# Appendix 14-3 2008 and 2009 Ecological Survey Reports

# Fall 2008 Bird and Bat Migration Survey Report

Radar and Acoustic Avian and Bat Surveys for the Highland Wind Project Highland Plantation, Maine

# February 2009 (Revised September 2010)

Prepared for

Highland Wind LLC P.O. Box 457 Brunswick, ME 04011

Prepared by

Stantec Consulting 30 Park Drive Topsham, ME 04086



# **Executive Summary**

Highland Wind LLC (Highland) has proposed to construct a 128.6-megawatt (MW) wind energy project located in Highland Plantation and Pleasant Ridge Plantation, Somerset County, Maine (Figure 1-1). The Highland Wind Project (Project) includes 48 turbines, a 34.5 kV electrical collector system, an electrical collection substation, a 115 kV generator lead, an Operations and Maintenance (O&M) Building, and permanent meteorological towers.

The turbines will be located in two distinct strings. The western string will include 26 turbines located on the ridgeline that connects Stewart Mountain, Witham Mountain and Bald Mountain. The meteorological data collected on this ridgeline suggests that weather conditions can be extreme and that the wind resource is excellent. These conditions require a Class I turbine and the Project has opted to use Vestas V90 3 MW turbines in most of the 26 turbine locations along the western string. The Vestas turbines have an 80 meter (m) hub height, a 90 m rotor diameter and a maximum tip-of-blade height of 125 m. The eastern string will include 22 turbines extending from the northeastern end of Burnt Hill south to Briggs Hill. Because of a more moderate wind capacity, Siemens SWT-2.3-101 turbines will be used along the eastern string to maximize energy output. These turbines have an 80 m hub height, a 101 m rotor diameter and a maximum tip-of-blade height of 130.5 m. Turbines will be located at elevations between 1550 and 2670 feet above sea level.

The electrical collector system will transfer power from the turbines to the proposed collector substation located north of Witham Mountain. These collector lines will be located underground along the ridgeline to reduce the project footprint and to reduce potential line maintenance costs along the exposed ridges. The approximately 11 mile long 115 kV generator lead will connect the on-site collector station to the existing Wyman Dam substation located in Moscow, Maine, where power will be transferred to the Central Maine Power (CMP) system and ultimately distributed to the New England grid.

In planning for this Project, Highland Wind contracted with Stantec Consulting (Stantec) to perform a variety of environmental surveys. In 2008, Stantec conducted surveys to document nocturnal and diurnal biological activity focusing on avian and bat populations.

#### Nocturnal Radar Survey

The fall 2008 field survey targeted 20 nights from August 30 to October 7, 2008. Surveys were conducted using X-band radar, sampling from sunset to sunrise. Each hour of sampling included the recording of radar video files during horizontal and vertical operation. The radar site was located on a small knoll of a ridge. The site provided good visibility of the surrounding airspace and targets were observed in most areas of the radar display unit. The radar site provided excellent visibility and, therefore, the radar was capable of detecting targets within nearly all of its detection range.

Radar surveys are intended to document several variables determinant of nocturnal migration and biological activity within the Project area: passage rates, flight heights, and flight direction. The overall seasonal average was 549 targets per kilometer per hour (t/km/hr). Nightly passage rates varied from 68 t/km/hr on October 7.to 1201 t/km/h on September 15. Passage rates varied greatly between nights during the season, indicating migration occurred in pulses, with rates of migration likely influenced by weather patterns and conditions from night to night. Whereas, flight heights remained fairly consistent both throughout the survey period and in comparison with other seasons, suggesting a similar "use" of the airspace above the ridgeline by nocturnal migrants in both seasons. The seasonal average flight height was  $348 \pm 8$  m (1142 ± 26') above the radar site. The average nightly flight height ranged from 250 m (820') on September 16 to 531 m (1742') on October 6. Flight heights indicate that the percentage of targets flying below 130.5 m (428') ranged from 4 to 28 percent with a seasonal average of 17 percent. Mean flight direction through the Project area was southwesterly at 227° ± 51.

