EXPLANATION OF UNITS

INTRUSIVE ROCKS

Thousand Pond Granite. Medium-grained to coarse-grained, light gray to tan weathered, light gray, biotite-bearing granodiorite to granite. Light gray granophyre, component of the Nokomis Pond Formation, highly discordant to the layering in the Hutchins Corner Gneiss. Most of this rock, except for the dark gray, massive to well-laminated, fine-grained metaquartzite of the Neversink Formation, are generally feldspar-quartz granitic gneiss. A distinctive gray, medium-grained to coarse-grained, diopside, calc-silicate rock. Garnet and andalusite porphyroblasts in this unit are commonly idiomorphic and less than 5 mm in size.

Nokomis Pond Formation. A lithologically heterogeneous unit comprised of metamorphic rocks with both igneous and sedimentary protoliths. The unit is dominated by gray, well-foliated, medium-grained, biotite-hornblende-plagioclase gneiss. Other rock types include: gray to tan, weathered, dark gray, massive to well-laminated, fine-grained metaquartzite, and gray to tan, poorly-coarse-grained, fine-grained biotite hornblende schist. The presence of coarse spangly muscovite is one of the characteristic features of the Cape Rosier schist. Granulite facies type rocks are also present locally.

Highly Deformed Rocks

Scarboro Formation. A mappable area of variably mylonitic rocks. There is a strain gradient, with intensity increasing from west to east across the unit. The eastern portion of the unit is a light gray, highly-jointed, mylonite to ultramylonite with occasional coticule. The western portion of the unit is dark gray to black, highly-jointed, mylonite with biotite-feldspar-garnet-quartz gneiss. All above rock types found in close proximity with pegmatite along the mid-Miocene to Pliocene Hackmatack Pond fault. In the eastern part of the unit is a light gray, highly-jointed, mylonite to ultramylonite with occasional coticule. The western portion of the unit is dark gray to black, highly-jointed, mylonite with biotite-feldspar-garnet-quartz gneiss. All above rock types found in close proximity with pegmatite along the mid-Miocene to Pliocene Hackmatack Pond fault.

Amphibolite. Light gray to black, medium-grained, well-foliated, epsilon-twinned, amphibole-bearing, gneiss. This amphibolite occurs in a high-grade part of the Hackmatack Pond fault, which trends ESE-WNW and follows the mapped orientation of the Hutchins Corner Group. The amphibolite is a protomylonite with feldspar and biotite porphyroclasts. The amphibolite is found as a protomylonite near the center of the map area, and is found as a protomylonite near the center of the map area.

Rusty weathering schist. A light gray, highly-jointed, mylonite to ultramylonite with occasional coticule. The western portion of the unit is dark gray to black, highly-jointed, mylonite with biotite-feldspar-garnet-quartz gneiss. All above rock types found in close proximity with pegmatite along the mid-Miocene to Pliocene Hackmatack Pond fault. In the eastern part of the unit is a light gray, highly-jointed, mylonite to ultramylonite with occasional coticule. The western portion of the unit is dark gray to black, highly-jointed, mylonite with biotite-feldspar-garnet-quartz gneiss. All above rock types found in close proximity with pegmatite along the mid-Miocene to Pliocene Hackmatack Pond fault.

Rusty weathering, quartz-muscovite-graphite schist, typically contorted.

EXPLANATION OF SYMBOLS

Bedrock exposure.

Sticks and dyes (main foliation). (Included, Vertical)

Trend and plunge of foliation. (Dip, Decline, Remeasurement unspecified)

Trend and plunge of lineation. (Horizontal, Plunging)

Sticks and dyes (joint, Included, Vertical)

Lithologic contact (Known, Approximate, Inferred)

Folds, (Known, Approximate, Inferred)

Location of photograph shown in sidebar

REFERENCES

