dibenzo(a,h)anthracene	0.033		mg/kg	0.032		1
Benzo(ghi)perylene	0.137		mg/kg	0.032		1

			Serial_No	0:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-01		Date Collected:	11/12/18 09:00
Client ID:	B301-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

EPH w/MS Targets - Westborough Lab

Surrogate	% Recovery	Ao Qualifier	cceptance Criteria	
Chloro-Octadecane	58		40-140	
o-Terphenyl	72		40-140	
2-Fluorobiphenyl	87		40-140	
2-Bromonaphthalene	83		40-140	
O-Terphenyl-MS	65		40-140	

					Serial_No:11261816:47				
Project Name:	MASON STATION				Lab Nu	mber:	L184	47051	
Project Number:	171.06108				Report	Date:	11/2	6/18	
		SAMPLE	RESULTS						
Lab ID: Client ID: Sample Location:	L1847051-02 B301-S4 WISCASSET, ME				Date Coll Date Rec Field Prep	eived:	11/15/	/18 09:20 /18 becified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 131,VPH-18-2.1 11/17/18 15:29 MZ 87%								
Trap:	EST, Carbopack B/Carl	ooxen 1000&100	1		Analytical	Column:		k, RTX-502.2, 0.53ID, 3um	
		Quality Control	ol Informatio	on					
Condition of sample rece						Satisfactory			
Sample Temperature upon receipt: Were samples received in methanol? Methanol ratio:			Received on Ice Yes (Covering the Soil) 1.6:1			oil)			
Parameter		Result	Qualifier	Units	RL	MC	DL D	ilution Factor	
Volatile Petroleum	Hydrocarbons - West	borough Lab							
C5-C8 Aliphatics		ND		mg/kg	5.44			1	
C9-C12 Aliphatics		ND		mg/kg	5.44			1	

C9-C12 Aliphatics	ND	mg/kg	5.44	 1
C9-C10 Aromatics	ND	mg/kg	5.44	 1
C5-C8 Aliphatics, Adjusted	ND	mg/kg	5.44	 1
C9-C12 Aliphatics, Adjusted	ND	mg/kg	5.44	 1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	103		70-130			
2,5-Dibromotoluene-FID	106		70-130			

		Serial_No:11261816:47				
Project Name:	MASON STATION	1		Lab Number:	L1847051	
Project Number:	171.06108			Report Date:	11/26/18	
		SAMPLE R	ESULTS			
Lab ID: Client ID: Sample Location:	L1847051-02 B301-S4 WISCASSET, ME			Date Collected: Date Received: Field Prep:	11/12/18 09:20 11/15/18 Not Specified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 98,EPH-04-1.1 11/21/18 21:19 SC 87%	M.S. Analytical Date: M.S. Analyst:	11/26/18 03:19 DV	Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3546 11/19/18 06:13 EPH-04-1 11/21/18	

Quality Control Information							
Condition of sample received:	Satisfactory						
Sample Temperature upon receipt:	Received on Ice						
Sample Extraction method:	Extracted Per the Method						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough I	Lab					
C9-C18 Aliphatics	ND		mg/kg	7.48		1
C19-C36 Aliphatics	ND		mg/kg	7.48		1
C11-C22 Aromatics	ND		mg/kg	7.48		1
C11-C22 Aromatics, Adjusted	ND		mg/kg	7.48		1
Naphthalene	ND		mg/kg	0.030		1
2-Methylnaphthalene	ND		mg/kg	0.030		1
Acenaphthylene	ND		mg/kg	0.030		1
Acenaphthene	ND		mg/kg	0.030		1
Fluorene	ND		mg/kg	0.030		1
Phenanthrene	ND		mg/kg	0.030		1
Anthracene	ND		mg/kg	0.030		1
Fluoranthene	ND		mg/kg	0.030		1
Pyrene	ND		mg/kg	0.030		1
Benzo(a)anthracene	ND		mg/kg	0.030		1
Chrysene	ND		mg/kg	0.030		1
Benzo(b)fluoranthene	ND		mg/kg	0.030		1
Benzo(k)fluoranthene	ND		mg/kg	0.030		1
Benzo(a)pyrene	ND		mg/kg	0.030		1
Indeno(1,2,3-cd)Pyrene	ND		mg/kg	0.030		1
Dibenzo(a,h)anthracene	ND		mg/kg	0.030		1
Benzo(ghi)perylene	ND		mg/kg	0.030		1

			Serial_No:11261816:47			
Project Name:	MASON STATION		Lab Number:	L1847051		
Project Number:	171.06108		Report Date:	11/26/18		
		SAMPLE RESULTS				
Lab ID:	L1847051-02		Date Collected:	11/12/18 09:20		
Client ID:	B301-S4		Date Received:	11/15/18		
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified		
Sample Depth:						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

Surrogate	% Recovery	Acceptance Qualifier Criteria
Chloro-Octadecane	66	40-140
o-Terphenyl	85	40-140
2-Fluorobiphenyl	88	40-140
2-Bromonaphthalene	85	40-140
O-Terphenyl-MS	77	40-140

	Serial_No:11261816					5:47		
Project Name:	MASON STATION				Lab Nun	nber:	L1847	051
Project Number:	171.06108				Report [Date:	11/26/	18
		SAMPLE	RESULTS					
Lab ID: Client ID: Sample Location:	L1847051-03 B302-S1 WISCASSET, ME				Date Colle Date Rece Field Prep:	eived:	11/12/18 11/15/18 Not Spe	8
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 131,VPH-18-2.1 11/17/18 16:00 MZ 88%							
Trap:	EST, Carbopack B/Car	boxen 1000&100′	1		Analytical (Column:		RTX-502.2, .53ID, 3um
		Quality Control	ol Informatio	on				
Condition of sample rece	ived:					Satisfactor	ry	
Sample Temperature upo						Received		
Were samples received in methanol? Methanol ratio:						Yes (Cove 1:1 +/- 25%	ring the Soil %)
Parameter		Result	Qualifier	Units	RL	MD)L Dilu	ition Factor
Volatile Petroleum	Hydrocarbons - West	borough Lab						
C5-C8 Aliphatics		ND		mg/kg	4.09			1
C9-C12 Aliphatics		ND		mg/kg	4.09			1

Surrogate	% Recovery		cceptance Criteria	
C9-C12 Aliphatics, Adjusted	ND	mg/kg	4.09	 1
C5-C8 Aliphatics, Adjusted	ND	mg/kg	4.09	 1

mg/kg

4.09

ND

	Acceptance				
Surrogate	% Recovery	Qualifier	Criteria		
2,5-Dibromotoluene-PID	101		70-130		
2,5-Dibromotoluene-FID	104		70-130		

1

C9-C10 Aromatics

				Serial_No:	11261816:47
Project Name:	MASON STATION	I		Lab Number:	L1847051
Project Number:	171.06108			Report Date:	11/26/18
		SAMPLE R	ESULTS		
Lab ID: Client ID: Sample Location:	L1847051-03 B302-S1 WISCASSET, ME			Date Collected: Date Received: Field Prep:	11/12/18 09:45 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 98,EPH-04-1.1 11/21/18 21:50 SC 88%	M.S. Analytical Date: M.S. Analyst:	11/26/18 04:20 DV	Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3546 11/19/18 06:13 EPH-04-1 11/21/18

Quality Control Information	
Condition of sample received:	Satisfactory
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough						
C9-C18 Aliphatics	ND		mg/kg	7.37		1
C19-C36 Aliphatics	ND		mg/kg	7.37		1
C11-C22 Aromatics	ND		mg/kg	7.37		1
C11-C22 Aromatics, Adjusted	ND		mg/kg	7.37		1
Naphthalene	ND		mg/kg	0.030		1
2-Methylnaphthalene	ND		mg/kg	0.030		1
Acenaphthylene	ND		mg/kg	0.030		1
Acenaphthene	ND		mg/kg	0.030		1
Fluorene	ND		mg/kg	0.030		1
Phenanthrene	0.074		mg/kg	0.030		1
Anthracene	ND		mg/kg	0.030		1
Fluoranthene	0.202		mg/kg	0.030		1
Pyrene	0.171		mg/kg	0.030		1
Benzo(a)anthracene	0.067		mg/kg	0.030		1
Chrysene	0.091		mg/kg	0.030		1
Benzo(b)fluoranthene	0.093		mg/kg	0.030		1
Benzo(k)fluoranthene	0.045		mg/kg	0.030		1
Benzo(a)pyrene	0.065		mg/kg	0.030		1
Indeno(1,2,3-cd)Pyrene	0.051		mg/kg	0.030		1
Dibenzo(a,h)anthracene	ND		mg/kg	0.030		1
Benzo(ghi)perylene	0.049		mg/kg	0.030		1

		Serial_No:11261816:47			
Project Name:	MASON STATION		Lab Number:	L1847051	
Project Number:	171.06108		Report Date:	11/26/18	
		SAMPLE RESULTS			
Lab ID:	L1847051-03		Date Collected:	11/12/18 09:45	
Client ID:	B302-S1		Date Received:	11/15/18	
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified	
Sample Depth:					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

Surrogate	% Recovery		otance teria
Chloro-Octadecane	63	2	40-140
o-Terphenyl	72	2	40-140
P-Fluorobiphenyl	76	2	40-140
-Bromonaphthalene	73	2	40-140
D-Terphenyl-MS	75	2	40-140

					S	Serial_No:	11261816	ծ:47
Project Name:	MASON STATION				Lab Nu	mber:	L1847	'051
Project Number:	171.06108				Report	Date:	11/26/	′18
		SAMPLE	RESULTS					
Lab ID: Client ID: Sample Location: Sample Depth:	L1847051-04 B303-S1 WISCASSET, ME				Date Coll Date Rec Field Prep	eived:	11/12/18 11/15/18 Not Spe	8
Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 131,VPH-18-2.1 11/17/18 16:31 MZ 69%							
Trap:	EST, Carbopack B/Carb	ooxen 1000&100	1		Analytical	Column:		RTX-502.2, .53ID, 3um
		Quality Contr	ol Informatio	on				
Condition of sample rece Sample Temperature up Were samples received i Methanol ratio:	on receipt:					Satisfactor Received Yes (Cove 1.6:1)
Parameter		Result	Qualifier	Units	RL	MC)L Dilu	ution Factor
Volatile Petroleum	Hydrocarbons - West	borough Lab						
C5-C8 Aliphatics		ND		mg/kg	7.48			1
C9-C12 Aliphatics		ND		mg/kg	7.48			1

				-
C9-C12 Aliphatics	ND	mg/kg	7.48	 1
C9-C10 Aromatics	ND	mg/kg	7.48	 1
C5-C8 Aliphatics, Adjusted	ND	mg/kg	7.48	 1
C9-C12 Aliphatics, Adjusted	ND	mg/kg	7.48	 1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	109		70-130	
2,5-Dibromotoluene-FID	114		70-130	

				Serial_No:	11261816:47
Project Name:	MASON STATION	I		Lab Number:	L1847051
Project Number:	171.06108			Report Date:	11/26/18
		SAMPLE R	ESULTS		
Lab ID: Client ID: Sample Location:	L1847051-04 B303-S1 WISCASSET, ME			Date Collected: Date Received: Field Prep:	11/12/18 10:25 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 98,EPH-04-1.1 11/21/18 22:22 SC 69%	M.S. Analytical Date: M.S. Analyst:	11/26/18 12:58 DV	Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3546 11/19/18 06:13 EPH-04-1 11/21/18

Quality Control Info	ormation
Condition of sample received:	Satisfactory
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough	Lab					
C9-C18 Aliphatics	ND		mg/kg	9.40		1
C19-C36 Aliphatics	ND		mg/kg	9.40		1
C11-C22 Aromatics	78.7		mg/kg	9.40		1
C11-C22 Aromatics, Adjusted	36.9		mg/kg	9.40		1
Naphthalene	ND		mg/kg	0.376		10
2-Methylnaphthalene	ND		mg/kg	0.376		10
Acenaphthylene	0.884		mg/kg	0.376		10
Acenaphthene	ND		mg/kg	0.376		10
Fluorene	ND		mg/kg	0.376		10
Phenanthrene	1.27		mg/kg	0.376		10
Anthracene	0.592		mg/kg	0.376		10
Fluoranthene	7.91		mg/kg	0.376		10
Pyrene	9.03		mg/kg	0.376		10
Benzo(a)anthracene	3.66		mg/kg	0.376		10
Chrysene	4.40		mg/kg	0.376		10
Benzo(b)fluoranthene	3.79		mg/kg	0.376		10
Benzo(k)fluoranthene	1.60		mg/kg	0.376		10
Benzo(a)pyrene	3.47		mg/kg	0.376		10
Indeno(1,2,3-cd)Pyrene	2.25		mg/kg	0.376		10
Dibenzo(a,h)anthracene	0.530		mg/kg	0.376		10
Benzo(ghi)perylene	2.37		mg/kg	0.376		10

			Serial_No	0:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-04		Date Collected:	11/12/18 10:25
Client ID:	B303-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

Surrogate	% Recovery	Acceptance Qualifier Criteria
Chloro-Octadecane	63	40-140
o-Terphenyl	69	40-140
2-Fluorobiphenyl	63	40-140
-Bromonaphthalene	60	40-140
D-Terphenyl-MS	112	40-140

					5	Serial_No:	11261816	6:47
Project Name:	MASON STATION				Lab Nu	mber:	L1847	051
Project Number:	171.06108				Report	Date:	11/26/	′18
		SAMPLE	RESULTS					
Lab ID: Client ID: Sample Location:	L1847051-05 B303-S4 WISCASSET, ME				Date Coll Date Rec Field Prep	eived:	11/12/1 11/15/1 Not Spe	8
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 131,VPH-18-2.1 11/17/18 17:02 MZ 92%							
Trap:	EST, Carbopack B/Carl	000&100	1		Analytical	Column:		RTX-502.2, .53ID, 3um
		Quality Contro	ol Informatio	on				
Condition of sample rece						Satisfactor		
Sample Temperature up						Received		
Were samples received i Methanol ratio:	n methanol?					Yes (Cove 1:1 +/- 259	ring the Soi %)
Parameter		Result	Qualifier	Units	RL	MD	DL Dilu	ution Factor
Volatile Petroleum	Hydrocarbons - West	borough Lab						
C5-C8 Aliphatics		ND		mg/kg	3.85			1
C9-C12 Aliphatics		ND		mg/kg	3.85			1

C9-C12 Aliphatics	ND	mg/kg	3.85	 1
C9-C10 Aromatics	ND	mg/kg	3.85	 1
C5-C8 Aliphatics, Adjusted	ND	mg/kg	3.85	 1
C9-C12 Aliphatics, Adjusted	ND	mg/kg	3.85	 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2,5-Dibromotoluene-PID	102		70-130
2,5-Dibromotoluene-FID	105		70-130

				Serial_No:	11261816:47
Project Name:	MASON STATION	I		Lab Number:	L1847051
Project Number:	171.06108			Report Date:	11/26/18
		SAMPLE R	ESULTS		
Lab ID: Client ID: Sample Location:	L1847051-05 B303-S4 WISCASSET, ME			Date Collected: Date Received: Field Prep:	11/12/18 10:40 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 98,EPH-04-1.1 11/21/18 22:53 SC 92%	M.S. Analytical Date: M.S. Analyst:	11/26/18 05:22 DV	Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3546 11/19/18 06:13 EPH-04-1 11/21/18

Quality Control Info	rmation
Condition of sample received:	Satisfactory
Sample Temperature upon receipt:	Received on Ice
Sample Extraction method:	Extracted Per the Method

	_	•				
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough	Lab					
C9-C18 Aliphatics	ND		mg/kg	6.90		1
C19-C36 Aliphatics	ND		mg/kg	6.90		1
C11-C22 Aromatics	ND		mg/kg	6.90		1
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.90		1
Naphthalene	ND		mg/kg	0.028		1
2-Methylnaphthalene	ND		mg/kg	0.028		1
Acenaphthylene	0.057		mg/kg	0.028		1
Acenaphthene	ND		mg/kg	0.028		1
Fluorene	ND		mg/kg	0.028		1
Phenanthrene	0.074		mg/kg	0.028		1
Anthracene	0.035		mg/kg	0.028		1
Fluoranthene	0.431		mg/kg	0.028		1
Pyrene	0.513		mg/kg	0.028		1
Benzo(a)anthracene	0.227		mg/kg	0.028		1
Chrysene	0.283		mg/kg	0.028		1
Benzo(b)fluoranthene	0.249		mg/kg	0.028		1
Benzo(k)fluoranthene	0.108		mg/kg	0.028		1
Benzo(a)pyrene	0.228		mg/kg	0.028		1
Indeno(1,2,3-cd)Pyrene	0.152		mg/kg	0.028		1
Dibenzo(a,h)anthracene	0.036		mg/kg	0.028		1
Benzo(ghi)perylene	0.168		mg/kg	0.028		1

			Serial_No	0:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-05		Date Collected:	11/12/18 10:40
Client ID:	B303-S4		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

Surrogate	% Recovery	Acceptance Qualifier Criteria
Chloro-Octadecane	61	40-140
o-Terphenyl	60	40-140
2-Fluorobiphenyl	66	40-140
2-Bromonaphthalene	63	40-140
O-Terphenyl-MS	87	40-140

					Serial_No:11261816:47			
Project Name:	MASON STATION				Lab Nun	nber:	L18470	51
Project Number:	171.06108				Report [Date:	11/26/1	8
		SAMPLE	RESULTS					
Lab ID: Client ID: Sample Location: Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	L1847051-06 B304-S1 WISCASSET, ME Soil 131,VPH-18-2.1 11/17/18 17:32 MZ				Date Colle Date Rece Field Prep:	eived:	11/12/18 11/15/18 Not Speci	
Percent Solids:	97%							
Trap:	EST, Carbopack B/Carl	boxen 1000&100 ⁷	1		Analytical (Column:		TX-502.2, 53ID, 3um
		Quality Contro	ol Informatio	on				
Condition of sample rece Sample Temperature up Were samples received i Methanol ratio:	on receipt:					Satisfactor Received Yes (Cove 1.5:1		
Parameter		Result	Qualifier	Units	RL	MC	DL Diluti	ion Factor
Volatile Petroleum	Hydrocarbons - West	borough Lab						
C5-C8 Aliphatics		ND		mg/kg	4.23			1
C9-C12 Aliphatics		ND		mg/kg	4.23			1

C9-C12 Aliphatics, Adjusted		ND	mg/kg	4.23	
	Surrogate	% Recovery	Qualifier	Acceptance Criteria	
	2,5-Dibromotoluene-PID	92		70-130	

95

mg/kg

mg/kg

4.23

4.23

70-130

--

--

ND

ND

1

1

1

C9-C10 Aromatics

C5-C8 Aliphatics, Adjusted

2,5-Dibromotoluene-FID

		Serial_No:11261816:47				
Project Name:	MASON STATION	I		Lab Number:	L1847051	
Project Number:	171.06108			Report Date:	11/26/18	
		SAMPLE R	ESULTS			
Lab ID: Client ID: Sample Location:	L1847051-06 B304-S1 WISCASSET, ME			Date Collected: Date Received: Field Prep:	11/12/18 11:25 11/15/18 Not Specified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 98,EPH-04-1.1 11/21/18 23:25 SC 97%	M.S. Analytical Date: M.S. Analyst:	11/26/18 03:50 DV	Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3546 11/19/18 06:13 EPH-04-1 11/21/18	

Quality Control Information							
Condition of sample received:	Satisfactory						
Sample Temperature upon receipt:	Received on Ice						
Sample Extraction method:	Extracted Per the Method						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough L	ab					
C9-C18 Aliphatics	ND		mg/kg	6.61		1
C19-C36 Aliphatics	ND		mg/kg	6.61		1
C11-C22 Aromatics	ND		mg/kg	6.61		1
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.61		1
Naphthalene	ND		mg/kg	0.026		1
2-Methylnaphthalene	ND		mg/kg	0.026		1
Acenaphthylene	ND		mg/kg	0.026		1
Acenaphthene	ND		mg/kg	0.026		1
Fluorene	ND		mg/kg	0.026		1
Phenanthrene	ND		mg/kg	0.026		1
Anthracene	ND		mg/kg	0.026		1
Fluoranthene	ND		mg/kg	0.026		1
Pyrene	ND		mg/kg	0.026		1
Benzo(a)anthracene	ND		mg/kg	0.026		1
Chrysene	ND		mg/kg	0.026		1
Benzo(b)fluoranthene	ND		mg/kg	0.026		1
Benzo(k)fluoranthene	ND		mg/kg	0.026		1
Benzo(a)pyrene	ND		mg/kg	0.026		1
Indeno(1,2,3-cd)Pyrene	ND		mg/kg	0.026		1
Dibenzo(a,h)anthracene	ND		mg/kg	0.026		1
Benzo(ghi)perylene	ND		mg/kg	0.026		1

			Serial_No:11261816:47			
Project Name:	MASON STATION		Lab Number:	L1847051		
Project Number:	171.06108		Report Date:	11/26/18		
		SAMPLE RESULTS				
Lab ID:	L1847051-06		Date Collected:	11/12/18 11:25		
Client ID:	B304-S1		Date Received:	11/15/18		
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified		
Sample Depth:						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Chloro-Octadecane	62	40-140	
o-Terphenyl	59	40-140	
2-Fluorobiphenyl	68	40-140	
2-Bromonaphthalene	65	40-140	
D-Terphenyl-MS	88	40-140	

					Serial_No:11261816:47			
Project Name:	MASON STATION				Lab Numbe	ər:	L184705	1
Project Number:	171.06108				Report Dat	e:	11/26/18	
		SAMPLE	RESULTS					
Lab ID: Client ID: Sample Location:	L1847051-07 B304-S4 WISCASSET, ME				Date Collecte Date Receive Field Prep:	-	11/12/18 1 11/15/18 Not Specifie	-
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 131,VPH-18-2.1 11/17/18 18:03 MZ 83%							
Trap:	EST, Carbopack B/Ca	rboxen 1000&100	1		Analytical Col	umn:	Restek, RT 105m, 0.53	
		Quality Contro	ol Informatio	on				
Condition of sample rece Sample Temperature up Were samples received i Methanol ratio:	on receipt:				Re			
Parameter		Result	Qualifier	Units	RL	MDI	L Dilutio	n Factor
Volatile Petroleum	Hydrocarbons - Wes	tborough Lab						
C5-C8 Aliphatics		ND		mg/kg	5.83			1

C9-C12 Aliphatics	ND	mg/kg	5.83	
C9-C10 Aromatics	ND	mg/kg	5.83	
C5-C8 Aliphatics, Adjusted	ND	mg/kg	5.83	
C9-C12 Aliphatics, Adjusted	ND	mg/kg	5.83	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	97		70-130	
2,5-Dibromotoluene-FID	100		70-130	

		Serial_No:11261816:47				
Project Name:	MASON STATION	l		Lab Number:	L1847051	
Project Number:	171.06108			Report Date:	11/26/18	
		SAMPLE RI	ESULTS			
Lab ID: Client ID: Sample Location:	L1847051-07 B304-S4 WISCASSET, ME			Date Collected: Date Received: Field Prep:	11/12/18 11:45 11/15/18 Not Specified	
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 98,EPH-04-1.1 11/21/18 23:56 SC 83%	M.S. Analytical Date: M.S. Analyst:	11/26/18 05:53 DV	Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3546 11/19/18 06:13 EPH-04-1 11/21/18	

Quality Control Information						
Condition of sample received:	Satisfactory					
Sample Temperature upon receipt:	Received on Ice					
Sample Extraction method:	Extracted Per the Method					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough	Lab					
C9-C18 Aliphatics	ND		mg/kg	7.53		1
C19-C36 Aliphatics	22.9		mg/kg	7.53		1
C11-C22 Aromatics	11.8		mg/kg	7.53		1
C11-C22 Aromatics, Adjusted	10.5		mg/kg	7.53		1
Naphthalene	0.046		mg/kg	0.030		1
2-Methylnaphthalene	ND		mg/kg	0.030		1
Acenaphthylene	ND		mg/kg	0.030		1
Acenaphthene	ND		mg/kg	0.030		1
Fluorene	ND		mg/kg	0.030		1
Phenanthrene	0.120		mg/kg	0.030		1
Anthracene	0.034		mg/kg	0.030		1
Fluoranthene	0.190		mg/kg	0.030		1
Pyrene	0.184		mg/kg	0.030		1
Benzo(a)anthracene	0.093		mg/kg	0.030		1
Chrysene	0.133		mg/kg	0.030		1
Benzo(b)fluoranthene	0.132		mg/kg	0.030		1
Benzo(k)fluoranthene	0.057		mg/kg	0.030		1
Benzo(a)pyrene	0.103		mg/kg	0.030		1
Indeno(1,2,3-cd)Pyrene	0.075		mg/kg	0.030		1
Dibenzo(a,h)anthracene	ND		mg/kg	0.030		1
Benzo(ghi)perylene	0.075		mg/kg	0.030		1

			Serial_No:11261816:47		
Project Name:	MASON STATION		Lab Number:	L1847051	
Project Number:	171.06108		Report Date:	11/26/18	
		SAMPLE RESULTS			
Lab ID:	L1847051-07		Date Collected:	11/12/18 11:45	
Client ID:	B304-S4		Date Received:	11/15/18	
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified	
Sample Depth:					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Chloro-Octadecane	65		40-140	
o-Terphenyl	64		40-140	
2-Fluorobiphenyl	69		40-140	
2-Bromonaphthalene	65		40-140	
D-Terphenyl-MS	75		40-140	

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

Method Blank Analysis Batch Quality Control

Analytical Method:131,VPH-18-2.1Analytical Date:11/17/18 10:51Analyst:MZ

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Petroleum Hydrocarbons -	Westborou	gh Lab for s	ample(s):	01-07	Batch:	WG1180568-4
C5-C8 Aliphatics	ND		mg/kg	2.50		
C9-C12 Aliphatics	ND		mg/kg	2.50		
C9-C10 Aromatics	ND		mg/kg	2.50		
C5-C8 Aliphatics, Adjusted	ND		mg/kg	2.50		
C9-C12 Aliphatics, Adjusted	ND		mg/kg	2.50		

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	98		70-130	
2,5-Dibromotoluene-FID	101		70-130	

Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		Method Blank Analysis Batch Quality Control		

Analytical Method:	98,EPH-04-1.1			Extraction Method:	EPA 3546
Analytical Date:	11/21/18 19:14	M.S. Analytical Date:	11/26/18 01:47	Extraction Date:	11/19/18 06:13
Analyst:	SC	M.S. Analyst:	DV	Cleanup Method:	EPH-04-1
				Cleanup Date:	11/21/18

arameter	Result C	Qualifier	Unit	6	RL	MDL	
PH w/MS Targets - Westborou	ugh Lab for sample	e(s): 01	-07	Batch:	WG118	30803-1	
C9-C18 Aliphatics	ND		mg/k	g	6.45		
C19-C36 Aliphatics	ND		mg/k	g	6.45		
C11-C22 Aromatics	ND		mg/k	g	6.45		
C11-C22 Aromatics, Adjusted	ND		mg/k	g	6.45		
Naphthalene	ND		mg/k	g	0.026		
2-Methylnaphthalene	ND		mg/k	g	0.026		
Acenaphthylene	ND		mg/k	g	0.026		
Acenaphthene	ND		mg/k	g	0.026		
Fluorene	ND		mg/k	g	0.026		
Phenanthrene	ND		mg/k	g	0.026		
Anthracene	ND		mg/k	g	0.026		
Fluoranthene	ND		mg/k	g	0.026		
Pyrene	ND		mg/k	g	0.026		
Benzo(a)anthracene	ND		mg/k	g	0.026		
Chrysene	ND		mg/k	g	0.026		
Benzo(b)fluoranthene	ND		mg/k	g	0.026		
Benzo(k)fluoranthene	ND		mg/k	g	0.026		
Benzo(a)pyrene	ND		mg/k	g	0.026		
Indeno(1,2,3-cd)Pyrene	ND		mg/k	g	0.026		
Dibenzo(a,h)anthracene	ND		mg/k	g	0.026		
Benzo(ghi)perylene	ND		mg/k	g	0.026		

Project Name: Project Number:	MASON STATION 171.06108		Lab Number: Report Date:	L1847051 11/26/18
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	98,EPH-04-1.1 11/21/18 19:14 SC	11/26/18 01:47 DV	Extraction Method: Extraction Date: Cleanup Method: Cleanup Date:	EPA 3546 11/19/18 06:13 EPH-04-1 11/21/18

