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INTRODUCTION

Rocks of the Brewer Lake 7.5” quadrangle include Late
Precambrian(?) to Devonian(?) metasediments of the Passagas-
sawakeag, Copeland, Vassalboro, and Bucksport Formations,
the Rider Bluff member of the Copeland Formation, and the
Mixer Pond member of the Passagassawakeag Formation; the
Late Silurian to Early Devonian Stricklen Ridge granite; and the
Devonian Lucerne pluton. The metasedimentary sequence was
deformed by pre-Late Silurian isoclinal folding and subse-
quently intruded by the Stricklen Ridge granite and metamor-
phosed by an amphibolite facies event. A second folding event
deformed this sequence prior to intrusion of the Lucerne pluton.
Right-lateral strike-slip ductile shearing occurred along the
Norumbega fault zone. High-angle, post-metamorphic brittle
faults and fractures parallel the ductile shear zones.

The bedrock geology explained and illustrated in this re-
port is the result of mapping by the author for his Masters re-
search at Virginia Polytechnic Institute and State University and
by Wones (unpublished data) during his research on the Lucerne
pluton. Descriptions of units mapped only by Wones
(Passagassawakeag Formation, Mixer Pond member,
Vassalboro Formation, and Lucerne pluton) were compiled by
the author as interpreted from Johnson and Wones (1984, 1985),
Kaszuba and Wones (1985), Loiselle and Wones (1983), Stewart
and Wones (1974), Wones (1974, 1976, 1978, 1980, and unpub-
lished data), and Wones and Stewart (1976).

Editor s note: Field work for this project was completed in
1985 and the contract report was submitted in April 1986.

METASEDIMENTARY ROCKS
Passagassawakeag Formation

The Passagassawakeag Formation (Bickel, 1976) is a
quartz-feldspar-biotite gneiss intercalated with layers and
boudins of biotite schist. The type locality is at the headwaters of
the Passagassawakeag River in the Belfast area (Bickel, 1976).
The Passagassawakeag Formation crops out in the western por-
tion of the Brewer Lake 7.5’ quadrangle and extends from the
Norumbega fault zone in the north to its contact with the Cope-
land Formation to the south. The Passagassawakeag Formation
crops out in a ~10 km wide belt that extends ~5 km to the south-
west into the Belfastarea. The thickness of'this unit is unknown,
butin the Belfast area it is estimated to be ~300 m (Bickel, 1976).

Gneissic layers of the Passagassawakeag Formation are
light-colored and predominantly composed of medium-grained
quartz, plagioclase, K-feldspar, and biotite. Feldspar also occurs
as coarse-grained augen. The presence of these augen is charac-
teristic of the unit and prompts the nickname “popcorn gneiss.”
Schist layers and boudins are gray in color and less abundant
than gneiss layers. The schist is mineralogically similar to the
gneiss, but contains more biotite. Schist and gneiss layers are
interlayered on a cm- to m-scale and often display pinch-and-
swell structure. Sillimanite- and garnet-bearing metamorphic
assemblages commonly occur, but it is not known if sillimanite is
the product of reactions involving andalusite or muscovite +
quartz. Numerous granitic and pegmatitic dikes and sills intrude
these gneisses and are thought to be related to the Stricklen
Ridge granite.
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The age of the Passagassawakeag Formation is poorly con-
strained, but is thought to be Precambrian based on: (1) trunca-
tion by pegmatites related to the Late Silurian to Early Devonian
Stricklen Ridge granite; and (2) lithologic similarity to other Pre-
cambrian rocks in New England (Stewart and Wones, 1974).
Bickel (1976) interpreted the gneisses as metamorphosed
feldspathic sedimentary and volcanic rocks on the basis of
lithology.

Mixer Pond Member

The Mixer Pond member of the Passagassawakeag Forma-
tion (Bickel, 1976) is a fine-grained, light-colored,
quartz-oligoclase-microcline gneiss. The type locality is at
Mixer Pond in the Belfast area. The Mixer Pond member crops
outina< 1 km?area in the northwest portion of the Brewer Lake
7.5’ quadrangle. The contact between it and the
Passagassawakeag Formation is not exposed in the quadrangle,
and its thickness is unknown. Wones (unpublished data)
mapped it in the Bucksport 15° quadrangle as fault slivers within
the Norumbega fault zone.

The Mixer Pond member is indistinctly layered on a scale
of a few meters and is distinguished by its fine grain-size and
feldspathic composition. It had been interpreted on the basis of
lithology as a feldspathic metavolcanic unit interlayered with the
Passagassawakeag Formation (Bickel, 1976). A468( 36 Ma age
from Rb/Sr whole-rock data was assigned to it and interpreted as
a metamorphic age (Gaudette, pers. commun., 1986).

Copeland Formation

The Copeland Formation (Trefethen, 1950; Wing, 1957) is
composed of interlayered beds of bluish-gray pelitic schist and
quartzite. The type locality is at Copeland Hill in the northwest
portion of the Brewer Lake 7.5 quadrangle. The Copeland For-
mation crops out in an arcuate, belt-like pattern along the eastern
margin of the Passagassawakeag Formation. It extends from the
Norumbega fault zone in the northwest to the southwest corner
of the study area where it pinches out. The width of the outcrop
beltranges from 3.5 kmin the north to 2.5 km in the south. Italso
crops out in the northwest portion of the quadrangle in an area
bounded by fault traces of the Norumbega fault zone. The con-
tact between the Copeland and the Passagassawakeag Forma-
tions is not exposed in the quadrangle. It is not known whether
the contact is conformable, unconformable (Stewart and Wones,
1974), or tectonic. The relative structural position between the
two units is also unknown. The original thickness of the Cope-
land Formation in the quadrangle is unknown because its con-
tacts are poorly constrained and multiple folding events have
deformed it.

Pelites of the Copeland Formation are predominantly com-
posed of medium-grained biotite, muscovite, and quartz. Acces-
sory staurolite, andalusite, and sillimanite may also occur near
stocks of Stricklen Ridge granite. Quartzites contain minor

amounts of biotite and muscovite. Minor plagioclase (Any;.g),
tourmaline, apatite, ilmenite, and garnet (average composition:
70% almandine, 20% spessartine, 8% pyrope, and 3% grossular)
occur in both pelites and quartzites.

The pelites and quartzites are interlayered on a scale rang-
ing from a few centimeters to tens of meters. Compositional
grading of the layers from quartzite to pelite on individual out-
crops and across the unit as a whole is interperted to represent
bedding. Quartzites are predominant on Deer Hill and the south-
east margin of Blood Mountain where they comprise 75-90% of
the outcrop. Farther to the west, such as on Orcutt Mountain and
the northwest margin of Blood Mountain, pelites comprise ap-
proximately 75% of the outcrop.

Veins, lenses, and centimeter-scale boudins of quartz that
parallel bedding and foliation are prevalent in the pelites. Quartz
and quartz + feldspar veins are especially common within 0.5 km
of the contact with the Rider Bluff member. Green amphibolite
layers concordant to the pelite and quartzite layering are typi-
cally 10 to 20 cm thick but cannot be traced along strike for more
than a few meters. The lensoid character of the amphibolite lay-
ers suggests that they are boudins of originally more continuous
mafic layers.

The Copeland Formation has been correlated on the basis
of similar lithologies (Wones, 1976; Loiselle and Wones, 1983)
with the Hogback Formation (Perkins and Smith, 1925) and
Appleton Ridge Formation (Bickel, 1976) in the Belfast area and
with the Cape Elizabeth Formation of the Casco Bay Group
(Katz, 1917; Hussey, 1968, 1985) in the Casco Bay area. The
Appleton Ridge Formation has been assigned a 455(25 Ma age
from Rb/Sr whole-rock isochron data (Brookins, 1976). The
Cape Elizabeth Formation has been assigned a 485(30 Ma age
from Rb/Sr whole rock isochron data (Brookins and Hussey,
1978). Stratigraphic relationships suggest it is Late Precambrian
to Ordovician in age (Hussey, 1968, 1985). These lithologic cor-
relations are rather tenuous, and the assignment of a Precam-
brian to Ordovician age to the Copeland Formation is tentative.

