KEEPING HONEY BEE COLONIES SAFE FROM THE VARROA MITES

MEGHAN MILBRATH, MICHIGAN STATE UNIVERSITY EXTENSION, APRIL, 2016

We are in the middle of a varroa mite (Varroa destructor) epidemic – this deadly pest has become so widespread in the United States that they are in virtually every honey bee colony, and can re-infest colonies quickly. Varroa mites damage honey bee brood, and transmit a number of deadly viruses. Every beekeeper in the United States in 2016 should be prepared to deal with varroa mites, though not every colony is doomed to die from the viruses that these mites transmit. If the varroa population is kept in check, the honey bees can remain healthy. When the varroa population gets out of control, the colony becomes profoundly sick from injury and disease, and is at a high risk of dying. A lot of beekeepers lose their colonies to varroa-transmitted viruses every year, and many of these deaths could be prevented if the mite populations were managed. The information below is designed to explain the different tools that we have to manage varroa populations. Your goal as a beekeeper should be to develop a strategy at the beginning of the season that will use a variety of these tools, making sure that varroa mites never take over your colonies.

Varroa mite populations, when left unchecked, can grow quickly. Each female mite reproduces multiple times in her life, and each time she reproduces, she lays multiple daughters (and they all reproduce multiple times, and they all produce multiple daughters, and those daughters reproduce…). All of this reproduction is occurring under capped brood cells, which means two things 1) the more capped brood we have, the faster varroa can reproduce, and 2) the population of varroa is hidden from our eyes as it grows out of control. A honey bee colony can look very healthy and large one week, and explode with varroa mites the next.

Figure 1. This graph demonstrates exponential growth. It is an example where a single varroa mite infests a colony and has 2 daughters, and each successive daughter has 2 offspring. There are a lot of factors that affect how varroa will actually reproduce and how quickly the population will grow in a real colony, but note how quickly a population takes off if every member can quickly become reproductive.

You can see in figure 1 that it takes some time for varroa populations to get to dangerous levels. In the real world, they often grow all summer and peak right when winter bees are being raised (late summer / early fall). These winter bees have to survive a period of high stress, and can't handle the extra challenge of being bitten and filled with viruses. This is one of the reasons that varroa mites kill colonies so often in the fall/ early winter.
When varroa mites take over a colony, bees will often drift or abscond, and neighboring bees will rob the weakened colony. The mites very quickly get transmitted to other neighboring colonies. This means that your infested colony can affect the bees and beekeepers around you, or that your otherwise healthy colony can become infested quite quickly from a neighboring colony. Not only are the bees in an overwhelmed colony profoundly unhealthy, but they are a risk to other bees in their neighborhood.

So how do we keep the varroa population from getting out of control? Unfortunately, most of our bees don’t naturally have strategies to keep mite populations down on their own (yet) - varroa mites are relatively new to our honey bees (they jumped over from a different bee species), and our bees haven’t had enough time to evolve natural defenses. While breeders are working tirelessly to find bees that do have defensive strategies, as of 2016, most of the colonies in the United States don’t have the ability to manage varroa populations by themselves. Left alone, the mite populations grow uncontrolled, and our bees get overwhelmed, very sick, and die. We don’t have a silver bullet for managing varroa mites (if we had a perfect strategy, they wouldn’t be a problem, and we could all go back to happy, easier beekeeping). Even though we don’t have a one-size-fits-all strategy, we aren’t helpless. We do have a variety of tools that, if employed well, can help keep the population of varroa mites in check.

There are three steps to keeping your bees safe from varroa infestation:

1. Know the level of mites in your colonies,
2. Know what level of mites is safe,
3. Know what tools we have to keep mite populations at a safe level
 a. Tools that break varroa reproduction (keeping a low mite population low)
 b. Tools to use if we have an infestation (bring a high population of mites down)

(Easy, right?).

To keep our bees healthy, we want to monitor our colonies for this pest all season long, making sure that varroa populations never reach dangerous levels. Simultaneously throughout the season, we can use an integrated set of management strategies to help break the reproduction of varroa, preventing the population from taking off. Finally, we want to make sure that we have a plan in place and the tools on hand for if/when we notice an infestation.