Parameter	Result	Qualifier	Units	RL	MDL
PH w/MS Targets - Westboroug	h Lab for sa	mple(s): 01	-07 B	atch: WG1180	803-1

Surrogate	%Recovery Qua	Acceptance lifier Criteria
Chloro-Octadecane	72	40-140
o-Terphenyl	83	40-140
2-Fluorobiphenyl	81	40-140
2-Bromonaphthalene	78	40-140
O-Terphenyl-MS	79	40-140

Project Number: 171.06108 Lab Number: L1847051 Report Date: 11/26/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery		covery mits RPD	Qual	RPD Limits
/olatile Petroleum Hydrocarbons - Westborc	ough Lab Associ	ated sample(s)	: 01-07 Batch	n: WG1180568-2	WG1180568-3		
C5-C8 Aliphatics	109		110	70	-130 1		25
C9-C12 Aliphatics	113		115	70	-130 2		25
C9-C10 Aromatics	104		106	70	-130 2		25
Benzene	100		100	70	-130 0		25
Toluene	99		100	70	-130 1		25
Ethylbenzene	103		104	70	-130 1		25
p/m-Xylene	103		103	70	-130 0		25
o-Xylene	100		101	70	-130 1		25
Methyl tert butyl ether	104		103	70	-130 1		25
Naphthalene	104		101	70	-130 3		25
1,2,4-Trimethylbenzene	104		105	70	-130 1		25
Pentane	104		105	70	-130 1		25
2-Methylpentane	115		115	70	-130 0		25
2,2,4-Trimethylpentane	109		110	70	-130 1		25
n-Nonane	110		112	30	-130 2		25
n-Decane	116		118	70	-130 2		25
n-Butylcyclohexane	114		116	70	-130 2		25

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
2,5-Dibromotoluene-PID 2,5-Dibromotoluene-FID	106 108		106 108		70-130 70-130

Project Number: 171.06108 Lab Number: L1847051 Report Date: 11/26/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
EPH w/MS Targets - Westborough Lab Asso	ociated sample(s)	: 01-07 E	atch: WG11808	03-2 WG11	80803-3			
C9-C18 Aliphatics	73		72		40-140	1		25
C19-C36 Aliphatics	80		82		40-140	2		25
C11-C22 Aromatics	90		94		40-140	4		25
Naphthalene	79		80		40-140	1		25
2-Methylnaphthalene	69		70		40-140	1		25
Acenaphthylene	80		82		40-140	2		25
Acenaphthene	90		92		40-140	2		25
Fluorene	92		96		40-140	4		25
Phenanthrene	90		94		40-140	4		25
Anthracene	94		100		40-140	6		25
Fluoranthene	101		107		40-140	6		25
Pyrene	105		111		40-140	6		25
Benzo(a)anthracene	97		103		40-140	6		25
Chrysene	110		117		40-140	6		25
Benzo(b)fluoranthene	98		104		40-140	6		25
Benzo(k)fluoranthene	108		112		40-140	4		25
Benzo(a)pyrene	100		106		40-140	6		25
Indeno(1,2,3-cd)Pyrene	101		107		40-140	6		25
Dibenzo(a,h)anthracene	103		111		40-140	7		25
Benzo(ghi)perylene	97		106		40-140	9		25
Nonane (C9)	62		60		30-140	3		25
Decane (C10)	68		66		40-140	3		25
Dodecane (C12)	70		68		40-140	3		25

Project Number: 171.06108 Lab Number: L1847051 Report Date: 11/26/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
EPH w/MS Targets - Westborough Lab	Associated sample(s)	: 01-07	Batch: WG11808	803-2 WG1	180803-3				
Tetradecane (C14)	70		69		40-140	1		25	
Hexadecane (C16)	72		73		40-140	1		25	
Octadecane (C18)	78		80		40-140	3		25	
Nonadecane (C19)	78		80		40-140	3		25	
Eicosane (C20)	80		82		40-140	2		25	
Docosane (C22)	80		82		40-140	2		25	
Tetracosane (C24)	80		82		40-140	2		25	
Hexacosane (C26)	80		81		40-140	1		25	
Octacosane (C28)	79		81		40-140	3		25	
Triacontane (C30)	79		80		40-140	1		25	
Hexatriacontane (C36)	80		81		40-140	1		25	

Surrogate	LCS %Recovery Qu	LCSD Jal %Recovery Qua	Acceptance Criteria
Gunogate	/intecovery Q		
Chloro-Octadecane	74	74	40-140
o-Terphenyl	89	92	40-140
2-Fluorobiphenyl	85	87	40-140
2-Bromonaphthalene	80	82	40-140
O-Terphenyl-MS	104	108	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

PCBS

			Serial_No	0:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-01		Date Collected:	11/12/18 09:00
Client ID:	B301-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	1: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	11/19/18 05:41
Analytical Date:	11/21/18 22:34		Cleanup Method:	EPA 3665A
Analyst:	WR		Cleanup Date:	11/19/18
Percent Solids:	82%		Cleanup Method:	EPA 3660B
			Cleanup Date:	11/19/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	Vestborough Lab						
Aroclor 1016	ND		ug/kg	39.6		1	A
Aroclor 1221	ND		ug/kg	39.6		1	А
Aroclor 1232	ND		ug/kg	39.6		1	А
Aroclor 1242	ND		ug/kg	39.6		1	А
Aroclor 1248	ND		ug/kg	39.6		1	А
Aroclor 1254	ND		ug/kg	39.6		1	А
Aroclor 1260	ND		ug/kg	39.6		1	В
Aroclor 1262	ND		ug/kg	39.6		1	А
Aroclor 1268	ND		ug/kg	39.6		1	А
PCBs, Total	ND		ug/kg	39.6		1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	86		30-150	В
Decachlorobiphenyl	77		30-150	В
2,4,5,6-Tetrachloro-m-xylene	91		30-150	А
Decachlorobiphenyl	74		30-150	А

			Serial_No	0:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-02		Date Collected:	11/12/18 09:20
Client ID:	B301-S4		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	l: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	11/19/18 05:41
Analytical Date:	11/21/18 22:46		Cleanup Method:	EPA 3665A
Analyst:	WR		Cleanup Date:	11/19/18
Percent Solids:	87%		Cleanup Method:	EPA 3660B
			Cleanup Date:	11/19/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	estborough Lab						
Aroclor 1016	ND		ug/kg	37.0		1	A
Aroclor 1221	ND		ug/kg	37.0		1	А
Aroclor 1232	ND		ug/kg	37.0		1	А
Aroclor 1242	ND		ug/kg	37.0		1	А
Aroclor 1248	ND		ug/kg	37.0		1	А
Aroclor 1254	ND		ug/kg	37.0		1	А
Aroclor 1260	ND		ug/kg	37.0		1	А
Aroclor 1262	ND		ug/kg	37.0		1	А
Aroclor 1268	ND		ug/kg	37.0		1	А
PCBs, Total	ND		ug/kg	37.0		1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	89		30-150	В
Decachlorobiphenyl	82		30-150	В
2,4,5,6-Tetrachloro-m-xylene	88		30-150	А
Decachlorobiphenyl	79		30-150	А

			Serial_No	0:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-03		Date Collected:	11/12/18 09:45
Client ID:	B302-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	l: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	11/19/18 05:41
Analytical Date:	11/21/18 22:58		Cleanup Method:	EPA 3665A
Analyst:	WR		Cleanup Date:	11/19/18
Percent Solids:	88%		Cleanup Method:	EPA 3660B
			Cleanup Date:	11/19/18

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab									
			00.0						
Aroclor 1016	ND	ug/kg	36.2		1	A			
Aroclor 1221	ND	ug/kg	36.2		1	А			
Aroclor 1232	ND	ug/kg	36.2		1	А			
Aroclor 1242	ND	ug/kg	36.2		1	А			
Aroclor 1248	ND	ug/kg	36.2		1	А			
Aroclor 1254	ND	ug/kg	36.2		1	А			
Aroclor 1260	ND	ug/kg	36.2		1	А			
Aroclor 1262	ND	ug/kg	36.2		1	А			
Aroclor 1268	ND	ug/kg	36.2		1	А			
PCBs, Total	ND	ug/kg	36.2		1	А			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	80		30-150	В
Decachlorobiphenyl	70		30-150	В
2,4,5,6-Tetrachloro-m-xylene	79		30-150	А
Decachlorobiphenyl	71		30-150	А

			Serial_No	0:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-04		Date Collected:	11/12/18 10:25
Client ID:	B303-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	l: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	11/19/18 05:41
Analytical Date:	11/21/18 23:11		Cleanup Method:	EPA 3665A
Analyst:	WR		Cleanup Date:	11/19/18
Percent Solids:	69%		Cleanup Method:	EPA 3660B
			Cleanup Date:	11/19/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
				47.7					
Aroclor 1016	ND		ug/kg	47.7		1	A		
Aroclor 1221	ND		ug/kg	47.7		1	А		
Aroclor 1232	ND		ug/kg	47.7		1	А		
Aroclor 1242	ND		ug/kg	47.7		1	А		
Aroclor 1248	ND		ug/kg	47.7		1	А		
Aroclor 1254	ND		ug/kg	47.7		1	А		
Aroclor 1260	ND		ug/kg	47.7		1	А		
Aroclor 1262	ND		ug/kg	47.7		1	А		
Aroclor 1268	ND		ug/kg	47.7		1	А		
PCBs, Total	ND		ug/kg	47.7		1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	93		30-150	В
Decachlorobiphenyl	84		30-150	В
2,4,5,6-Tetrachloro-m-xylene	94		30-150	А
Decachlorobiphenyl	80		30-150	А

			Serial_No	:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-05		Date Collected:	11/12/18 10:40
Client ID:	B303-S4		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	l: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	11/19/18 05:41
Analytical Date:	11/21/18 23:24		Cleanup Method:	EPA 3665A
Analyst:	WR		Cleanup Date:	11/19/18
Percent Solids:	92%		Cleanup Method:	EPA 3660B
			Cleanup Date:	11/19/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug/kg	34.4		1	А		
Aroclor 1221	ND		ug/kg	34.4		1	A		
Aroclor 1232	ND		ug/kg	34.4		1	А		
Aroclor 1242	ND		ug/kg	34.4		1	А		
Aroclor 1248	ND		ug/kg	34.4		1	А		
Aroclor 1254	ND		ug/kg	34.4		1	А		
Aroclor 1260	ND		ug/kg	34.4		1	А		
Aroclor 1262	ND		ug/kg	34.4		1	А		
Aroclor 1268	ND		ug/kg	34.4		1	А		
PCBs, Total	ND		ug/kg	34.4		1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	78		30-150	В
Decachlorobiphenyl	53		30-150	В
2,4,5,6-Tetrachloro-m-xylene	79		30-150	А
Decachlorobiphenyl	54		30-150	А

			Serial_No	:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-06		Date Collected:	11/12/18 11:25
Client ID:	B304-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	11/19/18 05:41
Analytical Date:	11/21/18 23:37		Cleanup Method:	EPA 3665A
Analyst:	WR		Cleanup Date:	11/19/18
Percent Solids:	97%		Cleanup Method:	EPA 3660B
			Cleanup Date:	11/19/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug/kg	33.6		1	А		
Aroclor 1221	ND		ug/kg	33.6		1	A		
Aroclor 1232	ND		ug/kg	33.6		1	А		
Aroclor 1242	ND		ug/kg	33.6		1	А		
Aroclor 1248	ND		ug/kg	33.6		1	А		
Aroclor 1254	ND		ug/kg	33.6		1	А		
Aroclor 1260	ND		ug/kg	33.6		1	А		
Aroclor 1262	ND		ug/kg	33.6		1	А		
Aroclor 1268	ND		ug/kg	33.6		1	А		
PCBs, Total	ND		ug/kg	33.6		1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	89		30-150	В
Decachlorobiphenyl	81		30-150	В
2,4,5,6-Tetrachloro-m-xylene	90		30-150	А
Decachlorobiphenyl	84		30-150	А

			Serial_No	:11261816:47
Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-07		Date Collected:	11/12/18 11:45
Client ID:	B304-S4		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	11/19/18 05:41
Analytical Date:	11/21/18 23:50		Cleanup Method:	EPA 3665A
Analyst:	WR		Cleanup Date:	11/19/18
Percent Solids:	83%		Cleanup Method:	EPA 3660B
			Cleanup Date:	11/19/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	estborough Lab						
Aroclor 1016	ND		ug/kg	39.3		1	А
Aroclor 1221	ND		ug/kg	39.3		1	А
Aroclor 1232	ND		ug/kg	39.3		1	А
Aroclor 1242	ND		ug/kg	39.3		1	А
Aroclor 1248	ND		ug/kg	39.3		1	А
Aroclor 1254	ND		ug/kg	39.3		1	А
Aroclor 1260	ND		ug/kg	39.3		1	А
Aroclor 1262	ND		ug/kg	39.3		1	А
Aroclor 1268	ND		ug/kg	39.3		1	А
PCBs, Total	ND		ug/kg	39.3		1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	88		30-150	В
Decachlorobiphenyl	75		30-150	В
2,4,5,6-Tetrachloro-m-xylene	88		30-150	А
Decachlorobiphenyl	76		30-150	А

Project Name:	MASON STATION	Lab Number:	L1847051
Project Number:	171.06108	Report Date:	11/26/18

Method Blank Analysis Batch Quality Control

Analytical Method:
Analytical Date:
Analyst:

1,8082A 11/22/18 00:42 WR Extraction Method:EPA 3546Extraction Date:11/19/18 05:41Cleanup Method:EPA 3665ACleanup Date:11/19/18Cleanup Method:EPA 3660BCleanup Date:11/19/18

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC	- Westboroug	h Lab for s	ample(s):	01-07	Batch:	WG118	30796-1
Aroclor 1016	ND		ug/kg	32.8			А
Aroclor 1221	ND		ug/kg	32.8			А
Aroclor 1232	ND		ug/kg	32.8			A
Aroclor 1242	ND		ug/kg	32.8			A
Aroclor 1248	ND		ug/kg	32.8			A
Aroclor 1254	ND		ug/kg	32.8			А
Aroclor 1260	ND		ug/kg	32.8			A
Aroclor 1262	ND		ug/kg	32.8			А
Aroclor 1268	ND		ug/kg	32.8			А
PCBs, Total	ND		ug/kg	32.8			А

		Accept	tance
Surrogate	%Recovery Qua	lifier Crite	eria Column
2,4,5,6-Tetrachloro-m-xylene	90	30-1	50 B
Decachlorobiphenyl	96	30-1	50 B
2,4,5,6-Tetrachloro-m-xylene	92	30-1	50 A
Decachlorobiphenyl	73	30-1	50 A

Project Name: MASON STATION

Project Number: 171.06108

 Lab Number:
 L1847051

 Report Date:
 11/26/18

	LCS		LCSD %Recovery				RPD		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westh	oorough Lab Associa	ted sample(s)	: 01-07 Batch	: WG11807	96-2 WG118079	6-3			
	..								
Aroclor 1016	79		80		40-140	1		50	А
Aroclor 1260	71		74		40-140	4		50	А

	LCS	LCSD		Acceptance	
Surrogate	%Recovery	Qual %Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	88	84		30-150	В
Decachlorobiphenyl	76	75		30-150	В
2,4,5,6-Tetrachloro-m-xylene	90	88		30-150	А
Decachlorobiphenyl	76	75		30-150	А

METALS

Serial_No:11261816:47

Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-01		Date Collected:	11/12/18 09:00
Client ID:	B301-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix: Percent Solids:					Dilution	Date	Date	Prep	Analytical		
Parameter Result	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	11.3		mg/kg	0.455		1	11/20/18 18:57	7 11/21/18 19:38	EPA 3050B	1,6010D	AB
Barium, Total	66.5		mg/kg	0.455		1	11/20/18 18:57	7 11/21/18 19:38	EPA 3050B	1,6010D	AB
Cadmium, Total	ND		mg/kg	0.455		1	11/20/18 18:57	7 11/21/18 19:38	EPA 3050B	1,6010D	AB
Chromium, Total	36.4		mg/kg	0.455		1	11/20/18 18:57	7 11/21/18 19:38	EPA 3050B	1,6010D	AB
Lead, Total	8.46		mg/kg	2.28		1	11/20/18 18:57	7 11/21/18 19:38	EPA 3050B	1,6010D	AB
Mercury, Total	ND		mg/kg	0.076		1	11/16/18 09:50) 11/16/18 22:39	EPA 7471B	1,7471B	EA
Selenium, Total	ND		mg/kg	0.910		1	11/20/18 18:57	7 11/21/18 19:38	EPA 3050B	1,6010D	AB
Silver, Total	ND		mg/kg	0.455		1	11/20/18 18:57	7 11/21/18 19:38	EPA 3050B	1,6010D	AB

Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-02		Date Collected:	11/12/18 09:20
Client ID:	B301-S4		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 87%

87%	0				Dilution	Date	Date	Prep	Analytical	
Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
sfield Lab										
16.9		mg/kg	0.447		1	11/20/18 18:57	7 11/21/18 19:42	EPA 3050B	1,6010D	AB
25.6		mg/kg	0.447		1	11/20/18 18:57	7 11/21/18 19:42	EPA 3050B	1,6010D	AB
ND		mg/kg	0.447		1	11/20/18 18:57	7 11/21/18 19:42	EPA 3050B	1,6010D	AB
10.4		mg/kg	0.447		1	11/20/18 18:57	7 11/21/18 19:42	EPA 3050B	1,6010D	AB
2.57		mg/kg	2.23		1	11/20/18 18:57	7 11/21/18 19:42	EPA 3050B	1,6010D	AB
ND		mg/kg	0.072		1	11/16/18 09:50) 11/16/18 22:41	EPA 7471B	1,7471B	EA
ND		mg/kg	0.893		1	11/20/18 18:57	7 11/21/18 19:42	EPA 3050B	1,6010D	AB
ND		mg/kg	0.447		1	11/20/18 18:57	7 11/21/18 19:42	EPA 3050B	1,6010D	AB
	sfield Lab 16.9 25.6 ND 10.4 2.57 ND ND	ResultQualifierafield Lab16.925.6ND10.42.57NDND	ResultQualifierUnitssfield Labmg/kg16.9mg/kg25.6mg/kgNDmg/kg10.4mg/kg2.57mg/kgNDmg/kgNDmg/kgNDmg/kg	Result Qualifier Units RL sfield Lab	Result Qualifier Units RL MDL sfield Lab	Result Qualifier Units RL MDL Dilution Factor sfield Lab mg/kg 0.447 1 16.9 mg/kg 0.447 1 25.6 mg/kg 0.447 1 ND mg/kg 0.447 1 10.4 mg/kg 0.447 1 2.57 mg/kg 0.447 1 ND mg/kg 0.072 1 ND mg/kg 0.893 1	Result Qualifier Units RL MDL Dilution Factor Date Prepared 16.9 mg/kg 0.447 1 11/20/18 18:57 25.6 mg/kg 0.447 1 11/20/18 18:57 ND mg/kg 0.447 1 11/20/18 18:57 ND mg/kg 0.447 1 11/20/18 18:57 10.4 mg/kg 0.447 1 11/20/18 18:57 2.57 mg/kg 0.23 1 11/20/18 18:57 ND mg/kg 0.072 1 11/20/18 18:57 ND mg/kg 0.893 1 11/20/18 18:57	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed sfield Lab 16.9 mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 25.6 mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 ND mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 10.4 mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 2.57 mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 ND mg/kg 0.072 1 11/20/18 18:57 11/21/18 19:42 ND mg/kg 0.072 1 11/20/18 18:57 11/21/18 19:42 ND mg/kg 0.072 1 11/16/18 09:50 11/16/18 22:41 ND mg/kg 0.893 1 11/20/18 18:57 11/21/18 19:42	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed Prep Method sfield Lab mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 EPA 3050B 25.6 mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 EPA 3050B ND mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 EPA 3050B ND mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 EPA 3050B 10.4 mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 EPA 3050B 2.57 mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 EPA 3050B ND mg/kg 0.072 1 11/20/18 18:57 11/21/18 19:42 EPA 7471B ND mg/kg 0.893 1 11/20/18 18:57 11/21/18 19:42 EPA 3050B	Result Qualifier Units RL MDL Date Factor Date Prepared Date Analyzed Prep Method Analytical Method sfield Lab mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 EPA 3050B 1,6010D 25.6 mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 EPA 3050B 1,6010D ND mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 EPA 3050B 1,6010D ND mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 EPA 3050B 1,6010D 10.4 mg/kg 0.447 1 11/20/18 18:57 11/21/18 19:42 EPA 3050B 1,6010D 2.57 mg/kg 0.23 1 11/20/18 18:57 11/21/18 19:42 EPA 3050B 1,6010D ND mg/kg 0.072 1 11/20/18 18:57 11/21/18 19:42 EPA 7471B 1,7471B ND mg/kg 0.893 1 11/20/18 18:57 11/21/18 19:42 EPA 3050

Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-03		Date Collected:	11/12/18 09:45
Client ID:	B302-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix: Percent Solids:	Soil 88%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	7.32		mg/kg	0.434		1	11/20/18 18:57	11/21/18 19:47	EPA 3050B	1,6010D	AB
Barium, Total	38.8		mg/kg	0.434		1	11/20/18 18:57	11/21/18 19:47	EPA 3050B	1,6010D	AB
Cadmium, Total	ND		mg/kg	0.434		1	11/20/18 18:57	11/21/18 19:47	EPA 3050B	1,6010D	AB
Chromium, Total	23.3		mg/kg	0.434		1	11/20/18 18:57	11/21/18 19:47	EPA 3050B	1,6010D	AB
Lead, Total	9.04		mg/kg	2.17		1	11/20/18 18:57	11/21/18 19:47	EPA 3050B	1,6010D	AB
Mercury, Total	ND		mg/kg	0.072		1	11/16/18 09:50	11/16/18 22:43	EPA 7471B	1,7471B	EA
Selenium, Total	ND		mg/kg	0.867		1	11/20/18 18:57	11/21/18 19:47	EPA 3050B	1,6010D	AB
Silver, Total	ND		mg/kg	0.434		1	11/20/18 18:57	11/21/18 19:47	EPA 3050B	1,6010D	AB

Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-04		Date Collected:	11/12/18 10:25
Client ID:	B303-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix: Percent Solids:	Soil 69%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	9.68		mg/kg	0.569		1	11/20/18 18:57	11/21/18 19:52	EPA 3050B	1,6010D	AB
Barium, Total	49.4		mg/kg	0.569		1	11/20/18 18:57	11/21/18 19:52	EPA 3050B	1,6010D	AB
Cadmium, Total	ND		mg/kg	0.569		1	11/20/18 18:57	11/21/18 19:52	EPA 3050B	1,6010D	AB
Chromium, Total	20.8		mg/kg	0.569		1	11/20/18 18:57	11/21/18 19:52	EPA 3050B	1,6010D	AB
Lead, Total	8.32		mg/kg	2.84		1	11/20/18 18:57	11/21/18 19:52	EPA 3050B	1,6010D	AB
Mercury, Total	ND		mg/kg	0.090		1	11/16/18 09:50	11/16/18 22:45	EPA 7471B	1,7471B	EA
Selenium, Total	ND		mg/kg	1.14		1	11/20/18 18:57	11/21/18 19:52	EPA 3050B	1,6010D	AB
Silver, Total	ND		mg/kg	0.569		1	11/20/18 18:57	11/21/18 19:52	EPA 3050B	1,6010D	AB

Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-05		Date Collected:	11/12/18 10:40
Client ID:	B303-S4		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 92%

Percent Solids:	92%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Total Metals - Man	sfield Lab										
Arsenic, Total	5.42		mg/kg	0.424		1	11/20/18 18:57	11/21/18 19:56	EPA 3050B	1,6010D	AB
Barium, Total	24.9		mg/kg	0.424		1	11/20/18 18:57	11/21/18 19:56	EPA 3050B	1,6010D	AB
Cadmium, Total	ND		mg/kg	0.424		1	11/20/18 18:57	11/21/18 19:56	EPA 3050B	1,6010D	AB
Chromium, Total	12.0		mg/kg	0.424		1	11/20/18 18:57	11/21/18 19:56	EPA 3050B	1,6010D	AB
Lead, Total	4.86		mg/kg	2.12		1	11/20/18 18:57	11/21/18 19:56	EPA 3050B	1,6010D	AB
Mercury, Total	ND		mg/kg	0.068		1	11/16/18 09:50	11/16/18 22:46	EPA 7471B	1,7471B	EA
Selenium, Total	ND		mg/kg	0.847		1	11/20/18 18:57	11/21/18 19:56	EPA 3050B	1,6010D	AB
Silver, Total	ND		mg/kg	0.424		1	11/20/18 18:57	11/21/18 19:56	EPA 3050B	1,6010D	AB

Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-06		Date Collected:	11/12/18 11:25
Client ID:	B304-S1		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix: Percent Solids:	Soil 97%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Feeter		Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	7.56		mg/kg	0.404		1	11/20/18 18:57	11/21/18 20:19	EPA 3050B	1,6010D	AB
Barium, Total	39.9		mg/kg	0.404		1	11/20/18 18:57	11/26/18 12:46	EPA 3050B	1,6010D	AB
Cadmium, Total	ND		mg/kg	0.404		1	11/20/18 18:57	11/21/18 20:19	EPA 3050B	1,6010D	AB
Chromium, Total	16.8		mg/kg	0.404		1	11/20/18 18:57	11/21/18 20:19	EPA 3050B	1,6010D	AB
Lead, Total	4.26		mg/kg	2.02		1	11/20/18 18:57	11/21/18 20:19	EPA 3050B	1,6010D	AB
Mercury, Total	ND		mg/kg	0.065		1	11/16/18 09:50	11/16/18 22:48	EPA 7471B	1,7471B	EA
Selenium, Total	ND		mg/kg	0.808		1	11/20/18 18:57	11/21/18 20:19	EPA 3050B	1,6010D	AB
Silver, Total	ND		mg/kg	0.404		1	11/20/18 18:57	11/21/18 20:19	EPA 3050B	1,6010D	AB

Project Name:	MASON STATION		Lab Number:	L1847051
Project Number:	171.06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID:	L1847051-07		Date Collected:	11/12/18 11:45
Client ID:	B304-S4		Date Received:	11/15/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 83%