Fall radar surveys at the Project documented patterns in nocturnal migration similar to those documented at most recent radar surveys. These include highly variable passage rates between nights, a generally southwestward flight direction, and flight heights primarily occurring between 200 and 600 m above the ridgeline. Within nights, migration activity was generally greatest two to four hours after sunset and declined steadily through the end of the night. While comparisons between radar studies are vague at best due to the variability of site circumstances, studies performed in similar regions, habitats, and at equivalent levels of effort to those at the Project do reveal consistent patterns in nocturnal migratory activity.

#### Bat Acoustic Survey

The fall 2008 field survey used Anabat detectors from August to October in order to document bat activity patterns near the rotor zone of the proposed turbines, at an intermediate height, and near the ground within the proposed Project area.

Surveys were conducted from August 11 to October 20, 2008 using six Anabat detectors. During August, six detectors were placed in trees in various locations in the Project area. When meteorological measurement (met) towers were erected in early September, the previously deployed detectors were moved to the three met towers locations. A total of 11,583 ultrasound bat calls were recorded over 360 detector-nights (mean  $[x] = 20.8 \pm 1.4$  SE recordings/detector/night [r/d/n]). Detection rates at tree detectors were generally higher ( $x = 14.8 \pm 1.0 r/d/n$ ), than detection rates at the met tower detectors ( $x = 3.0 \pm 0.6 r/d/n$ ). Increased detection rates at met tower detectors in September and October was largely attributed to Lasiurine species (i.e., eastern red bat (*Lasiurus borealis*) and hoary bat (*L. cinereus*).

Bat calls were identified to the lowest possible taxonomic level. These were then grouped into four guilds based on similarity in call characteristics between some species and the uncertainty in the ability of frequency division detectors to adequately provide information for this differentiation. The majority of calls were identified as belonging to the *Myotis* guild (n = 6,521; 56.3%), or were categorized as Unknown because they could not be identified to species (n =

4,909; 42.4%). Less than 1% of calls were identified as belonging to the big brown/silverhaired/hoary bat guild (n = 112) red bat/tri-colored guild (n = 28), or hoary bat guild (n = 13).

When considering the level of activity documented in the Project area from August to October, it is important to acknowledge that numbers of recorded bat call sequences are not necessarily correlated with number of bats in an area. Acoustic detectors do not allow for differentiation between a single bat making multiple passes and multiple bats each recorded a single time.

#### Diurnal Raptor Survey

The fall 2008 field survey included 15 survey days (five of which were performed simultaneously by two surveyors in two different locations) totaling 135 hours of fall diurnal raptor migration surveys between September 3 and October 31, 2008 from Witham Mountain and Burnt Hill, to document the number and species of raptors migrating above the Project area, as well as flight height, general direction and flight path, and other notable flight behaviors.

During 2008 fall surveys, a total of 301 raptors representing 10 species were observed, yielding an overall observation rate of 2.25 individuals/hour. Broad-winged hawks (*Buteo platypterus*) were the most commonly observed raptor (n=134, 45%), sharp-shinned hawks (*Accipiter striatus*) the second, representing 25 percent of all observations (n=74), and turkey vultures (*Cathartes aura*) were the third, accounting for 7 percent of all observations (n=20). There were four bald eagle (*Haliaeetus leucocephalus*), currently listed as a State Threatened species in Maine, observations over the Project area on September 16 and 22 and October 7 and 15, 2008.

The majority of individuals observed during raptor surveys were believed to be migrant birds. Migrating raptors were generally observed moving directly in a southerly direction, parallel to the ridgeline or directly above the ridge; whereas, resident birds were generally observed circling, perching, or foraging over the ridgeline or adjacent valleys. Of those raptors observed within the 1 km-radius circle from the observer (n=251), 43 percent were flying less than or equal to 130.5 m above the ground for at least a portion of their flight through the Project area. The average estimated flight height of those birds observed outside of the 1 km-radius circle from the observer is 286 m (938') above ground.

Raptor activity in the Project during fall 2008 was similar to passage rates observed in the region in recent years. The flight paths of raptors observed in the Project area varied between survey dates and were influenced by varying wind direction and weather. The greater occurrence of migrants at low altitudes increases the potential for migrating raptors to come into the vicinity of the proposed wind turbines. However, raptors have demonstrated high collision turbine avoidance behaviors and relatively low collision mortality at existing wind farms in the region.