Rider Bluff Member

The Rider Bluff member (informal usage by Stewart and
Wones, 1974; Wones, 1976) of the Copeland Formation is a
green, finely-laminated (millimeter-scale) pelitic siltstone. The
type locality is on Rider Bluffin the northern portion of the quad-
rangle. The Rider Bluff member crops out as a sinuous, discon-
tinuous belt along the eastern margin of the Copeland
Formation. The width of the outcrop ranges from 2.0 km at
Rider Bluff'to 0.2-0.8 km further to the south. It is not known if
this range in outcrop width is related to changes in bedding ori-
entation, unit thickness, and/or deformation. The Rider Bluff
member is assigned to the Copeland Formation (Wones, unpub-
lished data) because it is lithologically more similar to the Cope-
land Formation than to any other unit. Kaszuba and Wones
(1985) interpreted the Rider Bluff member as ductilely deformed
Copeland Formation. Subsequent work revealed that the two



Bedrock Geology of the Brewer Lake 7.5' Quadrangle, Maine

units are lithologically distinct where undeformed, but that
ductilely deformed Rider Bluff member is almost indistinguish-
able from deformed Copeland Formation. No fossils have been
found in the Rider Bluff member, and no radiometric dating has
been attempted. The contact between the Rider Bluff member
and the Copeland Formation to the west and the Bucksport For-
mation to the east is not exposed. The original thickness of the
Rider Bluff member is unknown because its contacts are poorly
constrained and because multiple folding events have deformed
it.

In thin section, the Rider Bluff member is predominantly
composed of chlorite, quartz, and plagioclase. The laminations
are defined by alternating chlorite- and quartz-rich laminations.
Minor epidote, muscovite, magnetite, garnet, tourmaline, and
pyrite may also occur. Biotite, garnet, and albite occur as abun-
dant porphyroblasts 1-3 mm across.

Bedding in the Rider Bluff member is difficult to recog-
nize, but may be represented by magnetite- or granite-rich lay-
ers. Magnetite-rich layers contain 1-5% euhedral, 1-2 mm
diameter magnetite octahedra. One anomalous outcrop on the
southern tip of Long Lake contains 25% magnetite. Garnet-rich
layers contain 5-10% euhedral, 3-5 mm diameter, amber-colored
garnets (average core composition: 52% spessartine, 33%
almandine, 12% grossular, 2% pyrope; average rim composi-
tion: 62% almandine, 26% spessartine, 5% grossular, 5%
pyrope). The magnetite- and garnet-rich layers generally paral-
lel the fine laminations, and contacts between these layers and
the surrounding schist are diffuse. Ubiquitous quartz lenses and
boudins are parallel to and folded with the laminations and
comprise approximately 5% of any outcrop.

The presence of magnetite- and/or garnet-rich layers and
biotite and albite porphyroblasts in the Rider Bluff member dis-
tinguishes it from the Copeland and Bucksport Formations. In
the absence of these layers, Rider Bluff member is distinguished
from the Bucksport Formation by the presence of abundant
quartz lenses and boudins and the absence of carbonate, and is
distinguished from the Copeland Formation by the presence of
millimeter-scale laminations and the absence of interlayered
pelitic schist and quartzite.

Magnetic anomaly maps of the area show a magnetic high
0f'300-500 nanoteslas. This anomaly displays a map pattern that
generally coincides with the outcrop pattern of the Rider Bluff
member (Zietz et al., 1980; Stewart et al., 1986). Magnetic
anomalies over the Rider Bluff member in the northern portion
of'the study area (e.g. Rider Bluff) are as high as 700 nanoteslas.
These anomalies are probably the result of the magnetite present
in the Rider Bluff member.

Vassalboro Formation

The Vassalboro Formation (Perkins and Smith, 1925;
Osberg, 1968) is a calcareous quartz wacke. Its type locality is in
the town of Vassalboro west of Penobscot Bay. It crops out in a

small slice within the Norumbega fault zone in the northeast cor-
ner of the Brewer Lake 7.5 quadrangle.

The calcareous quartz wackes of the Vassalboro Formation
contain white mica, chlorite, calcite, and quartz and weather to a
gray to green color. Compositional layering is probably related
to original bedding and includes thin beds (several cm’s to m’s
thick) of gray quartz-mica schist. Schist beds are ubiquitous but
distinctly less abundant than the wacke and contain sulfides that
commonly weather to arusty color. Quartz veins are abundant.

The Vassalboro Formation was interpreted as part of a
turbidite sequence (Osberg, 1968, 1979) now metamorphosed to
greenschist facies (Stewart and Wones, 1974). A single
graptolite locality west of Penobscot Bay suggests a
Llandoverian to Ludlovian age (Pankiwskyj et al., 1976).

Bucksport Formation

The Bucksport Formation (Trefethen, 1950; Wing, 1957)
is a greenschist facies calcareous siltstone. The unit is named for
exposures in the Silver Lake area in the Bucksport 15’ quadran-
gle (~ 4 km north of the town of Bucksport). It crops out in the
Brewer Lake 7.5’ quadrangle as an irregularly-shaped belt
(0.6-3.5 km wide) east of the Rider Bluff member and west of the
Lucerne pluton and directly adjacent to the Copeland Formation
in the southwest portion of the quadrangle. The original thick-
ness of the unit in the quadrangle is unknown because it is not
well exposed and its contacts are poorly constrained.

The siltstones of the Bucksport Formation contain
finely-laminated (1-2 mm thick) carbonate-bearing beds (0.5 to
several meters thick). The laminations are defined by the alter-
nation of quartz- and mica-rich siltstone containing fine- to very
fine-grained quartz, white mica, chlorite, calcite, ilmenite, and
plagioclase. Accessory biotite, calcic amphibole, tourmaline, ti-
tanite, and epidote may also occur. Interlayered with the calcare-
ous siltstones (which comprise approximately 95% of any
outcrop) are suflide-bearing pelitic siltstone beds (several centi-
meters to 0.5 km thick) which weather to a rusty color. The
pelites are compositionally and texturally similar to the cal-
cite-bearing beds but are coarser-grained, contain less quartz and
more phyllosilicate, and contain no sphene or amphibole and
little or no carbonate.

In the northern portion of the quadrangle, quartz veins
commonly occur as lenses and boudins parallel to the lamina-
tions, although cross-cutting veins do occur. Occasional com-
posite quartz + calcite veins also occur. Quartz veins are far less
common in the southern portion of the quadrangle. This distri-
bution of quartz veins within the Bucksport Formation may be
related to proximity to the Norumbega fault zone.

The Bucksport Formation is lithologically similar to the Si-
lurian Vassalboro Formation and has been correlated with it
(Stewart and Wones, 1974; Wones, 1976, 1980; Osberg, 1980;
Loiselle and Wones, 1983; Gates etal., 1984; Hussey, 1984). No
fossils are found within the Bucksport Formation, and nowhere
can it be traced directly into the Vassalboro Formation. Age cor-
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relations are based strictly on lithologic similarities across the
Norumbega fault zone. Loiselle and Wones (1983) suggested
that slices of rock mapped within the Norumbega fault zone may
be either Vassalboro or Bucksport Formation. The two units are
often difficult to distinguish where deformed. The Late Silurian
to Early Devonian Flume Ridge Formation (Ruitenberg, 1967;
Ruitenberg and Ludman, 1978), part of the Fredericton trough,
has also been correlated with the Bucksport Formation based on
lithologic similarities (Wones, 1980; Ludman, 1981). The
Bucksport Formation as mapped by Bickel (1976) in the Belfast
arca was distinguished by Wones (unpublished data) as a differ-
ent unit from Bucksport Formation as defined by Wing (1957) in
the type locality north of the town of Bucksport.

IGNEOUS ROCKS
Stricklen Ridge Granite

The extent of Stricklen Ridge granite (informal usage by
Wones, 1974, 1976; Stewart and Wones, 1974) outlines the oc-
currence of a two-mica, garnet-bearing leucogranite that in-
truded the Copeland and Passagassawakeag Formations and
Rider Bluff member as dikes, sills, and very small stocks. The
regional stratigraphy is traceable through the granite terrane.
Overall the granite comprises less than one-eighth of the total
map area outlined as Stricklen Ridge granite. Within the Cope-
land Formation, two areas of 1-2 km? extent have been delin-
eated where Stricklen Ridge granite comprises greater than 50%
ofthe exposure (Fig. 1). Within these stocks there are only a few
places where granite comprises greater than 90% of the expo-
sure. The granite was named by Wones (unpublished data) for
exposures of one of these stocks on Stricklen Ridge. Dikes of
Stricklen Ridge granite have been assigned a 412(14 Ma age
based on concordant U-Pb data from zircons (Zartman and
Gallego, 1979).

The Stricklen Ridge granite is a compositionally restricted
(Pitcher, 1979) monzogranite in the [UGS classification system
(Streckeisen, 1973)(Fig. 2). Biotite-rich tonalite (Figs. 2, 3)
dikes sometimes occur in small amounts (Fig. 1) in Stricklen
Ridge granite outcrops. These tonalite dikes cut Stricklen Ridge
granite and are intruded by pegmatite. No tonalite is reported in
the Penobscot Bay area. The same field relationships are de-
scribed for the Winterport granite (Trefethen, 1944), which oc-
curs in the Bucksport 15’ quadrangle. However, itis described as
a mafic-rich granodiorite (Stewart and Wones, 1974; Wones,
1976, unpublished data; Loiselle and Wones, 1983).