83%					Dilution	Date	Date	Prep	Analytical	
Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
sfield Lab										
9.53		mg/kg	0.479		1	11/20/18 18:57	7 11/21/18 20:24	EPA 3050B	1,6010D	AB
71.4		mg/kg	0.479		1	11/20/18 18:57	7 11/26/18 12:51	EPA 3050B	1,6010D	AB
ND		mg/kg	0.479		1	11/20/18 18:57	7 11/21/18 20:24	EPA 3050B	1,6010D	AB
34.2		mg/kg	0.479		1	11/20/18 18:57	7 11/21/18 20:24	EPA 3050B	1,6010D	AB
17.6		mg/kg	2.40		1	11/20/18 18:57	7 11/21/18 20:24	EPA 3050B	1,6010D	AB
ND		mg/kg	0.077		1	11/16/18 09:50) 11/16/18 22:50	EPA 7471B	1,7471B	EA
ND		mg/kg	0.958		1	11/20/18 18:57	7 11/21/18 20:24	EPA 3050B	1,6010D	AB
ND		mg/kg	0.479		1	11/20/18 18:57	7 11/21/18 20:24	EPA 3050B	1,6010D	AB
	sfield Lab 9.53 71.4 ND 34.2 17.6 ND ND	Result Qualifier 9.53 - 71.4 - ND - 34.2 - 17.6 - ND - ND -	ResultQualifierUnitsSfield Lab9.53mg/kg71.4mg/kgNDmg/kg34.2mg/kg17.6mg/kgNDmg/kgNDmg/kgNDmg/kg	Result Qualifier Units RL sfield Lab	Result Qualifier Units RL MDL sfield Lab	Result Qualifier Units RL MDL Dilution Factor sfield Lab 9.53 mg/kg 0.479 1 71.4 mg/kg 0.479 1 ND mg/kg 0.479 1 34.2 mg/kg 0.479 1 17.6 mg/kg 0.479 1 ND mg/kg 0.479 1 17.6 mg/kg 0.479 1 ND mg/kg 0.977 1 ND mg/kg 0.958 1	Result Qualifier Units RL MDL Dilution Factor Date Prepared 9.53 mg/kg 0.479 1 11/20/18 18:57 71.4 mg/kg 0.479 1 11/20/18 18:57 ND mg/kg 0.479 1 11/20/18 18:57 34.2 mg/kg 0.479 1 11/20/18 18:57 17.6 mg/kg 2.40 1 11/20/18 18:57 ND mg/kg 0.077 1 11/20/18 18:57 ND mg/kg 0.958 1 11/20/18 18:57	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed 9.53 mg/kg 0.479 1 11/20/18 18:57 11/21/18 20:24 71.4 mg/kg 0.479 1 11/20/18 18:57 11/26/18 12:51 ND mg/kg 0.479 1 11/20/18 18:57 11/21/18 20:24 34.2 mg/kg 0.479 1 11/20/18 18:57 11/21/18 20:24 34.2 mg/kg 0.479 1 11/20/18 18:57 11/21/18 20:24 17.6 mg/kg 0.479 1 11/20/18 18:57 11/21/18 20:24 ND mg/kg 0.077 1 11/20/18 18:57 11/21/18 20:24 ND mg/kg 0.077 1 11/20/18 18:57 11/21/18 20:24 ND mg/kg 0.958 1 11/20/18 18:57 11/21/18 20:24	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed Prep Method 9.53 mg/kg 0.479 1 11/20/18 18:57 11/21/18 20:24 EPA 3050B 71.4 mg/kg 0.479 1 11/20/18 18:57 11/21/18 20:24 EPA 3050B ND mg/kg 0.479 1 11/20/18 18:57 11/21/18 20:24 EPA 3050B ND mg/kg 0.479 1 11/20/18 18:57 11/21/18 20:24 EPA 3050B 34.2 mg/kg 0.479 1 11/20/18 18:57 11/21/18 20:24 EPA 3050B 17.6 mg/kg 0.479 1 11/20/18 18:57 11/21/18 20:24 EPA 3050B ND mg/kg 0.479 1 11/20/18 18:57 11/21/18 20:24 EPA 3050B ND mg/kg 0.077 1 11/20/18 18:57 11/21/18 20:24 EPA 3050B ND mg/kg 0.958 1 11/20/18 18:57 11/21/18 20:24 EPA 3050B </td <td>ResultQualifierUnitsRLMDLDilution FactorDate PreparedDate AnalyzedPrep MethodAnalytical Method9.53mg/kg0.479111/20/18 18:57 11/21/18 20:24EPA 3050B1,6010D71.4mg/kg0.479111/20/18 18:57 11/21/18 20:24EPA 3050B1,6010DNDmg/kg0.479111/20/18 18:57 11/21/18 20:24EPA 3050B1,6010DNDmg/kg0.479111/20/18 18:57 11/21/18 20:24EPA 3050B1,6010D34.2mg/kg0.479111/20/18 18:57 11/21/18 20:24EPA 3050B1,6010D17.6mg/kg2.40111/20/18 18:57 11/21/18 20:24EPA 3050B1,6010DNDmg/kg0.077111/16/18 09:50 11/16/18 22:50EPA 7471B1,7471BNDmg/kg0.958111/20/18 18:57 11/21/18 20:24EPA 3050B1,6010D</td>	ResultQualifierUnitsRLMDLDilution FactorDate PreparedDate AnalyzedPrep MethodAnalytical Method9.53mg/kg0.479111/20/18 18:57 11/21/18 20:24EPA 3050B1,6010D71.4mg/kg0.479111/20/18 18:57 11/21/18 20:24EPA 3050B1,6010DNDmg/kg0.479111/20/18 18:57 11/21/18 20:24EPA 3050B1,6010DNDmg/kg0.479111/20/18 18:57 11/21/18 20:24EPA 3050B1,6010D34.2mg/kg0.479111/20/18 18:57 11/21/18 20:24EPA 3050B1,6010D17.6mg/kg2.40111/20/18 18:57 11/21/18 20:24EPA 3050B1,6010DNDmg/kg0.077111/16/18 09:50 11/16/18 22:50EPA 7471B1,7471BNDmg/kg0.958111/20/18 18:57 11/21/18 20:24EPA 3050B1,6010D

Project Name:MASON STATIONProject Number:171.06108

 Lab Number:
 L1847051

 Report Date:
 11/26/18

Method Blank Analysis Batch Quality Control

Parameter R	Result Qualifier	Units	RL M	_	ilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield La	ab for sample(s): 0	1-07 Bat	ch: WG1	180037	'-1				
Mercury, Total	ND	mg/kg	0.083		1	11/16/18 09:35	11/16/18 22:15	1,7471B	EA

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	eld Lab for sample(s):	01-07 B	atch: W	G11815	61-1				
Arsenic, Total	ND	mg/kg	0.400		1	11/20/18 18:57	11/21/18 09:29	1,6010D	LC
Barium, Total	ND	mg/kg	0.400		1	11/20/18 18:57	11/21/18 09:29	1,6010D	LC
Cadmium, Total	ND	mg/kg	0.400		1	11/20/18 18:57	11/21/18 09:29	1,6010D	LC
Chromium, Total	ND	mg/kg	0.400		1	11/20/18 18:57	11/21/18 09:29	1,6010D	LC
Lead, Total	ND	mg/kg	2.00		1	11/20/18 18:57	11/21/18 09:29	1,6010D	LC
Selenium, Total	ND	mg/kg	0.800		1	11/20/18 18:57	11/21/18 09:29	1,6010D	LC
Silver, Total	ND	mg/kg	0.400		1	11/20/18 18:57	11/21/18 09:29	1,6010D	LC

Prep Information

Digestion Method: EPA 3050B

Lab Control Sample Analysis Batch Quality Control

Project Name: MASON STATION Project Number: 171.06108

Lab Number: L1847051 Report Date: 11/26/18

Parameter	LCS %Recovery	/ Qual	LCSD %Recove	Y Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-07 B	atch: WG11	80037-2 SR	M Lot Number:	D102-540			
Mercury, Total	112		-		65-134	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-07 B	atch: WG11	81561-2 SR	M Lot Number:	D102-540			
Arsenic, Total	87		-		83-117	-		
Barium, Total	90		-		83-118	-		
Cadmium, Total	96		-		83-118	-		
Chromium, Total	84		-		83-117	-		
Lead, Total	86		-		82-118	-		
Selenium, Total	95		-		79-121	-		
Silver, Total	83		-		80-120	-		

INORGANICS & MISCELLANEOUS

Serial	No:112618	16:47

Project Name: Project Number:	MASON STATION 171.06108						lumber: rt Date:	L1847051 11/26/18	
			SAMPLE	RESUL	rs				
Lab ID:	L1847051-01					Date	Collected:	11/12/18 09:00	
Client ID:	B301-S1					Date	Received:	11/15/18	
Sample Location:	WISCASSET, ME					Field	Prep:	Not Specified	
Sample Depth: Matrix:	Soil								
Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
olids, Total	82.3	%	0.100	NA	1	-	11/16/18 00:2	1 121,2540G	FN

Serial	No:112618	16:47

Project Name: Project Number:	MASON STATION 171.06108						lumber: rt Date:	L1847051 11/26/18	
			SAMPLE	RESUL	rs				
Lab ID:	L1847051-02					Date	Collected:	11/12/18 09:20	
Client ID:	B301-S4					Date I	Received:	11/15/18	
Sample Location:	WISCASSET, ME					Field	Prep:	Not Specified	
Sample Depth: Matrix:	Soil								
Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
olids, Total	86.5	%	0.100	NA	1	-	11/16/18 00:2	1 121,2540G	FN

Serial	No:112618	16:47

Project Name: Project Number:	MASON STA 171.06108	TION							L1847051 11/26/18	
				SAMPLE	RESUL	rs				
Lab ID:	L1847051-03	}					Date (Collected:	11/12/18 09:45	i
Client ID:	B302-S1						Date I	Received:	11/15/18	
Sample Location:	WISCASSET	, ME					Field	Prep:	Not Specified	
Sample Depth: Matrix:	Soil									
Parameter		Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab									
Solids, Total	88.2		%	0.100	NA	1	-	11/16/18 00:2	1 121,2540G	FN

Serial	No:112618	16:47

Project Name: Project Number:	MASON STA 171.06108	TION							L1847051 11/26/18	
				SAMPLE	RESUL	rs				
Lab ID:	L1847051-04	ł					Date	Collected:	11/12/18 10:25	
Client ID:	B303-S1						Date I	Received:	11/15/18	
Sample Location:	WISCASSET	, ME					Field	Prep:	Not Specified	
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab									
Solids, Total	69.3		%	0.100	NA	1	-	11/16/18 00:2	1 121,2540G	FN

Serial	No:112618	16:47

Project Name: Project Number:	MASON STATION 171.06108						lumber: rt Date:	L1847051 11/26/18	
			SAMPLE	RESUL	rs				
Lab ID: Client ID: Sample Location:	L1847051-05 B303-S4 WISCASSET, ME						Received:	11/12/18 10:40 11/15/18 Not Specified	
Sample Depth: Matrix:	Soil						·		
Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lab								
olids, Total	91.9	%	0.100	NA	1	-	11/16/18 00:2	1 121,2540G	FN

Serial	No:112618	16:47

Project Name: Project Number:	MASON STATION 171.06108						lumber: rt Date:	L1847051 11/26/18	
			SAMPLE	RESUL	TS				
Lab ID:	L1847051-06					Date	Collected:	11/12/18 11:25	
Client ID:	B304-S1					Date I	Received:	11/15/18	
Sample Location:	WISCASSET, ME					Field	Prep:	Not Specified	
Sample Depth: Matrix:	Soil								
Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
olids, Total	96.8	%	0.100	NA	1	-	11/16/18 00:2	1 121,2540G	FN

Serial	No:112618	16:47

Project Name: Project Number:	MASON STATION 171.06108							L1847051 11/26/18	
			SAMPLE	RESUL	TS				
Lab ID: Client ID:	L1847051-07 B304-S4							11/12/18 11:45 11/15/18	
Sample Location:	WISCASSET, ME					Field	Prep:	Not Specified	
Sample Depth: Matrix:	Soil								
Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
olids, Total	83.4	%	0.100	NA	1	-	11/16/18 00:2	1 121,2540G	FN

Project Name: Project Number:	MASON STATION 171.06108	La	ab Duplicate Analy Batch Quality Control			ab Number eport Date:	
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits

General Chemistry - Westborough Lab Asso	ciated sample(s): 01-07	QC Batch ID: WG1179993-1	QC Sample: L	1847051-01	Client ID: B	301-S1
Solids, Total	82.3	81.0	%	2		20

Project Name:MASON STATIONProject Number:171.06108

Serial_No:11261816:47 *Lab Number:* L1847051 *Report Date:* 11/26/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
L1847051-01A	Vial MeOH preserved	А	NA		4.0	Y	Absent		8260HLW(14),8260H(14),VPH-18(28)
L1847051-01B	Vial water preserved	А	NA		4.0	Y	Absent	15-NOV-18 22:45	8260HLW(14),8260H(14)
L1847051-01C	Vial water preserved	А	NA		4.0	Y	Absent	15-NOV-18 22:45	8260HLW(14),8260H(14)
L1847051-01D	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.0	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1847051-01E	Glass 120ml/4oz unpreserved	А	NA		4.0	Y	Absent		PCB-8082(14),EPH-MS-10(14),EPHD-GC- 10(14)
L1847051-01F	Plastic 2oz unpreserved for TS	А	NA		4.0	Y	Absent		ME-TS-2540(7)
L1847051-02A	Vial MeOH preserved	А	NA		4.0	Y	Absent		8260HLW(14),8260H(14),VPH-18(28)
L1847051-02B	Vial water preserved	А	NA		4.0	Y	Absent	15-NOV-18 22:45	8260HLW(14),8260H(14)
L1847051-02C	Vial water preserved	А	NA		4.0	Y	Absent	15-NOV-18 22:45	8260HLW(14),8260H(14)
L1847051-02D	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.0	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1847051-02E	Glass 120ml/4oz unpreserved	А	NA		4.0	Y	Absent		PCB-8082(14),EPH-MS-10(14),EPHD-GC- 10(14)
L1847051-02F	Plastic 2oz unpreserved for TS	А	NA		4.0	Y	Absent		ME-TS-2540(7)
L1847051-03A	Vial MeOH preserved	А	NA		4.0	Y	Absent		8260HLW(14),8260H(14),VPH-18(28)
L1847051-03B	Vial water preserved	А	NA		4.0	Y	Absent	15-NOV-18 22:45	8260HLW(14),8260H(14)
L1847051-03C	Vial water preserved	А	NA		4.0	Y	Absent	15-NOV-18 22:45	8260HLW(14),8260H(14)
L1847051-03D	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.0	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1847051-03E	Glass 120ml/4oz unpreserved	А	NA		4.0	Y	Absent		PCB-8082(14),EPH-MS-10(14),EPHD-GC- 10(14)
L1847051-03F	Plastic 2oz unpreserved for TS	А	NA		4.0	Y	Absent		ME-TS-2540(7)
L1847051-04A	Vial MeOH preserved	А	NA		4.0	Y	Absent		8260HLW(14),8260H(14),VPH-18(28)

Project Name:MASON STATIONProject Number:171.06108

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L1847051-04B	Vial water preserved	А	NA		4.0	Y	Absent	15-NOV-18 22:45	8260HLW(14),8260H(14)	
L1847051-04C	Vial water preserved	А	NA		4.0	Y	Absent	15-NOV-18 22:45	8260HLW(14),8260H(14)	
L1847051-04D	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.0	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)	
L1847051-04E	Glass 120ml/4oz unpreserved	А	NA		4.0	Y	Absent		PCB-8082(14),EPH-MS-10(14),EPHD-GC- 10(14)	
L1847051-04F	Plastic 2oz unpreserved for TS	А	NA		4.0	Y	Absent		ME-TS-2540(7)	
L1847051-05A	Vial MeOH preserved	А	NA		4.0	Y	Absent		8260HLW(14),8260H(14),VPH-18(28)	
L1847051-05B	Vial water preserved	А	NA		4.0	Y	Absent	15-NOV-18 22:45	8260HLW(14),8260H(14)	
L1847051-05C	Vial water preserved	А	NA		4.0	Y	Absent	15-NOV-18 22:45	8260HLW(14),8260H(14)	
L1847051-05D	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.0	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)	
L1847051-05E	Glass 120ml/4oz unpreserved	A	NA		4.0	Y	Absent		PCB-8082(14),EPH-MS-10(14),EPHD-GC- 10(14)	
L1847051-05F	Plastic 2oz unpreserved for TS	А	NA		4.0	Y	Absent		ME-TS-2540(7)	
L1847051-06A	Vial MeOH preserved	А	NA		4.0	Y	Absent		8260HLW(14),8260H(14),VPH-18(28)	
L1847051-06B	Vial water preserved	А	NA		4.0	Y	Absent	15-NOV-18 22:45	8260HLW(14),8260H(14)	
L1847051-06C	Vial water preserved	А	NA		4.0	Y	Absent	15-NOV-18 22:45	8260HLW(14),8260H(14)	
L1847051-06D	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.0	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)	
L1847051-06E	Glass 120ml/4oz unpreserved	А	NA		4.0	Y	Absent		PCB-8082(14),EPH-MS-10(14),EPHD-GC- 10(14)	
L1847051-06F	Plastic 2oz unpreserved for TS	А	NA		4.0	Y	Absent		ME-TS-2540(7)	
L1847051-07A	Vial MeOH preserved	А	NA		4.0	Y	Absent		8260HLW(14),8260H(14),VPH-18(28)	
L1847051-07B	Vial water preserved	А	NA		4.0	Y	Absent	15-NOV-18 22:45	8260HLW(14),8260H(14)	
L1847051-07C	Vial water preserved	А	NA		4.0	Y	Absent	15-NOV-18 22:45	8260HLW(14),8260H(14)	
L1847051-07D	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.0	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)	
L1847051-07E	Glass 120ml/4oz unpreserved	A	NA		4.0	Y	Absent		PCB-8082(14),EPH-MS-10(14),EPHD-GC- 10(14)	
L1847051-07F	Plastic 2oz unpreserved for TS	А	NA		4.0	Y	Absent		ME-TS-2540(7)	

Project Name: MASON STATION

Project Number: 171.06108

Lab Number: L1847051

Report Date: 11/26/18

GLOSSARY

Acronyms

-	
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	 Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

- 00011010
- 1 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name: MASON STATION

Project Number: 171.06108

 Lab Number:
 L1847051

 Report Date:
 11/26/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name: MASON STATION Project Number: 171.06108

 Lab Number:
 L1847051

 Report Date:
 11/26/18

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 131 Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene **EPA 8260C:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270D:** <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

ALPHA	CHAIN OF C	USTODY	PAGE_(_OF	Date	e Rec'd i	n Lab		11	25	-11	8	ALI	PHA J	Job #:	218	4705	١
8 Walkup Drive	320 Forbes Blvd	ject Information		10	Re	port Inf	orma	ion -	Data	a Del	liveral	bles	and the second second		format			
Westboro, MA 01 Tel: 508-898-922	1581 Mansfield, MA 02048 Proj 20 Tel: 508-822-9300 Proj	ect Name: Masc	n Stat	non	Ka.	ADEx		XEI	MAIL		_		D Sa	ame as	Client in	nfo PO #	11395	·
Client Information	n Proj	ect Location: Wis	casset	ME	_	the survey of the local division in which the local division in the local division in the local division in the	-		_	_	-					rements		
Client: Ransom	Consulting Inc. Proj	ect #: 171.06	108	1910368		BS INO										T RCP An Inorganics	alytical Metho)	ds
Address: 400 (Commercial St. Proj	act Manager: Ste	ve Dye	1	DY		GW1	Stand	ards								540 - 50	
Portle		PHA Quote #:	i		00	ther Stat	e /Fed	Prog	ram j	ME	EDE	<u> </u>		Crit	teria <u>R</u>	esider	tial	
Phone: 207.7	172.2891 Tu	rn-Around Time	A CANCER			/	/	P 15	12	1	121	[]	/	//		/ / .	/	
	13	Standard 🗆 RUS	iH (anly continued if pro-	approvedlj	ANALYON	D ABN D 524 2 D ABN D 524 2	METALS: DMCP 13 DI	EPH. XO. DRCRAS KONTA DR.	VPH: Conges & Targets C PP13	Kanges & Targets V	TPH: DQuant C	UP DFingerprint					AMPLE INFO iltration I Field I Lab to do reservation I Lab to do	D # BOTTL
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection Date T	Sample ime Matrix		1 /	SVOC:	METAL	EPH	VPH	K PCB	Hai	/ /	//				le Comments	E
47051-01	B301-51	11/12/18 9:	00 5	EPP	X		X	X	X	X			Í					6
02	B301-54	11/12/18 9:	20 5	EPP	X		X	x	K	x								6
03	B302-S1	11/12/18 9:	45 S	EPP	X		X	X	x	X								4
OF	B303-SI	11/12/18 10:		EPP	X		X	X	X	x								6
05-	B303-54	1/12/18 10:		EPP	X		X		×	1								6
Ob	B304-51	1/12/18/11:		EPP	X		X	v	x	x								6
07	B304-54	1/12/18 11:1		PJB	×		×	X	·	X		-						6
																		+
Container Type P= Plastic A= Amber glass V= Vial	Preservative A= None B= HCI C= HNO ₂		20.707	tainer Type	V		A	A	V	A								
G= Glass B= Bacteria cup C= Cube	D= H ₂ SO ₄	inquished By:		te/Time	1/4		Receiv	H	1	R	_	Dat	e/Time				1	
C= Other E= Encore D= BOD Bottle	F= MeOH G# NaHSO4 H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K= Zn Accetate O= Other	the AAC	1415/	18 1600		lin	m	1 de la compañía de l	-) <i>pc</i>	N	15/	160	857	Alpha's T See reve		ted are subje Conditions. 2-Mar-2012)	ct to

ANALYTICAL REPORT

Lab Number:	L1845807
Client:	Ransom Consulting, Inc.
	400 Commercial Street
	Suite 404
	Portland, ME 04101-4660
ATTN:	Steve Dyer
Phone:	(207) 772-2891
Project Name:	MASON STATION
Project Number:	171.06108
Report Date:	11/16/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:MASON STATIONProject Number:171.06108

 Lab Number:
 L1845807

 Report Date:
 11/16/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1845807-01	SS301	SOIL	WISCASSET, ME	11/05/18 11:25	11/08/18
L1845807-02	SS302	SOIL	WISCASSET, ME	11/05/18 11:30	11/08/18
L1845807-03	SS303	SOIL	WISCASSET, ME	11/05/18 11:35	11/08/18
L1845807-04	SS304	SOIL	WISCASSET, ME	11/05/18 11:40	11/08/18
L1845807-05	SS305	SOIL	WISCASSET, ME	11/05/18 12:45	11/08/18
L1845807-06	SS306	SOIL	WISCASSET, ME	11/05/18 12:50	11/08/18
L1845807-07	SS307	SOIL	WISCASSET, ME	11/05/18 12:55	11/08/18
L1845807-08	SS308	SOIL	WISCASSET, ME	11/05/18 13:00	11/08/18
L1845807-09	EQUIPMENT BLANK	WATER	WISCASSET, ME	11/05/18 12:30	11/08/18

Project Name: MASON STATION Project Number: 171.06108

 Lab Number:
 L1845807

 Report Date:
 11/16/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:MASON STATIONProject Number:171.06108

 Lab Number:
 L1845807

 Report Date:
 11/16/18

Case Narrative (continued)

PCBs

L1845807-01 through -08: The surrogate recoveries are below the acceptance criteria for 2,4,5,6-tetrachlorom-xylene (0%) and decachlorobiphenyl (0%) due to the dilution required to quantitate the sample. Reextraction was not required; therefore, the results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative

Date: 11/16/18

ORGANICS

PCBS

				Serial_No	:11161816:57
Project Name:	MASON STATION			Lab Number:	L1845807
Project Number:	171.06108			Report Date:	11/16/18
			SAMPLE RESULTS		
Lab ID:	L1845807-01	D		Date Collected:	11/05/18 11:25
Client ID:	SS301			Date Received:	11/08/18
Sample Location:	WISCASSET, ME			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Soil			Extraction Method	: EPA 3540C
Analytical Method:	1,8082A			Extraction Date:	11/10/18 14:55
Analytical Date:	11/16/18 12:28			Cleanup Method:	EPA 3665A
Analyst:	KB			Cleanup Date:	11/11/18
Percent Solids:	86%			Cleanup Method:	EPA 3660B
				Cleanup Date:	11/11/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Polychlorinated Biphenyls by GC - Westborough Lab											
Aroclor 1016	ND		ug/kg	1870		50	A				
Aroclor 1221	ND		ug/kg	1870		50	А				
Aroclor 1232	ND		ug/kg	1870		50	А				
Aroclor 1242	ND		ug/kg	1870		50	А				
Aroclor 1248	ND		ug/kg	1870		50	А				
Aroclor 1254	ND		ug/kg	1870		50	А				
Aroclor 1260	32400		ug/kg	1870		50	В				
Aroclor 1262	ND		ug/kg	1870		50	А				
Aroclor 1268	ND		ug/kg	1870		50	А				
PCBs, Total	32400		ug/kg	1870		50	В				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	В
Decachlorobiphenyl	0	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	А
Decachlorobiphenyl	0	Q	30-150	А

				Serial_No	:11161816:57
Project Name:	MASON STATION			Lab Number:	L1845807
Project Number:	171.06108			Report Date:	11/16/18
			SAMPLE RESULTS		
Lab ID:	L1845807-02	D		Date Collected:	11/05/18 11:30
Client ID:	SS302			Date Received:	11/08/18
Sample Location:	WISCASSET, ME			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Soil			Extraction Method	: EPA 3540C
Analytical Method:	1,8082A			Extraction Date:	11/10/18 14:55
Analytical Date:	11/16/18 12:41			Cleanup Method:	EPA 3665A
Analyst:	KB			Cleanup Date:	11/11/18
Percent Solids:	81%			Cleanup Method:	EPA 3660B
				Cleanup Date:	11/11/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Polychlorinated Biphenyls by GC - Westborough Lab											
Aroclor 1016	ND		ug/kg	3930		100	A				
Aroclor 1221	ND		ug/kg	3930		100	А				
Aroclor 1232	ND		ug/kg	3930		100	А				
Aroclor 1242	ND		ug/kg	3930		100	А				
Aroclor 1248	ND		ug/kg	3930		100	А				
Aroclor 1254	16400		ug/kg	3930		100	В				
Aroclor 1260	ND		ug/kg	3930		100	А				
Aroclor 1262	ND		ug/kg	3930		100	А				
Aroclor 1268	ND		ug/kg	3930		100	А				
PCBs, Total	16400		ug/kg	3930		100	В				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	В
Decachlorobiphenyl	0	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	А
Decachlorobiphenyl	0	Q	30-150	А

				Serial_No:	11161816:57
Project Name:	MASON STATION			Lab Number:	L1845807
Project Number:	171.06108			Report Date:	11/16/18
			SAMPLE RESULTS		
Lab ID:	L1845807-03	D		Date Collected:	11/05/18 11:35
Client ID:	SS303			Date Received:	11/08/18
Sample Location:	WISCASSET, ME			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Soil			Extraction Method:	EPA 3540C
Analytical Method:	1,8082A			Extraction Date:	11/10/18 14:55
Analytical Date:	11/16/18 15:49			Cleanup Method:	EPA 3665A
Analyst:	AWS			Cleanup Date:	11/11/18
Percent Solids:	72%			Cleanup Method:	EPA 3660B
				Cleanup Date:	11/11/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/kg	9110		200	А			
Aroclor 1221	ND		ug/kg	9110		200	А			
Aroclor 1232	ND		ug/kg	9110		200	А			
Aroclor 1242	ND		ug/kg	9110		200	А			
Aroclor 1248	ND		ug/kg	9110		200	А			
Aroclor 1254	ND		ug/kg	9110		200	А			
Aroclor 1260	84400		ug/kg	9110		200	В			
Aroclor 1262	ND		ug/kg	9110		200	А			
Aroclor 1268	ND		ug/kg	9110		200	А			
PCBs, Total	84400		ug/kg	9110		200	В			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	В
Decachlorobiphenyl	0	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	А
Decachlorobiphenyl	0	Q	30-150	А

				Serial_No	:11161816:57
Project Name:	MASON STATION			Lab Number:	L1845807
Project Number:	171.06108			Report Date:	11/16/18
			SAMPLE RESULTS		
Lab ID:	L1845807-04	D		Date Collected:	11/05/18 11:40
Client ID:	SS304			Date Received:	11/08/18
Sample Location:	WISCASSET, ME			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Soil			Extraction Method	: EPA 3540C
Analytical Method:	1,8082A			Extraction Date:	11/10/18 14:55
Analytical Date:	11/16/18 16:02			Cleanup Method:	EPA 3665A
Analyst:	AWS			Cleanup Date:	11/11/18
Percent Solids:	91%			Cleanup Method:	EPA 3660B
				Cleanup Date:	11/11/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug/kg	3580		100	A		
Aroclor 1221	ND		ug/kg	3580		100	А		
Aroclor 1232	ND		ug/kg	3580		100	А		
Aroclor 1242	ND		ug/kg	3580		100	А		
Aroclor 1248	ND		ug/kg	3580		100	А		
Aroclor 1254	ND		ug/kg	3580		100	А		
Aroclor 1260	ND		ug/kg	3580		100	А		
Aroclor 1262	ND		ug/kg	3580		100	А		
Aroclor 1268	18100		ug/kg	3580		100	В		
PCBs, Total	18100		ug/kg	3580		100	В		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	В
Decachlorobiphenyl	0	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	А
Decachlorobiphenyl	0	Q	30-150	А

				Serial_No	:11161816:57
Project Name:	MASON STATION			Lab Number:	L1845807
Project Number:	171.06108			Report Date:	11/16/18
			SAMPLE RESULTS		
Lab ID:	L1845807-05	D		Date Collected:	11/05/18 12:45
Client ID:	SS305			Date Received:	11/08/18
Sample Location:	WISCASSET, ME			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Soil			Extraction Method	: EPA 3540C
Analytical Method:	1,8082A			Extraction Date:	11/10/18 14:55
Analytical Date:	11/16/18 13:23			Cleanup Method:	EPA 3665A
Analyst:	KB			Cleanup Date:	11/11/18
Percent Solids:	73%			Cleanup Method:	EPA 3660B
				Cleanup Date:	11/11/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug/kg	899		20	A		
Aroclor 1221	ND		ug/kg	899		20	А		
Aroclor 1232	ND		ug/kg	899		20	А		
Aroclor 1242	ND		ug/kg	899		20	А		
Aroclor 1248	ND		ug/kg	899		20	А		
Aroclor 1254	ND		ug/kg	899		20	А		
Aroclor 1260	8760		ug/kg	899		20	В		
Aroclor 1262	ND		ug/kg	899		20	А		
Aroclor 1268	ND		ug/kg	899		20	А		
PCBs, Total	8760		ug/kg	899		20	В		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	В
Decachlorobiphenyl	0	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	А
Decachlorobiphenyl	0	Q	30-150	А