1. MONITORING FOR VARROA MITE POPULATIONS

There is a big difference between seeing varroa mites in your colony and monitoring for them - you could have a lot of varroa in your colony, but not actually see any mites. This is a really important point that catches a lot of beekeepers. By the time you see mites, it is too late, and you are already at a high population. Remember, most of the varroa mites in a colony are under the capped brood, so they are out of view small. You could be on the brink of a huge infestation, but not see mites, so you will not know your colony is safe from varroa by just looking. You have to use a monitoring tool such as an alcohol wash or sugar roll. These strategies allow you to see a few mites, representing the 1000s that can be in the hive.
The best method of monitoring for varroa mite populations is to use a sugar roll/ alcohol wash. In both methods you take a known number of worker bees, dislodge the mites from them, and count the mites, calculating the mites per 100 bees (percent infestation). An alcohol wash gets the most accurate count, but many people are hesitant to use it because it kills the bees in the sample. A sugar roll is sufficient to determine the population level of mites in your colony, and the bees can be returned to the hive.

* For more details and explicit instructions on how to perform a sugar roll visit https://pollinators.msu.edu/resources/beekeepers/varroa-mite-monitoring/.

* For instructions on making your own sugar roll kit visit the Bee Informed Partnership website.

* To purchase a pre-made mite check kit visit www.pollinators.msu.edu/mite-check.

Ideally, you should monitor mites at least once/month. Mite populations can change really quickly, and you never want to be caught off guard. Remember, mites have an exponential rate of population growth, meaning that the population can really take off. Even more importantly, mites can be transferred from one hive to another, especially if a neighboring hive becomes heavily infested. As heavily infested colonies go downhill, the bees often abscond, entering neighboring healthy colonies, and your foragers can bring back mites from robbing out dying colonies. You could have low levels of varroa all summer long, and then suddenly suffer a huge infestation from neighboring that goes downhill. Monitor more often in late summer/early fall when mite populations are at their highest, and your colonies are most at risk for re-infestation.

2. KNOW THE SAFE LEVEL OF VARROA MITES

There are many factors that determine the safe level of mites in your colony, and thresholds are not set in stone. Monitor your colonies (recording their levels and how they survive) and to talk to extension agents and expert successful beekeepers in your area. If you consistently see that colonies with mite populations above a certain level do poorly, then that is your threshold. Be persistent, as thresholds can change over time as the mites or the viruses evolve. Our bees used to be able to handle a higher level of varroa mites without having problems, so you may see higher thresholds listed in older documents.

As of 2016, the general consensus is that less than 3% infestation is safe. This means that in a standard sugar roll test where you count 300 bees (100 ml or just under 1/2 cup), you should see less than 9 mites.

A safe level of 3% is a guideline, but there are other factors to take into consideration. For example, if you live in a northern climate with a tough winter, you want to make sure that you have varroa managed before your winter bees are developed, so those precious bees that survive the winter aren’t full of cuts and viruses. You also have to keep in mind how much season is left. If your bees have already stopped raising brood for the year, the varroa mites are not going to be reproducing. If you know your bees will still have a lot of brood for the next few months, you have to be aware that the varroa will have a lot of time to reproduce. Northern beekeepers have to work hard to make sure varroa populations are low in the late summer/early fall to protect winter bees. Beekeepers in warm climates won’t be fighting the clock as much, but can’t count on a break from population growth in the winter.
3. KNOW THE TOOLS YOU HAVE TO MANAGE VARROA POPULATIONS

We have two types of tools for managing varroa:

1) Ones that are used all season to slow reproduction (management)
2) Ones that are used when we recognize we have a problem / are above threshold (intervention).

None of our management tools completely prevent varroa or can completely remove varroa on their own, so you have to have a few in your toolbox. The best approach is to go in to the season with a management strategy, where you use a variety of tools in cooperation, and you use them all season long so you prevent the mite population from ever taking off. If the varroa population does take off (for example if a neighboring colony re-infests your colony), then you may have to use an emergency measure.