Feldspars and quartz range in size up to ~5 mm in diameter
(i.e. seriate texture, Wones, 1980). K-feldspar is usually
subhedral to anhedral, perthitic microcline (Orgg.9s5, Abs_j(), but
sometimes it occurs as orthoclase. Plagioclase is subhedral and
uniform in composition (Anjg 7). Compositional zoning in
plagioclase is prevalent, but no systematic zoning pattern is ob-
served. K-feldspar sometimes surrounds and replaces
plagioclase as anhedral grains. This replacement may be related

to fluid/rock interaction during late-stage crystallization of the
granite or to one of the post-granite deformations. The granite
displays variations in kinds and abundance of accessory miner-
als (Figs. 2, 3) and texture. Aplites, tourmaline-bearing
pegmatites, and miarolitic cavities are common, suggesting va-
por saturation of the melt (Jahns and Tuttle, 1963; Jahns and
Burnham, 1969; Krauskopf, 1979).

Gravity data collected from the Penobscot Bay area (Kane
and Bromery, 1966; Sweeney, 1974, 1976) indicates a
north-south-trending, elongate anomaly trough over the quad-
rangle. Three-dimensional models of this data (Sweeney, 1974,
1976) suggest that the Stricklen Ridge granite is a
north-south-trending, discrete body ~3.0 km thick, 1.5 to 3.0 km
wide, and more than 11 km long with a total volume of approxi-
mately 100 km®. Contacts on the east side are subvertical while
those on the west side dip inward (east) towards the body. In
Sweeney’s (1974, 1976) gravity models, a difference of approxi-
mately 0.01 g/cm® between granite and background densities re-
sults in a thickness change of approximately 1 km for the
subsurface granite bodies, but the models depend on density data
from only two samples (Sweeney, 1976). While the exact di-
mensions depicted in Sweeney’s (1976) models may be debat-
able, the data strongly suggest that the Stricklen Ridge granite
occurs as a discrete body just below the surface of the quadran-
gle. The abundance of aplites, tourmaline-bearing pegmatites,

coarse-
grained 54.5% 71.0%
granite
fine-
grained 2.5% 3.0%
granite
tonalite 3.5% 4.5%
Copeland 16.5% 21.5%
Formation
not 23.0% _
exposed
total 100.0% 100.0%

Figure 1. Estimated modal percentage by area of different rock types
exposed in a representative outcrop mapped as a stricklen Ridge granite
stock. Outcrop is located at UTM grid coordinates: 4943.0N, 521.55E.
Mode was determined by a 1 m grid spacing of a horizontal pavement
approximately 200 m” in area. First data column includes the percent-
age of outcrop not exposed, the second column excludes this area from
the totals. Modal analyses (volume percent) of the three granite
varieties are listed in Figure 2.
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MAFICS QUARTZ MAFICS

K-FELDSPAR PLAGIOCLASE

MAFICS
Figure 2. Modal analyses of Stricklen Ridge granite. Solid circle, granite; solid square, tonalite; solid triangle, sample of Carl et al.

(1984).

1 2 3 4 5 - 6 7
Quartz 40.3 40.6 24.4 42.2 34.0 28.9 26.1
K-feldspar 29.1 30.1 np 13.9 21.7 349 355
Plagioclase 18.6 16.8 524 35.8 39.2 24.0 27.9
Biotite 1.5 0.3 214 np 0.2 1.8 55
Muscovite 9.2 9.5 np 7.2 26 57 0.7
Garnet np np np np 0.8 42 np
Apatite tr 0.3 03 tr tr ° tr 0.4
Chlorite 1.1 1.5 0.5 np 0.6 0.5 2.0
Hematite & 0.2 tr 0.1 np tr tr 0.1
limenite
Epidote np np np np np np 0.1
Secondary tr 0.9 0.9 0.9 0.8 tr - 1.6
Muscovite
Total 100.0 100.0 100.0 100.0 989 1000 99.9
1. Coarse-grained granite of Fig. 1.
2. Fine-grained granite of Fig. 1.
3. Tonalite of Fig. 1.
4, 5, 6. Granite near stock on Stricklen Ridge (UTM grid no. 4949.2N, 523.3E).
7. Granite near shear zone (UTM grid no. 4946.1N, 523.6E).

Figure 3. Modal data (by volume) of representative samples of Stricklen Ridge granite. Minimum 1000 points counted per thin sec-
tion. Chlorite, hematite, ilmenite, and epidote are secondary minerals associated with the recrystallization of biotite. Secondary mus-
covite associated with the recrystallization of muscovite and plagioclase. Abbreviations: tr, trace amounts (less than detected by
point count grid); np, not present.
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and miarolitic cavities; the variation in texture; and the occur-
rence of sills, dikes, and very small stocks rather than one homo-
geneous expanse of granite are consistent with it being the roof
zone of a granitic pluton.

Lucerne Pluton

The Lucerne Pluton is 672 km? in area and is one of the 10
largest plutons in New England (Wones, 1980). The type local-
ity is at Lucerne in the northeast portion of the Orland 15’ quad-
rangle. The Lucerne pluton crops out in the southeast portion of
the Brewer Lake 7.5” quadrangle where it intrudes the Bucksport
Formation. It has been assigned a 380(4 Ma age based on Pb/Pb
data from zircons (Zartman and Gallego, 1979). Whole rock and
mineral chemistry suggest magma emplacement and crystalliza-
tion at 650-700oC and 1-2 kb total pressure (Wones, 1980).

The Lucerne pluton is a coarse-grained, two-feldspar, bio-
tite granite. Approximately 5% ofall alkali feldspar phenocrysts
are ovoidal in shape and are rimmed by plagioclase (i.e. rapakivi
texture). Seriate and porphyritic facies have been recognized,
but only the former crop out in the qudrangle. A strong foliation,
defined by alignment of K-feldspar phenocrysts and ductilely
deformed biotite and quartz, parallels the contact with the
Bucksport Formation. Dikes of Lucerne granite in Bucksport
Formation are uncommon and extend only a few meters from the
contact. Large, rotated enclaves of Bucksport Formation several
meters across occur in the pluton, but only within a few meters of
the contact. Well-developed schlieren are uncommon. Aplite
dikes are uncommon and tend to occur in swarms. Only one oc-
currence of pegmatite was observed, ~800 m north of
Mooschorn Stream along the contact with the Bucksport
Formation.

Thermal effects of the Lucerne pluton on the Bucksport
Formation extend ~1 km from the contact (Novak, 1979).
Quartz-calcite-muscovite-chlorite assemblages are
recrystallized to hornfelsic plagioclase-biotite assemblages.
Pelitic layers react to form andalusite- and corundum-bearing
assemblages. The pronounced rise along the Bucksport/Lucerne
contact reflects the relative resistance of the Lucerne pluton and
its contact aurcole contrasted to lower grade Bucksport
Formation.

Mafic Rock

One outcrop of a fine-grained, porphyritic mafic rock oc-
curs in the quadrangle (roadcut at UTM grid coordinate
4941.75N, 522.0E). No contacts are exposed between it and the
country rock, and it is massive except for brittle fractures and
faults.

In thin section, the rock is composed of 60% euhedral
bytownite and 40% anhedral, interstitial orthopyrozene which
displays a subophitic texture. The rock is a norite in the IUSG
classification system (Streckeisen, 1973). Bytownite occurs as
0.5-2.5 mm long lathes (aspect ratio ~4:1) that are randomly ori-

ented. Larger lathes display normal, continuous zoning from
~Any cores to Angg rims. Fibrous green amphibole, brown bio-
tite, and magnetite occur as alteration products of orthopyroxene
and what is interpreted as matrix. Matrix is completely altered,
but orthopyroxene is relatively pristine.

The porphyritic texture, composition, and lack of meta-
morphism and ductile deformation suggest the norite intruded
the country rock as a dike or sill after ductile deformation. Meso-
zoic mafic dike swarms are common in the Casco Bay area
(Hussey, 1985) and this rock probably represents one such dike.