# **Table of Contents**

| <b>1.0</b><br>1.1<br>1.2 | INTRODUCTION                          | 1<br>2<br>4 |
|--------------------------|---------------------------------------|-------------|
| 2.0                      | NOCTURNAL RADAR SURVEY                | 4           |
| 2.1                      | INTRODUCTION                          | 4           |
| 2.2                      | METHODS                               | 4           |
|                          | 2.2.1 Data Collection                 | 0           |
|                          | 2.2.2 Data Analysis                   | 0           |
|                          | 2.2.3 Weather Data1                   | 1           |
| 2.3                      | RESULTS1                              | 1           |
|                          | 2.3.1 Passage Rates12                 | 2           |
|                          | 2.3.2 Flight Direction                | 3           |
|                          | 2.3.3 Flight Altitude                 | 4           |
|                          | 2.3.4 Weather Data10                  | 6           |
| 2.4                      | DISCUSSION1                           | 7           |
| 3.0                      | ACOUSTIC BAT SURVEY                   | 8           |
| 3.1                      | INTRODUCTION18                        | 8           |
| 3.2                      | METHODS                               | 9           |
|                          | 3.2.1 Data Collection and Equipment19 | 9           |
|                          | 3.2.2 Data Analysis                   | 5           |
|                          | 3.2.3 Weather Data                    | 6           |
| 3.3                      | RESULTS                               | 7           |
|                          | 3.3.1 Detector Call Analysis          | 7           |
|                          | 3.3.2 Weather Data                    | 8           |
| 3.4                      | DISCUSSION                            | 0           |
| 4.0                      | DIURNAL RAPTOR SURVEYS4               | 3           |
| 4.1                      | INTRODUCTION                          | 3           |
| 4.2                      | METHODS43                             | 3           |
|                          | 4.2.1 Field Surveys                   | 3           |
|                          | 4.2.2 Data Analysis                   | 7           |
| 4.3                      | RESULTS                               | 7           |
| 4.4                      | DISCUSSION                            | 4           |
| 5.0                      | LITERATURE CITED                      | 7           |

#### Tables

- Table 3-1Monthly summary of 2008 acoustic survey results
- Table 3-2Seasonal summary of 2008 acoustic survey results
- Table 3-3 Distribution of detections by guild for detectors at Highland, ME, August October, 2008
- Table 3-4Summary of available bat detector surveys
- Table 4-1Number of observations and minimum flight heights within position categories<br/>relative to the Highland, ME Wind Project Area Fall 2008
- Table 4-2 Species of birds observed incidentally during raptor surveys at Highland, ME -Fall 2008

#### Figures

- Figure 1-1 Project location map
- Figure 2-1 Radar location map
- Figure 2-2 Examples of surrounding vegetation that causes "ground clutter" obstructions in vertical mode (top) and horizontal mode (bottom)
- Figure 2-3 Radar Screenshot showing ground clutter
- Figure 2-4 Positioning of radar near potential ground clutter can reduce or "hide" cluttercausing objects from the radar.
- Figure 2-5 Detection Range of the radar in vertical mode
- Figure 2-6 Radar situated in Highland Project area
- Figure 2-7 Nightly passage rates observed
- Figure 2-8 Hourly passage rates for entire season
- Figure 2-9 Mean unadjusted light direction for the entire season
- Figure 2-10 Mean nightly flight height of targets
- Figure 2-11 Percent of targets observed flying below a height of 130.5 m (428'), based on unadjusted flight heights
- Figure 2-12 Hourly target flight height distribution (unadjusted)
- Figure 2-13 Mean wind speed versus passage rate in the Project area
- Figure 2-14 Passage rate versus mean temperature in the Project area
- Figure 3-1 Bat detector location map
- Figure 3-2 Nightly detections at the Highland Briggs Hill High Met detector from August through October, 2008
- Figure 3-3 Nightly detections at the Highland Briggs Hill Low Met detector from August through October, 2008
- Figure 3-4 Nightly detections at the Highland Briggs Hill Met Tree detector from August through October, 2008
- Figure 3-5 Nightly detections at the Highland Stewart South Met High detector from August through October, 2008
- Figure 3-6 Nightly detections at the Highland Stewart South Met Low detector from August through October, 2008

