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content less than25 percent, and thus may be suitable for commercial applications.
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SURFICIAL GEOLOGY OF MAINE

Continental glaciers like the ice sheet now covering Antarctica
probably extended across Maine several times during the Pleistocene
Epoch, between about 1.5 million and 10,000 years ago. The slow-
moving ice superficially changed the landscape as it scraped over
mountains and valleys (Figure 1), eroding and transporting boulders
and other rock debris for miles (Figure 2). The sediments that cover
much of Maine are largely the product of glaciation. Glacial ice
deposited some of these materials, while others washed into the sea or
accumulated in meltwater streams and lakes as the ice receded. Earlier
stream patterns were disrupted, creating hundreds of ponds and lakes
across the state. The map at left shows the pattern of glacial sediments
inthe Biddeford quadrangle.

The most recent "Ice Age" in Maine began about 25,000 years
ago, when anice sheet spread southward over New England (Stone and
Borns, 1986). During its peak, the ice was several thousand feet thick
and covered the highest mountainsinthe state. The weight of this huge
glacier actually caused the land surface to sink hundreds of feet. Rock
debris frozen into the base of the glacier abraded the bedrock surface
over whichtheice flowed. The grooves and fine scratches (striations)
resulting from this scraping process are often seen on freshly exposed
bedrock, and they are important indicators of the direction of ice
movement (Figure 3). Erosion and sediment deposition by the ice
sheet combined to give a streamlined shape to many hills, with their
long dimension parallel to the directionof ice flow. Some of these hills
(drumlins) are composed of dense glacial sediment (till) plastered
under great pressure beneaththe ice.

A warming climate forced the ice sheet to start receding as early
as 21,000 years ago, soon after it reached its southernmost position on
Long Island (Sirkin, 1986). The edge of the glacier withdrew from the
continental shelf east of Long Island and reached the present position
of the Maine coast by 13,800 years ago (Dorion, 1993). Even though
the weight of the ice was removed from the land surface, the Earth's
crust did not immediately spring back to its normal level. As a result,
the sea flooded much of southern Maine as the glacier retreated to the
northwest. Ocean waters extended far up the Kennebec and Penobscot
valleys, reaching present elevations of up to 420 feet in the central part
ofthe state.

Great quantities of sediment washed out of the melting ice and
into the sea, which was in contact with the receding glacier margin.
Sand and gravel accumulated as deltas (Figure 4) and submarine fans
where streams discharged along the ice front, while the finer silt and
clay dispersed across the ocean floor. The shells of clams, mussels,
and other invertebrates are found in the glacial-marine clay that
blankets lowland areas of southern Maine. Age dates on these fossils
tell us that ocean waters covered parts of Maine until about 11,000

Figure 1: "The Bubbles" and Jordan Pond in Acadia National Park.
These hills and valleys were sculpted by glacial erosion. The pond was
dammed behind a moraine ridge during retreat of the ice sheet.

Figure 3: Granite ledge in Westbrook, showing polished and grooved
surface resulting from glacial abrasion. The grooves and shape of the
ledge indicate ice flow toward the southeast.
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Figure 5: Esker cutting across Kezar Five Ponds, Waterford. The ridge
consists of sand and gravel deposited by meltwater flowing in a tunnel
beneath glacial ice.

Figure 7: Sand dune in Wayne. This and other "deserts" in Maine formed
as windstorms in late-glacial time blew sand out of valleys, often
depositing it as dune fields on hillsides downwind. Some dunes were
reactivated in historical time when grazing animals stripped the
vegetation cover.

years ago, when the land surface rebounded as the weight of the ice
sheetwas removed.

Meltwater streams deposited sand and gravel in tunnels within
theice. These deposits remained as ridges (eskers) when the surround-
ing ice disappeared (Figure 5). Maine's esker systems can be traced
forupto 100 miles, and are among the longest inthe country.

Other sand and gravel deposits formed as mounds (kames) and
terraces adjacent to melting ice, or as outwash invalleys in front of the
glacier. Many of these water-laid deposits are well layered, in contrast
to the chaotic mixture of boulders and sediment of all sizes (till) that
was released from dirty ice without subsequent reworking. Ridges
consisting of till or washed sediments (moraines) were constructed
along the ice margin in places where the glacier was still actively
flowing and conveying rock debris to its terminus. Moraine ridges are
abundant in the zone of former marine submergence, where they are
useful indicators of the patternofice retreat (Figure 6).

The last remnants of glacial ice probably were gone from Maine
by 10,000 years ago. Large sand dunes accumulated in late-glacial
time as winds picked up outwash sand and blew it onto the east sides of
river valleys, such as the Androscoggin and Saco valleys (Figure 7).
The modern stream network became established soon after
deglaciation, and organic deposits began to form in peat bogs,
marshes, and swamps. Tundra vegetation bordering the ice sheet was
replaced by changing forest communities as the climate warmed
(Davis and Jacobson, 1985). Geologic processes are by no means
dormant today, however, since rivers and wave action modify the land
(Figure8), and worldwide sea level is gradually rising against Maine's
coast.
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Figure 2: Daggett's Rock in Phillips. This is the largest known glacially
transported boulder in Maine. It is about 100 feet long and estimated to
weigh 8,000 tons.

Figure 4: Glaciomarine delta in Franklin, formed by sand and gravel
washing into the ocean from the glacier margin. The flat delta top marks
approximate former sea level. Kettle hole in foreground was left by
melting of ice.

Figure 6: Acrial view of moraine ridges in blueberry field, Sedgwick
(note dirt road in upper right for scale). Each bouldery ridge marks a
position of the retreating glacier margin. The ice receded from right to
left.

Figure 8 : Songo River delta and Songo Beach, Sebago Lake State Park,
Naples. These deposits are typical of geological features formed in Maine
since the Ice Age.