STRUCTURAL GEOLOGY

The contact between the Passagassawakeag Forma-
tion/Copeland Formation/Rider Bluff member and the
Bucks-port Formation has been interpreted as a normal or re-
verse fault (Stewart and Wones, 1974), an unconformity
(Wones, 1976), and a thrust fault (Kaszuba and Wones, 1985;
Osberg et al., 1985). To the southwest in the Casco Bay area,
rocks of the Casco Bay Group were interpreted to structurally
overlie the Bucksport Formation along a pre-metamorphic thrust
fault (Hussey, 1985). The contact is not exposed in the Brewer
Lake 7.5” quadrangle, and no observed strain gradient or struc-
tural or metamorphic discontinuity coincides with it.

The structural history outlined below is based on detailed
work in a small area (the author’s mapping). Temporal relation-
ships among different small-scale structures were established in
outcrop using overprinting relationships. Sets of structures were
correlated on the basis of orientation, style, and position within
temporal sequences. Microstructural characteristics of the vari-
ous fabrics and relationship of these fabrics to metamorphic min-
eral growth were determined in thin section. Using these
methods, four major groups of structures (D;, D,, D3, and Dy)
were distinguished (Table 1). D, produced folds and axial plane
foliations, whereas D, produced folds and hinge-parallel min-
eral elongation lineations. Dj strike-slip ductile shear zones and
D, folds followed. A separate event of granitic plutonism and
thermal metamorphism (M;_,) is recognized and interpreted to
have occurred between D; and D,. Late brittle joints and faults
cut all ductile structures.

The structural sequence described below is probably true
for those portions of the Copeland and Bucksport Formations in
the quadrangle not mapped by the author. However, its rele-
vance to the Passagassawakeag Formation and Mixer Pond
member is uncertain. The following discussion applies with cer-
tainty only to the area mapped by the author.

Deformation Phase One

The earliest recognizable deformation phase (D;)(Table 1)
produced F, folds (Table 2) and a strong axial plane foliation (S;)
defined by a uniform compositional layering. F; folds (Table 2)
occur in all metasedimentary units, but are prevalent in the Cope-
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Event
D, M1.2 D, D3 D4 Brittle
Feature
-F; folds -porphyroblasts -F, folds -ductile -F4 folds -brittle joints
-§; axial overgrow S; -L,; mineral shear zones -weak Ly and faults
plane foliation lineation and -L3 stretching mineral -slickensides
Structures -rare L; crenulation lineation : lineation and -veins filled
mineral lineation -weak S; -S3 mylonitic crenulation with quartz
axial plane foliation and -weak S4 + hematite
foliation compositional axial plane
: layering foliation
Metamorphic upper upper
Conditions greenschist (?7) amphibolite greenschist greenschist greenschist sub-greenschist
to lower to lower
amphibolite amphibolite
pre-Stricklen between post- post- after all
Relative Ridge granite D1 & D,, granite post-L; mylonite ductile
Timing intrusion syn-granite (?) intrusion deformation
intrusion
pre-412+14 Ma, post-Lucerne post-D3
Orogeny early Acadian (?), Acadian (?), Acadian (380+4 Ma), shear zones
possibly Taconic (?) ~412+14 Ma syn-NFZ, syn-NFZ,
Alleghenian Alleghenian

Table 1. Characteristics of deformational and metamorphic events. NFZ, Norumbega fault zone; L, 4 crenulation, hinge line of F» 4

microfolds.

land Formation in the southern part of the quadrangle. They de-
form bedding (S¢) and are cut by dikes of Stricklen Ridge granite
in the Copeland Formation. Style and geometry of folds vary
among the metasedimentary units. F, folds in the Copeland For-
mation (Table 2) are steeply-reclined to vertical (classification of
Fleuty, 1964) and tight to isoclinal. Axial planes strike predomi-
nantly east-west (Fig. 4a) and fold hinges plunge steeply to the
east (Fig. 4b). In the Rider Bluff member, F, folds (Table 2) are
recumbent isoclines that deform quartz veins. In the Bucksport
Formation, F; folds (Table 2) are tight and inclined with hinges
that plunge moderately to the northeast. Preliminary work by
Kaszuba and Wones (1985) did not recognize F, folds in the
Bucksport Formation.

Foliations measured in outcrops where fold closures are
not observed strike predominantly north-northeast and dip
steeply to the west (Fig. 4c) in contrast to the F, axial plane data
measured within fold noses (Fig. 4a). These foliations may ei-
ther be a bedding-parallel foliation which is common to the area
or the S; axial plane foliation. The data plotted in Fig. 4c proba-
bly represents a combination of both.

S, compositional layering in the Copeland Formation is de-
fined by alternating quartz- and mica-rich layers up to 5 mm
thick. In the Rider Bluff member, it is defined by millime-
ter-scale quartz- (90% quartz) and chlorite-rich (50% quartz,

50% chlorite) laminae. Quartz veins within both units are locally
flattened within S| and extended parallel to an L, lineation. They
sometimes contain quartz rods that define an L; mineral
lineation. The character of S1 in the Bucksport Formation varies
with the different lithologies and grain sizes of that unit. In
siltstone containing little to no carbonate, S; is a continuous to
disjunctive cleavage (classification of Powell, 1979). A continu-
ous, slaty cleavage occurs in very fine-grained siltstone, whereas
coarser-grained siltstone displays a 0.1 mm-scale disjunctive
cleavage that ranges from smooth to rough to anastomosing. A
mm-scale compositional layering defined by alternating quartz-
and phyllosilicate-rich layers parallels this cleavage. S, in car-
bonate-rich Bucksport Formation is a compositional layering up
to 1 cm thick defined by a range of phyllosilicate, calcite, quartz,
and plagioclase amounts present. Quartz veins alternate with
this compositional layering. S; is refracted across bedding
planes between the two Bucksport Formation lithologies
probably because of the competency contrasts between them
(Hobbs et al., 1976).

Deformation Phase Two

The second deformation phase (D,)(Table 1) produced F,
folds (Table 2) that deform S; in metasedimentary units and fold
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F4 Fa Fs
Copeland Rider Bucksport Copeland Rider Bucksport Copeland Rider Bucksport
Formation Bluff Formation | Formation Bluff Formation | Formation Biuff Formation
member member member
steeply recumbent
reclined to gently inclined; upright to inclined; steeply reclined to vertical;
Style to vertical; reclined tight open to tight open to tight
tight to isoclines
isoclinal
wave- rarely rarely — 6cm to 6m 6cm to 1.5m
length >0.5m >10cm
amplitude: 4:1 to 4:1to . 1:1 to 2:1 1:9to 1:2
wavelength 8:1 8:1
relative abundant rare rare common abundant rare common
abundance
structures So quartz So S, S, So, So, S, S S,
it deforms veins L, S, Fi1, 83 F2

Table 2. Characteristics of fold generations. Fold classification of Fleuty (1964).

dikes of Stricklen Ridge granite in the Copeland Formation. F,
folds (Table 2) are open to tight, upright to inclined folds. Axial
plane and hinge line orientations are grouped into two geo-
graphic domains. In the northern half of the quadrangle, axial
planes are subvertical and strike northeastward (Fig. 5a); hinge
lines plunge gently to the northeast (Fig. 5b). In the southern half
of the quadrangle, axial planes strike north-south and range in
dip (Fig. 5¢). Hinge lines plunge at moderate angles to the
north-northeast and south-southwest.

A strong mineral location (L,) parallels F, fold hinges
throughout the quadrangle (compare Figs. 5b and 5e), but is best
developed in the north. The L, mineral lineation is defined by a
strong grain-shape preferred orientation of elongate quartz
grains in quartz veins and quartz-rich layers, and by elongate
micas and feldspar in pelitic layers. In the Stricklen Ridge gran-
ite, L, is defined by quartz rods and by stretched and reoriented
feldspars and micas. In outcrop, F, microfolds often appear as a
crenulation. Their fold hinges were measured as L, and are in-
cluded in the data plotted in Fig. Se.

Asymmetric F, microfolds deform S, in the Copeland For-
mation. Biotite and muscovite are recrystallized into an S, folia-

tion which is axial planar to F, microfolds. S, is not as pro-
nounced as S; because the mica foliation is not as pervasive and
no new compositional layering is developed. In the Rider Bluff
member, a variable, mm-scale zonal crenulation cleavage (clas-
sification of Powell, 1979)(S,) deforms S1. White mica and
chlorite in cleavage zones (<1 mm thick) are recrystallized paral-
lel to S,. D, structures in the Bucksport Formation vary with li-
thology. Siltstone develops a discrete to zonal crenulation
cleavage (S,;) which deforms S;. Matrix biotite, white mica,
chlorite, and elongate quartz are recrystallized parallel to S,. S;
in carbonate-rich lithologies is a zonal crenulation cleavage that
deforms S; compositional layering and is subparallel to the axial
planes of F, microfolds.