Figure 3-7 Nightly detections at the Highland Stewart South Met Tree detector from August through October, 2008 Figure 3-8 Nightly detections at the Highland Stewart North Met Tree detector from August through October, 2008 Nightly detections at the Highland Stewart Valley Tree detector from August Figure 3-9 through October, 2008 Nightly detections at the Highland Witham Met High detector from August Figure 3-10 through October, 2008 Figure 3-11 Nightly detections at the Highland Burnt Hill Tree detector from August through October, 2008 Figure 3-12 Number of guild and species detections at Highland met detectors from August through October, 2008 Figure 3-13 Number of guild and species detections at Highland ground-level detectors from August through October, 2008 Distribution of hourly recorded call sequences at Highland Met Tower detectors Figure 3-14 from August through October, 2008 Figure 3-15 Distribution of hourly recorded call sequences at Highland Tree detectors from August through October, 2008 Raptor Survey Location Map Figure 4-1 Figure 4-2 Raptor flight position categories within the Project area Figure 4-3 Total number of birds observed by species per survey day Fall 2008 Figure 4-4 Number of individuals observed per survey hour - Fall 2008 Figure 4-5 Number of individuals of species observed at Highland, ME - Fall 2008 Figure 4-6 Number of individuals of species observed above or below 130.5 m (within 1 km from observer) and number of individuals observed beyond 1 km from observer at Highland, ME – Fall 2008 Figure 4-7 Raptor flight height distribution by species during Fall 2008 surveys at Highland, ME Figure 4-8 Raptor flight position distribution at Highland, Fall 2008

#### Appendices

- Appendix A Radar Survey Results
- Appendix B Acoustic Bat Survey Results
- Appendix C Raptor Survey Results

#### PN195600385

# 1.0 Introduction

Highland Wind LLC (Highland) has proposed to construct a 128.6-megawatt (MW) wind energy project located in Highland Plantation and Pleasant Ridge Plantation, Somerset County, Maine (Figure 1-1). The Highland Wind Project (Project) includes 48 turbines, a 34.5 kV electrical collector system, an electrical collection substation, a 115 kV generator lead, an Operations and Maintenance (O&M) Building, and permanent meteorological towers.

The turbines will be located in two distinct strings. The western string will include 26 turbines located on the ridgeline that connects Stewart Mountain, Witham Mountain and Bald Mountain. The meteorological data collected on this ridgeline suggests that weather conditions can be extreme and that the wind resource is excellent. These conditions require a Class I turbine and the Project has opted to use Vestas V90 3 MW turbines in most of the 26 turbine locations along the western string. The Vestas turbines have an 80 meter (m) hub height, a 90 m rotor diameter and a maximum tip-of-blade height of 125 m. The eastern string will include 22 turbines extending from the northeastern end of Burnt Hill south to Briggs Hill. Because of a more moderate wind capacity, Siemens SWT-2.3-101 turbines will be used along the eastern string to maximize energy output. These turbines have an 80 m hub height, a 101 m rotor diameter and a maximum tip-of-blade height of 130.5 m<sup>1</sup>. Turbines will be located at elevations between 1,550 and 2,670 feet above sea level.

The electrical collector system will transfer power from the turbines to the proposed collector substation located north of Witham Mountain. These collector lines will be located underground along the ridgeline to reduce the project footprint and to reduce potential line maintenance costs along the exposed ridges. The approximately 11 mile long 115 kV generator lead will connect the on-site collector station to the existing Wyman Dam substation located in Moscow, Maine, where power will be transferred to the Central Maine Power (CMP) system and ultimately distributed to the New England grid.

In planning for this Project, Highland Wind contracted with Stantec Consulting (Stantec) to perform a variety of environmental surveys to characterize bird and bat activity within the Project area. This work included nocturnal radar surveys, acoustic bat surveys, and diurnal raptor surveys to help assess the Project's potential to impact birds and bats. The scope of the surveys was based on a combination of developing standard methods within the wind power industry for pre-construction surveys, guidelines outlined by U.S. Fish and Wildlife Service (USFWS) and Maine Department of Inland Fisheries and Wildlife (MDIFW), and is consistent with other studies conducted recently in the state and the Northeast. The surveys and methods used were briefly discussed with staff from MDIFW at a meeting in Sidney, Maine on September 11, 2008.