The Tools - Management

1. **Screened bottom boards** – The idea behind screened bottom boards is that when varroa mites fall off of bees, either by just falling or by getting groomed off, they will fall through the screen and onto the ground, where they will be too far away from the bees to re-enter the hive. The effectiveness and cost of screened bottom boards is determined by the set-up. If the bottom is wide open, the mites will fall further (but the chance of a cold draft on your bees is much higher). If the screened bottom board has an inspection board employed, or is set on a solid surface, drafts will be much less of an issue, but the mites will not fall as far from the colony.

 Pros
 - No work/ not disruptive to the bees

 Cons
 - Does not remove that many mites. Best estimates are that screened bottom boards can cause a $< 20\%$ reduction in mite populations, so it has to be used in conjunction with other tools.
 - May make the colony cooler during cold periods, which can affect brood rearing.

 When screened bottom boards work best – Most of the time. You can block them off in winter and early spring in cold climates, preventing the issue of drafts. However, because their effects are so small, you will have to use other strategies as well, and those strategies may be sufficient even without a screened bottom board. Plenty of beekeepers use solid bottom boards and can manage varroa, so if you have solid boards and you are successfully managing varroa mites, it may not be worth it to switch.

 How to use a screened bottom board – Put it on the hive as a bottom board (yep, that’s it).

2. **Drone Comb removal** – Mites have evolved to preferentially seek out drone cells for reproduction. We can use this fact to our advantage and use drone cells like a trap – once the mites are in the capped drone pupae cells, we can remove them from the hive.

 Pros
 - You can remove a lot of varroa mites from the colony

 Cons
 - It takes a lot of energy for a colony to raise a full frame of drones. This energy could be used to raise young, draw wax, or bring in honey.
 - If you forget to remove the drone frame in time, you have just provided a lovely place for more mite reproduction.
 - It can only be used when the colony is naturally drawing wax and raising drones.
When drone comb removal works best – On strong healthy colonies that would be raising drones anyway, and when you have a small enough number of colonies that you can visit each one multiple times on a schedule. Bees will not draw out wax if there is not sufficient nectar, so you can’t put in a new drone frame in September as a last minute management strategy.

How to use drone brood removal - Purchase or make a frame that will promote the larger drone sized cells, and put it into the hive on as the outside frame of the brood nest. Make sure that the colony has sufficient room for honey storage and growth, so they don’t just fill it with honey. Record the date that you put the drone comb into the colony, and remove it in 3 weeks. It should take about a week for it to get drawn out, the queen to lay in it, and the eggs to hatch (though this is variable), and then another week for the larvae to be capped. You have about a 2 week window while the cells are capped to remove the frame, and kill the larvae. Some people do this one time per year, other beekeepers will do this consistently through the summer. You can also just cut out/ remove large pieces of drone brood while you are in the colony for inspection – feed it to your chickens – they love it.

3. Breaks in the brood cycle – When varroa are in capped brood cells two things are happening: they are reproducing, and they are safely hidden away from grooming bees. If you can create a colony with no capped brood, then the varroa cannot reproduce during that time, and the mites that are left in the hive are all phoretic (running loose), and have a greater chance of falling to the ground and getting groomed by the bees. Many wild colonies (and colonies not well managed) can have success because they have enough brood breaks from swarming to prevent varroa populations from ever reaching high levels.

 Pros
 - Very effective in stopping varroa reproduction

 Cons
 - If not timed well, you can lose enough workers/ honey to affect colony survival.

When breaking the brood cycle works best – When you have strong enough colony and/or enough time left in the season for the colony to handle the loss of workers/honey.

How to perform a break in the brood cycle – Your colony may choose to use this varroa management strategy when it swarms. You can do this for them (skipping the part where you climb the tree, or cut them out of your neighbors soffit), by creating a forced swarm, moving the queen and capped bees into a nuc. There are many variations on breaking the brood cycle. Some beekeepers will simply remove all the capped and nearly capped brood – using them for other hives (and dealing with the mites appropriately). Others will temporarily remove the queen and eggs, and later reintroduce her. The easiest way is to make a nuc with the queen, and allow the original hive to make a new queen by itself. The nuc will grow slowly (not have so much brood to build up a big population of varroa), and the original colony will get a break from having capped brood as they create a queen.