Shear Zones

The Norumbega fault zone is a major right-lateral
strike-slip fault which stikes ~060> and crops out in the north-
west corner of the quadrangle. Ductile shear zones are ubiqui-
tous in the study area. They occur at both outcrop and map scales
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F, AXIAL SURFACES

n=39,
contours at
1, 3,5 and 7
points per 2.6%
of circle’s area

F, HINGES

n =38,
contours at
1,3,5, 7,

g, and 11
points per 2.6%
of circle’s area

c ) So /S4 FOLIATIONS

n =47,
contours at
1, 3,5, 7,

9, and 11
points per 2.1%
of circle’s area

Figure 4. Lower hemisphere, equal area stereographic projections of D, field data. For all projections, original orientation data is
plotted on left and contoured on right. Solid triangle, Copeland Formation; solid circle, Rider Bluff member; open diamond,
Bucksport Formation. For all contoured projections, highest density contour interval is shaded , second highest is stippled. (a) Poles
to axial surfaces of F folds. Data measured where fold closures occur. (b) F; fold hinges. (c¢) Poles to Spand S foliations. Data mea-
sured where fold closures not observed.
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F, AXIAL SURFACES, NORTH

J. P. Kaszuba

F, HINGES, NORTH

n=25,
contours at
1,3, and 5
points per 4.0%
of circle’s area

n=25,
-contours at
1,3, and 5
points per 4.0%
of circle’s area

Figure 5. Lower hemisphere, equal area stereographic projections of
D, field data. For all paired projections, original orientation data is
plotted on left and contoured on right. Solid triangle, Copeland For-
mation; solid circle, Rider Bluff member; open diamond, Bucksport
Formation. For all contoured projections, highest density contour in-
terval is shaded, second highest is stipled. (a) poles to axial survaces
of F, folds in all metasedimentary units in the northern half of the
study area. (b) F, fold hinges in all metasedimentary units in the
northern half of the study area. (c) Poles to axial surfaces of F, folds
in all units in the southern half of the study area. (d) F, fold hinges in
all units in the southern half of the study area. (e¢) L, mineral elonga-
tion lineations (open circle) and crenulation axes (solid star) in all
metasedimentary units in the northern half of the study area.
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and offset contacts and juxtapose units within their boundaries.
The shear zones deform Stricklen Ridge granites and L, and are
deformed by later folds (F4, see below), therefore they are la-
beled D3 (Table 1). The majority of shear zones are subparallel to
the Norumbega fault zone and display right-lateral movements
as determined by shear banding in metasediments (Platt and
Vissers, 1980) and S (schistosité) and C (cisaillement, shear)
foliations in granites (Berthé et al., 1979; Simpson and Schmid,
1983). Other shear zones are orthogonal to the Norumbega fault
zone and display left-lateral movements.

In ductile shear zones developed in Stricklen Ridge gran-
ites, quartz shows ribbon structure. Fine-grained, recrystallized
tails of mica fish (asymmetric mica porphyroclasts that have
fine-grained, recrystallized tails, e.g. Lister and Snoke, 1984)
and wrapping of micas around rigid porphyroclasts indicate duc-
tile deformation of micas. Large porphyroclasts (~1.0-2.0 mm
in diamter, although ~1 cm diameter and larger porphyroclasts
occur in deformed pegmatites) of plagioclase (Anjg.;s),
microcline, and orthoclase display brittle fractures, undulatory
extinction, and dynamically recrystallized tails. Garnet, tourma-
line, and apatite are brittlely fractured and extended into the
subhorizontal stretching direction (L;) and contain
recrystallized phyllosilicates [ quartz within their pressure shad-
ows and fractures. Ductile shear zones in the Copeland Forma-
tion display a mm- to um-scale compositional layering defined
by alternating quartz- and mica-rich (usually muscovite) layers
and quartz ribbons. Discontinuous lenses composed of
fine-grained, brittlely fractured plagioclase or tourmaline are in-
terspersed with the quartz and mica compositional layers.
Asymmetic porphyroclasts of 0.2-2.0 mm diameter garnet, mus-
covite, oligoclase, and tourmaline are dispersed throughout the
matrix. Ductile shear zones in the Rider Bluff member and the
Bucksport Formation are superimposed on rocks that were origi-
nally fine-grained and consist of'a foliated matrix of fine-grained
phyllosilicates and quartz. Albite and amphibole porphyroclasts
are often concentrated in mm-scale discontinuous lenses that
parallel the matrix foliation. Within these lenses, these minerals
display primarily brittle behavior in contrast to the ductile
behavior of the surrounding matrix.

Shear bands are developed in the metasedimentary units
outside of shear zone boundaries. They range in thickness (up to
0.5 mm thick) and spacing (up to 5 mm and larger), and contain
recrystallized phyllosilicates and quartz and concentrations of
magnetite, ilmenite, and pyrite. Pre-existing foliations are as-
ymptotically deflected into the shear bands, and rigid mineral
grains (e.g. albite porphyroclasts) are truncated across them.

Microstructural criteria for movement direction in the
shear zones are internally consistent and support the field obser-
vations. These criteria include asymmetric feldspar, tourmaline,
and garnet porphyroclasts; antithetic and synthetic offset along
microfractures in tourmaline and garnet and along
microfractures and cleavages in feldspars; elongate, dynami-
cally recrystallized quartz grains (Simpson and Schmid, 1983);
mica fish (Lister and Snoke, 1984); asymmetric microfolds, C/S

bands in granites (Berthé et al., 1979; Simpson and Schmid,
1983); and shear bands in metasediments (Platt and Vissers,
1980).

Deformation Phase Four

The youngest observed deformation phase (D) (Table 1)
produced F, folds (Table 2) that occur in all metasedimentary
units, but are prevalent in the Copeland Formation in the south-
ern portion of the quadrangle. They deform Sy and Dy, D,, and
D; structures. F4 folds (Table 2) are open to tight, steeply-re-
clined to vertical folds (classification of Fleuty, 1964). Axial
planes strike predominantly north-south (Fig. 6a) and hinge
lines are steeply plunging (Fig. 6b). F, microfold hinges were
measured in outcrop as a lineation (L4). An L, mineral lineation
defined by elongate micas and quartz rods occurs parallel to
these fold hinges, but it is not as pervasive as the L, mineral
lineation.

F, microfolds in the Copeland Formation occur as
crenulations of S| compositional layers and F, fold limbs, espe-
cially in pelitic layers. An S, foliation, defined by a preferred ori-
entation of recrystallized micas, occurs parallel to F, axial
planes, but it is not well-developed and is not as penetrative as S;
or S;. In Bucksport Formation siltstones, symmetrical
microfolding of S| produces a zonal crenulation cleavage (clas-
sification of Powell, 1979). Cleavage zones and microlithons
are evenly-spaced (~0.5 mm) and have diffuse boundaries. F,
folds deform the mylonitic foliation (S;), compositional layers,
and mica fish present in the D5 shear zones.

Brittle Deformation

Brittle faults and joints (Table 1) are ubiquitous to the
quadrangle. They truncate all ductile fabrics (D4, D,, D3, and D)
and are often filled with quartz and/or hematite. In thin section,
quartz which fills the fractures occurs as polygonal grains that
display no crystallographic or grain-shape preferred orientation.
The orientation and sense of motion of the brittle faults and asso-
ciated joints parallels the D5 ductile shear zones.

INTERDEFORMATIONAL METAMORPHISM

The porphyroblasts listed in Table 3 occur in all
metasedimentary units and share the following textural relation-
ships: except for fibrolitic sillimanite, they are euhedral to
subhedral and large (up to several millimeters in diameter) com-
pared to other minerals in the thin section which crystallized or
recrystallized during Dy, D,, D5 or Dy; they overgrow S; and of-
ten contain an internal foliation (S;) oriented subparallel to and
often continuous with S;; porphyroblasts containing S; lack
synmetamorphic rotational textures (e.g. Spry, 1969); and
grain-shape preferred orientations of porphyroblasts parallel D»,
D;, or Dy structures. These textural relationships suggest that the
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A

Figure 6. Lower hemisphere, equal area stereographic projections of D, field data in all units throughout the study area. For all pro-
jections, original orientation data is plotted on left and contoured on right. For all contoured projections, highest density contour in-
terval is shaded, second highest is stippled. (a) Poles to axial surfaces of F4 folds. Data measured where fold closures occur. Trace
and sense of movement of the Norumbega fault zone also plotted. (b) F, fold hinges.

porphyroblasts crystallized between D, and D,, therefore they
are labeled M.