				Serial_No	:11161816:57
Project Name:	MASON STATION			Lab Number:	L1845807
Project Number:	171.06108			Report Date:	11/16/18
			SAMPLE RESULTS		
Lab ID:	L1845807-06	D		Date Collected:	11/05/18 12:50
Client ID:	SS306			Date Received:	11/08/18
Sample Location:	WISCASSET, ME			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Soil			Extraction Method	: EPA 3540C
Analytical Method:	1,8082A			Extraction Date:	11/10/18 14:55
Analytical Date:	11/16/18 13:36			Cleanup Method:	EPA 3665A
Analyst:	KB			Cleanup Date:	11/11/18
Percent Solids:	67%			Cleanup Method:	EPA 3660B
				Cleanup Date:	11/11/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug/kg	975		20	A		
Aroclor 1221	ND		ug/kg	975		20	А		
Aroclor 1232	ND		ug/kg	975		20	А		
Aroclor 1242	ND		ug/kg	975		20	А		
Aroclor 1248	ND		ug/kg	975		20	А		
Aroclor 1254	ND		ug/kg	975		20	А		
Aroclor 1260	9140		ug/kg	975		20	В		
Aroclor 1262	ND		ug/kg	975		20	А		
Aroclor 1268	ND		ug/kg	975		20	А		
PCBs, Total	9140		ug/kg	975		20	В		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	В
Decachlorobiphenyl	0	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	А
Decachlorobiphenyl	0	Q	30-150	А

				Serial_No	:11161816:57
Project Name:	MASON STATION			Lab Number:	L1845807
Project Number:	171.06108			Report Date:	11/16/18
			SAMPLE RESULTS		
Lab ID:	L1845807-07	D		Date Collected:	11/05/18 12:55
Client ID:	SS307			Date Received:	11/08/18
Sample Location:	WISCASSET, ME			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Soil			Extraction Method	: EPA 3540C
Analytical Method:	1,8082A			Extraction Date:	11/10/18 14:55
Analytical Date:	11/16/18 13:49			Cleanup Method:	EPA 3665A
Analyst:	KB			Cleanup Date:	11/11/18
Percent Solids:	60%			Cleanup Method:	EPA 3660B
				Cleanup Date:	11/11/18
				•	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug/kg	2640		50	А		
Aroclor 1221	ND		ug/kg	2640		50	А		
Aroclor 1232	ND		ug/kg	2640		50	А		
Aroclor 1242	ND		ug/kg	2640		50	А		
Aroclor 1248	ND		ug/kg	2640		50	А		
Aroclor 1254	ND		ug/kg	2640		50	А		
Aroclor 1260	20600		ug/kg	2640		50	В		
Aroclor 1262	ND		ug/kg	2640		50	А		
Aroclor 1268	ND		ug/kg	2640		50	А		
PCBs, Total	20600		ug/kg	2640		50	В		

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	В
Decachlorobiphenyl	0	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	А
Decachlorobiphenyl	0	Q	30-150	А

				Serial_No	:11161816:57
Project Name:	MASON STATION			Lab Number:	L1845807
Project Number:	171.06108			Report Date:	11/16/18
			SAMPLE RESULTS		
Lab ID:	L1845807-08	D		Date Collected:	11/05/18 13:00
Client ID:	SS308			Date Received:	11/08/18
Sample Location:	WISCASSET, ME			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Soil			Extraction Method	: EPA 3540C
Analytical Method:	1,8082A			Extraction Date:	11/10/18 14:55
Analytical Date:	11/16/18 14:02			Cleanup Method:	EPA 3665A
Analyst:	KB			Cleanup Date:	11/11/18
Percent Solids:	71%			Cleanup Method:	EPA 3660B
				Cleanup Date:	11/11/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug/kg	2300		50	A		
Aroclor 1221	ND		ug/kg	2300		50	А		
Aroclor 1232	ND		ug/kg	2300		50	А		
Aroclor 1242	ND		ug/kg	2300		50	А		
Aroclor 1248	ND		ug/kg	2300		50	А		
Aroclor 1254	ND		ug/kg	2300		50	А		
Aroclor 1260	25600		ug/kg	2300		50	В		
Aroclor 1262	ND		ug/kg	2300		50	А		
Aroclor 1268	ND		ug/kg	2300		50	А		
PCBs, Total	25600		ug/kg	2300		50	В		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	В
Decachlorobiphenyl	0	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	А
Decachlorobiphenyl	0	Q	30-150	А

			Serial_No	:11161816:57
Project Name:	MASON STATION		Lab Number:	L1845807
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845807-09		Date Collected:	11/05/18 12:30
Client ID:	EQUIPMENT BLANK		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	: EPA 3510C
Analytical Method:	1,8082A		Extraction Date:	11/10/18 13:42
Analytical Date:	11/14/18 18:53		Cleanup Method:	EPA 3665A
Analyst:	JW		Cleanup Date:	11/11/18
,			Cleanup Method:	EPA 3660B
			Cleanup Date:	11/11/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	estborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	A
Aroclor 1221	ND		ug/l	0.250		1	А
Aroclor 1232	ND		ug/l	0.250		1	А
Aroclor 1242	ND		ug/l	0.250		1	А
Aroclor 1248	ND		ug/l	0.250		1	А
Aroclor 1254	ND		ug/l	0.250		1	А
Aroclor 1260	ND		ug/l	0.250		1	А
Aroclor 1262	ND		ug/l	0.250		1	А
Aroclor 1268	ND		ug/l	0.250		1	А
PCBs, Total	ND		ug/l	0.250		1	А

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В
Decachlorobiphenyl	72		30-150	В
2,4,5,6-Tetrachloro-m-xylene	68		30-150	А
Decachlorobiphenyl	63		30-150	А

Project Name:	MASON STATION		Lab Number:	L1845807
Project Number:	171.06108		Report Date:	11/16/18
		Mathed Diank Analysia		

Method Blank Analysis Batch Quality Control

Analytical Method:
Analytical Date:
Analyst:

1,8082A 11/14/18 19:05 JW Extraction Method:EPA 3510CExtraction Date:11/10/18 13:42Cleanup Method:EPA 3665ACleanup Date:11/11/18Cleanup Method:EPA 3660BCleanup Date:11/11/18

Parameter	Result	Qualifier	Units		RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westboroug	h Lab for s	ample(s):	09	Batch:	WG1178172-	·1
Aroclor 1016	ND		ug/l	0	.250		А
Aroclor 1221	ND		ug/l	0	.250		А
Aroclor 1232	ND		ug/l	0	.250		А
Aroclor 1242	ND		ug/l	0	.250		А
Aroclor 1248	ND		ug/l	0	.250		А
Aroclor 1254	ND		ug/l	0	.250		А
Aroclor 1260	ND		ug/l	0	.250		А
Aroclor 1262	ND		ug/l	0	.250		А
Aroclor 1268	ND		ug/l	0	.250		А
PCBs, Total	ND		ug/l	0	.250		А

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	73		30-150	В		
Decachlorobiphenyl	67		30-150	В		
2,4,5,6-Tetrachloro-m-xylene	67		30-150	А		
Decachlorobiphenyl	58		30-150	А		

Project Name:	MASON STATION		Lab Number:	L1845807
Project Number:	171.06108		Report Date:	11/16/18
		Mothod Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method:
Analytical Date:
Analyst:

1,8082A 11/15/18 03:55 KB Extraction Method:EPA 3540CExtraction Date:11/10/18 14:55Cleanup Method:EPA 3665ACleanup Date:11/11/18Cleanup Method:EPA 3660BCleanup Date:11/11/18

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC	- Westboroug	h Lab for s	ample(s):	01-08	Batch:	WG117	8187-1
Aroclor 1016	ND		ug/kg	31.3			А
Aroclor 1221	ND		ug/kg	31.3			А
Aroclor 1232	ND		ug/kg	31.3			А
Aroclor 1242	ND		ug/kg	31.3			А
Aroclor 1248	ND		ug/kg	31.3			А
Aroclor 1254	ND		ug/kg	31.3			А
Aroclor 1260	ND		ug/kg	31.3			А
Aroclor 1262	ND		ug/kg	31.3			А
Aroclor 1268	ND		ug/kg	31.3			А
PCBs, Total	ND		ug/kg	31.3			А

		Acceptanc	e
Surrogate	%Recovery Qualifi	er Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	101	30-150	В
Decachlorobiphenyl	104	30-150	В
2,4,5,6-Tetrachloro-m-xylene	92	30-150	А
Decachlorobiphenyl	92	30-150	А

Lab Control Sample Analysis Batch Quality Control

Project Name: MASON STATION

Project Number: 171.06108

 Lab Number:
 L1845807

 Report Date:
 11/16/18

		LCS		LCSD		%Recovery				RPD	
Para	Imeter	%Recovery	Qual	%Re	covery	Qual	Limits	RPD	Qual	Limits	Column
				~~							
Poly	chlorinated Biphenyls by GC - Westborou	igh Lab Associa	ted sample(s):	09	Batch:	WG11/81/2-2	WG1178172-3				
		74			75		10 1 10	0		50	•
	Aroclor 1016	74			75		40-140	2		50	A
/	Aroclor 1260	63			64		40-140	2		50	А

	LCS	LCSD		Acceptance	
Surrogate	%Recovery	Qual %Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	70	69		30-150	В
Decachlorobiphenyl	58	55		30-150	В
2,4,5,6-Tetrachloro-m-xylene	65	67		30-150	A
Decachlorobiphenyl	50	49		30-150	A

Lab Control Sample Analysis Batch Quality Control

Project Name: MASON STATION

Project Number: 171.06108

 Lab Number:
 L1845807

 Report Date:
 11/16/18

	LCS		LCSD		%Recovery			RPD		
Parameter	%Recovery	Qual	%Recovery	Qual	Qual Limits		Qual	Limits	Column	
Polychlorinated Biphenyls by GC - West	borough Lab Associa	: 01-08 Batch:	WG1178	187-2 WG117818	37-3					
Aroclor 1016	90		89		40-140	1		50	А	
Aroclor 1260	76		78	40-140		3		50	А	

	LCS	LCSD	Ac	Acceptance		
Surrogate	%Recovery	Qual %Recovery	Qual	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	96	99		30-150	В	
Decachlorobiphenyl	102	105		30-150	В	
2,4,5,6-Tetrachloro-m-xylene	90	92		30-150	A	
Decachlorobiphenyl	88	88		30-150	A	

INORGANICS & MISCELLANEOUS

								Serial_No:11161816:57			
Project Name:	MASON ST	ATION					Lab N	lumber:	L1845807		
Project Number:	171.06108						Repo	rt Date:	11/16/18		
				SAMPLE	RESUL	TS					
Lab ID:	L1845807-0	1					Date	Collected:	11/05/18 11:25	5	
Client ID:	SS301					Date	Received:	11/08/18			
Sample Location:	WISCASSE	T, ME					Field	Prep:	Not Specified		
Sample Depth:											
Matrix:	Soil										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
eneral Chemistry - We	stborough Lat)									
olids, Total	86.1		%	0.100	NA	1	-	11/10/18 10:3	9 121,2540G	RI	

						Serial_No:11161816:57				
Project Name:	MASON ST	ATION					Lab N	lumber:	L1845807	
Project Number:	oject Number: 171.06108						Report Date: 11/16/18			
				SAMPLE	RESUL	TS				
Lab ID:	L1845807-0	2					Date (Collected:	11/05/18 11:30	
Client ID:	SS302	S302					Date I	Received:	11/08/18	
Sample Location:	WISCASSE	T, ME					Field I	Prep:	Not Specified	
Sample Depth:										
Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat	2								
Solids, Total	80.8		%	0.100	NA	1	-	11/10/18 10:3	9 121,2540G	RI

								161816:57		
Project Name:	MASON ST	ATION					Lab N	lumber: _I	L1845807	
Project Number:	171.06108						Repo	rt Date:	11/16/18	
				SAMPLE	RESUL	TS				
Lab ID:	L1845807-0	3					Date	Collected:	11/05/18 11:35	i.
Client ID:	SS303	303					Date	Received:	11/08/18	
Sample Location:	WISCASSE	T, ME					Field	Prep: I	Not Specified	
Sample Depth:										
Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat	0								
Solids, Total	71.8		%	0.100	NA	1	-	11/10/18 10:39	9 121,2540G	RI

									Serial_No:11161816:57				
Project Name:	MASON ST	ATION					Lab N	lumber:	L1845807				
Project Number:	171.06108						Repo	rt Date:	11/16/18				
				SAMPLE	RESUL	TS							
Lab ID:	L1845807-0	4					Date	Collected:	11/05/18 11:40)			
Client ID:	SS304						Date	Received:	11/08/18				
Sample Location:	WISCASSE	T, ME					Field	Prep:	Not Specified				
Sample Depth:													
Matrix:	Soil												
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst			
General Chemistry - We	stborough Lat	D											
Solids, Total	90.7		%	0.100	NA	1	-	11/10/18 10:3	9 121,2540G	RI			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Sample Depth: Matrix:	Soil									
Lab ID: Client ID: Sample Location:	L1845807-05 SS305 WISCASSET							collected: eceived: Prep:	11/05/18 12:45 11/08/18 Not Specified	
				SAMPLE	RESUL	ſS				
Project Name: Project Number:	MASON STA 171.06108	TION						umber: t Date:	L1845807 11/16/18	
								_	1161816:57	

NA

1

-

11/10/18 10:39

121,2540G

RI

Solids, Total

72.5

%

0.100

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
Sample Depth: Matrix:	Soil									
Lab ID: Client ID: Sample Location:	L1845807-06 SS306 WISCASSE1	-						Collected: Received: Prep:	11/05/18 12:50 11/08/18 Not Specified)
				SAMPLE	RESUL	rs				
Project Name: Project Number:	MASON STA 171.06108	ATION						umber: t Date:	L1845807 11/16/18	
								_	1161816:57	

NA

1

-

%

66.7

0.100

121,2540G

RI

11/10/18 10:39

Solids, Total

								Serial_No:11	161816:57	
Project Name:	MASON ST	ATION					Lab N	lumber:	L1845807	
Project Number:	171.06108						Repo	rt Date:	11/16/18	
				SAMPLE	RESUL	TS				
Lab ID:	L1845807-0	7					Date	Collected:	11/05/18 12:55	
Client ID:	SS307						Date	Received:	11/08/18	
Sample Location:	WISCASSE	T, ME					Field	Prep: I	Not Specified	
Sample Depth:										
Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Solids, Total	60.0		%	0.100	NA	1	-	11/10/18 10:39	9 121,2540G	RI

								Serial_No:11	161816:57	
Project Name:	MASON ST	ATION					Lab N	lumber:	L1845807	
Project Number:	171.06108						Repo	rt Date:	11/16/18	
				SAMPLE	RESUL	TS				
Lab ID:	L1845807-0	8					Date (Collected:	11/05/18 13:00	
Client ID:	SS308						Date I	Received:	11/08/18	
Sample Location:	WISCASSE	T, ME					Field	Prep: I	Not Specified	
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Solids, Total	71.3		%	0.100	NA	1	-	11/10/18 10:39	9 121,2540G	RI

Project Name:MASON STATIONProject Number:171.06108

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
А	Absent

Sample Receipt and Container Information

Container Info	nformation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler pH		рН рН		Pres	Seal	Date/Time	Analysis(*)
L1845807-01A	Glass 60mL/2oz unpreserved	А	NA		4.1	Y	Absent		ME-TS-2540(7),PCB-8082-3540C(14)
L1845807-02A	Glass 60mL/2oz unpreserved	А	NA		4.1	Y	Absent		ME-TS-2540(7),PCB-8082-3540C(14)
L1845807-03A	Glass 60mL/2oz unpreserved	А	NA		4.1	Y	Absent		ME-TS-2540(7),PCB-8082-3540C(14)
L1845807-04A	Glass 60mL/2oz unpreserved	А	NA		4.1	Y	Absent		ME-TS-2540(7),PCB-8082-3540C(14)
L1845807-05A	Glass 60mL/2oz unpreserved	А	NA		4.1	Y	Absent		ME-TS-2540(7),PCB-8082-3540C(14)
L1845807-06A	Glass 60mL/2oz unpreserved	А	NA		4.1	Y	Absent		ME-TS-2540(7),PCB-8082-3540C(14)
L1845807-07A	Glass 60mL/2oz unpreserved	А	NA		4.1	Y	Absent		ME-TS-2540(7),PCB-8082-3540C(14)
L1845807-08A	Glass 60mL/2oz unpreserved	А	NA		4.1	Y	Absent		ME-TS-2540(7),PCB-8082-3540C(14)
L1845807-09A	Amber 1000ml unpreserved	А	6	6	4.1	Y	Absent		PCB-8082(7)
L1845807-09B	Amber 1000ml unpreserved	А	6	6	4.1	Y	Absent		PCB-8082(7)

Serial_No:11161816:57

Project Name: MASON STATION

Project Number: 171.06108

Lab Number: L1845807

Report Date: 11/16/18

GLOSSARY

Acronyms

-	
EDL	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

- 1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Usability Report Report Format:

Project Name: MASON STATION

Project Number: 171.06108

 Lab Number:
 L1845807

 Report Date:
 11/16/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name: MASON STATION Project Number: 171.06108
 Lab Number:
 L1845807

 Report Date:
 11/16/18

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene **EPA 8260C:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270D:** <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:11161816:57

	CHAIN OF	CUSTO	DY P	AGE	OF I	Date F	tec'd in	Lab:		11	19	118	A	LPHA	Job #:	L184	15807
AMALY/CAL		Project Inform	ation	Sale in		Repo	rt Infor	matio	on - Dat	a De	livera	bles	В	lilling	Informat	ion	
8 Walkup Drive Westboro, MA (Tel: 508-898-90		Project Name: N	19500	Statio	10	A	Ex	ł	EMAIL					Same a	as Client in	10 PQ#: 113	375
Client Informatio	on	Project Location:	Alscore	of AA	C.	Regu	latory I	Requi	irement	ts 8	R P	roject			n Requir		
Client: Brosser	Consulting Inc.	Project #: 171.	01.109		<u> </u>				P Analyt				22 /0			T RCP Analytical I Inorganics)	Methods
Address: 4000	Commercial St.	Project Manager:	Steve	N		Q Yes	No G	W1 St	landards						H with Tar		
	and ME 04101	ALPHA Quote #:	STEVE	pyer		☐ Yes ☐ Oth	No Nor State	IPDES /Fed F	RGP Program	ME	DE	P		С	riteria R	esidential	
	772-2891	Turn-Around	Time		and the second		/		7 7		1	7	7	7	11	111	23
Email: epheni	x@ransomenv.com	Standard Date Due:	C RUSH (only	eanfirmed it pre-a	oparaved)	08260	DABN	METALS: D. D. D. MCP 13 DMCP 12	EPH: DRanges & Targen, DRCP 15 VPU.	Ranges & Targeting Ranges Only	TPH: DOM DEST CHANGES ONLY	ant Only DFingerprine				SAMPLE Filtration Field Lab to Preserva Lab to	do stion T
ALPHA Lab ID (Lab Use Only)	Sample ID	Ca	ollection Time	Sample Matrix	Sampler Initials	, iso	METALS	METAL	EPH: C	X PCB	Her			/	/ / ,	Sample Com	E
45807-01	55301	ulsti	11:25	5	EPP					X			1	ΠÍ			1
Q	55302		8 11:30		EPP					X							1
B	55303		811:35	5	EPP					X							1
04	55304		811:40	5	EPP					V				\square			1
05	55305	1. 1. 1.	3 12:45		EPP				-	X		-		+			1
0lp									-	1000		+	+	+			1
02	55306		812:50	-	EPP	++-	+	-	-	X		+	+	+			1
08			812:55	-	EPP	\vdash	+-+	+	+	X		+					1
20			3 13:00		EPP		+ +	-	+	X		+	+	+			,
01	Equipment Blank	11/5/18	12:30	DW	EPP	\vdash			-	X		-		-			2
Container Type	Preservative		Г				+ +			Δ.		+	+	+			
P= Plastic A= Amber glass	A= None B= HC1		- F	1284177	ainer Type eservative		-	-	_	A			-	+			
Ve Vial G= Glass B= Bacteria cup C= Cube D= Cher E= Encore D= BOD Bottle	$C= HNO_3$ $D= H_2SO_4$ $E= NaOH$ $F= MeOH$ $G= NaHSO_4$ $H = Na_2S_2O_3$ $I= Ascorbic Acid J = NH_4CI$ $K= Zn Acatate$ $O= Other$	Rob Maer	L	Dat	le/Time B 1330 1930	Ron	Ma	eceive	^{i By}	A 114	8.17	Da [3 [1-9-]	ite/Tim :30 8 / 9	2	Alpha's See reve	lies submitted are Terms and Conditi arse side. 01-01 (rev. 12-Mar-201	ions.

ANALYTICAL REPORT

Lab Number:	L1847067
Client:	Ransom Consulting, Inc.
	400 Commercial Street
	Suite 404
	Portland, ME 04101-4660
ATTN:	Steve Dyer
Phone:	(207) 772-2891
Project Name:	MASON STATION
Project Number:	171-06108
Report Date:	11/26/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:11261816:21

Project Name:MASON STATIONProject Number:171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1847067-01	SV301	SOIL_VAPOR	WISCASSET, ME	11/13/18 09:30	11/15/18
L1847067-02	SV302	SOIL_VAPOR	WISCASSET, ME	11/13/18 15:48	11/15/18
L1847067-03	SV303	SOIL_VAPOR	WISCASSET, ME	11/13/18 13:56	11/15/18
L1847067-04	SV304	SOIL_VAPOR	WISCASSET, ME	11/13/18 10:28	11/15/18
L1847067-05	SV305	SOIL_VAPOR	WISCASSET, ME	11/13/18 13:27	11/15/18
L1847067-06	SV306	SOIL_VAPOR	WISCASSET, ME	11/13/18 15:04	11/15/18
L1847067-07	UNUSED CANISTER 482	SOIL_VAPOR	WISCASSET, ME		11/15/18
L1847067-08	UNUSED CANISTER 2375	SOIL_VAPOR	WISCASSET, ME		11/15/18

Project Name: MASON STATION Project Number: 171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:MASON STATIONProject Number:171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on October 25, 2018. The canister certification results are provided as an addendum.

L1847067-01 and -06: The samples have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

The WG1181953-3 LCS recovery for 1,2,4-trichlorobenzene (131%) is above the upper 130% acceptance limit. All samples associated with this LCS do not have reportable amounts of this analyte.

Petroleum Hydrocarbons in Air

L1847067 All significant concentrations of non-petroleum VOCs detected in the TO-15 analysis were subtracted from the corresponding hydrocarbon ranges.

L1847067-01 and -06: The samples have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christoph J Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 11/26/18

AIR

Serial_No:11261816:21

Project Name:MASON STATIONLab Number:Project Number:171-06108Report Date:

lumber: L1847067 rt Date: 11/26/18

11/13/18 09:30

Not Specified

11/15/18

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:	L1847067-01	D
Client ID:	SV301	
Sample Location:	WISCASSET,	ME

Sample Depth: Matrix:

Matrix:Soil_VaporAnaytical Method:48,TO-15-SIMAnalytical Date:11/21/18 21:00Analyst:MB

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	lansfield Lab							
Propylene	ND	5.00		ND	8.61			10
Dichlorodifluoromethane	ND	2.00		ND	9.89			10
Chloromethane	ND	2.00		ND	4.13			10
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.500		ND	3.49			10
Vinyl chloride	ND	0.200		ND	0.511			10
1,3-Butadiene	ND	0.200		ND	0.442			10
Bromomethane	ND	0.200		ND	0.777			10
Chloroethane	ND	1.00		ND	2.64			10
Ethyl Alcohol	ND	50.0		ND	94.2			10
Vinyl bromide	ND	2.00		ND	8.74			10
Acetone	ND	10.0		ND	23.8			10
Trichlorofluoromethane	ND	0.500		ND	2.81			10
so-Propyl Alcohol	ND	5.00		ND	12.3			10
1,1-Dichloroethene	ND	0.200		ND	0.793			10
Methylene chloride	ND	5.00		ND	17.4			10
3-Chloropropene	ND	2.00		ND	6.26			10
Carbon disulfide	ND	2.00		ND	6.23			10
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.500		ND	3.83			10
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			10
1,1-Dichloroethane	ND	0.200		ND	0.809			10
Methyl tert butyl ether	ND	2.00		ND	7.21			10
Vinyl acetate	ND	10.0		ND	35.2			10
2-Butanone	ND	5.00		ND	14.7			10

11/13/18 09:30

Not Specified

11/15/18

Project Name:	MASON STATION
Project Number:	171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1847067-01DClient ID:SV301Sample Location:WISCASSET, ME

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab							
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			10
Ethyl Acetate	ND	5.00		ND	18.0			10
Chloroform	ND	0.200		ND	0.977			10
Tetrahydrofuran	ND	5.00		ND	14.7			10
1,2-Dichloroethane	ND	0.200		ND	0.809			10
n-Hexane	387	2.00		1360	7.05			10
1,1,1-Trichloroethane	ND	0.200		ND	1.09			10
Benzene	ND	1.00		ND	3.19			10
Carbon tetrachloride	ND	0.200		ND	1.26			10
Cyclohexane	12.6	2.00		43.4	6.88			10
1,2-Dichloropropane	ND	0.200		ND	0.924			10
Bromodichloromethane	ND	0.200		ND	1.34			10
1,4-Dioxane	ND	1.00		ND	3.60			10
Trichloroethene	0.270	0.200		1.45	1.07			10
2,2,4-Trimethylpentane	ND	2.00		ND	9.34			10
Heptane	ND	2.00		ND	8.20			10
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			10
4-Methyl-2-pentanone	ND	5.00		ND	20.5			10
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			10
1,1,2-Trichloroethane	ND	0.200		ND	1.09			10
Toluene	ND	0.500		ND	1.88			10
2-Hexanone	ND	2.00		ND	8.20			10
Dibromochloromethane	ND	0.200		ND	1.70			10
1,2-Dibromoethane	ND	0.200		ND	1.54			10
Tetrachloroethene	ND	0.200		ND	1.36			10
Chlorobenzene	ND	1.00		ND	4.61			10

11/13/18 09:30

Not Specified

11/15/18

Project Name:	MASON STATION
Project Number:	171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1847067-01DClient ID:SV301Sample Location:WISCASSET, ME

		ррьV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Ethylbenzene	0.590	0.200		2.56	0.869			10
p/m-Xylene	ND	0.400		ND	1.74			10
Bromoform	ND	0.200		ND	2.07			10
Styrene	1.42	0.200		6.05	0.852			10
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			10
o-Xylene	ND	0.200		ND	0.869			10
4-Ethyltoluene	ND	0.200		ND	0.983			10
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			10
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			10
Benzyl chloride	ND	2.00		ND	10.4			10
1,3-Dichlorobenzene	ND	0.200		ND	1.20			10
1,4-Dichlorobenzene	ND	0.200		ND	1.20			10
1,2-Dichlorobenzene	ND	0.200		ND	1.20			10
1,2,4-Trichlorobenzene	ND	0.500		ND	3.71			10
Naphthalene	ND	0.500		ND	2.62			10
Hexachlorobutadiene	ND	0.500		ND	5.33			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	82		60-140
bromochloromethane	89		60-140
chlorobenzene-d5	89		60-140

Serial_No:11261816:21

L1847067

11/26/18

Project Name:MASON STATIONLab Number:Project Number:171-06108Report Date:

SAMPLE RESULTS

Lab ID:	L1847067-02
Client ID:	SV302
Sample Location:	WISCASSET, ME

Sample Depth: Matrix: Soil_Vap

Matrix:Soil_VaporAnaytical Method:48,TO-15-SIMAnalytical Date:11/21/18 21:33Analyst:MB