Following is a brief description of the Project; a review of the methods used to conduct scientific surveys and the results of those surveys; a discussion of results; and the conclusions reached based on those results.

<sup>&</sup>lt;sup>1</sup> Initial Project design included turbines with a maximum height of 128 m., This has changed with additional information about site wind conditions.

# 1.1 PROJECT AREA DESCRIPTION

The Project area is located within the Central and Western Mountains Ecoregion as defined in *Maine's Comprehensive Wildlife Conservation Strategy* (MDIFW 2005). This ecoregion is a consolidation of the Western Mountains and Central Mountains biophysical regions originally described by McMahon (1990). The Central and Western Mountains Ecoregion extends from the New Hampshire boarder south the White Mountains National Forest, north to Aroostook County and east to the western foothills. The average elevation within the western portion of the ecoregion (former Western Mountain Biophysical Region) is between approximately 305 m to 610 m (1,000' to 2,000') with several peaks exceeding 823 m (2,700'). The northern portion of this ecoregion includes some of the highest peaks in the state and has elevations that range from 183 m to 1,603 m (600' to 5,258'). The climate of this ecoregion is characterized by relatively low annual precipitation and cool temperatures. Heavy snow fall prolongs the winter resulting in a relatively short growing season (McMahon 1990). In general, ridge tops within this ecoregion are dominated by red spruce (*Picea rubens*) and balsam fir (*Abies balsamea*) with lower elevations supporting deciduous species such as sugar maple (*Acer saccharum*), yellow birch (*Betula alleghaniensis*) and American beech (*Fagus grandifolia*).

The Project area is located primarily within land managed by Wagner Forest Management, Ltd. These include Stewart Mountain, Witham Mountain, Bald Mountain Briggs Hill and Burnt Hill. Stewart Mountain represents the western boundary of the project and Briggs and Burnt Hill represent the eastern boundary. These two ridgelines are separated by Sandy Stream Valley. The northern end of Stewart Mountain is the highest in elevation reaching 817 m (2,680') and decreases southward to 671 m (2,200'). Witham Mountain is the next highest in elevation reaching nearly 701 m (2,300'); the remaining ridgelines heights are approximately 671 m (2,200') and lower.

Due to its relatively low elevation, the vegetation in the Project area is dominantly northern hardwood species and includes: sugar maple (*Acer saccharum*), yellow birch (*Betula alleghaniensis*), and American beech (*Fagus randifolia*). Red spruce (*picea rubens*) and balsam fir (*Abies balsamea*) are present primarily on those ridge tops that exceed approximately 610 m (2,000'). Historically and presently, the land within and surrounding the Project area, including the summits of the ridgelines, have been used for commercial timber management. This is evident by the recent and past cuts as well as the presence of the network of haul roads that extend through the Project area. These forest management operations have resulted in a variation of forest age classes.





Stantec Consulting Services Inc. 30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Fax: (207) 729-2715

www.stantec.com

Legend

--- Approximate Project Area

Client/Project

Highland Wind, LLC Highland Wind Project Highland Plantation, Maine

Figure No. 1

Title

Project Location Map October 27, 2009

00385-F001-Site-Locus.mxd

## 1.2 SURVEY OVERVIEW

Stantec conducted field surveys for bird and bat migration during fall 2008. The overall goals of the investigations were to document:

- passage rates for nocturnal migration in the vicinity of the Project area, including the number of migrants, their flight direction, and their flight altitude;
- species composition and activity patterns of bats within the Project area including the rate of occurrence and relationship with weather factors and;
- passage rates and species composition of raptors migrating through the Project area;

The following sections outline the survey methodology and results contributing toward the achievement of survey goals. Discussion of survey results and subsequent conclusions follow each section.