4. Splits – Splitting colonies works to slow varroa by preventing a colony from having a high percentage of infested bees, using a principle similar to dilution. Varroa mites reproduce faster than bees, because each colony has only one reproductive bee (the queen), but many reproductive varroa. When you split a colony into many small colonies, each with their own queen, you allow for more bees to be raised. Remember that we measure mite load as percent infestation, or mites
per 100 bees. When we split, we keep the same number of mites, but increase the number of bees, so the percent infestation drops.

Pros
- Many beekeepers already make splits to increase numbers or make up losses

Cons
- Colonies have to have enough bees to raise workers/ get enough honey to survive the season.
- Many beekeepers are limited by the number of colonies that they can manage.

When making splits works best – When you have enough time for the colonies to build up sufficiently to make it through the winter. This often goes hand in hand with breaking the brood cycle. Making splits after the honey flow, and requeening with queen cells, causes a nice break in brood production at a time when you won’t be needing so many workers.

How to make a split – There are many ways to split colonies. The best way will determine the size of your colony, the time of year, and your needs. Many beekeepers make splits in the spring for swarm management, or in the late summer after the main honey flow. Splits can be made with various sizes, including nucs, and can be queened by introducing a mated queen, virgin, or cell, or by allowing the colony to requeen. Splits and breaks in the brood cycle often go hand in hand, and many beekeepers split colonies, and create a break in the brood cycle at the same time.

The Tools – Intervention

Sometimes we can have colonies that are on screened bottom boards, have had drones removed, split and allowed to requeen, and our monitoring shows that the mite levels are still high. Maybe we live in an area where there are so many colonies with unmanaged levels of varroa that our pest pressure is too high for us to manage through other methods. Or maybe, we are just starting out in our beekeeping journey, and we don’t have the understanding and experience to make splits or break the brood cycle. We need to include intervention tools at this point. There are three cases when chemical interventions are recommended:

1. When you are unable to control varroa populations using only management strategies.
2. You do not have the experience to safely and effectively perform strategies like splits or breaks in the brood cycle.
3. When monitoring shows that varroa populations have already reached dangerous levels, and we need to quickly bring them down to prevent colony damage or death.

Note – Early chemical treatments for varroa were quite harsh, and many of them no longer work because the varroa mites have developed resistance. Furthermore, many beekeepers were adverse to put these treatments into their hives, because of damage to their bees. In this article we do not advocate for the use of these old treatments, and only recommend the newer, ‘softer’ chemicals, which are naturally derived, and most are labeled for organic use.

Not all chemical tools are the same, and you need to choose the one that will reduce the varroa populations, but be appropriate to the context. Make sure that you are reading and following labels exactly, and are working with experts to make sure you are doing everything safely and effectively, before you head out to the bee yard.
When choosing an intervention tool, you must take the following factors into account:

1) How early/late in the season is it (i.e. How much time do I have before my bees raise their winter brood).
2) Are there honey supers on the colony (or will I expect them to be on before the treatment is complete)?
3) How many times can I come back to visit this colony?

Some interventions are good only for affecting phoretic varroa mites (not in capped brood). These methods are only effective during the following two scenarios:

1) When the colony is broodless (late fall – winter, package installation)
2) When you can return every week to apply it (to account for the mites that hatch out with the bees every week).

The applications that fall under this category are oxalic acid and powdered sugar. Both have to be applied repeatedly to catch the mites that hatch out with the bees each week. While both are applied at similar frequencies, and are similarly gentle on the bees, oxalic acid is considerably more effective.

Oxalic acid is a naturally found acid (it is what gives you that dry feeling in your mouth when you eat too much spinach). It works by affecting the mites that are loose in the hive, and is applied either by dribbling a low concentration solution in sugar water onto the cluster, or by using a vaporizer. You can **use the table here** to learn how to make a solution and apply the dribble, and any vaporizer that you purchase will have instructions for its safe use. Both methods kill phoretic mites equally well. The dribbling method is a bit quicker, but can’t be used when it is cold out (30-55 degrees is ideal – so they are loosely clustered). The vaporizer can be used all year, but requires extra equipment and extra safety precautions.