Date Collected:	11/13/18 15:48
Date Received:	11/15/18
Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	lansfield Lab							
Propylene	44.9	0.500		77.3	0.861			1
Dichlorodifluoromethane	0.356	0.200		1.76	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	5.18	0.020		11.5	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Ethyl Alcohol	19.8	5.00		37.3	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	35.7	1.00		84.8	2.38			1
Trichlorofluoromethane	0.224	0.050		1.26	0.281			1
iso-Propyl Alcohol	0.587	0.500		1.44	1.23			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	1.74	0.200		5.42	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.060	0.050		0.460	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	3.95	0.500		11.6	1.47			1

11/13/18 15:48

Not Specified

11/15/18

Project Name:	MASON STATION
Project Number:	171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1847067-02Client ID:SV302Sample Location:WISCASSET, ME

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.093	0.020		0.454	0.098			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
n-Hexane	7.36	0.200		25.9	0.705			1
1,1,1-Trichloroethane	0.025	0.020		0.136	0.109			1
Benzene	1.43	0.100		4.57	0.319			1
Carbon tetrachloride	0.444	0.020		2.79	0.126			1
Cyclohexane	0.423	0.200		1.46	0.688			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	0.122	0.020		0.656	0.107			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	0.665	0.200		2.73	0.820			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	0.529	0.500		2.17	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	0.775	0.050		2.92	0.188			1
2-Hexanone	0.301	0.200		1.23	0.820			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	0.043	0.020		0.292	0.136			1
Chlorobenzene	ND	0.100		ND	0.461			1

11/13/18 15:48

Not Specified

11/15/18

Project Name:	MASON STATION
Project Number:	171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1847067-02Client ID:SV302Sample Location:WISCASSET, ME

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Ethylbenzene	0.104	0.020		0.452	0.087			1
p/m-Xylene	0.199	0.040		0.864	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	0.184	0.020		0.783	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	0.105	0.020		0.456	0.087			1
4-Ethyltoluene	0.038	0.020		0.187	0.098			1
1,3,5-Trimethylbenzene	0.038	0.020		0.187	0.098			1
1,2,4-Trimethylbenzene	0.085	0.020		0.418	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	79		60-140
bromochloromethane	86		60-140
chlorobenzene-d5	92		60-140

Serial_No:11261816:21

L1847067

11/26/18

Project Name: Lab Number: MASON STATION Project Number: Report Date: 171-06108

SAMPLE RESULTS

Lab ID:	L1847067-03
Client ID:	SV303
Sample Location:	WISCASSET, ME

Soil_Vapor

48,TO-15-SIM

11/21/18 22:37

Sample Depth:

Anaytical Method:

Analytical Date:

Matrix:

Date Collected:	11/13/18 13:56
Date Received:	11/15/18
Field Prep:	Not Specified

Analyst: ME	21/10 22.57 }								
		ppbV			ug/m3			Dilution	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air b	oy SIM - Man	sfield Lab							
Propylene		9.30	0.500		16.0	0.861			1
Dichlorodifluoromethane		0.336	0.200		1.66	0.989			1
Chloromethane		0.202	0.200		0.417	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluorc	oethane	ND	0.050		ND	0.349			1
Vinyl chloride		ND	0.020		ND	0.051			1
1,3-Butadiene		1.12	0.020		2.48	0.044			1
Bromomethane		ND	0.020		ND	0.078			1
Chloroethane		ND	0.100		ND	0.264			1
Ethyl Alcohol		112	5.00		211	9.42			1
Vinyl bromide		ND	0.200		ND	0.874			1
Acetone		34.7	1.00		82.4	2.38			1
Trichlorofluoromethane		0.210	0.050		1.18	0.281			1
iso-Propyl Alcohol		2.94	0.500		7.23	1.23			1
1,1-Dichloroethene		ND	0.020		ND	0.079			1
Methylene chloride		ND	0.500		ND	1.74			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		0.254	0.200		0.791	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroe	thane	0.062	0.050		0.475	0.383			1
trans-1,2-Dichloroethene		ND	0.020		ND	0.079			1
1,1-Dichloroethane		0.207	0.020		0.838	0.081			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
Vinyl acetate		ND	1.00		ND	3.52			1
2-Butanone		5.55	0.500		16.4	1.47			1

11/13/18 13:56

Not Specified

11/15/18

Project Name:	MASON STATION
Project Number:	171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1847067-03Client ID:SV303Sample Location:WISCASSET, ME

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.093	0.020		0.454	0.098			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
n-Hexane	5.58	0.200		19.7	0.705			1
1,1,1-Trichloroethane	1.88	0.020		10.3	0.109			1
Benzene	1.90	0.100		6.07	0.319			1
Carbon tetrachloride	0.063	0.020		0.396	0.126			1
Cyclohexane	0.487	0.200		1.68	0.688			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane	1.41	0.200		6.59	0.934			1
Heptane	1.43	0.200		5.86	0.820			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	0.644	0.500		2.64	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	2.78	0.050		10.5	0.188			1
2-Hexanone	0.699	0.200		2.86	0.820			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	0.170	0.020		1.15	0.136			1
Chlorobenzene	ND	0.100		ND	0.461			1

11/13/18 13:56

Not Specified

11/15/18

Project Name:	MASON STATION
Project Number:	171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1847067-03Client ID:SV303Sample Location:WISCASSET, ME

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Ethylbenzene	1.32	0.020		5.73	0.087			1
p/m-Xylene	5.16	0.040		22.4	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	0.542	0.020		2.31	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	2.69	0.020		11.7	0.087			1
4-Ethyltoluene	1.66	0.020		8.16	0.098			1
1,3,5-Trimethylbenzene	2.19	0.020		10.8	0.098			1
1,2,4-Trimethylbenzene	11.0	0.020		54.1	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	7.33	0.050		38.4	0.262			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	91		60-140

Serial_No:11261816:21

 Project Name:
 MASON STATION
 Lab Number:
 L1847067

 Project Number:
 171-06108
 Report Date:
 11/26/18

SAMPLE RESULTS

Lab ID:L1847067-04Client ID:SV304Sample Location:WISCASSET, ME

Sample Depth:Matrix:Soil_VaporAnaytical Method:48,TO-15-SIMAnalytical Date:11/21/18 23:09

MB

Analyst:

Date Collected:11/13/18 10:28Date Received:11/15/18Field Prep:Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	lansfield Lab							
Propylene	2.96	0.500		5.09	0.861			1
Dichlorodifluoromethane	0.339	0.200		1.68	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	0.290	0.020		0.642	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	6.96	1.00		16.5	2.38			1
Trichlorofluoromethane	0.204	0.050		1.15	0.281			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.066	0.050		0.506	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	1.99	0.500		5.87	1.47			1

11/13/18 10:28

Not Specified

11/15/18

Project Name:	MASON STATION
Project Number:	171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1847067-04Client ID:SV304Sample Location:WISCASSET, ME

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.112	0.020		0.547	0.098			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
n-Hexane	15.2	0.200		53.6	0.705			1
1,1,1-Trichloroethane	0.021	0.020		0.115	0.109			1
Benzene	0.154	0.100		0.492	0.319			1
Carbon tetrachloride	0.040	0.020		0.252	0.126			1
Cyclohexane	0.438	0.200		1.51	0.688			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	0.045	0.020		0.242	0.107			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	0.169	0.050		0.637	0.188			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	0.021	0.020		0.142	0.136			1
Chlorobenzene	ND	0.100		ND	0.461			1

11/13/18 10:28

Not Specified

11/15/18

Project Name:	MASON STATION
Project Number:	171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1847067-04Client ID:SV304Sample Location:WISCASSET, ME

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Ethylbenzene	0.119	0.020		0.517	0.087			1
p/m-Xylene	0.139	0.040		0.604	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	1.27	0.020		5.41	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	0.054	0.020		0.235	0.087			1
4-Ethyltoluene	0.021	0.020		0.103	0.098			1
1,3,5-Trimethylbenzene	0.022	0.020		0.108	0.098			1
1,2,4-Trimethylbenzene	0.076	0.020		0.374	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	0.085	0.050		0.446	0.262			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	93		60-140

Serial_No:11261816:21

Project Name: Lab Number: L1847067 MASON STATION **Project Number:** Report Date: 171-06108 11/26/18

SAMPLE RESULTS

Lab ID: L1847067-05 Client ID: SV305 Sample Location: WISCASSET, ME

Sample Depth: Matrix: Soil_Vapor Anaytical Method:

48,TO-15-SIM Analytical Date: 11/21/18 23:42 Analyst: MB

Date Collected:	11/13/18 13:27
Date Received:	11/15/18
Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	lansfield Lab							
Propylene	2.37	0.500		4.08	0.861			1
Dichlorodifluoromethane	1.82	0.200		9.00	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	0.590	0.020		1.31	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Ethyl Alcohol	6.30	5.00		11.9	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	12.8	1.00		30.4	2.38			1
Trichlorofluoromethane	0.188	0.050		1.06	0.281			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.056	0.050		0.429	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	3.37	0.500		9.94	1.47			1

11/13/18 13:27

Not Specified

11/15/18

Project Name:	MASON STATION
Project Number:	171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1847067-05Client ID:SV305Sample Location:WISCASSET, ME

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.024	0.020		0.117	0.098			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
n-Hexane	9.17	0.200		32.3	0.705			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	0.880	0.100		2.81	0.319			1
Carbon tetrachloride	0.033	0.020		0.208	0.126			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	1.07	0.050		4.03	0.188			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	0.042	0.020		0.285	0.136			1
Chlorobenzene	ND	0.100		ND	0.461			1

11/13/18 13:27

Not Specified

11/15/18

Project Name:	MASON STATION
Project Number:	171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1847067-05Client ID:SV305Sample Location:WISCASSET, ME

		ррьV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	1 - Mansfield Lab							
Ethylbenzene	0.474	0.020		2.06	0.087			1
p/m-Xylene	0.631	0.040		2.74	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	2.00	0.020		8.52	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	0.233	0.020		1.01	0.087			1
4-Ethyltoluene	0.061	0.020		0.300	0.098			1
1,3,5-Trimethylbenzene	0.072	0.020		0.354	0.098			1
1,2,4-Trimethylbenzene	0.247	0.020		1.21	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	0.223	0.020		1.34	0.120			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	0.270	0.050		1.42	0.262			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	92		60-140

Serial_No:11261816:21

Project Name:MASON STATIONLab Number:Project Number:171-06108Report Date:

 Number:
 L1847067

 ort Date:
 11/26/18

11/13/18 15:04

Not Specified

11/15/18

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:	L1847067-06	D
Client ID:	SV306	
Sample Location:	WISCASSET,	ME

Sample Depth: Matrix: Soil_Vapor

Anaytical Method:48,TO-15-SIMAnalytical Date:11/22/18 08:29Analyst:MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	lansfield Lab							
Propylene	13.3	0.834		22.9	1.44			1.667
Dichlorodifluoromethane	ND	0.333		ND	1.65			1.667
Chloromethane	ND	0.333		ND	0.688			1.667
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.083		ND	0.583			1.667
Vinyl chloride	ND	0.033		ND	0.085			1.667
1,3-Butadiene	1.02	0.033		2.26	0.074			1.667
Bromomethane	ND	0.033		ND	0.129			1.667
Chloroethane	ND	0.167		ND	0.441			1.667
Ethyl Alcohol	26.6	8.34		50.1	15.7			1.667
Vinyl bromide	ND	0.333		ND	1.46			1.667
Acetone	33.6	1.67		79.8	3.97			1.667
Trichlorofluoromethane	0.167	0.083		0.938	0.469			1.667
so-Propyl Alcohol	ND	0.834		ND	2.05			1.667
1,1-Dichloroethene	ND	0.033		ND	0.132			1.667
Methylene chloride	ND	0.834		ND	2.90			1.667
3-Chloropropene	ND	0.333		ND	1.04			1.667
Carbon disulfide	1.01	0.333		3.15	1.04			1.667
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.083		ND	0.639			1.667
trans-1,2-Dichloroethene	ND	0.033		ND	0.132			1.667
1,1-Dichloroethane	ND	0.033		ND	0.135			1.667
Methyl tert butyl ether	ND	0.333		ND	1.20			1.667
Vinyl acetate	ND	1.67		ND	5.88			1.667
2-Butanone	5.60	0.834		16.5	2.46			1.667

11/13/18 15:04

Not Specified

11/15/18

Project Name:	MASON STATION
Project Number:	171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1847067-06DClient ID:SV306Sample Location:WISCASSET, ME

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
cis-1,2-Dichloroethene	ND	0.033		ND	0.132			1.667
Ethyl Acetate	ND	0.834		ND	3.01			1.667
Chloroform	1.15	0.033		5.62	0.163			1.667
Tetrahydrofuran	ND	0.834		ND	2.46			1.667
1,2-Dichloroethane	ND	0.033		ND	0.135			1.667
n-Hexane	48.2	0.333		170	1.17			1.667
1,1,1-Trichloroethane	ND	0.033		ND	0.182			1.667
Benzene	0.235	0.167		0.751	0.534			1.667
Carbon tetrachloride	3.36	0.033		21.1	0.209			1.667
Cyclohexane	2.26	0.333		7.78	1.15			1.667
1,2-Dichloropropane	ND	0.033		ND	0.154			1.667
Bromodichloromethane	ND	0.033		ND	0.223			1.667
1,4-Dioxane	ND	0.167		ND	0.602			1.667
Trichloroethene	ND	0.033		ND	0.179			1.667
2,2,4-Trimethylpentane	ND	0.333		ND	1.56			1.667
Heptane	0.934	0.333		3.83	1.36			1.667
cis-1,3-Dichloropropene	ND	0.033		ND	0.151			1.667
4-Methyl-2-pentanone	ND	0.834		ND	3.42			1.667
rans-1,3-Dichloropropene	ND	0.033		ND	0.151			1.667
1,1,2-Trichloroethane	ND	0.033		ND	0.182			1.667
Toluene	0.175	0.083		0.659	0.314			1.667
2-Hexanone	ND	0.333		ND	1.36			1.667
Dibromochloromethane	ND	0.033		ND	0.284			1.667
1,2-Dibromoethane	ND	0.033		ND	0.256			1.667
Tetrachloroethene	ND	0.033		ND	0.226			1.667
Chlorobenzene	ND	0.167		ND	0.769			1.667

11/13/18 15:04

Not Specified

11/15/18

Project Name:	MASON STATION
Project Number:	171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1847067-06DClient ID:SV306Sample Location:WISCASSET, ME

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air by SIM	- Mansfield Lab							
Ethylbenzene	0.235	0.033		1.02	0.145			1.667
p/m-Xylene	1.38	0.067		5.99	0.290			1.667
Bromoform	ND	0.033		ND	0.344			1.667
Styrene	0.245	0.033		1.04	0.142			1.667
1,1,2,2-Tetrachloroethane	ND	0.033		ND	0.229			1.667
o-Xylene	0.773	0.033		3.36	0.145			1.667
4-Ethyltoluene	2.22	0.033		10.9	0.164			1.667
1,3,5-Trimethylbenzene	3.19	0.033		15.7	0.164			1.667
1,2,4-Trimethylbenzene	10.7	0.033		52.6	0.164			1.667
Benzyl chloride	ND	0.333		ND	1.72			1.667
1,3-Dichlorobenzene	ND	0.033		ND	0.200			1.667
1,4-Dichlorobenzene	ND	0.033		ND	0.200			1.667
1,2-Dichlorobenzene	ND	0.033		ND	0.200			1.667
1,2,4-Trichlorobenzene	ND	0.083		ND	0.619			1.667
Naphthalene	0.225	0.083		1.18	0.437			1.667
Hexachlorobutadiene	ND	0.083		ND	0.890			1.667

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	114		60-140

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab f	or sample	e(s): 01-06	Batch: W	G118195	53-4		
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Aansfield Lab f	or sample	e(s): 01-06	Batch: W	G118195	53-4		
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.020		ND	0.098			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Cyclohexane	ND	0.200		ND	0.688			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab f	or sample	e(s): 01-06	Batch: W	G118195	3-4		
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
1,2,3-Trichloropropane	ND	0.020		ND	0.121			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab fo	or sample	(s): 01-0	6 Batch: WG	6118195	3-4		
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Lab Control Sample Analysis

Batch Quality Control

Project Number: 171-06108

Lab Number: L1847067 Report Date: 11/26/18

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-06 Batch: WG1181953-3 Propylene 114 70-130 25 --Dichlorodifluoromethane 108 25 70-130 --Chloromethane 107 70-130 25 --1,2-Dichloro-1,1,2,2-tetrafluoroethane 111 70-130 25 --Vinyl chloride 110 70-130 25 --25 1,3-Butadiene 114 70-130 --Bromomethane 113 70-130 25 --25 Chloroethane 107 70-130 --Ethyl Alcohol 99 70-130 25 _ -Vinyl bromide 25 113 70-130 --25 Acetone 110 70-130 --25 Trichlorofluoromethane 110 70-130 --25 iso-Propyl Alcohol 117 70-130 --97 70-130 25 Acrylonitrile --1,1-Dichloroethene 100 70-130 25 --25 tert-Butyl Alcohol1 114 70-130 _ -25 Methylene chloride 102 70-130 --3-Chloropropene 70-130 25 106 --Carbon disulfide 70-130 25 98 --1,1,2-Trichloro-1,2,2-Trifluoroethane 102 70-130 25 -trans-1,2-Dichloroethene 98 70-130 25 _ -70-130 25 1,1-Dichloroethane 99 --25 Methyl tert butyl ether 101 70-130 --

Lab Control Sample Analysis

Batch Quality Control

Project Number: 171-06108

Lab Number: L1847067 Report Date: 11/26/18

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-06 Batch: WG1181953-3 Vinyl acetate 104 70-130 25 --106 25 2-Butanone 70-130 -cis-1.2-Dichloroethene 102 70-130 25 --Ethyl Acetate 113 70-130 25 --Chloroform 103 70-130 25 --70-130 25 Tetrahydrofuran 91 --1.2-Dichloroethane 99 70-130 25 --25 n-Hexane 98 70-130 --1,1,1-Trichloroethane 100 70-130 25 _ -97 70-130 25 Benzene --25 Carbon tetrachloride 102 70-130 --25 Cyclohexane 100 70-130 --25 Dibromomethane¹ 89 70-130 --70-130 25 1,2-Dichloropropane 100 --Bromodichloromethane 107 70-130 25 --25 1,4-Dioxane 112 70-130 _ -25 Trichloroethene 101 70-130 --2,2,4-Trimethylpentane 70-130 25 103 --70-130 25 cis-1,3-Dichloropropene 106 --4-Methyl-2-pentanone 106 70-130 25 -trans-1,3-Dichloropropene 92 70-130 25 --70-130 25 1,1,2-Trichloroethane 103 --103 25 Toluene 70-130 --

Lab Control Sample Analysis

Batch Quality Control

Project Number: 171-06108

Lab Number: L1847067 Report Date: 11/26/18

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-06 Batch: WG1181953-3 2-Hexanone 109 70-130 25 --116 25 Dibromochloromethane 70-130 --1.2-Dibromoethane 106 70-130 25 --Tetrachloroethene 103 70-130 25 --1,1,1,2-Tetrachloroethane 101 70-130 25 --25 Chlorobenzene 104 70-130 --Ethylbenzene 104 70-130 25 --25 p/m-Xylene 103 70-130 --Bromoform 116 70-130 25 _ -70-130 25 Styrene 106 --25 1,1,2,2-Tetrachloroethane 109 70-130 --25 o-Xylene 104 70-130 --25 1,2,3-Trichloropropane1 99 70-130 --102 70-130 25 Isopropylbenzene --Bromobenzene¹ 99 70-130 25 --25 4-Ethyltoluene 109 70-130 _ -25 1,3,5-Trimethylbenzene 106 70-130 --1,2,4-Trimethylbenzene 70-130 25 113 --Benzyl chloride 70-130 25 108 --1,3-Dichlorobenzene 113 70-130 25 --1,4-Dichlorobenzene 113 70-130 25 _ -70-130 25 sec-Butylbenzene 108 --25 p-Isopropyltoluene 101 70-130 --

Lab Control Sample Analysis Batch Quality Control

Project Name: MASON STATION

Project Number: 171-06108 Lab Number: L1847067 Report Date: 11/26/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield Lat	Associated s	ample(s):	01-06 Batch: WG	1181953-3					
1,2-Dichlorobenzene	112		-		70-130	-		25	
n-Butylbenzene	118		-		70-130	-		25	
1,2,4-Trichlorobenzene	131	Q	-		70-130	-		25	
Naphthalene	100		-		70-130	-		25	
1,2,3-Trichlorobenzene	125		-		70-130	-		25	
Hexachlorobutadiene	129		-		70-130	-		25	

			Serial_No	:11261816:21
Project Name:	MASON STATION		Lab Number:	L1847067
Project Number:	171-06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	L1847067-01 D SV301 WISCASSET, ME Soil_Vapor 96,APH 11/21/18 21:00 MB		Date Collected: Date Received: Field Prep:	11/13/18 09:30 11/15/18 Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor			
Petroleum Hydrocarbons in Air - Mansfield Lab								
1,3-Butadiene	ND	ug/m3	5.0		10			
Methyl tert butyl ether	ND	ug/m3	7.0		10			
Benzene	ND	ug/m3	6.0		10			
C5-C8 Aliphatics, Adjusted	3500	ug/m3	100		10			
Toluene	ND	ug/m3	9.0		10			
Ethylbenzene	ND	ug/m3	9.0		10			
p/m-Xylene	ND	ug/m3	9.0		10			
o-Xylene	ND	ug/m3	9.0		10			
Naphthalene	ND	ug/m3	11		10			
C9-C12 Aliphatics, Adjusted	260	ug/m3	100		10			
C9-C10 Aromatics Total	ND	ug/m3	100		10			

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	82		50-200
Bromochloromethane	90		50-200
Chlorobenzene-d5	89		50-200

			Serial_No:	11261816:21
Project Name:	MASON STATION		Lab Number:	L1847067
Project Number:	171-06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1847067-02 SV302 WISCASSET, ME		Date Collected: Date Received: Field Prep:	11/13/18 15:48 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Soil_Vapor 96,APH 11/21/18 21:33 MB			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air -	Mansfield Lab				
1,3-Butadiene	12	ug/m3	0.50		1
Methyl tert butyl ether	ND	ug/m3	0.70		1
Benzene	5.1	ug/m3	0.60		1
C5-C8 Aliphatics, Adjusted	360	ug/m3	10		1
Toluene	3.4	ug/m3	0.90		1
Ethylbenzene	ND	ug/m3	0.90		1
p/m-Xylene	1.0	ug/m3	0.90		1
o-Xylene	ND	ug/m3	0.90		1
Naphthalene	ND	ug/m3	1.1		1
C9-C12 Aliphatics, Adjusted	34	ug/m3	10		1
C9-C10 Aromatics Total	ND	ug/m3	10		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	79		50-200
Bromochloromethane	86		50-200
Chlorobenzene-d5	90		50-200

			Serial_No:	:11261816:21
Project Name:	MASON STATION		Lab Number:	L1847067
Project Number:	171-06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1847067-03 SV303 WISCASSET, ME		Date Collected: Date Received: Field Prep:	11/13/18 13:56 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Soil_Vapor 96,APH 11/21/18 22:37 MB			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor			
Petroleum Hydrocarbons in Air - Mansfield Lab								
1,3-Butadiene	2.5	ug/m3	0.50		1			
Methyl tert butyl ether	ND	ug/m3	0.70		1			
Benzene	6.4	ug/m3	0.60		1			
C5-C8 Aliphatics, Adjusted	350	ug/m3	10		1			
Toluene	12	ug/m3	0.90		1			
Ethylbenzene	6.4	ug/m3	0.90		1			
p/m-Xylene	24	ug/m3	0.90		1			
o-Xylene	13	ug/m3	0.90		1			
Naphthalene	46	ug/m3	1.1		1			
C9-C12 Aliphatics, Adjusted	640	ug/m3	10		1			
C9-C10 Aromatics Total	450	ug/m3	10		1			

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		50-200
Bromochloromethane	91		50-200
Chlorobenzene-d5	90		50-200

			Serial_No	:11261816:21
Project Name:	MASON STATION		Lab Number:	L1847067
Project Number:	171-06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1847067-04 SV304 WISCASSET, ME		Date Collected: Date Received: Field Prep:	11/13/18 10:28 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Soil_Vapor 96,APH 11/21/18 23:09 MB			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor				
Petroleum Hydrocarbons in Air -	Petroleum Hydrocarbons in Air - Mansfield Lab								
1,3-Butadiene	ND	ug/m3	0.50		1				
Methyl tert butyl ether	ND	ug/m3	0.70		1				
Benzene	ND	ug/m3	0.60		1				
C5-C8 Aliphatics, Adjusted	220	ug/m3	10		1				
Toluene	ND	ug/m3	0.90		1				
Ethylbenzene	ND	ug/m3	0.90		1				
p/m-Xylene	ND	ug/m3	0.90		1				
o-Xylene	ND	ug/m3	0.90		1				
Naphthalene	ND	ug/m3	1.1		1				
C9-C12 Aliphatics, Adjusted	410	ug/m3	10		1				
C9-C10 Aromatics Total	ND	ug/m3	10		1				

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		50-200
Bromochloromethane	95		50-200
Chlorobenzene-d5	91		50-200

			Serial_No:	11261816:21
Project Name:	MASON STATION		Lab Number:	L1847067
Project Number:	171-06108		Report Date:	11/26/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1847067-05 SV305 WISCASSET, ME		Date Collected: Date Received: Field Prep:	11/13/18 13:27 11/15/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Soil_Vapor 96,APH 11/21/18 23:42 MB			

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air -	Mansfield Lab				
1,3-Butadiene	1.2	ug/m3	0.50		1
Methyl tert butyl ether	ND	ug/m3	0.70		1
Benzene	3.0	ug/m3	0.60		1
C5-C8 Aliphatics, Adjusted	87	ug/m3	10		1
Toluene	4.5	ug/m3	0.90		1
Ethylbenzene	2.3	ug/m3	0.90		1
p/m-Xylene	3.0	ug/m3	0.90		1
o-Xylene	1.2	ug/m3	0.90		1
Naphthalene	1.7	ug/m3	1.1		1
C9-C12 Aliphatics, Adjusted	460	ug/m3	10		1
C9-C10 Aromatics Total	11	ug/m3	10		1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		50-200
Bromochloromethane	93		50-200
Chlorobenzene-d5	90		50-200

				Serial_N	lo:11261816:21
Project Name:	MASON STATION	1		Lab Number:	L1847067
Project Number:	171-06108			Report Date:	11/26/18
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	SV306 WISCASSET, ME Soil_Vapor	D		Date Collected: Date Received: Field Prep:	11/13/18 15:04 11/15/18 Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air -	Mansfield Lab				
1,3-Butadiene	2.5	ug/m3	0.85		1.7
Methyl tert butyl ether	ND	ug/m3	1.2		1.7
Benzene	ND	ug/m3	1.0		1.7
C5-C8 Aliphatics, Adjusted	3600	ug/m3	17		1.7
Toluene	ND	ug/m3	1.5		1.7
Ethylbenzene	ND	ug/m3	1.5		1.7
p/m-Xylene	7.0	ug/m3	1.5		1.7
o-Xylene	4.0	ug/m3	1.5		1.7
Naphthalene	ND	ug/m3	1.9		1.7
C9-C12 Aliphatics, Adjusted	6000	ug/m3	17		1.7
C9-C10 Aromatics Total	200	ug/m3	17		1.7

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		50-200
Bromochloromethane	97		50-200
Chlorobenzene-d5	110		50-200

Project Name:	MASON STATION	Lab Number:	L1847067
Project Number:	171-06108	Report Date:	11/26/18

Analytical Method:	96,APH
Analytical Date:	11/21/18 14:03
Analyst:	MB

arameter	Result	Qualifier Units	RL	MDL
etroleum Hydrocarbons in Air - N	lansfield Lab fo	r sample(s): 01-06	Batch:	WG1181948-4
1,3-Butadiene	ND	ug/m3	0.50	
Methyl tert butyl ether	ND	ug/m3	0.70	
Benzene	ND	ug/m3	0.60	
C5-C8 Aliphatics, Adjusted	ND	ug/m3	10	
Toluene	ND	ug/m3	0.90	
Ethylbenzene	ND	ug/m3	0.90	
p/m-Xylene	ND	ug/m3	0.90	
o-Xylene	ND	ug/m3	0.90	
Naphthalene	ND	ug/m3	1.1	
C9-C12 Aliphatics, Adjusted	ND	ug/m3	10	
C9-C10 Aromatics Total	ND	ug/m3	10	