Sillimanite-bearing assemblages (Table 3) occur in the
Copeland Formation within ~0.6 km of Stricklen Ridge granite
stocks, and lower grade assemblages are stable with increasing
distance from these stocks, suggesting that M;_, metamorphism
is related to the intrusion of Stricklen Ridge granite. Occurrence
of staurolite as embayed grains mantled by optically continuous
andalusite in the Copeland Formation suggest the reaction: (1)
staurolite + muscovite + quartz = biotite + aluminum silicate +
garnet+ H,0O. Muscovite, quartz, and sillimanite are abundant in
the Copeland Formation near the Stricklen Ridge granites, but
K-feldspar is absent, suggesting that the reaction: (2) muscovite
+ quartz = K-feldpsar + aluminum silicate+ H,O has not oc-
curred. Andalusite and sillimanite are mantled by massive, felty

12

intergrowths of very fine-grained white mica and fibrolitic
sillimanite. These andalusite/sillimanite textures and the ab-
sence of kyanite suggest that sillimanite crystallized by the reac-
tion (3) andalusite = sillimanite. Metamorphic reactions (1), (2),
and (3) bracket the pressure-temperature space where peak
metamorphic conditions occurred (Fig. 7). These brackets de-
pend on the choice of aluminum silicate triple point data. Triple
point data by Richardson et al. (1969) and Holdaway (1971) are
the two generally accepted data sets, although Holdaway’s
(1971) data bracket peak M;_, metamorphic conditions at 1 to 2.5
kb and 490> to 165> C (Fig. 7). For comparison, data by Rich-
ardson et al. (1969) data bracket pressure-temperature condi-
tions at 1 to 5 kb and 490> to 680> C (Fig. 7). Both
pressure-temperature brackets suggest amphibolite facies
metamorphic conditions (Winkler, 1979).
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EVENT
D, M, D, D,

UNIT

-musc + bt + qtz -sill + bt + gt & tour -bt + musc + qtz -bt + musc + qtz
COPELAND * olig £ mag % ilm -and + bt £ gt + chi £ ilm + hem
FORMATION -staur

-bt + gt £ tour

RIDER -qtz + chl -bt + gt + ab -gtz + white mica -chl + qiz
BLUFF + white mica + plag + chl + bt
MEMBER + mag =+ pyr
BUCKSPORT -gtz + white mica -Ca-amph + ab + i -bt + Cc + gtz -chl + white mica
FORMATION + cht + Cc + plag bt + chl + ti + ep -qtz + white mica + qtz

+ mag =+ ilm £ pyr -bt + chl £ tour + chl + bt + Cc -bt + Cc + gtz

+ ilm £+ mag % pyr

Table 3. Inferred stable mineral assemblages in metasediments. M,_, assemblages are listed in order of decreasing metamorphic
grade. All M, assemblages in the Copeland Formation include muscovite + quartz. Abbreviations: musc, muscovite; bt, biotite;
qtz, quartz; olig, oligoclase (Any.25), plagioclase; mag, magnetite; ilm, ilmenite; chl, chlorite; plag, plagioclase; pyr, pyrite; Cc, cal-
cite; sill, sillimanite; gt, garnet; tour, tourmaline; and, andalusite; staur, staurolite; ab, albite; Ca-amph, calcic amphibole; ti, titanite;

ep, epidote.

Minimum pressure of crystallization of granitic magmas
may be estimated by comparison of rock composition to experi-
mental work in the quartz-orthoclase-albite-anorthite-H,O sys-
tem. This approach assumes the granitic magma was
H,0O-saturated and a minimum melt. The abundance of aplites,
tourmaline-bearing pegmatites, and miarolitic cavities in
Stricklen Ridge granite suggests H,O saturation. Normative
compositions of two samples of Stricklen Ridge granite are plot-
ted in the quartz-albite-orthoclase ternary diagram in Fig. 8.
Normative data from Carl et al. (1984) is plotted because their
model data compare well with the data of this study (Fig. 2). The
normative composition of a typical granite sample in this study
was calculated from modal and mineral chemical data. Also
plotted in Fig. 8 are compositions of minimum granite liquids as
a function of Ab/An ratio and pressure. This data was compiled
by Anderson and Cullers (1978) from the experimental data of
Winkler and Von Platen (1957, 1958, 1960, 1961), Von Platen
(1965), Von Platen and Holler (1966), James and Hamilton
(1969), and Brown and Fyfe (1970). Normative compositions of
Stricklen Ridge granite plot near minimum compositions for
granitic liquids at <1 kb (Fig. 8), suggesting that the Stricklen
Ridge granite represents a minimum melt that crystallized at or
near this pressure. This pressure is consistent with that inde-
pendently derived for crystallization of M, porphyroblasts
(1-2.5 kb), suggesting that both events occurred at
approximately the same depth.

Silt
7+ Ky
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3 |- 7
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! /I// ™~ //
2 — 14 7
1 -y Sill
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| [ | |
500 600 700 800
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Figure 7. Selected reactions bracketing pressure-temperature condi-
tions of M, porphyroblasts. Aluminum silicate data: R, Richardson et
al. (1969); H, Holdaway (1971). Reaction (1), staurolite + muscovite +
quartz = biotite + garnet + aluminum silicate + H,O (Carmichael, 1978;
Archibald et al., 1983). Reaction (2), muscovite + quartz = aluminum
silicate + K-feldspar + H,O (Chatterjee and Johannes, 1974). H,O on
high-temperature side of all reactions. Pressure-temperature space
bracketing peak conditions: horizontal ruling, assumes Richardson et
al. (1969) data; vertical ruling, assumes Holdaway’s (1971) data.
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Qtz

Ab ' - Or

Figure 8. Normative compositions of Stricklen Ridge granite in terms
of quartz (Qtz), albite (Ab), and orthoclase (Or) and comparison to ex-
perimental work in the granite system. Minimum melt compositions
plotted as a function of Ab/An ratio and pressure. Solid circle, calcu-
lated normative composition of representative granite sample from this
study; solid triangle, normative data of Carl et al. (1984). Minimum
melt experimental grid compiled by Anderson and Cullers (1978) from
the experimental data of Winkler and Von Platen (1957, 1958, 1960,
1961), Von Platen (1965), Von Platen and Hoéller (1966), James and
Hamilton (1969), and Brown and Fyfe (1970).

RELATIONSHIP BETWEEN STRUCTURE AND
METAMORPHISM

Folds defined by contacts between metasedimentary units
display a closed geometry and refolded pattern characteristic of
Fy. S, parallels the axial trace of these folds, and geometric rela-
tionships between Sy and S; and the closures of these folds (i.e.
cleavage/bedding relationship, Ramsay, 1967) are consistent
with F, folding. These contacts are therefore interpreted as be-
ing deformed by F,. Syand S, compositional layering are distin-
guished from each other in F, fold noses where S is transposed
into S;. F, and F, fold hinges are subparallel (Figs. 4b, 6b), sug-
gesting that the range of F, axial plane orientations (Fig. 4b) may
be partly the result of refolding about the F, fold axis.

The domainal distribution of F, fold orientations may be
controlled by the superposition of F, on F; or by refolding of F,
by F,. However, the change in strike of F, axial planes from
north-south (Fig. 5¢) to northeast-southwest (Fig. 5a) and in F;
fold hinge orientations from moderate north-northeast and
south-southwest plunges (Fig. 5d) to gentle northeast plunges
(Fig. 5b) occurs with closer proximity to the Norumbega fault
zone, suggesting that right-lateral strike-slip movement on the
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Norumbega fault zone reoriented F, structures in the northern
portion of the study area.

The Norumbega fault zone is a major strike-slip fault zone
with a long history of Paleozoic ductile and Late Paleozoic and
Mesozoic brittle deformation (Wones and Stewart, 1976;
Wones, 1978; Loiselle and Wones, 1983; Johnson and Wones,
1984). The majority of D; shear zones are subparallel to and dis-
play the same movement sense as the Norumbega fault zone,
suggesting that they are related to the same deformation event.
The orientation and sense of motion of deformation zones
oblique to the Norumbega fault zone trend suggest that they may
be second-order shears similar to those discussed by Chinnery
(1966a, 1966b). Conjugate sets of vertical northeast-trending
dextral and north- to northwest-trending sinistral ductile shear
zones and brittle faults and fractures occur along the entire extent
of'the Norumbega fault zone (Wones, 1978; Loiselle and Wones,
1983; Johnson and Wones, 1984).

The northeast-trending shear zone and nearby brittle struc-
tures that parallel it coincide with the Penobscot Lineament of
O’Leary etal. (1978), a 0.8 km wide zone that trends ~05> from
eastern Penobscot Bay for at least 64 km to north of the Lucerne
pluton. Itis represented topographically by aligned streams and
elongate lakes and hills, and geologically by right-lateral ductile
shear zones and brittle faults (O’Leary et al., 1978).