Powdered sugar is a naturally found chemical that is delicious on French toast. It is not labeled as a treatment for varroa, but many beekeepers will apply it by finely coating the bees with it using a sifter. It works by causing the bees to increase grooming, and the mites losing their grip (the sugar is so fine, it interferes with their gripping ability). This will work much better if you have a screened bottom board.

These two methods (oxalic acid dribble/drench and powdered sugar dusting) only work on mites not in the brood. The upside of these methods is that they are relatively gentle on your bees. The downside is that unless you are using them in an exclusively broodless time, you would have to go in every week for three weeks to effectively cause a reduction in mite populations. These don’t make effective treatments when your colony is already at a high level (infested), because during the three weeks of treatment, the developing bees are getting damaged, and varroa is still reproducing in capped cells.

Best use for oxalic acid and powdered sugar: Keep these tools in your back pocket for new colonies from packages (use after the colony is established in the hive, but not yet capped brood), and for broodless periods (fall/winter). Both are really cheap, and store well, so they are good to have on hand. Because these interventions seem to be so easy on the bees, many beekeepers use these automatically, to knock down the number of mites that would over winter with the colony. The fewer mites you have in the
spring, the longer you have until the population of mites will skyrocket, so using oxalic acid in the late fall—early spring is highly recommended as part of your strategy.

Pre-Packaged interventions

One of the biggest problems with using something that doesn't affect the mites in the brood is that you have to go through the hive every week if you are using it to knock down all the mites in a full colony. This is a pain for the beekeeper, and disruptive to the bees. Because of this, manufacturers have developed delivery systems that are used to keep the product in the hive until all the varroa are out and are affected, and the amount applied is controlled. Three interventions fall under this category: two types of thymol and hop acids.

Thymol is the oil derived from the thyme plant (the herb). It seems to be very effective in controlling mites when used in sufficient concentrations (If you just plant thyme plants near your hives, they won’t control varroa, though they will look nice). It is sold under two names: Api Life VAR and ApiGuard.

Api Life VAR comes in a wafer form, and has other essential oils mixed in (menthol, camphor, and eucalyptus). You do have to put multiple wafers in the colony to get the full dose (every 7-10 days), but they are easy and not disruptive to apply. ApiGuard is a crystal gel that is put in the colony a little tray, and lasts for 2 weeks. After 2 weeks, you put another tray on for a following 2 weeks. Make sure that you read the labels so that you get the timing right and apply them properly.

Best use for Thymol: The biggest thing to worry about with thymol is the oil affecting the flavor of the honey. Do not use thymol when you have honey supers on. They also aren't effective against the mites unless it is warm enough, so these can’t be used very early in the season. Most beekeepers use thymol in the late summer right after the honey supers come off (July). This is an excellent option for those who monitor and find a high level in late summer, or as a go-to treatment for beginners to use in late summer, as they are learning about integrated pest management.

Hop Acids come from the plant that is used in beer. Like the thymol applications, Hop Guard II strips are designed to have a sufficient concentration to affect mites, without being too damaging to the bees, so you can’t just use beer in your hive (though science has shown that you can have a beer after applying the strips). The labels indicate that you can use it up to 3 times per year, and most beekeepers who use it do these three applications right in a row. HopGuard II is not labeled for organic use because of the formulation.

Best use for HopGuard II: You don’t want to use the same thing over and over, so this is good to have in rotation. The upside is that it can be used when honey supers are on. So say that you want to wait until the last minute to extract honey, but you are concerned about rising levels in your colony, or that you want to drop the population in the spring, but don’t want to wait to add supers, then Hop Guard would be a good options.

Make sure that you use these long-delivery methods early enough to protect your winter bees, as they all have a really long time to be effective (3–4 weeks). The most common mistake is to put them on too late, after your winter bees are already damaged. In years where we have a warm fall, many beekeepers think that they are lucky because they can ‘get a treatment in’ before winter. In reality, the bees are already damaged, and they just wasted their money and harassed their bees without
benefit. Give these interventions time to work, and make sure you pay attention to when you need honey supers on and when your winter bees will be raised.