Lab Control Sample Analysis Batch Quality Control

Project Name: MASON STATION

Project Number: 171-06108 Lab Number: L1847067 Report Date: 11/26/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Petroleum Hydrocarbons in Air - Mansfield La	ab Associated s	ample(s):	01-06 Batch: WG	61181948-3					
1,3-Butadiene	113		-		70-130	-			
Methyl tert butyl ether	100		-		70-130	-			
Benzene	104		-		70-130	-			
C5-C8 Aliphatics, Adjusted	99		-		70-130	-			
Toluene	110		-		70-130	-			
Ethylbenzene	111		-		70-130	-			
p/m-Xylene	111		-		70-130	-			
o-Xylene	117		-		70-130	-			
Naphthalene	121		-		50-150	-			
C9-C12 Aliphatics, Adjusted	114		-		70-130	-			
C9-C10 Aromatics Total	99		-		70-130	-			

Lab Duplicate Analysis Batch Quality Control

Project Name: MASON STATION

Project Number: 171-06108

Lab Number:

Lab Number: L1847067 Report Date: 11/26/18

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
etroleum Hydrocarbons in Air - Mansfield Lab	Associated sample(s): 01-06	QC Batch ID: WG1	181948-5	QC Sample: L	1847067-02	Client ID: S	SV302
1,3-Butadiene	12	11	ug/m3	9		30	
Methyl tert butyl ether	ND	ND	ug/m3	NC		30	
Benzene	5.1	4.6	ug/m3	10		30	
C5-C8 Aliphatics, Adjusted	360	310	ug/m3	15		30	
Toluene	3.4	3.3	ug/m3	3		30	
Ethylbenzene	ND	ND	ug/m3	NC		30	
p/m-Xylene	1.0	1.0	ug/m3	0		30	
o-Xylene	ND	ND	ug/m3	NC		30	
Naphthalene	ND	ND	ug/m3	NC		30	
C9-C12 Aliphatics, Adjusted	34	33	ug/m3	3		30	
C9-C10 Aromatics Total	ND	ND	ug/m3	NC		30	

Project Name: MASON STATION

Project Number: 171-06108

Serial_No:11261816:21 Lab Number: L1847067

Report Date: 11/26/18

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	
L1847067-01	SV301	0704	SV200	10/25/18	276791		-	-	-	Pass	225	207	8
L1847067-01	SV301	551	2.7L Can	10/25/18	276791	L1842636-01	Pass	-29.6	-2.2	-	-	-	-
L1847067-02	SV302	0685	SV200	10/25/18	276791		-	-	-	Pass	225	205	9
L1847067-02	SV302	417	2.7L Can	10/25/18	276791	L1842636-01	Pass	-29.5	-2.1	-	-	-	-
L1847067-03	SV303	0650	SV200	10/25/18	276791		-	-	-	Pass	224	205	9
L1847067-03	SV303	1733	2.7L Can	10/25/18	276791	L1842636-01	Pass	-29.6	-2.1	-	-	-	-
L1847067-04	SV304	0884	SV200	10/25/18	276791		-	-	-	Pass	224	217	3
L1847067-04	SV304	374	2.7L Can	10/25/18	276791	L1842636-01	Pass	-29.4	-0.16	-	-	-	-
L1847067-05	SV305	0861	SV200	10/25/18	276791		-	-	-	Pass	223	206	8
L1847067-05	SV305	508	2.7L Can	10/25/18	276791	L1842636-01	Pass	-29.5	-1.8	-	-	-	-
L1847067-06	SV306	0539	SV200	10/25/18	276791		-	-	-	Pass	224	208	7
L1847067-06	SV306	178	2.7L Can	10/25/18	276791	L1842636-01	Pass	-29.4	0.10	-	-	-	-
L1847067-07	UNUSED CANISTER 482	01052	SV200	10/25/18	276791		-	-	-	Pass	220	220	0
L1847067-07	UNUSED CANISTER 482	482	2.7L Can	10/25/18	276791	L1842636-01	Pass	-29.7	-29.7	-	-	-	-
L1847067-08	UNUSED CANISTER 2375	0686	SV200	10/25/18	276791		-	-	-	Pass	222	222	0

Project Name: MASON STATION

Project Number: 171-06108

Serial_No:11261816:21 Lab Number: L1847067

Report Date: 11/26/18

Canister and Flow Controller Information

	Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L	1847067-08	UNUSED CANISTER 2375	2375	2.7L Can	10/25/18	276791	L1842636-01	Pass	-28.4	-28.4	-	-	-	-

Project Number:	CANISTER QC E	BAT				R	eport D	ate:	1/26/18
		Air Can	ister Cer	tificati	on Results				
Lab ID: Client ID: Sample Location:	L1842636-01 CAN 338 SHEL	F 2				Date	Collecte Receive Prep:		10/18/18 16:00 10/19/18 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 10/19/18 19:57 RY								
			ppbV			ug/m3			Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in A	Air - Mansfield Lab								
Chlorodifluoromethane		ND	0.200		ND	0.707			1
Propylene		ND	0.500		ND	0.861			1
Propane		ND	0.500		ND	0.902			1
Dichlorodifluoromethane		ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.200		ND	1.40			1
Methanol		ND	5.00		ND	6.55			1
Vinyl chloride		ND	0.200		ND	0.511			1
1,3-Butadiene		ND	0.200		ND	0.442			1
Butane		ND	0.200		ND	0.475			1
Bromomethane		ND	0.200		ND	0.777			1
Chloroethane		ND	0.200		ND	0.528			1
Ethanol		ND	5.00		ND	9.42			1
Dichlorofluoromethane		ND	0.200		ND	0.842			1
Vinyl bromide		ND	0.200		ND	0.874			1
Acrolein		ND	0.500		ND	1.15			1
Acetone		ND	1.00		ND	2.38			1
Acetonitrile		ND	0.200		ND	0.336			1
Trichlorofluoromethane		ND	0.200		ND	1.12			1
Isopropanol		ND	0.500		ND	1.23			1
Acrylonitrile		ND	0.500		ND	1.09			1
Pentane		ND	0.200		ND	0.590			1
Ethyl ether		ND	0.200		ND	0.606			1
1,1-Dichloroethene		ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:11261816:21

L1842636

Lab Number:

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1842636-01	Date Collected:	10/18/18 16:00
Client ID:	CAN 338 SHELF 2	Date Received:	10/19/18
Sample Location:		Field Prep:	Not Specified

		ppbV		ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1842636-01	Date Collected:	10/18/18 16:00
Client ID:	CAN 338 SHELF 2	Date Received:	10/19/18
Sample Location:		Field Prep:	Not Specified

		ug/m3				Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Lab							
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1842636-01	Date Collected:	10/18/18 16:00
Client ID:	CAN 338 SHELF 2	Date Received:	10/19/18
Sample Location:		Field Prep:	Not Specified

		ppbV	ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-IsopropyItoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

							Serial	_No:112	61816:21
Project Name:	BATCH CANISTER CERTIFICATION					La	Lab Number:		L1842636
Project Number:	CANISTER QC	ВАТ				Re	port D	ate:	11/26/18
		Air Can	ister Ce	rtification	Results				
Lab ID: Client ID: Sample Location:	L1842636-01 CAN 338 SHEL	F 2				Date C Date R Field P	eceive	-	10/18/18 16:00 10/19/18 Not Specified
Sample Depth:			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	. Factor
Volatile Organics in	Air - Mansfield Lab								
		Re	sults	Qualifier	Units	RDL		Dilutio Facto	
Tentatively Identified Con	npounds								

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	87		60-140

Air Canister Certification Results Lab ID: L1842636-01 Date Collected: 10/18/18 16:00 Client ID: CAN 338 SHELF 2 Date Received: 10/19/18 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air 48,TO-15-SIM Anaytical Method: Analytical Date: 10/19/18 19:57 RY Analyst: ppbV ug/m3 Dilution Factor RL Qualifier RL Results MDL Parameter Results MDL Volatile Organics in Air by SIM - Mansfield Lab Dichlorodifluoromethane 0.200 ND ND ---0.989 ---1 Chloromethane ND 0.200 ND 0.413 1 ------Freon-114 ND 0.050 ND 0.349 1 -----Vinyl chloride ND 0.020 ---ND 0.051 ---1 1,3-Butadiene ND 0.020 ND 0.044 ---1 ---Bromomethane ND ND 1 0.020 0.078 ------Chloroethane ND 0.100 ND 0.264 1 -----Acetone ND 1.00 ---ND 2.38 ---1 Trichlorofluoromethane ND 0.050 ND 0.281 1 -----Acrylonitrile ND 0.500 ND 1.09 1 ------1,1-Dichloroethene ND 0.020 ND 0.079 1 ------Methylene chloride ND 0.500 ND 1.74 1 ----Freon-113 ND 0.050 ---ND 0.383 ---1 trans-1,2-Dichloroethene ND 0.020 ND 0.079 1 -----1,1-Dichloroethane ND 0.020 ND 0.081 1 ------Methyl tert butyl ether ND 0.200 ND 0.721 1 ------2-Butanone ND 0.500 ---ND 1.47 ---1 cis-1,2-Dichloroethene ND 0.020 1 ---ND 0.079 ---Chloroform ND 0.020 ND 0.098 1 ------1,2-Dichloroethane ND 0.020 ND 0.081 --1 --1,1,1-Trichloroethane ND 0.020 ---ND 0.109 ---1 Benzene ND ND 0.319 1 0.100 ----Carbon tetrachloride ND 0.020 ND 1 0.126 ------1,2-Dichloropropane ND 0.020 ND 0.092 ---1 ---

Serial_No:11261816:21

L1842636

11/26/18

Lab Number:

Report Date:

Project Name:

Project Number:

BATCH CANISTER CERTIFICATION

CANISTER QC BAT

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1842636-01	Date Collected:	10/18/18 16:00
Client ID:	CAN 338 SHELF 2	Date Received:	10/19/18
Sample Location:		Field Prep:	Not Specified

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

		Serial_No:11	1261816:21
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1842636
Project Number:	CANISTER QC BAT	Report Date:	11/26/18
	Air Canister Certification Results		

Lab ID:	L1842636-01	Date Collected:	10/18/18 16:00
Client ID:	CAN 338 SHELF 2	Date Received:	10/19/18
Sample Location:		Field Prep:	Not Specified

		ppbV		ug/m3			Dilution Factor	
Parameter	Results	RL MDL		Results RL		MDL		Qualifier
Volatile Organics in Air by SIN	A - Mansfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	91		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	87		60-140

AIR Petro Can Certification

		Serial_No:	11261816:21
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1842636
Project Number:	CANISTER QC BAT	Report Date:	11/26/18
	AIR CAN CERTIFICATION RESULTS	S	
Lab ID:	L1842636-01	Date Collected:	10/18/18 16:00
Client ID:	CAN 338 SHELF 2	Date Received:	10/19/18
Sample Location:	Not Specified	Field Prep:	Not Specified
Matrix:	Air		
Analytical Method:	96,APH		
Analytical Date:	10/19/18 19:57		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Petroleum Hydrocarbons in Air						
1,3-Butadiene	ND		ug/m3	0.50		1
Methyl tert butyl ether	ND		ug/m3	0.70		1
Benzene	ND		ug/m3	0.60		1
C5-C8 Aliphatics, Adjusted	ND		ug/m3	10		1
Toluene	ND		ug/m3	0.90		1
Ethylbenzene	ND		ug/m3	0.90		1
p/m-Xylene	ND		ug/m3	0.90		1
o-Xylene	ND		ug/m3	0.90		1
Naphthalene	ND		ug/m3	1.1		1
C9-C12 Aliphatics, Adjusted	ND		ug/m3	10		1
C9-C10 Aromatics Total	ND		ug/m3	10		1

Analyst:

RY

Project Name: MASON STATION Project Number: 171-06108

Serial_No:11261816:21 Lab Number: L1847067 Report Date: 11/26/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
N/A	Absent

Container Information

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1847067-01A	Canister - 2.7 Liter	N/A	NA			Y	Absent		APH-10(30),TO15-SIM(30)
L1847067-02A	Canister - 2.7 Liter	N/A	NA			Y	Absent		APH-10(30),TO15-SIM(30)
L1847067-03A	Canister - 2.7 Liter	N/A	NA			Y	Absent		APH-10(30),TO15-SIM(30)
L1847067-04A	Canister - 2.7 Liter	N/A	NA			Y	Absent		APH-10(30),TO15-SIM(30)
L1847067-05A	Canister - 2.7 Liter	N/A	NA			Y	Absent		APH-10(30),TO15-SIM(30)
L1847067-06A	Canister - 2.7 Liter	N/A	NA			Y	Absent		APH-10(30),TO15-SIM(30)
L1847067-07A	Canister - 2.7 Liter	N/A	NA			Y	Absent		CLEAN-FEE()
L1847067-08A	Canister - 2.7 Liter	N/A	NA			Y	Absent		CLEAN-FEE()

Serial_No:11261816:21

Project Name: MASON STATION

Project Number: 171-06108

Lab Number: L1847067

Report Date: 11/26/18

GLOSSARY

Acronyms

-	
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name: MASON STATION

Project Number: 171-06108

Serial_	No:1126181	6:21
---------	------------	------

 Lab Number:
 L1847067

 Report Date:
 11/26/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name: MASON STATION Project Number: 171-06108

 Lab Number:
 L1847067

 Report Date:
 11/26/18

REFERENCES

- 48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.
- 96 Method for the Determination of Air-Phase Petroleum Hydrocarbons (APH), MassDEP, December 2009, Revision 1 with QC Requirements & Performance Standards for the Analysis of APH by GC/MS under the Massachusetts Contingency Plan, WSC-CAM-IXA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene **EPA 8260C:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270D:** <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

					_		-	_			_		-	Seria	al_No	o:11261816:	21
Aurora	AIR AI	VALY	SIS	P	AGE_	OF	Date R	lec'd in La	b: 11	115	118		A	PHA	Job	#: 1184	7067
AMALYTEAL	CHAIN OF CUSTODY	Project	Informat	ion		100		rt Inform	-		-	bles	В	illing	Infor	mation	TRANSPORT
320 Forbes Blvd, Mansfield, MA 02048 TEL: 508-822-9300 FAX: 508-822-3288 Client Information		Project Name: Mason Station				DE FA	X					0	Same a	as Clie	ent info PO #	11394	
		Project Lo	ocation: //	liscas	set 1	MF	AD	Ex Criteria Ch	ockor				-	1.00			
Client: Ranson	Consulting Inc.			9610		/	-	(Default base	ed on Regi	datory Crit	levia Indicate	d)	1				
ddress: 400 (o	mmercial St.			teve				Other Form IAIL (stand		report)			R	egula	tory F	Requirement	s/Report Lim
Portlan	d ME OYIOI	ALPHA Q			-1-	3		ditional De					1.000	ate/Fed		Program	Res / Com
^{phone:} 207.7		Turn-A	round Tin	ne				to: in anome			znu.co	241	11	EDI	=r'	-	Res.
ax: 207.77		Standar	d D	RUSH (only a	centurned & pro-as	CONVERTS	4						1				
J These samples have	C Tan Som Env. Con been previously analyzed by Alpha ecific Requirements/Comm	Date Due			Time:	1997 F 3 1998							1	A	DALY	rsis sroe	
	Target Compound List: ם	l Col	umn	s Bel	ow N	Must	Bel	Filled	1 01	ut			APH SIM	Fixed Gases	s & Alencapitaria (
ALPHA Lab ID (Lab Use Only)	Sample ID	End Date	COL Start Time	End Time	N Initial Vacuum	Final Vacuum	Sample Matrix*	Sampler's Initials	Size		I D - Flow Controller	70.15	4PH	Fixed		Sample Co	mments (i.ę. P
47067-0	54301	11/13/18	0918	09:30	-29.91	-4.20	SV	EFFE	2.7L	551	704	Х	X				
207	SV302	11/12/18	15:37	15:48	-30.60	-4,60	SV	CP/P5B	2.7L	417	685	X	X			1.0	
-03	SV 303	1 Contract 1 Contract 1		13:56	and the second se	and the second se		a mal				X	X				
- 64	SV304	11/13/18						1.000				X	X				
-05		1/13/18						and the second sec					X				
-04		11/12/18										1 8	X			1	
							10										
							6									-	
1.16														4			L (1
								-	/								
*SAMPLE	MATRIX CODES SV	A = Ambient / = Soil Vap her = Please	or/Landfill (R	c	ontainer	Туре					j	completely. S	early, legibly and amples can not be turnaround time
age 58 of 58 (25-5e	Zail	Relinquis		AAL		e/Time B 1600 1957	A	Mil	ved By:	1.96	11/15	10	ate/T		at .<	clock will not s guities are res	tart until any amb clved. All sample subject to Alpha's nditions.

ANALYTICAL REPORT

Lab Number:	L1845809
Client:	Ransom Consulting, Inc.
	400 Commercial Street
	Suite 404
	Portland, ME 04101-4660
ATTN:	Steve Dyer
Phone:	(207) 772-2891
Project Name:	MASON STATION
Project Number:	171.06108
Report Date:	11/16/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:11161817:52

Project Name:MASON STATIONProject Number:171.06108

Lab Number:	L1845809
Report Date:	11/16/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1845809-01	WS101	WIPE	WISCASSET, ME	11/05/18 13:50	11/08/18
L1845809-02	WS102	WIPE	WISCASSET, ME	11/05/18 14:00	11/08/18
L1845809-03	WS103	WIPE	WISCASSET, ME	11/05/18 14:10	11/08/18
L1845809-04	WS104	WIPE	WISCASSET, ME	11/05/18 14:20	11/08/18
L1845809-05	WS105	WIPE	WISCASSET, ME	11/05/18 14:30	11/08/18
L1845809-06	WS106	WIPE	WISCASSET, ME	11/05/18 14:45	11/08/18
L1845809-07	WS107	WIPE	WISCASSET, ME	11/05/18 15:00	11/08/18
L1845809-08	WS108	WIPE	WISCASSET, ME	11/05/18 15:10	11/08/18
L1845809-09	WS109	WIPE	WISCASSET, ME	11/05/18 15:25	11/08/18
L1845809-10	WS110	WIPE	WISCASSET, ME	11/06/18 09:45	11/08/18
L1845809-11	WS111	WIPE	WISCASSET, ME	11/06/18 10:50	11/08/18
L1845809-12	WS112	WIPE	WISCASSET, ME	11/06/18 11:40	11/08/18
L1845809-13	WS113	WIPE	WISCASSET, ME	11/06/18 13:15	11/08/18
L1845809-14	WS114	WIPE	WISCASSET, ME	11/06/18 13:40	11/08/18
L1845809-15	WS115	WIPE	WISCASSET, ME	11/07/18 09:45	11/08/18
L1845809-16	WS116	WIPE	WISCASSET, ME	11/07/18 10:35	11/08/18
L1845809-17	OIL UNIT-4	OIL	WISCASSET, ME	11/05/18 09:54	11/08/18
L1845809-18	OIL UNIT-5	OIL	WISCASSET, ME	11/05/18 10:09	11/08/18

Project Name: MASON STATION Project Number: 171.06108

 Lab Number:
 L1845809

 Report Date:
 11/16/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: MASON STATION Project Number: 171.06108

 Lab Number:
 L1845809

 Report Date:
 11/16/18

Case Narrative (continued)

PCBs

L1845809-06: The sample has elevated detection limits due to the dilution required by the sample matrix. L1845809-10: The surrogate recoveries were outside the acceptance criteria for 2,4,5,6-tetrachloro-m-xylene (8%,8%) and decachlorobiphenyl (9%,9%); however, re-extraction could not be performed due to lack of additional sample. The results of the original analysis are reported; however, all associated compounds are considered to have a potential bias.

Total Metals

L1845809-05 and -13: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

The WG1178723-2 LCS recovery, associated with L1845809-17 and -18, is above the acceptance criteria for mercury (144%); however, the associated samples are non-detect to the RL for this target analyte. The results of the original analysis are reported.

The WG1178723-3 MS recovery, performed on L1845809-17, is outside the acceptance criteria for mercury (126%). A post digestion spike was performed and was within acceptance criteria.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Anita Naik

Authorized Signature:

Title: Technical Director/Representative

Date: 11/16/18

ORGANICS

PCBS

			Serial_No	:11161817:52
Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-01		Date Collected:	11/05/18 13:50
Client ID:	WS101		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Wipe		Extraction Method	: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	11/10/18 13:30
Analytical Date:	11/15/18 04:22		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	11/11/18
•			Cleanup Method:	EPA 3660B
			Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug Abs	0.500		1	A			
Aroclor 1221	ND		ug Abs	0.500		1	А			
Aroclor 1232	ND		ug Abs	0.500		1	А			
Aroclor 1242	ND		ug Abs	0.500		1	А			
Aroclor 1248	ND		ug Abs	0.500		1	А			
Aroclor 1254	ND		ug Abs	0.500		1	А			
Aroclor 1260	ND		ug Abs	0.500		1	А			
Aroclor 1262	ND		ug Abs	0.500		1	А			
Aroclor 1268	ND		ug Abs	0.500		1	А			
PCBs, Total	ND		ug Abs	0.500		1	А			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	В
Decachlorobiphenyl	71		30-150	В
2,4,5,6-Tetrachloro-m-xylene	68		30-150	А
Decachlorobiphenyl	72		30-150	А

			Serial_No	0:11161817:52
Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-02		Date Collected:	11/05/18 14:00
Client ID:	WS102		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Wipe		Extraction Method	I: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	11/10/18 13:30
Analytical Date:	11/15/18 04:36		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	11/11/18
			Cleanup Method:	EPA 3660B
			Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug Abs	0.500		1	А			
Aroclor 1221	ND		ug Abs	0.500		1	А			
Aroclor 1232	ND		ug Abs	0.500		1	А			
Aroclor 1242	ND		ug Abs	0.500		1	А			
Aroclor 1248	ND		ug Abs	0.500		1	А			
Aroclor 1254	ND		ug Abs	0.500		1	А			
Aroclor 1260	ND		ug Abs	0.500		1	А			
Aroclor 1262	ND		ug Abs	0.500		1	А			
Aroclor 1268	ND		ug Abs	0.500		1	А			
PCBs, Total	ND		ug Abs	0.500		1	А			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		enterna	column
2,4,5,6-Tetrachloro-m-xylene	69		30-150	В
Decachlorobiphenyl	70		30-150	В
2,4,5,6-Tetrachloro-m-xylene	69		30-150	А
Decachlorobiphenyl	66		30-150	А

			Serial_No	0:11161817:52
Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-03		Date Collected:	11/05/18 14:10
Client ID:	WS103		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Wipe		Extraction Method	I: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	11/10/18 13:30
Analytical Date:	11/15/18 04:49		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	11/11/18
•			Cleanup Method:	EPA 3660B
			Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug Abs	0.500		1	А			
Aroclor 1221	ND		ug Abs	0.500		1	A			
Aroclor 1232	ND		ug Abs	0.500		1	А			
Aroclor 1242	ND		ug Abs	0.500		1	А			
Aroclor 1248	ND		ug Abs	0.500		1	А			
Aroclor 1254	ND		ug Abs	0.500		1	А			
Aroclor 1260	0.761		ug Abs	0.500		1	А			
Aroclor 1262	ND		ug Abs	0.500		1	А			
Aroclor 1268	ND		ug Abs	0.500		1	А			
PCBs, Total	0.761		ug Abs	0.500		1	А			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62		30-150	В
Decachlorobiphenyl	64		30-150	В
2,4,5,6-Tetrachloro-m-xylene	63		30-150	А
Decachlorobiphenyl	63		30-150	А

			Serial_No	0:11161817:52
Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-04		Date Collected:	11/05/18 14:20
Client ID:	WS104		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Wipe		Extraction Method	1: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	11/10/18 13:30
Analytical Date:	11/15/18 05:03		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	11/11/18
			Cleanup Method:	EPA 3660B
			Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	estborough Lab						
Aroclor 1016	ND		ug Abs	0.500		1	А
Aroclor 1221	ND		ug Abs	0.500		1	A
Aroclor 1232	ND		ug Abs	0.500		1	А
Aroclor 1242	ND		ug Abs	0.500		1	А
Aroclor 1248	ND		ug Abs	0.500		1	А
Aroclor 1254	ND		ug Abs	0.500		1	А
Aroclor 1260	1.60		ug Abs	0.500		1	В
Aroclor 1262	ND		ug Abs	0.500		1	А
Aroclor 1268	ND		ug Abs	0.500		1	А
PCBs, Total	1.60		ug Abs	0.500		1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		30-150	В
Decachlorobiphenyl	65		30-150	В
2,4,5,6-Tetrachloro-m-xylene	74		30-150	А
Decachlorobiphenyl	61		30-150	А

			Serial_No	0:11161817:52
Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-05		Date Collected:	11/05/18 14:30
Client ID:	WS105		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Wipe		Extraction Method	1: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	11/10/18 13:30
Analytical Date:	11/15/18 05:16		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	11/11/18
			Cleanup Method:	EPA 3660B
			Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug Abs	0.500		1	A			
Aroclor 1221	ND		ug Abs	0.500		1	А			
Aroclor 1232	ND		ug Abs	0.500		1	А			
Aroclor 1242	ND		ug Abs	0.500		1	А			
Aroclor 1248	ND		ug Abs	0.500		1	А			
Aroclor 1254	ND		ug Abs	0.500		1	А			
Aroclor 1260	0.958		ug Abs	0.500		1	А			
Aroclor 1262	ND		ug Abs	0.500		1	А			
Aroclor 1268	ND		ug Abs	0.500		1	А			
PCBs, Total	0.958		ug Abs	0.500		1	А			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62		30-150	В
Decachlorobiphenyl	83		30-150	В
2,4,5,6-Tetrachloro-m-xylene	65		30-150	А
Decachlorobiphenyl	75		30-150	А

				Serial_No	:11161817:52
Project Name:	MASON STATION			Lab Number:	L1845809
Project Number:	171.06108			Report Date:	11/16/18
			SAMPLE RESULTS		
Lab ID:	L1845809-06	D		Date Collected:	11/05/18 14:45
Client ID:	WS106			Date Received:	11/08/18
Sample Location:	WISCASSET, ME			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Wipe			Extraction Method	: EPA 3540C
Analytical Method:	1,8082A			Extraction Date:	11/10/18 13:30
Analytical Date:	11/16/18 15:58			Cleanup Method:	EPA 3665A
Analyst:	WR			Cleanup Date:	11/11/18
				Cleanup Method:	EPA 3660B
				Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	estborough Lab						
Aroclor 1016	ND		ug Abs	1.00		2	А
Aroclor 1221	ND		ug Abs	1.00		2	А
Aroclor 1232	ND		ug Abs	1.00		2	А
Aroclor 1242	ND		ug Abs	1.00		2	А
Aroclor 1248	ND		ug Abs	1.00		2	А
Aroclor 1254	ND		ug Abs	1.00		2	А
Aroclor 1260	ND		ug Abs	1.00		2	А
Aroclor 1262	ND		ug Abs	1.00		2	А
Aroclor 1268	ND		ug Abs	1.00		2	А
PCBs, Total	ND		ug Abs	1.00		2	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	103		30-150	В
Decachlorobiphenyl	142		30-150	В
2,4,5,6-Tetrachloro-m-xylene	98		30-150	А
Decachlorobiphenyl	81		30-150	А

				Serial_No	:11161817:52
Project Name:	MASON STATION			Lab Number:	L1845809
Project Number:	171.06108			Report Date:	11/16/18
			SAMPLE RESULTS		
Lab ID:	L1845809-07	D		Date Collected:	11/05/18 15:00
Client ID:	WS107			Date Received:	11/08/18
Sample Location:	WISCASSET, ME			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Wipe			Extraction Method	: EPA 3540C
Analytical Method:	1,8082A			Extraction Date:	11/10/18 13:30
Analytical Date:	11/16/18 16:11			Cleanup Method:	EPA 3665A
Analyst:	WR			Cleanup Date:	11/11/18
,				Cleanup Method:	EPA 3660B
				Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
olychlorinated Biphenyls by GC - Westborough Lab											
Aroclor 1016	ND		ug Abs	1.00		2	А				
Aroclor 1221	ND		ug Abs	1.00		2	A				
Aroclor 1232	ND		ug Abs	1.00		2	А				
Aroclor 1242	ND		ug Abs	1.00		2	А				
Aroclor 1248	ND		ug Abs	1.00		2	А				
Aroclor 1254	2.84		ug Abs	1.00		2	В				
Aroclor 1260	3.69		ug Abs	1.00		2	В				
Aroclor 1262	ND		ug Abs	1.00		2	А				
Aroclor 1268	ND		ug Abs	1.00		2	А				
PCBs, Total	6.53		ug Abs	1.00		2	В				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	107		30-150	В
Decachlorobiphenyl	147		30-150	В
2,4,5,6-Tetrachloro-m-xylene	119		30-150	А
Decachlorobiphenyl	111		30-150	А