Index minerals that uniquely define a metamorphic facies
are absent from tectonic fabrics formed during each ductile de-
formation event. Metamorphic conditions for each ductile event
are bracketed based on the mineral assemblages that are present
to define each fabric, micro-structures displayed by these miner-
als, and textural relationships among minerals of different
tectonic fabrics.

The mineral assemblages interpreted to be stable in S1 and
in the S; of M|, porphyroblasts are listed in Table 3. The pres-
ence of quartz pressure shadows containing fibrous minerals, the
truncation of quartz grains along S; cleavage zones, and the con-
centration of phyllosilicates and sulfide minerals within these
zones in siltstones of the Bucksport Formation suggest that pres-
sure solution (Rutter, 1976) was an important deformation
mechanism in this lithology during D;.

M., mineral assemblages (Table 3) and textures suggest
M., metamorphism occurred at 490>-5755C and 1-2.5 kb (Fig.
7)(amphibolite facies conditions). M;, porphyroblasts over-
grow S; and are deformed by D,, D3, and D, structures, suggest-
ing that My, occurred between D; and D,. However, M, may
have been part of a continuum of events at the end of D, or the be-
ginning of D,. Stricklen Ridge granite intrusion occurred be-
tween D; and D, at a minimum pressure of crystallization of <1.0
kb (3.8 km). Sillimanite-bearing M., mineral assemblages oc-
cur in Copeland Formation pelites next to and within Stricklen
Ridge granite stocks, and progressively lower-grade M _, assem-
blages occur with increasing distance from these stocks. These
relationships suggest that M;, metamorphism may have oc-
curred in a contact aureole in association with the intrusion of
Stricklen Ridge granite.
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The mineral assemblages interperted to be stable in S, and
L, are listed in Table 3. These assemblages commonly occur as
retrograde products of M, porphyroblasts and suggest D, de-
formation occurred under greenschist facies metamorphic con-
ditions. Ductile microstructures in albite and calcic amphibole
are interpreted as having formed under upper greenschist to
lower amphibolite facies metamorphic conditions. The presence
of quartz pressure shadows containing fibrous minerals and the
trunction of quartz grains along and the concentration of sulfide
minerals with S, cleavage zones in siltstones of the Bucksport
Formation suggest that pressure solution (Rutter, 1976) was an
important S,-forming mechanism in that lithology.

Phyllosilicates are stable in the mylonitic foliation (S3),
suggesting the presence of water and consequently the reduction
of the metamorphic conditions under which feldspar begins to
deform ductilely (Tullis and Yund, 1980). The lack of upper am-
phibolite to granulite facies mineral assemblages and the pres-
ence of water during deformation suggest that feldspar
porphyroclast textures formed under upper greenschist to lower
amphibolite facies metamorphic conditions in D3 shear zones.
Ductile microstructures in feldspar, quartz, and micas reported
for shear zones in the Norumbega fault zone (Johnson and
Wones, 1985) are similar to those in D; shear zones, suggesting
that both structures formed under similar deformation condi-
tions, probably during the same deformation event. However,
metamorphic condition estimates based on feldspar microstruc-
tures are probably imprecise because the ductile response of
feldspar is controlled by strain rate, fluid pressure and
composition, and confining pressure as well as temperature and
the presence of water.

The mineral assemblages interpreted to be stable in S, (Ta-
ble 3) suggest D4 deformation occurred under greenschist facies
metamorphic conditions. The prevalence of mineral assem-
blages consistent with greenschist facies metamorphism in all
three fold events (Table 3) seems a bit fortuitous. Greenschist fa-
cies assemblages clearly define L,, S,, and S, and are probably
representative of the conditions prevalent during D, and Dy.
However, it is possible that D; contained different metamorphic
assemblages which have not survived M;, metamorphism or
subsequent deformation. Greenschist facies conditions for D,
are therefore only best estimates.

TECTONIC SIGNIFICANCE

D, is characterized by tight to isoclinal folding and the for-
mation of a strong S; axial plane. The Stricklen Ridge granite
cuts D; structures and has been assigned a 412(14 Ma age
(Zartman and Gallego, 1979), therefore D, must be pre-Late Si-
lurian to Early Devonian in age. Since F; folds occur within, and
deform contacts between, all three metasedimentary units, these
units must have been in contact and have shared a common struc-
tural and metamorphic history by the time of D; at the latest. Em-
placement of the Copeland Formation as a thrust sheet over the
Bucksport Formation could not have taken place between 390

and 410 Ma as suggested by the preliminary work of Kaszuba
and Wones (1985). These interpretations are consistent with
Ludman’s (1981, 1985) suggestion that the terranes of coastal
Maine were not exotic to each other by Early Devonian at the lat-
est. Ludman (1981, 1985) based his interpretation on the lack of
stratigraphic and metamorphic discontinuities between, and the
structural and radiometric age continuity across, the terranes of
northeast Maine (i.e. Fredericton trough area).

Several authors have grouped the Bucksport, Vassalboro,
and Flume Ridge Formations into one terrane (the Silurian-Early
Devonian central Maine turbidite belt) based on lithologic and
age similarities (Hussey, 1978; Osberg, 1980; Gates etal., 1984).
If this correlation of the Bucksport Formation with the Silurian-
to Devonian-age Vassalboro and Flume Ridge Formations is
valid, then D; must be no older than Silurian. Late Precambrian
(?) to Early Ordovician (?) rocks of the Passagassawakeag and
Copeland Formations are interpreted to structurally overlie units
of the central Maine turbidite belt along a pre-metamorphic
thrust fault because of the apparent age disparity between these
units (Osberg, 1980; Gates et al., 1984; Hussey, 1985). The oc-
currence of a pre-metamorphic thrust fault between the Cope-
land and Bucksport Formations is neither proven nor disproven
by this study. However, any pre-metamorphic thrust fault sepa-
rating the Copeland and Bucksport Formations could be no older
than the Silurian. D; and pre-metamorphic thrusting would
therefore be Acadian events. Ifthe correlation of Vassalboro and
Bucksport Formations is not correct, however, and the
Bucksport Formation is pre-Silurian in age, then D;, and
pre-metamorphic thrusting if present, could be Taconic events.
Pre-Acadian (Taconic?) isoclinal folding has been recognized in
northeast Maine both north and east of the Fredericton trough
(Ludman, 1981, 1985)(Fig. 1b). Most other first-recognized
folds in coastal Maine are recumbent isoclines assigned to the
Acadian orogeny (Bickel, 1976; Ludman, 1981; Hussey, 1985),
and structural features of undoubted Taconic age are exposed
only in western Maine (Osberg, 1978).

Correlation of the Bucksport Formation with the
Vassalboro and Flume Ridge Formations and separation of the
Copeland and Bucksport Formations by an Acadian pre-meta-
morphic thrust fault are based on extensive mapping and strati-
graphic analysis (Hussey, 1978, 1985; Osberg, 1980; Gates et
al., 1984; Osberg et al., 1985). No existing evidence contradicts
these interpretations, and D is therefore interpreted as an Aca-
dian event. Quartz veins are abundant in the Copeland Forma-
tion and Rider Bluff member near the PGW/Bucksport terrane
boundary and are deformed by the entire structural sequence.
Extensive quartz veining may reflect the presence of large
amounts of fluid associated with faulting (e.g. Etheridge et al.,
1983) and may mark the trace of the pre-metamorphic thrust
fault.

The M, event is a static metamorphism which occurred
under amphibolite facies conditions between two ductile defor-
mation events (D; and D,). M., metamorphism may have been a
discrete event or part of a continuum of events at the end of D; or
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at the beginning of D,. Instrusion of Stricklen Ridge granite and
growth of M, porphyroblasts at similar pressure-temperature
conditions between D; and D, and prevalence of
sillimanite-bearing M;_, mineral assemblages with closer prox-
imity to Stricklen Ridge granite stocks suggest that M;_, meta-
morphism may have occurred in a contact aureole in association
with the intrusion of Stricklen Ridge granite. Narrow,
sillimanite-bearing thermal aureoles around granitic intrusions
have also been reported from a number of other localities in New
England (Naylor, 1971). M, metamorphism is probably not re-
lated to instrusion of the nearby Lucerne pluton. The Lucerne
pluton is probably younger than deformation that affects M,
porphyroblasts, and its contact aureole is only ~1 km wide
(Novak, 1979). Sillimanite-bearing mineral assemblages and
pervasive granitic intrustions occur throughout the
Passagassawakeag Formation to the west of the study area
(Stewart and Wones, 1974; Guidotti, 1985), and their presence
may be the result of regional, high-grade metamorphism.
Granitic plutons may have been convectors of heat that produced
local hotspots where they intruded.