Single applications that affect phoretic and non-phoretic varroa mites

The downside to everything listed above is that they do not get all the mites in capped cells, and so they take a long time to clear the colony of mites. Formic acid, sold under the name of Mite Away Quick Strips (MAQS) has a huge advantage in that it is designed to affect all the mites, including those reproducing in the capped cells, and it does so quickly (7 days).

Formic acid is naturally found in the hive (in very small quantities), and works by affecting the cuticle of the mite. It dissipates completely and quickly after use, so you can use it when honey supers are on, and it doesn’t affect the honey. The best part about using the Mite Away Quick Strips is that they work quickly. This is especially important when you find a colony that has a really high level of mites, or if you are getting late in the season. One 7 day application can cause a huge drop in the mite population very quickly. The downside, is that there is a temperature window that has to be followed, or you can damage your bees – it is only labeled for use below 85 degrees.

Best use for formic acid (Mite Away Quick Strips): If you need to treat when you know you will have honey supers on. Because this method works so quickly, it is highly recommended to use MAQS if the varroa population in your colony is very high, or if it is getting late in the season.

<table>
<thead>
<tr>
<th>Commercial Name</th>
<th>Application Method</th>
<th>Honey Supers on?</th>
<th>Length of treatment</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxalic Acid</td>
<td>None</td>
<td>Home mix vapor or dribble</td>
<td>1/week 3 weeks or during broodless</td>
<td>Anytime for vapor, >60 for dribble</td>
</tr>
<tr>
<td>Powdered Sugar</td>
<td>None</td>
<td>Dusting</td>
<td>Yes</td>
<td>1/week for 3 weeks or during broodless</td>
</tr>
<tr>
<td>Thymol</td>
<td>Api Life VAR</td>
<td>Wafers</td>
<td>No</td>
<td>3 x 7-10 days apart</td>
</tr>
<tr>
<td>Thymol</td>
<td>Api Guard</td>
<td>Gel</td>
<td>No</td>
<td>2 x 2 weeks apart</td>
</tr>
<tr>
<td>Hop Beta Acids</td>
<td>Hop Guard</td>
<td>Strip</td>
<td>Yes</td>
<td>10 -14 days, up to 3x</td>
</tr>
<tr>
<td>Formic Acid</td>
<td>Mite Away Quick Strips</td>
<td>Wax pad</td>
<td>Yes</td>
<td>17 day treatment</td>
</tr>
</tbody>
</table>

Formulations (and opinions/recommendations) can change every year. Make sure that you read labels, and talk to other beekeepers and extension agents to see what they are using with success. For more information on varroa management tools, see the Honey Bee Health Coalition’s document, and Randy Oliver’s website www.scientificbeekeeping.com. There are lots of other things that you will read about that people will put in their hives, and I can’t recommend any of them. An essential oil that hasn’t been studied is not better than an essential oil that we know that it works and is safe. Keep in mind how sensitive bees are, especially to smell, so any time you put something in a hive, you will affect your bees. The products listed in the table above have all been tested to find the level that is effective on varroa, while not causing unnecessary damage to your...
bees. If you go off label, or try a different remedy, it may be completely ineffective, illegal, or it may even cause more damage than good.

GENERAL PRINCIPLES

1) **Remember that successful management is about the mite population levels and the health of your bees, not the number of treatments that you applied.** Applying a bunch of treatments does not mean your bees are healthy. If it they weren't applied properly, or too late, or not sufficient to drop the population of mites to a safe level, then your bees are still at risk. Likewise, allowing bees to succumb to varroa to remain treatment-free, is also not success. We are being successful beekeepers when we keep our bees healthy and free from pests.

2) **Monitor to make sure that your management and interventions are working and are sufficient.**

 Your mite populations may be kept in check with just using drone brood removal, and you can save time and money and stress to the bees because you know you are at low levels. Or, maybe you applied thymol gel, but by the time you got it in the hive, your varroa population was so out of control and just the one series of treatment was insufficient to bring the population down to safe levels. The only way to know if your actions are sufficient is to monitor.