			Serial_No	0:11161817:52
Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-08		Date Collected:	11/05/18 15:10
Client ID:	WS108		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Wipe		Extraction Method	1: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	11/10/18 13:30
Analytical Date:	11/15/18 05:57		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	11/11/18
,			Cleanup Method:	EPA 3660B
			Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug Abs	0.500		1	А			
Aroclor 1221	ND		ug Abs	0.500		1	A			
Aroclor 1232	ND		ug Abs	0.500		1	А			
Aroclor 1242	ND		ug Abs	0.500		1	А			
Aroclor 1248	ND		ug Abs	0.500		1	А			
Aroclor 1254	ND		ug Abs	0.500		1	А			
Aroclor 1260	ND		ug Abs	0.500		1	А			
Aroclor 1262	ND		ug Abs	0.500		1	А			
Aroclor 1268	ND		ug Abs	0.500		1	А			
PCBs, Total	ND		ug Abs	0.500		1	А			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64		30-150	В
Decachlorobiphenyl	72		30-150	В
2,4,5,6-Tetrachloro-m-xylene	66		30-150	А
Decachlorobiphenyl	68		30-150	А

			Serial_No	0:11161817:52
Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-09		Date Collected:	11/05/18 15:25
Client ID:	WS109		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Wipe		Extraction Method	1: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	11/10/18 13:30
Analytical Date:	11/15/18 06:10		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	11/11/18
			Cleanup Method:	EPA 3660B
			Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug Abs	0.500		1	A			
Aroclor 1221	ND		ug Abs	0.500		1	А			
Aroclor 1232	ND		ug Abs	0.500		1	А			
Aroclor 1242	ND		ug Abs	0.500		1	А			
Aroclor 1248	ND		ug Abs	0.500		1	А			
Aroclor 1254	ND		ug Abs	0.500		1	А			
Aroclor 1260	2.91		ug Abs	0.500		1	А			
Aroclor 1262	ND		ug Abs	0.500		1	А			
Aroclor 1268	ND		ug Abs	0.500		1	А			
PCBs, Total	2.91		ug Abs	0.500		1	А			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64		30-150	В
Decachlorobiphenyl	78		30-150	В
2,4,5,6-Tetrachloro-m-xylene	68		30-150	А
Decachlorobiphenyl	86		30-150	А

			Serial_No:	11161817:52
Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-10		Date Collected:	11/06/18 09:45
Client ID:	WS110		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Wipe		Extraction Method:	EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	11/10/18 13:30
Analytical Date:	11/15/18 15:32		Cleanup Method:	EPA 3665A
Analyst:	JW		Cleanup Date:	11/11/18
,			Cleanup Method:	EPA 3660B
			Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	estborough Lab						
Aroclor 1016	ND		ug Abs	0.500		1	A
Aroclor 1221	ND		ug Abs	0.500		1	А
Aroclor 1232	ND		ug Abs	0.500		1	А
Aroclor 1242	ND		ug Abs	0.500		1	А
Aroclor 1248	ND		ug Abs	0.500		1	А
Aroclor 1254	ND		ug Abs	0.500		1	А
Aroclor 1260	ND		ug Abs	0.500		1	В
Aroclor 1262	ND		ug Abs	0.500		1	А
Aroclor 1268	ND		ug Abs	0.500		1	А
PCBs, Total	ND		ug Abs	0.500		1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	8	Q	30-150	В
Decachlorobiphenyl	9	Q	30-150	В
2,4,5,6-Tetrachloro-m-xylene	8	Q	30-150	А
Decachlorobiphenyl	9	Q	30-150	А

			Serial_No	:11161817:52
Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-11		Date Collected:	11/06/18 10:50
Client ID:	WS111		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Wipe		Extraction Method	I: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	11/10/18 13:30
Analytical Date:	11/15/18 06:37		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	11/11/18
,			Cleanup Method:	EPA 3660B
			Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC -	Westborough Lab						
Aroclor 1016	ND		ug Abs	0.500		1	A
Aroclor 1221	ND		ug Abs	0.500		1	А
Aroclor 1232	ND		ug Abs	0.500		1	А
Aroclor 1242	ND		ug Abs	0.500		1	А
Aroclor 1248	ND		ug Abs	0.500		1	А
Aroclor 1254	ND		ug Abs	0.500		1	А
Aroclor 1260	0.822		ug Abs	0.500		1	В
Aroclor 1262	ND		ug Abs	0.500		1	А
Aroclor 1268	ND		ug Abs	0.500		1	А
PCBs, Total	0.822		ug Abs	0.500		1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	65		30-150	В
Decachlorobiphenyl	61		30-150	В
2,4,5,6-Tetrachloro-m-xylene	66		30-150	А
Decachlorobiphenyl	56		30-150	А

ASON STATION 1.06108	Lab Number: Report Date:	L1845809
	Report Date:	
		11/16/18
	SAMPLE RESULTS	
1845809-12	Date Collected:	11/06/18 11:40
VS112	Date Received:	11/08/18
VISCASSET, ME	Field Prep:	Not Specified
Vipe	Extraction Metho	od: EPA 3540C
,8082A	Extraction Date:	11/10/18 13:30
1/15/18 06:50	Cleanup Method	I: EPA 3665A
AWS	Cleanup Date:	11/11/18
	Cleanup Method	I: EPA 3660B
	Cleanup Date:	11/12/18
\ \	/S112 /ISCASSET, ME /ipe ,8082A 1/15/18 06:50	/S112 Date Received: /ISCASSET, ME Field Prep: /ipe Extraction Methor ,8082A Extraction Date: 1/15/18 06:50 Cleanup Method WS Cleanup Date: Cleanup Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug Abs	0.500		1	А		
Aroclor 1221	ND		ug Abs	0.500		1	А		
Aroclor 1232	ND		ug Abs	0.500		1	А		
Aroclor 1242	ND		ug Abs	0.500		1	А		
Aroclor 1248	ND		ug Abs	0.500		1	А		
Aroclor 1254	ND		ug Abs	0.500		1	А		
Aroclor 1260	ND		ug Abs	0.500		1	А		
Aroclor 1262	ND		ug Abs	0.500		1	А		
Aroclor 1268	ND		ug Abs	0.500		1	А		
PCBs, Total	ND		ug Abs	0.500		1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	48		30-150	В
Decachlorobiphenyl	46		30-150	В
2,4,5,6-Tetrachloro-m-xylene	52		30-150	А
Decachlorobiphenyl	45		30-150	А

			Serial_No	0:11161817:52
Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-13		Date Collected:	11/06/18 13:15
Client ID:	WS113		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Wipe		Extraction Method	I: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	11/10/18 13:30
Analytical Date:	11/15/18 07:04		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	11/11/18
			Cleanup Method:	EPA 3660B
			Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	estborough Lab						
Aroclor 1016	ND		ug Abs	0.500		1	A
Aroclor 1221	ND		ug Abs	0.500		1	А
Aroclor 1232	ND		ug Abs	0.500		1	А
Aroclor 1242	ND		ug Abs	0.500		1	А
Aroclor 1248	ND		ug Abs	0.500		1	А
Aroclor 1254	ND		ug Abs	0.500		1	А
Aroclor 1260	ND		ug Abs	0.500		1	А
Aroclor 1262	ND		ug Abs	0.500		1	А
Aroclor 1268	ND		ug Abs	0.500		1	А
PCBs, Total	ND		ug Abs	0.500		1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62		30-150	В
Decachlorobiphenyl	57		30-150	В
2,4,5,6-Tetrachloro-m-xylene	63		30-150	А
Decachlorobiphenyl	52		30-150	А

			Serial_No:	11161817:52
Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-14		Date Collected:	11/06/18 13:40
Client ID:	WS114		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Wipe		Extraction Method:	EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	11/10/18 13:30
Analytical Date:	11/15/18 07:17		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	11/11/18
,			Cleanup Method:	EPA 3660B
			Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug Abs	0.500		1	А		
Aroclor 1221	ND		ug Abs	0.500		1	А		
Aroclor 1232	ND		ug Abs	0.500		1	А		
Aroclor 1242	ND		ug Abs	0.500		1	А		
Aroclor 1248	ND		ug Abs	0.500		1	А		
Aroclor 1254	ND		ug Abs	0.500		1	А		
Aroclor 1260	1.15		ug Abs	0.500		1	А		
Aroclor 1262	ND		ug Abs	0.500		1	А		
Aroclor 1268	ND		ug Abs	0.500		1	А		
PCBs, Total	1.15		ug Abs	0.500		1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62		30-150	В
Decachlorobiphenyl	65		30-150	В
2,4,5,6-Tetrachloro-m-xylene	64		30-150	А
Decachlorobiphenyl	65		30-150	А

			Serial_No:	11161817:52
Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-15		Date Collected:	11/07/18 09:45
Client ID:	WS115		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Wipe		Extraction Method:	EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	11/10/18 13:30
Analytical Date:	11/15/18 07:30		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	11/11/18
,			Cleanup Method:	EPA 3660B
			Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug Abs	0.500		1	A		
Aroclor 1221	ND		ug Abs	0.500		1	А		
Aroclor 1232	ND		ug Abs	0.500		1	А		
Aroclor 1242	ND		ug Abs	0.500		1	А		
Aroclor 1248	ND		ug Abs	0.500		1	А		
Aroclor 1254	ND		ug Abs	0.500		1	А		
Aroclor 1260	ND		ug Abs	0.500		1	А		
Aroclor 1262	ND		ug Abs	0.500		1	А		
Aroclor 1268	ND		ug Abs	0.500		1	А		
PCBs, Total	ND		ug Abs	0.500		1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	В
Decachlorobiphenyl	67		30-150	В
2,4,5,6-Tetrachloro-m-xylene	66		30-150	А
Decachlorobiphenyl	61		30-150	А

			Serial_No	0:11161817:52
Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-16		Date Collected:	11/07/18 10:35
Client ID:	WS116		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Wipe		Extraction Method	I: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	11/10/18 13:30
Analytical Date:	11/15/18 07:44		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	11/11/18
•			Cleanup Method:	EPA 3660B
			Cleanup Date:	11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	estborough Lab						
Aroclor 1016	ND		ug Abs	0.500		1	A
Aroclor 1221	ND		ug Abs	0.500		1	А
Aroclor 1232	ND		ug Abs	0.500		1	А
Aroclor 1242	ND		ug Abs	0.500		1	А
Aroclor 1248	ND		ug Abs	0.500		1	А
Aroclor 1254	1.01		ug Abs	0.500		1	В
Aroclor 1260	1.62		ug Abs	0.500		1	А
Aroclor 1262	ND		ug Abs	0.500		1	А
Aroclor 1268	ND		ug Abs	0.500		1	А
PCBs, Total	2.63		ug Abs	0.500		1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	65		30-150	В
Decachlorobiphenyl	73		30-150	В
2,4,5,6-Tetrachloro-m-xylene	65		30-150	А
Decachlorobiphenyl	62		30-150	А

		Serial_No:11161817:52
Project Name:	MASON STATION	Lab Number: L1845809
Project Number:	171.06108	Report Date: 11/16/18
	SAMPLE RESULTS	
Lab ID:	L1845809-17	Date Collected: 11/05/18 09:54
Client ID:	OIL UNIT-4	Date Received: 11/08/18
Sample Location:	WISCASSET, ME	Field Prep: Not Specified
Sample Depth:		
Matrix:	Oil	Extraction Method: EPA 3580A
Analytical Method:	1,8082A	Extraction Date: 11/11/18 14:47
Analytical Date:	11/16/18 10:27	Cleanup Method: EPA 3665A
Analyst:	AWS	Cleanup Date: 11/12/18
Percent Solids:	Results reported on an 'AS RECEIVED' basis.	Cleanup Method: EPA 3660B
		Cleanup Date: 11/12/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		mg/kg	2.20		1	A		
Aroclor 1221	ND		mg/kg	2.20		1	А		
Aroclor 1232	ND		mg/kg	2.20		1	А		
Aroclor 1242	ND		mg/kg	2.20		1	А		
Aroclor 1248	ND		mg/kg	1.47		1	А		
Aroclor 1254	ND		mg/kg	2.20		1	А		
Aroclor 1260	51.6		mg/kg	1.47		1	А		
Aroclor 1262	ND		mg/kg	0.735		1	А		
Aroclor 1268	ND		mg/kg	0.735		1	А		
PCBs, Total	51.6		mg/kg	0.735		1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	79		30-150	В
Decachlorobiphenyl	86		30-150	В
2,4,5,6-Tetrachloro-m-xylene	88		30-150	А
Decachlorobiphenyl	99		30-150	А

		Serial_No:11161817:52				
Project Name:	MASON STATION	Lab Number: L1845809				
Project Number:	171.06108	Report Date: 11/16/18				
	SAMPLE RESULTS					
Lab ID:	L1845809-18	Date Collected: 11/05/18 10:09				
Client ID:	OIL UNIT-5	Date Received: 11/08/18				
Sample Location:	WISCASSET, ME	Field Prep: Not Specified				
Sample Depth:						
Matrix:	Oil	Extraction Method: EPA 3580A				
Analytical Method:	1,8082A	Extraction Date: 11/11/18 14:47				
Analytical Date:	11/16/18 10:40	Cleanup Method: EPA 3665A				
Analyst:	AWS	Cleanup Date: 11/12/18				
Percent Solids:	Results reported on an 'AS RECEIVED' basis.	Cleanup Method: EPA 3660B				
		Cleanup Date: 11/12/18				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	/estborough Lab						
Aroclor 1016	ND		mg/kg	2.46		1	А
Aroclor 1221	ND		mg/kg	2.46		1	A
Aroclor 1232	ND		mg/kg	2.46		1	А
Aroclor 1242	ND		mg/kg	2.46		1	А
Aroclor 1248	ND		mg/kg	1.64		1	А
Aroclor 1254	ND		mg/kg	2.46		1	А
Aroclor 1260	3.15		mg/kg	1.64		1	А
Aroclor 1262	ND		mg/kg	0.820		1	А
Aroclor 1268	ND		mg/kg	0.820		1	А
PCBs, Total	3.15		mg/kg	0.820		1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	82		30-150	В
Decachlorobiphenyl	87		30-150	В
2,4,5,6-Tetrachloro-m-xylene	89		30-150	А
Decachlorobiphenyl	93		30-150	А

Project Name:	MASON STATION	Lab Number:	L1845809
Project Number:	171.06108	Report Date:	11/16/18

Method Blank Analysis Batch Quality Control

Analytical Method:
Analytical Date:
Analyst:

1,8082A 11/15/18 03:42 AWS Extraction Method:EPA 3540CExtraction Date:11/10/18 13:30Cleanup Method:EPA 3665ACleanup Date:11/11/18Cleanup Method:EPA 3660BCleanup Date:11/12/18

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC	- Westboroug	h Lab for s	ample(s):	01-16	Batch:	WG117	78155-1
Aroclor 1016	ND		ug Abs	0.500			А
Aroclor 1221	ND		ug Abs	0.500			А
Aroclor 1232	ND		ug Abs	0.500			А
Aroclor 1242	ND		ug Abs	0.500			А
Aroclor 1248	ND		ug Abs	0.500			А
Aroclor 1254	ND		ug Abs	0.500			А
Aroclor 1260	ND		ug Abs	0.500			А
Aroclor 1262	ND		ug Abs	0.500			А
Aroclor 1268	ND		ug Abs	0.500			А
PCBs, Total	ND		ug Abs	0.500			А

	Acceptance					
Surrogate	%Recovery Quali	ifier Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	63	30-150	В			
Decachlorobiphenyl	72	30-150	В			
2,4,5,6-Tetrachloro-m-xylene	66	30-150	А			
Decachlorobiphenyl	73	30-150	А			

Project Name:	MASON STATION			Lab Number:	L1845809
Project Number:	171.06108			Report Date:	11/16/18

Method Blank Analysis Batch Quality Control

Analytical Method:
Analytical Date:
Analyst:

1,8082A 11/16/18 09:46 AWS Extraction Method:EPA 3580AExtraction Date:11/11/18 14:47Cleanup Method:EPA 3665ACleanup Date:11/12/18Cleanup Method:EPA 3660BCleanup Date:11/12/18

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC	- Westboroug	h Lab for s	ample(s):	17-18	Batch:	WG117	78308-1
Aroclor 1016	ND		mg/kg	2.21			А
Aroclor 1221	ND		mg/kg	2.21			А
Aroclor 1232	ND		mg/kg	2.21			А
Aroclor 1242	ND		mg/kg	2.21			А
Aroclor 1248	ND		mg/kg	1.48			А
Aroclor 1254	ND		mg/kg	2.21			А
Aroclor 1260	ND		mg/kg	1.48			А
Aroclor 1262	ND		mg/kg	0.738			А
Aroclor 1268	ND		mg/kg	0.738			А
PCBs, Total	ND		mg/kg	0.738			А

		Acceptan	се
Surrogate	%Recovery Qual	ifier Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	69	30-150	В
Decachlorobiphenyl	100	30-150	В
2,4,5,6-Tetrachloro-m-xylene	74	30-150	А
Decachlorobiphenyl	90	30-150	А

Lab Control Sample Analysis Batch Quality Control

Project Name: MASON STATION

Project Number: 171.06108

 Lab Number:
 L1845809

 Report Date:
 11/16/18

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 01-16 Batch: WG1178155-2 WG1178155-3									
Aroclor 1016	65		71		40-140	9		50	А
Aroclor 1260	60		68		40-140	12		50	А

	LCS	LCSD	LCSD		Acceptance		
Surrogate	%Recovery	Qual %Recovery	v Qual	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	62	69		30-150	В		
Decachlorobiphenyl	65	74		30-150	В		
2,4,5,6-Tetrachloro-m-xylene	66	72		30-150	А		
Decachlorobiphenyl	68	77		30-150	A		

Lab Control Sample Analysis Batch Quality Control

Project Name: MASON STATION

Project Number: 171.06108

 Lab Number:
 L1845809

 Report Date:
 11/16/18

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westb	orough Lab Associa	ated sample(s)	: 17-18 Batch:	WG1178	308-2 WG117830)8-3			
Aroclor 1016	72		78		40-140	8		50	A
Aroclor 1260	64		71		40-140	10		50	А

	LCS	LCSD	Accepta	Acceptance		
Surrogate	%Recovery	Qual %Recovery	Qual Criteri	a Column		
2,4,5,6-Tetrachloro-m-xylene	68	68	30-150	В		
Decachlorobiphenyl	95	91	30-150	В		
2,4,5,6-Tetrachloro-m-xylene	71	70	30-150	А		
Decachlorobiphenyl	85	82	30-150	A		

METALS

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-01		Date Collected:	11/05/18 13:50
Client ID:	WS101		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	1.04		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:04	EPA 3050B	1,6010D	PE
Barium, Total	6.51		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:04	EPA 3050B	1,6010D	PE
Cadmium, Total	ND		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:04	EPA 3050B	1,6010D	PE
Chromium, Total	15.8		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:04	EPA 3050B	1,6010D	PE
Lead, Total	19.6		ug Abs	2.50		1	11/13/18 22:55	5 11/14/18 20:04	EPA 3050B	1,6010D	PE
Mercury, Total	ND		ug Abs	0.025		1	11/10/18 08:50) 11/13/18 22:03	EPA 7471B	1,7471B	EA
Selenium, Total	ND		ug Abs	1.00		1	11/13/18 22:55	5 11/14/18 20:04	EPA 3050B	1,6010D	PE
Silver, Total	ND		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:04	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-02		Date Collected:	11/05/18 14:00
Client ID:	WS102		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	2.00		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:09	EPA 3050B	1,6010D	PE
Barium, Total	54.2		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:09	EPA 3050B	1,6010D	PE
Cadmium, Total	1.82		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:09	EPA 3050B	1,6010D	PE
Chromium, Total	13.2		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:09	EPA 3050B	1,6010D	PE
Lead, Total	51.2		ug Abs	2.50		1	11/13/18 22:55	5 11/14/18 20:09	EPA 3050B	1,6010D	PE
Mercury, Total	0.248		ug Abs	0.025		1	11/10/18 08:50) 11/13/18 22:05	EPA 7471B	1,7471B	EA
Selenium, Total	ND		ug Abs	1.00		1	11/13/18 22:55	5 11/14/18 20:09	EPA 3050B	1,6010D	PE
Silver, Total	0.635		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:09	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-03		Date Collected:	11/05/18 14:10
Client ID:	WS103		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Total Metals - Ma	nsfield Lab										
Arsenic, Total	22.2		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:13	EPA 3050B	1,6010D	PE
Barium, Total	110		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:13	EPA 3050B	1,6010D	PE
Cadmium, Total	6.44		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:13	EPA 3050B	1,6010D	PE
Chromium, Total	149		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:13	EPA 3050B	1,6010D	PE
Lead, Total	1210		ug Abs	2.50		1	11/13/18 22:55	5 11/14/18 20:13	EPA 3050B	1,6010D	PE
Mercury, Total	0.451		ug Abs	0.025		1	11/10/18 08:50) 11/13/18 22:07	EPA 7471B	1,7471B	EA
Selenium, Total	4.94		ug Abs	1.00		1	11/13/18 22:55	5 11/14/18 20:13	EPA 3050B	1,6010D	PE
Silver, Total	2.62		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:13	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-04		Date Collected:	11/05/18 14:20
Client ID:	WS104		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	2.88		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:18	EPA 3050B	1,6010D	PE
Barium, Total	136		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:18	EPA 3050B	1,6010D	PE
Cadmium, Total	4.96		ug Abs	0.500		1	11/13/18 22:5	5 11/14/18 20:18	EPA 3050B	1,6010D	PE
Chromium, Total	66.7		ug Abs	0.500		1	11/13/18 22:5	5 11/14/18 20:18	EPA 3050B	1,6010D	PE
Lead, Total	388		ug Abs	2.50		1	11/13/18 22:5	5 11/14/18 20:18	EPA 3050B	1,6010D	PE
Mercury, Total	0.419		ug Abs	0.025		1	11/10/18 08:50) 11/13/18 22:13	EPA 7471B	1,7471B	EA
Selenium, Total	ND		ug Abs	1.00		1	11/13/18 22:55	5 11/14/18 20:18	EPA 3050B	1,6010D	PE
Silver, Total	1.08		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:18	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-05		Date Collected:	11/05/18 14:30
Client ID:	WS105		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	92.0		ug Abs	5.00		10	11/13/18 22:55	11/14/18 20:23	EPA 3050B	1,6010D	PE
Barium, Total	58.5		ug Abs	5.00		10	11/13/18 22:55	11/14/18 20:23	EPA 3050B	1,6010D	PE
Cadmium, Total	ND		ug Abs	5.00		10	11/13/18 22:55	11/14/18 20:23	EPA 3050B	1,6010D	PE
Chromium, Total	844		ug Abs	5.00		10	11/13/18 22:55	11/14/18 20:23	EPA 3050B	1,6010D	PE
Lead, Total	1610		ug Abs	25.0		10	11/13/18 22:55	11/14/18 20:23	EPA 3050B	1,6010D	PE
Mercury, Total	0.126		ug Abs	0.025		1	11/10/18 08:50	11/13/18 22:15	EPA 7471B	1,7471B	EA
Selenium, Total	12.2		ug Abs	10.0		10	11/13/18 22:55	11/14/18 20:23	EPA 3050B	1,6010D	PE
Silver, Total	8.70		ug Abs	5.00		10	11/13/18 22:55	11/14/18 20:23	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-06		Date Collected:	11/05/18 14:45
Client ID:	WS106		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	4.84		ug Abs	0.500		1	11/13/18 22:55	11/14/18 20:28	EPA 3050B	1,6010D	PE
Barium, Total	64.6		ug Abs	0.500		1	11/13/18 22:55	11/14/18 20:28	EPA 3050B	1,6010D	PE
Cadmium, Total	41.1		ug Abs	0.500		1	11/13/18 22:55	11/14/18 20:28	EPA 3050B	1,6010D	PE
Chromium, Total	39.6		ug Abs	0.500		1	11/13/18 22:55	11/14/18 20:28	EPA 3050B	1,6010D	PE
Lead, Total	471		ug Abs	2.50		1	11/13/18 22:55	11/14/18 20:28	EPA 3050B	1,6010D	PE
Mercury, Total	0.382		ug Abs	0.025		1	11/10/18 08:50	11/13/18 22:17	EPA 7471B	1,7471B	EA
Selenium, Total	ND		ug Abs	1.00		1	11/13/18 22:55	11/14/18 20:28	EPA 3050B	1,6010D	PE
Silver, Total	0.785		ug Abs	0.500		1	11/13/18 22:55	11/14/18 20:28	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-07		Date Collected:	11/05/18 15:00
Client ID:	WS107		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	11.4		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:32	EPA 3050B	1,6010D	PE
Barium, Total	372		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:32	EPA 3050B	1,6010D	PE
Cadmium, Total	4.78		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:32	EPA 3050B	1,6010D	PE
Chromium, Total	115		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:32	EPA 3050B	1,6010D	PE
Lead, Total	1100		ug Abs	2.50		1	11/13/18 22:55	5 11/14/18 20:32	EPA 3050B	1,6010D	PE
Mercury, Total	0.593		ug Abs	0.025		1	11/10/18 08:50) 11/13/18 22:18	EPA 7471B	1,7471B	EA
Selenium, Total	1.44		ug Abs	1.00		1	11/13/18 22:55	5 11/14/18 20:32	EPA 3050B	1,6010D	PE
Silver, Total	1.85		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:32	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-08		Date Collected:	11/05/18 15:10
Client ID:	WS108		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	4.78		ug Abs	0.500		1	11/13/18 22:55	11/14/18 20:37	EPA 3050B	1,6010D	PE
Barium, Total	71.8		ug Abs	0.500		1	11/13/18 22:55	11/14/18 20:37	EPA 3050B	1,6010D	PE
Cadmium, Total	0.545		ug Abs	0.500		1	11/13/18 22:55	11/14/18 20:37	EPA 3050B	1,6010D	PE
Chromium, Total	46.4		ug Abs	0.500		1	11/13/18 22:55	11/14/18 20:37	EPA 3050B	1,6010D	PE
Lead, Total	151		ug Abs	2.50		1	11/13/18 22:55	11/14/18 20:37	EPA 3050B	1,6010D	PE
Mercury, Total	ND		ug Abs	0.025		1	11/10/18 08:50	11/13/18 22:21	EPA 7471B	1,7471B	EA
Selenium, Total	ND		ug Abs	1.00		1	11/13/18 22:55	11/14/18 20:37	EPA 3050B	1,6010D	PE
Silver, Total	ND		ug Abs	0.500		1	11/13/18 22:55	11/14/18 20:37	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-09		Date Collected:	11/05/18 15:25
Client ID:	WS109		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	11.8		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:42	EPA 3050B	1,6010D	PE
Barium, Total	740		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:42	EPA 3050B	1,6010D	PE
Cadmium, Total	7.16		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:42	EPA 3050B	1,6010D	PE
Chromium, Total	145		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:42	EPA 3050B	1,6010D	PE
Lead, Total	12000		ug Abs	12.5		5	11/13/18 22:55	5 11/15/18 18:10	EPA 3050B	1,6010D	AB
Mercury, Total	1.91		ug Abs	0.125		5	11/10/18 08:50) 11/13/18 22:57	EPA 7471B	1,7471B	EA
Selenium, Total	ND		ug Abs	1.00		1	11/13/18 22:55	5 11/14/18 20:42	EPA 3050B	1,6010D	PE
Silver, Total	1.28		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 20:42	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-10		Date Collected:	11/06/18 09:45
Client ID:	WS110		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	4.33		ug Abs	0.500		1	11/13/18 22:55	11/14/18 21:17	EPA 3050B	1,6010D	PE
Barium, Total	242		ug Abs	0.500		1	11/13/18 22:55	11/14/18 21:17	EPA 3050B	1,6010D	PE
Cadmium, Total	5.86		ug Abs	0.500		1	11/13/18 22:55	11/14/18 21:17	EPA 3050B	1,6010D	PE
Chromium, Total	168		ug Abs	0.500		1	11/13/18 22:55	11/14/18 21:17	EPA 3050B	1,6010D	PE
Lead, Total	1630		ug Abs	2.50		1	11/13/18 22:55	11/14/18 21:17	EPA 3050B	1,6010D	PE
Mercury, Total	0.261		ug Abs	0.025		1	11/10/18 08:50	11/13/18 22:25	EPA 7471B	1,7471B	EA
Selenium, Total	ND		ug Abs	1.00		1	11/13/18 22:55	11/14/18 21:17	EPA 3050B	1,6010D	PE
Silver, Total	ND		ug Abs	0.500		1	11/13/18 22:55	11/14/18 21:17	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-11		Date Collected:	11/06/18 10:50
Client ID:	WS111		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	4.44		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:22	EPA 3050B	1,6010D	PE
Barium, Total	144		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:22	EPA 3050B	1,6010D	PE
Cadmium, Total	9.52		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:22	EPA 3050B	1,6010D	PE
Chromium, Total	23.4		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:22	EPA 3050B	1,6010D	PE
Lead, Total	244		ug Abs	2.50		1	11/13/18 22:55	5 11/14/18 21:22	EPA 3050B	1,6010D	PE
Mercury, Total	0.332		ug Abs	0.025		1	11/10/18 08:50) 11/13/18 22:27	EPA 7471B	1,7471B	EA
Selenium, Total	1.06		ug Abs	1.00		1	11/13/18 22:55	5 11/14/18 21:22	EPA 3050B	1,6010D	PE
Silver, Total	1.88		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:22	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-12		Date Collected:	11/06/18 11:40
Client ID:	WS112		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	18.6		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:26	EPA 3050B	1,6010D	PE
Barium, Total	114		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:26	EPA 3050B	1,6010D	PE
Cadmium, Total	12.4		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:26	EPA 3050B	1,6010D	PE
Chromium, Total	371		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:26	EPA 3050B	1,6010D	PE
Lead, Total	1100		ug Abs	2.50		1	11/13/18 22:55	5 11/14/18 21:26	EPA 3050B	1,6010D	PE
Mercury, Total	2.19		ug Abs	0.125		5	11/10/18 08:50) 11/13/18 22:59	EPA 7471B	1,7471B	EA
Selenium, Total	4.88		ug Abs	1.00		1	11/13/18 22:55	5 11/14/18 21:26	EPA 3050B	1,6010D	PE
Silver, Total	3.71		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:26	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-13		Date Collected:	11/06/18 13:15
Client ID:	WS113		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	76.8		ug Abs	5.00		10	11/13/18 22:55	11/14/18 21:31	EPA 3050B	1,6010D	PE
Barium, Total	288		ug Abs	5.00		10	11/13/18 22:55	11/14/18 21:31	EPA 3050B	1,6010D	PE
Cadmium, Total	ND		ug Abs	5.00		10	11/13/18 22:55	11/14/18 21:31	EPA 3050B	1,6010D	PE
Chromium, Total	195		ug Abs	5.00		10	11/13/18 22:55	11/14/18 21:31	EPA 3050B	1,6010D	PE
Lead, Total	290		ug Abs	25.0		10	11/13/18 22:55	11/14/18 21:31	EPA 3050B	1,6010D	PE
Mercury, Total	0.790		ug Abs	0.025		1	11/10/18 08:50	11/13/18 22:31	EPA 7471B	1,7471B	EA
Selenium, Total	10.7		ug Abs	10.0		10	11/13/18 22:55	11/14/18 21:31	EPA 3050B	1,6010D	PE
Silver, Total	8.25		ug Abs	5.00		10	11/13/18 22:55	11/14/18 21:31	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-14		Date Collected:	11/06/18 13:40
Client ID:	WS114		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	0.715		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:36	EPA 3050B	1,6010D	PE
Barium, Total	11.6		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:36	EPA 3050B	1,6010D	PE
Cadmium, Total	ND		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:36	EPA 3050B	1,6010D	PE
Chromium, Total	5.55		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:36	EPA 3050B	1,6010D	PE
Lead, Total	30.8		ug Abs	2.50		1	11/13/18 22:55	5 11/14/18 21:36	EPA 3050B	1,6010D	PE
Mercury, Total	0.291		ug Abs	0.025		1	11/10/18 08:50	11/13/18 22:42	EPA 7471B	1,7471B	EA
Selenium, Total	ND		ug Abs	1.00		1	11/13/18 22:55	5 11/14/18 21:36	EPA 3050B	1,6010D	PE
Silver, Total	ND		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:36	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-15		Date Collected:	11/07/18 09:45
Client ID:	WS115		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Arsenic, Total	2.20		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:41	EPA 3050B	1,6010D	PE
Barium, Total	102		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:41	EPA 3050B	1,6010D	PE
Cadmium, Total	2.45		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:41	EPA 3050B	1,6010D	PE
Chromium, Total	20.3		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:41	EPA 3050B	1,6010D	PE
Lead, Total	77.0		ug Abs	2.50		1	11/13/18 22:55	5 11/14/18 21:41	EPA 3050B	1,6010D	PE
Mercury, Total	0.364		ug Abs	0.025		1	11/10/18 08:50) 11/13/18 22:44	EPA 7471B	1,7471B	EA
Selenium, Total	ND		ug Abs	1.00		1	11/13/18 22:55	5 11/14/18 21:41	EPA 3050B	1,6010D	PE
Silver, Total	ND		ug Abs	0.500		1	11/13/18 22:55	5 11/14/18 21:41	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-16		Date Collected:	11/07/18 10:35
Client ID:	WS116		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Arsenic, Total	1.86		ug Abs	0.500		1	11/13/18 22:55	11/14/18 21:45	EPA 3050B	1,6010D	PE
Barium, Total	18.7		ug Abs	0.500		1	11/13/18 22:55	11/14/18 21:45	EPA 3050B	1,6010D	PE
Cadmium, Total	43.1		ug Abs	0.500		1	11/13/18 22:55	11/14/18 21:45	EPA 3050B	1,6010D	PE
Chromium, Total	10.3		ug Abs	0.500		1	11/13/18 22:55	11/14/18 21:45	EPA 3050B	1,6010D	PE
Lead, Total	201		ug Abs	2.50		1	11/13/18 22:55	11/14/18 21:45	EPA 3050B	1,6010D	PE
Mercury, Total	0.266		ug Abs	0.025		1	11/10/18 08:50	11/13/18 22:46	EPA 7471B	1,7471B	EA
Selenium, Total	ND		ug Abs	1.00		1	11/13/18 22:55	11/14/18 21:45	EPA 3050B	1,6010D	PE
Silver, Total	ND		ug Abs	0.500		1	11/13/18 22:55	11/14/18 21:45	EPA 3050B	1,6010D	PE