D, is characterized by open, upright folding and the forma-
tion of a strong, hinge-parallel mineral lineation under upper
greenschist to lower amphibolite facies metamorphic condi-
tions. D, structures deform the 412(14 Ma Stricklen Ridge gran-
ite, but reportedly do not affect the 3854 Ma Lucerne pluton
(Kaszuba and Wones, 1985). D, is therefore assumed to have oc-
curred during the Acadian orogeny when upright folding oc-
curred throughout New England (Osberg, 1978; Ludman, 1981;
Hussey, 1985).

The Norumbega fault zone is a major structure in the quad-
rangle. The orientation, sense of motion, and inferred deforma-
tion conditions (upper greenschist to lower amphibolite) for D
shear zones in the study area suggest that they are related to the
same deformation event. The coincidence of the Penobscot Lin-
eament with D; shear zones and brittle structures suggests it is a
second-order shear of the Norumbega fault zone and not a major,
continuous zone of faulting and shearing as suggested by
O’Learyetal. (1978). D, is characterized by open, reclined fold-
ing under greenschist facies metamorphic conditions. The rela-
tionship between the orientation of F, folds and the Norumbega
fault zone (Fig. 6) suggests that the stress field which produced
right-lateral strike-slip movement on the Norumbega fault zone
could also have caused F,4 folding. Eusden etal. (1986) suggesta
similar relationship between folding and strike-slip faulting in
southwestern Maine along a continuation of the Norumbega
fault zone. D, may therefore represent a later, lower temperature
episode of the same stress event which produced the Norumbega
fault zone. Alternatively, D4 could represent a discrete ductile
event unrelated to the one that produced the Norumbega fault
zone, but no such event is recognized elsewhere in coastal Maine
(Hussey and Newberg, 1978; Hussey, 1985). D; shear zones and
D, folds do not represent deformation associated with intrusion
of Stricklen Ridge granite or the Lucerne pluton. D3 deforms
Stricklen Ridge granite, and shear zones similar to D3 shear
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zones occur within and deform the Lucerne pluton (Wones,
1980). Furthermore, D; shear zones are probably related to the
same deformation event as the Norumbega fault zone, and the
Norumbega fault zone truncates the Lucerne pluton.

Brittle fracturing and faulting is common along the entire
Norumbega fault zone (Hussey, 1978, 1985; Hussey and
Newberg, 1978; Wones, 1978; Ludman, 1981; Johnson and
Wones, 1984). Brittle joints and faults cut all ductile structures
observed in the study area and may be related to the same stress
field which initially produced the Norumbega fault zone, or to a
later brittle event which exploited the Norumbega fault zone as a
pre-existing zone of weakness.

GEOLOGIC HISTORY

In the Brewer Lake 7.5’ quadrangle, metasediments of the
Copeland Formation, Rider Bluff member, and Bucksport For-
mation experienced four phases of ductile deformation (D, D,,
D;, and D,) and an interdeformational event (M;_;) of metamor-
phism and granitic plutonism. The earliest recognizable defor-
mation phase (D;) produced F; folds and a strong axial plane
foliation (S;) defined by a uniform compositional layering.
Since D; structures occur within and deform contacts between
all metasedimentary units, these units must have been in contact
and shared a common history by the time of D; (Early Acadian?)
at the latest. To the southwest of the study area, units equivalent
to the Copeland and Bucksport Formations are bound by a
pre-metamorphic thrust fault (Hussey, 1985). No structural or
metamorphic discontinuity coincides with the boundary be-
tween these two units in the quadrangle, and the occurrence of a
pre-metamorphic thrust fault is neither proven nor disproven by
this study. A static thermal event (M) of shallow-level (~3.8
km) granitic plutonism (412(14 Ma Stricklen Ridge granite) and
porphyroblast growth at 490>-5755C and 1-2.5 kb (amphibo-
lite facies metamorphism) occurred between Dy and D,. It may
have been a discrete event or a part of a continuum at the end of
D, or the beginning of D,. The occurrence of sillimanite-bearing
M., mineral assemblages with closer proximity to stocks of
Stricklen Ridge granite suggest that this metamorphism may
have occurred in a contact aureole in association with the intru-
sion of Stricklen Ridge granite. The second ductile deformation
event (D,, Acadian) produced open, upright folds and a strong,
hinge-parallel mineral elongation lineation under upper
greenschist to lower amphibolite facies metamorphic condi-
tions. The orientation, sense of motion, and inferred deforma-
tion conditions (upper greenschist to lower amphibolite) for Ds
shear zones suggests they are related to the same stress system
that produced right-lateral strike-slip movement on the
Norumbega fault zone (Alleghanian). The orientation of open,
reclined F, folds that formed under greenschist facies conditions
suggests D, may represent a later, lower-temperature episode re-
lated to the same stress system. Brittle structures truncate all
ductile structures, and their orientation and sense of movement
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suggests that they are either related to the same stress field which
initially produced D; and D, ductile structures, or to a later brittle
event which exploited D; shear zones and the Norumbega fault
zone as pre-existing zones of weakness.
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EXPLANATION

Plutonic Rocks

Metasedimentary Rocks

D1 Lucerne Pluton (Wones, 1980). White-weathering, DSb Bucksport Formation (Trefethen, 1950; Wing,
coarse-grained, seriate granite. Two feldspars, 1957). Silurian (?) to Devonian (?). Grey- to
biotite-bearing. Rare aplites and quartz- green-weathering calcareous siltstone.
tourmaline veins. Zircon Pb/Pb age of 380 + 4 Intercalated beds of sulfidic pelite common.
Ma (Zartman and Gallego, 1979).

DSv Vassalboro Formation (Perkins and Smith, 1925;

SDsr Stricklen Ridge granite stock (Wones, Osberg, 1960). Silurian (?) to Devonian (?).
unpublished data). Garnet-bearing, two-mica Grey- to green-weathering calcareous siltstone.
granite, pegmatite, and aplite that comprise Correlative with the Bucksport Formation.
50%-90% of outcrop. Concordant U/Pb zircon age
of 412 + 14 Ma (Zartman and Gallego, 1979). 06c O6cer Copeland Formation (Trefethen, 1950; Wing,

1957). Precambrian (?) to Ordovician (?). 0Cc,

SDsrc SDsrr Extent of Stricklen Ridge granite. Copeland grey-weathering, interlayered pelite and
Formation (SDsrc) and Rider Bluff member (SDsrr) quartzite. OCcr, Rider Bluff member. Thinly-
intruded by dikes and sills of Stricklen Ridge laminated, pelitic, chlorite-rich siltstone.
granite. Granite comprises <50% of outcrop. Contains garnet and magnetite in alternating

layers.
pep Passagassawakeag Formation (Bickel, 1976).
Precambrian (?). Quartz-feldspar-biotite gneiss
intercalated with biotite schist. Commonly
contains sillimanite and garnet.
pPEpm Mixer Pond member. Fine-grained, light-colored
quartz-oligoclase-microcline gneiss.
pSps pepmg Areas of Passagassawakeag Formation and Mixer
Pond member. Intruded and injected by Stricklen
Ridge granite.
Symbols for areas mapped by Kaszuba Contacts
®Y X  strike and dip of inclined, vertical bedding known
2  strike and dip of inclined axial surface and approximate
bearing and plunge of associated inclined hinge
of small-scale F1 fold — — — — —  very approximate
My strike and dip of inclined S, foliation
%y ».s strike and dip of inclined axial surface and
bearing and plunge of associated inclined hinge Faults
of small-scale F2 fold
Vsl bearing and plunge of inclined L. mineral m— — — brittle
lineation and crenulation axis
————— em= ==  ductile, dextral
8y strike and dip of inclined, vertical S
mylonitic foliation in metasedimentary” rock —— e e ductile, sinistral
<X 4 strike and dip of inclined S3 mylonitic
foliation in plutonic rock
7y ‘; strike and dip of inclined, vertical axial
,& surface and bearing and plunge of associated
inclined hinge of small-scale F4 fold
/ s bearing and plunge of inclined L4 mineral
lineation and crenulation axis
g6 g/ strike and dip of inclined brittle joint in
metasedimentary rock
75y strike and dip of inclined brittle joint in
plutonic rock
“ massive plutonic rock (no fabric observed)
Symbols for areas mapped by Wones
strike and dip of inclined, vertical
X
Pr compositional layering
A X strike and dip of inclined, vertical foliation
73 (where lacking bearing and plunge)
s s strike and dip of cleavage
o bearing and plunge of fold
hinges of parasitic folds
// strike of sub-vertical shear zone
4 strike and dip of Aplite
. massive rock, no observed fabric
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