3) **Be prepared to change/ modify your strategy.**

 Strategies have to change from year to year, because the varroa population will grow at different rates depending on what happens in your colony. In a really long season when the bees can keep raising brood, the mites can reach enormous populations. The next season, if all your colonies swarmed early, then shut down during a drought, mite populations may hardly grow at all.

4) **What works for someone else may not work for you.**

 The number of mites in your colony will come from growth within your hive as well as from neighboring colonies. You may not know how mites are being controlled in your area. Many people who are successful with little intervention do so because they are in remote areas, and don't have a lot of pest pressure. If you live in a city with many beekeepers, then there may be constant infestation pressure, and you will have to be more watchful.

5) **Think way ahead and be proactive.**

 If your winter bees will be developing in the end of August, and you are planning on using a product that takes 4 weeks to work, then figure out the date that it needs to be in the hive, and act accordingly. While a colony can sometimes recover if it is treated during an infestation, your bees will still be damaged, and that damage can have long lasting effects on the colony. It is much better to stay ahead of varroa populations so that they never take off in the first place. One of the biggest mistakes that beekeepers make is dealing with varroa once it is already at really high levels and the brood are already heavily damaged.

The best strategy for dealing with varroa is to be prepared, and to incorporate summer management that can interrupt varroa population growth.
EXAMPLES OF SUCCESSFUL MANAGEMENT STRATEGIES FOR THE VARROA MITE.

1. Marcie is a beginner, starting out with new packages. She dusts them with powdered sugar a week after installation. She isn’t planning on taking any honey off her first year, and in July applies Api-Guard at two week intervals, according to the label. She purchases a sugar-roll kit and spends the winter reading about making splits and integrated pest management.

2. Ben’s hives came through winter really well. He split them all in spring, giving them all queen cells, providing a break in the brood cycle. After the honey flow is over in July, he split them again using queen cells. In August he monitors, and seeing that varroa populations are below threshold, waits until the colony is broodless in October and applies oxalic acid using a vaporizer to knock down any remaining varroa before next spring. Ben’s apiary is growing, but his varroa population is not.

3. Bill split his 2 overwintered hives with walk away splits, so half of them had to raise new queens. He put 2 frames of drone brood in each colony, and removed them each 2 times over the summer. When he monitored in the fall, he was well below threshold in three of the hives, and one hive was higher. He put formic acid in that hive, and he stayed below threshold through September. He congratulated himself with a beer and went fishing.

4. Anita has 2 overwintered hives. She gave a nuc from each to her mentor as swarm control, and treated in the spring with hopguard. She monitored using her sugar roll kit all summer long, and found that one colony never had high levels of varroa, while the other colony did. She applied thymol, and tested again after 2 weeks. Still finding high levels, she applied formic acid. She monitored again, and found that she had gotten the infestation under control. She and her mentor make a plan to requeen that colony with a queen from the one that managed varroa better.

5. Meghan just started beekeeping last year. Her first year she didn’t do anything to manage varroa (though both hives swarmed). Her hives made it through the winter, but she doesn’t want to think about managing varroa, and doesn’t monitor, make splits, or apply anything to keep populations in check. She wraps them up for winter, puts on a quilt box and leaves all the honey, and hopes really, really hard that they make it through until spring. Meghan’s bees die from parasitic mite syndrome, and she vows to do better by her bees next year.

The best way that you can help your bees this year is to make sure that the colony does not ever get taken over by varroa mites. A colony that is strong and thriving, and producing large amounts of bees and brood will likely succumb to varroa associated viruses in less than 2 years unless something is done to check the mite population. The bees in a colony heavily infested with varroa mites are profoundly sick, and are a risk to all of the bees around you. Make sure you have a strategy in place before going into the season so that you can stay ahead of this pest!

- Learn how to effectively monitor mite populations.
- Use splits, drone brood removal, and other management strategies to keep varroa populations in check throughout the season.
- Have products on hand to intervene if your bees have high levels of mites.
- Make sure that your winter bees are raised in the best conditions, and aren't getting heavily damaged by mites.

Your bees deserve to be healthy and free of pests.

Make this the year that you keep the varroa mite under control!