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-17		Date Collected:	11/05/18 09:54
Client ID:	OIL UNIT-4		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix: Percent Solids:

Oil

Results are reported on an 'AS RECEIVED' basis.

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	ND		mg/kg	1.46		1	11/13/18 21:30) 11/14/18 18:21	EPA 3050B	1,6010D	AB
Barium, Total	ND		mg/kg	1.46		1	11/13/18 21:30	11/14/18 18:21	EPA 3050B	1,6010D	AB
Cadmium, Total	ND		mg/kg	1.46		1	11/13/18 21:30	11/14/18 18:21	EPA 3050B	1,6010D	AB
Chromium, Total	ND		mg/kg	1.56		1	11/14/18 21:40	11/15/18 18:28	EPA 3050B	1,6010D	AB
Lead, Total	ND		mg/kg	7.29		1	11/13/18 21:30	11/14/18 18:21	EPA 3050B	1,6010D	AB
Mercury, Total	ND		mg/kg	0.063		1	11/13/18 06:00	11/16/18 12:39	EPA 7471B	1,7471B	MG
Selenium, Total	ND		mg/kg	2.92		1	11/13/18 21:30	11/14/18 18:21	EPA 3050B	1,6010D	AB
Silver, Total	ND		mg/kg	1.46		1	11/13/18 21:30	11/14/18 18:21	EPA 3050B	1,6010D	AB

Project Name:	MASON STATION		Lab Number:	L1845809
Project Number:	171.06108		Report Date:	11/16/18
		SAMPLE RESULTS		
Lab ID:	L1845809-18		Date Collected:	11/05/18 10:09
Client ID:	OIL UNIT-5		Date Received:	11/08/18
Sample Location:	WISCASSET, ME		Field Prep:	Not Specified

Sample Depth:

Matrix: Oil Percent Solids: Res

Results are reported on an 'AS RECEIVED' basis.

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab										
Arsenic, Total	ND		mg/kg	1.50		1	11/13/18 21:30) 11/14/18 19:00	EPA 3050B	1,6010D	AB
Barium, Total	ND		mg/kg	1.50		1) 11/14/18 19:00		1,6010D	AB
Cadmium, Total	ND		mg/kg	1.50		1	11/13/18 21:30) 11/14/18 19:00	EPA 3050B	1,6010D	AB
Chromium, Total	ND		mg/kg	1.51		1	11/14/18 21:40) 11/15/18 18:51	EPA 3050B	1,6010D	AB
Lead, Total	ND		mg/kg	7.51		1	11/13/18 21:30) 11/14/18 19:00	EPA 3050B	1,6010D	AB
Mercury, Total	ND		mg/kg	0.063		1	11/13/18 06:00) 11/16/18 12:46	EPA 7471B	1,7471B	MG
Selenium, Total	ND		mg/kg	3.00		1	11/13/18 21:30) 11/14/18 19:00	EPA 3050B	1,6010D	AB
Silver, Total	ND		mg/kg	1.50		1	11/13/18 21:30) 11/14/18 19:00	EPA 3050B	1,6010D	AB

Project Name:MASON STATIONProject Number:171.06108

 Lab Number:
 L1845809

 Report Date:
 11/16/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method		
Total Metals - Man	sfield Lab for sample(s): 01-16 Ba	atch: W	G11780	71-1					
Mercury, Total	ND	ug Abs	0.025		1	11/10/18 08:50	11/13/18 21:58	1,7471B	EA	

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	d Lab for sample(s):	17-18 B	atch: W	G11787	23-1				
Mercury, Total	ND	mg/kg	0.083		1	11/13/18 06:00	11/16/18 12:35	1,7471B	MG

Prep Information

Digestion Method: EPA 7471B

Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Lab for sample(s):	01-16 Ba	atch: W	G11790	74-1				
ND	ug Abs	0.500		1	11/13/18 22:55	11/14/18 22:05	5 1,6010D	PE
ND	ug Abs	0.500		1	11/13/18 22:55	11/14/18 22:05	5 1,6010D	PE
ND	ug Abs	0.500		1	11/13/18 22:55	11/14/18 22:05	5 1,6010D	PE
ND	ug Abs	0.500		1	11/13/18 22:55	11/14/18 22:05	5 1,6010D	PE
ND	ug Abs	2.50		1	11/13/18 22:55	11/14/18 22:05	5 1,6010D	PE
ND	ug Abs	1.00		1	11/13/18 22:55	11/14/18 22:05	5 1,6010D	PE
ND	ug Abs	0.500		1	11/13/18 22:55	11/14/18 22:05	5 1,6010D	PE
	Lab for sample(s): ND ND ND ND ND ND	Lab for sample(s):01-16BaNDug AbsNDug AbsNDug AbsNDug AbsNDug AbsNDug AbsNDug Abs	Lab for sample(s): 01-16 Batch: W ND ug Abs 0.500 ND ug Abs 1.00	Lab for sample(s): 01-16 Batch: WG11790 ND ug Abs 0.500 ND ug Abs 1.00	Result QualifierUnitsRLMDLFactorLab for sample(s):01-16Batch:WDLFactorNDug Abs0.5001NDug Abs0.5001NDug Abs0.5001NDug Abs0.5001NDug Abs0.5001NDug Abs0.5001NDug Abs2.501NDug Abs1.001	Result Qualifier Units RL MDL Factor Prepared Lab for sample(s): 01-16 Batch: WG1179074-1 11/13/18 22:55 ND ug Abs 0.500 1 11/13/18 22:55 ND ug Abs 2.50 1 11/13/18 22:55 ND ug Abs 1.00 1 11/13/18 22:55	Result Qualifier Units RL MDL Factor Prepared Analyzed Lab for sample(s): 01-16 Batch: WG1179074-1 11/13/18 22:55 11/14/18 22:05 ND ug Abs 0.500 1 11/13/18 22:55 11/14/18 22:05 ND ug Abs 0.500 1 11/13/18 22:55 11/14/18 22:05 ND ug Abs 0.500 1 11/13/18 22:55 11/14/18 22:05 ND ug Abs 0.500 1 11/13/18 22:55 11/14/18 22:05 ND ug Abs 0.500 1 11/13/18 22:55 11/14/18 22:05 ND ug Abs 0.500 1 11/13/18 22:55 11/14/18 22:05 ND ug Abs 2.50 1 11/13/18 22:55 11/14/18 22:05 ND ug Abs 1.00 1 11/13/18 22:55 11/14/18 22:05	Result Qualifier Units RL MDL Factor Prepared Analyzed Method Lab for sample(s): 01-16 Batch: WG1179074-1 11/13/18 22:55 11/14/18 22:05 1,6010D ND ug Abs 0.500 1 11/13/18 22:55 11/14/18 22:05 1,6010D ND ug Abs 0.500 1 11/13/18 22:55 11/14/18 22:05 1,6010D ND ug Abs 0.500 1 11/13/18 22:55 11/14/18 22:05 1,6010D ND ug Abs 0.500 1 11/13/18 22:55 11/14/18 22:05 1,6010D ND ug Abs 0.500 1 11/13/18 22:55 11/14/18 22:05 1,6010D ND ug Abs 2.50 1 11/13/18 22:55 11/14/18 22:05 1,6010D ND ug Abs 1.00 1 11/13/18 22:55 11/14/18 22:05 1,6010D

Prep Information

Digestion Method: EPA 3050B

Project Name:MASON STATIONProject Number:171.06108

 Lab Number:
 L1845809

 Report Date:
 11/16/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sample(s):	17-18 Ba	atch: W	G11790	76-1				
Arsenic, Total	ND	mg/kg	1.67		1	11/13/18 21:30	11/14/18 19:40	1,6010D	AB
Barium, Total	ND	mg/kg	1.67		1	11/13/18 21:30	11/14/18 19:40	1,6010D	AB
Cadmium, Total	ND	mg/kg	1.67		1	11/13/18 21:30	11/14/18 19:40	1,6010D	AB
Lead, Total	ND	mg/kg	8.33		1	11/13/18 21:30	11/14/18 19:40	1,6010D	AB
Selenium, Total	ND	mg/kg	3.33		1	11/13/18 21:30	11/14/18 19:40	1,6010D	AB
Silver, Total	ND	mg/kg	1.67		1	11/13/18 21:30	11/14/18 19:40	1,6010D	AB

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sample(s):	17-18 Ba	atch: W	G11795	57-1				
Chromium, Total	ND	mg/kg	1.67		1	11/14/18 21:40	11/15/18 17:33	1,6010D	AB

Prep Information

Digestion Method: EPA 3050B

Lab Control Sample Analysis Batch Quality Control

Project Name: MASON STATION Project Number: 171.06108

Lab Number: L1845809 Report Date: 11/16/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Metals - Mansfield Lab Associated sample	e(s): 01-16 Ba	tch: WG1178	8071-2 WG1178	071-3					
Mercury, Total	110		109		72-128	1			
Total Metals - Mansfield Lab Associated sample	e(s) [,] 17-18 Ba	tch: WG117	8723-2 SRM Lo	ot Number:	D102-540				
Mercury, Total	144	Q	-		65-134	-			
Total Metals - Mansfield Lab Associated sample	e(s): 01-16 Ba	tch: WG1179	9074-2 WG1179	074-3					
Arsenic, Total	103		101		79-121	2			
Barium, Total	95		94		83-117	1			
Cadmium, Total	97		97		83-117	0			
Chromium, Total	102		94		80-120	8			
Lead, Total	97		97		81-117	0			
Selenium, Total	99		96		78-122	3			
Silver, Total	94		93		75-124	1			
Total Metals - Mansfield Lab Associated sample	e(s): 17-18 Ba	tch: WG1179	9076-2						
Arsenic, Total	100		-		79-121	-			
Barium, Total	98		-		83-117	-			
Cadmium, Total	99		-		83-117	-			
Lead, Total	99		-		81-117	-			
Selenium, Total	98		-		78-122	-			
Silver, Total	108		-		75-124	-			

Lab Control Sample Analysis

Project Name:	MASON STATION		Batch Quality C	ontrol	Lab Number:	L1845809
Project Number:	171.06108				Report Date:	11/16/18
Parameter		LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
	ld Lab Associated samp	le(s): 17-18 Batch: W	G1179557-2			

Chromium, Total	98	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Batch Qua

Project Name: MASON STATION

Project Number: 171.06108

 Lab Number:
 L1845809

 Report Date:
 11/16/18

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery C	Recovery Qual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 17-18	QC Bat	ch ID: WG117	8723-3	QC Sam	ple: L1845809-1	7 Client ID: OI	L UNIT-4	
Mercury, Total	ND	0.125	0.158	126	Q	-	-	80-120	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 17-18	QC Bat	ch ID: WG117	9076-3	QC Sam	ple: L1845809-1	7 Client ID: OI	L UNIT-4	
Arsenic, Total	ND	35.1	35.7	102		-	-	75-125	-	20
Barium, Total	ND	585	590	101		-	-	75-125	-	20
Cadmium, Total	ND	14.9	15.1	101		-	-	75-125	-	20
Lead, Total	ND	149	150	101		-	-	75-125	-	20
Selenium, Total	ND	35.1	35.1	100		-	-	75-125	-	20
Silver, Total	ND	87.7	97.1	111		-	-	75-125	-	20
Fotal Metals - Mansfield Lab	Associated sam	ple(s): 17-18	QC Bat	ch ID: WG117	9557-3	QC Sam	ple: L1845809-1	7 Client ID: OI	L UNIT-4	
Chromium, Total	ND	61	58.7	96		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MASON STATION Project Number: 171.06108

Parameter	Native Sample	Duplica	ate Sample	Units	RPD	Qual	Qual RPD Limits	
Total Metals - Mansfield Lab Associated sample(s): 17-1	8 QC Batch ID:	WG1178723-4	QC Sample:	L1845809-17	Client ID:	OIL UNIT-4	ļ	
Mercury, Total	ND		ND	mg/kg	NC		20	
Total Metals - Mansfield Lab Associated sample(s): 17-1	8 QC Batch ID:	WG1179076-4	QC Sample:	L1845809-17	Client ID:	OIL UNIT-4	ŀ	
Arsenic, Total	ND		ND	mg/kg	NC		20	
Barium, Total	ND		ND	mg/kg	NC		20	
Cadmium, Total	ND		ND	mg/kg	NC		20	
Lead, Total	ND		ND	mg/kg	NC		20	
Selenium, Total	ND		ND	mg/kg	NC		20	
Silver, Total	ND		ND	mg/kg	NC		20	
Total Metals - Mansfield Lab Associated sample(s): 17-1	8 QC Batch ID:	WG1179557-4	QC Sample:	L1845809-17	Client ID:	OIL UNIT-4	ŀ	
Chromium, Total	ND		ND	mg/kg	NC		20	

Project Name: MASON STATIONProject Number: 171.06108

Were project specific reporting limits specified?

YES

Sample Receipt and Container Information

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1845809-01A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-01B	Glass 120ml/4oz w/5 ml Dl water	А	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-01C	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		HG-T(28)
L1845809-02A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-02B	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-02C	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		HG-T(28)
L1845809-03A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-03B	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-03C	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		HG-T(28)
L1845809-04A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-04B	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-04C	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		HG-T(28)
L1845809-05A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-05B	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-05C	Glass 120ml/4oz w/5 ml DI water	A	NA		4.5	Y	Absent		HG-T(28)
L1845809-06A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-06B	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-06C	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		HG-T(28)
L1845809-07A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-07B	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-07C	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		HG-T(28)

Serial_No:11161817:52 Lab Number: L1845809 Report Date: 11/16/18

Project Name:MASON STATIONProject Number:171.06108

Page 55 of 62

Serial_No:11161817:52 Lab Number: L1845809 Report Date: 11/16/18

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L1845809-08A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-08B	Glass 120ml/4oz w/5 ml Dl water	А	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-08C	Glass 120ml/4oz w/5 ml DI water	A	NA		4.5	Y	Absent		HG-T(28)
L1845809-09A	Glass 120ml/4oz w/1:4 Acetone:Hexane	A	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-09B	Glass 120ml/4oz w/5 ml DI water	A	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-09C	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		HG-T(28)
L1845809-10A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-10B	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-10C	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		HG-T(28)
L1845809-11A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-11B	Glass 120ml/4oz w/5 ml DI water	A	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-11C	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		HG-T(28)
L1845809-12A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-12B	Glass 120ml/4oz w/5 ml DI water	A	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-12C	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		HG-T(28)
L1845809-13A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-13B	Glass 120ml/4oz w/5 ml DI water	A	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-13C	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		HG-T(28)
L1845809-14A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-14B	Glass 120ml/4oz w/5 ml DI water	A	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-14C	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		HG-T(28)
L1845809-15A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)
L1845809-15B	Glass 120ml/4oz w/5 ml Dl water	А	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-15C	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		HG-T(28)
L1845809-16A	Glass 120ml/4oz w/1:4 Acetone:Hexane	А	NA		4.5	Y	Absent		PCB-8082-3540C(14)

Project Name:MASON STATIONProject Number:171.06108

Serial_No:11161817:52 *Lab Number:* L1845809 *Report Date:* 11/16/18

Container Information			Initial	Final	Тетр			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1845809-16B	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),CD-TI(180)
L1845809-16C	Glass 120ml/4oz w/5 ml DI water	А	NA		4.5	Y	Absent		HG-T(28)
L1845809-17A	Glass 60mL/2oz unpreserved	А	NA		4.5	Y	Absent		PCB-8082LL(14)
L1845809-17B	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1845809-18A	Glass 60mL/2oz unpreserved	А	NA		4.5	Y	Absent		PCB-8082LL(14)
L1845809-18B	Metals Only-Glass 60mL/2oz unpreserved	A	NA		4.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)

Project Name: MASON STATION

Project Number: 171.06108

Lab Number: L1845809

Report Date: 11/16/18

GLOSSARY

Acronyms

EDL	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	 Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	 Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

- Footnotes
- 1 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name: MASON STATION

Project Number: 171.06108

 Lab Number:
 L1845809

 Report Date:
 11/16/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Project Name: MASON STATION Project Number: 171.06108
 Lab Number:
 L1845809

 Report Date:
 11/16/18

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene **EPA 8260C:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270D:** <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.
Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	CHAIN OF	CUSTODY	PAGE	of <u>2</u>	Date Re	c'd in Lab		18/1	8	ALPH	IA Job #:	L 184580	19	
8 Walkup Drive	320 Forbes Blvd	Project Information		1.226.60	Report	Informa	tion - Dat	a Deliv	erables	Billin	g Informat	ion		
Westboro, MA 0 Tel: 508-898-92		Project Name: Mason	Stati	tation MADEX KE								Same as Client info PO #: 11376		
Client Information	n	Project Location: Wisc	asset	ME						the second s	tion Requir			
Client: Ranson	Consulting Inc.	Project #: 171.0610	8				ICP Analyti x Spike Re			۲ 🗖 Requir ?	red for MCP I	T RCP Analytical Metho norganics)	ds	
Address: 400 (Commercial St.	Project Manager: Stev	e Dy	er	Ves Q	No GW1	Standards	(Info Re	quired for	Metals &	EPH with Tar	rgets)		
Portle	and ME 04101	ALPHA Quote #:	i		O Other	State /Fed	1 Program	Mai	ne D	PEP	Criteria	les, dential	e.	
Phone: 201.	772.2891	Turn-Around Time				/ /	P 15	12/	a	//	11	/ / /		
ă.	C <u>Cransoment.com</u> roject Information:	Standard □ RUSH (∞ Date Due:	nly continued if pre-app	aravedtj	AA	U ABN U PAH	EPH: DRanges & Targers DPH: J. DRCP 15	KPCB DPEST Ranges Only	na: Douant Only DFingerprint			SAMPLE INFO Filtration Field Lab to do Preservation	O A L BOT	
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection Date Time	Sample Matrix	Sampler Initials	VOC:	METALS: 1	EPH: DA	A PCB		//		Sample Comments	L	
45809-01	WSION	11/5/18 13:5	ΰω	PB/EP		X		X					3	
-02	WS102	11/5/18 14:00	SW	PB/EP		X		X					3	
-03	W5103	11/5/18 14:10	w	PBLEP		X		X					3	
-04	WSIDY	11/5/18 14:2		PBler		X		X					3	
-05	WSIDS	145/18 14:3		PB/EP		X		V					3	
-06	WS106	11/5/1814:4:		PB/EP		X		x					3	
, -07	WSI07	4/5/18/15:00		PB/EP		X		x		1			3	
-08	WSI08	u/5/18/5/10		PB/EP		X		X					3	
-09	W5109	11/5/18 15:2		PBLEP		X		X					3	
-10	WSIIO	1/6/18 09:45		GPP		V		X					3	
Container Type	Preservative A= None	14.0		iner Type		A		A					Ť	
A= Amber glass Va Vial G= Glass	B= HCI C= HNO ₃ D= H ₂ SO ₄		Pre	servative		A		0					-	
B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle	D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H = Na ₅ S ₂ O ₅ I= Ascorbic Acid J = NH ₄ CI K= Zn Accetate O= Other	Relinquished By:	Date 4/8/18	/Time 3 330 9:30	Rober	Man	ed By:	11-8	Dat 18 (e/Time /330	Alpha's T See reve	les submitted are subje Ferms and Conditions. erse side. 01-01 (rev. 12-Mar-2012)	ict to	

Дерна	CHAIN OF C	USTODY	PAGE_2	_0F_2	Date Rec	d in Lab	: //	18/18	ALPHA Job #	: L1845809
8 Walkup Drive	320 Forthes Blud	ect Information			Report	Informa	tion - Data	a Deliverables	Billing Informa	ation
Westboro, MA 0 Tel: 508-898-92		t Name: Masc	n Ste	ation	ADEX				Same as Client	info PO#: 11376
Client Information	n Projec	t Location: (NTS	tosso	ME	the second s				Information Requ	irements
Client: Ranson	n Consulting Inc Project	1#: 171.06			Ves X	No MA N No Matrix	CP Analyti	cal Methods wired on this SDG	? (Required for MCF	CT RCP Analytical Methods Inorganics)
Address: 400	Commercial St Projec	t Manager: Ste	re Du	00	Ves/A	No GW1	Standards		Metals & EPH with T	
Portl		IA Quote #:	1	9	C Yes	No NPDI State /Fed	ES RGP	MaineDE	PCriteria	Residential
Phone: 207		-Around Time				Γ			1111	
	Dates of the second states and the second states of	andard 🛛 RUSH e Due:	(anly confirmed if pre	-approved!)	ANALYSIS Deza Deci	V D PAH	EPH: DRanges & Targets DPP13 VPH: DRAnges & Targets DPP13	Xercanges & Targets D Ranges Only TPH: LOQuant Only D Fingerprint		SAMPLE INFO Filtration Field
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection Date Tim	Sample Matrix		VOC: D8260 SVOC: D.	METALS: DMCP 13	EPH: DRanges	Keranges & Tars		Preservation Lab to do Sample Comments
	-WStise. 1/6/18-			_						
45809-11	WSIII	146/18 10:	50 W	EPP		X		X		
-12	WS112	1/6/18 11:4	OW	EPP		X		x		1
-13	W5113	11/6/18 13:1		EPP		X		X		
-14	WS114	1/6/18/13:-	Star In a start	EPP		X		×		
-15	WSIIS	1/7/18 09:2		OP		X		X		
-110	WS116	11/7/18 10:3		EPP		X		X		
-11	Oil Unit-4	1/5/18 09:5		PB/EP		X		X		
-18	Oil Unit-5	11/5/18 10:0		PB/EP		X		×		
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 62 of 62	Preservative A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ I = Ascorbic Acid J = NH ₄ Cl K = Zn Acetale O = Other	nquished By:	F	reservative ate/Time	Ref	A A Mou	reg By:	A O Da Da U U S I I S I S	1330 Alpha's 1970 See re	nples submitted are subject to s Terms and Conditions. verse side. IO: 01-01 (rev. 12-Mar-2012)