# 2.0 Nocturnal Radar Survey

## 2.1 INTRODUCTION

Nocturnal radar surveys were conducted in the Project area to characterize fall 2008 nocturnal migration patterns. The majority of North American passerines (songbirds) migrate at night, unlike raptors that use rising day time thermals during migration. Raptors soaring flight uses the laminar flow of air over the landscape, which creates updrafts along hillsides and ridgelines. In contrast, passerines may have evolved to take advantage of more stable nighttime atmospheric conditions for their flapping flight (Kerlinger 1995). Nighttime migration during the cooler nighttime temperatures also may provide passerines a more efficient method of regulating body temperature during more active, flapping flight and reduce the risk of predation (Alerstam 1990, Kerlinger 1995). Therefore, while raptor migration can be documented by visual daytime (diurnal) surveys, documenting the patterns of nocturnal migrants such as passerines and bats requires the use of radar or other non-visual technologies. The goal of the surveys was to document the overall passage rates for nocturnal migration in the vicinity of the Project area, including the number of migrants, their flight direction, and their flight altitude.

## 2.2 METHODS

Marine surveillance radar, similar to that described by Cooper *et al.* (1991), was used during field data collection. The radar has a peak power output of 12 kilowatts (kW) and has the ability to track small animals, including birds, bats, and even insects, based on settings selected for the radar functions. It cannot, however, readily distinguish between the types of animals or species of animals that are detected. Consequently, all animals observed on the radar screen were identified as bird/bat targets or insect "targets" based on their flight speeds. The radar has an "echo trail" function which captures past echoes of flight trails, enabling determination of

flight direction and flight speed. Flight speed was further analyzed to compensate for wind speed and direction. During all operations, the radar's echo trail was set to 30 seconds. The radar was equipped with a 2 m (6.5') waveguide antenna with a vertical beam height of 20° (10° above and below horizontal).

The radar study was conducted from the southern summit of Stewart Mountain at an elevation of approximately 671 m (2200') (Figure 2-1). Objects on the ground (e.g., trees and hillsides) detected by the radar cause returns on the radar screen (echoes) that appear as blotches called ground clutter (Figures 2-2 and 2-3). Large amounts of ground clutter reduce the ability of the radar to track targets flying over those areas. Therefore, efforts were made to maximize the airspace sampled by elevating the antennae to the height of the surrounding trees, approximately 3 m (10'), thus reducing the amount of the radar beam reflected back from surrounding vegetation or hillsides to the center of the radar screen (Figures 2-3 and 2-4).





Stantec Consulting Services Inc. 30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Fax: (207) 729-2715 www.stantec.com

#### Legend

- ★ Radar Location
- Horizontal Radar Detection Range
- Alignment Vertical Radar Sweep

#### Client/Project

Highland Wind, LLC Highland Wind Project Highland Plantation, Maine



Title

Radar Location Map November 5, 2009

00385-F201-Radar-Location-Map.mxd



Figure 2-2. Examples of surrounding vegetation that causes "ground clutter" obstructions in vertical mode (top) and horizontal mode (bottom). Although the radar records three-dimensional space, it translates ground clutter on the radar screen into a two dimensional representation, which can cause targets to be obscured from view.



Target not visible in radar ✤ Target visible in radar



**Figure 2-3.** Radar Screenshot showing ground clutter (yellow). Note the ground clutter is restricted to the center of the radar screen (*left – vertical mode; right – horizontal mode*). Proper site selection can reduce ground clutter to the center of the radar screen, so that the majority of the two-dimensional radar screen remains relatively uncluttered, allowing targets to be tracked as they both enter and leave the cluttered area.

Vegetation and hilltops near the radar can be used to reduce or eliminate ground clutter by "hiding" clutter-causing objects from the radar. These nearby features also cause ground clutter, but their proximity to the radar antenna generally limits the ground clutter to the center of the radar screen (Figure 2-3 and 2-4).



**Figure 2-4.** Positioning of radar near potential ground clutter can reduce or "hide" clutter-causing objects from the radar.

The irregular shape of the ground clutter shown on the horizontal screen shot (*right*) in Figure 2-3 is caused from the lower 10 degrees of the radar beam, as depicted in Figure 2-4, detecting

the shape of the met tower opening until it reaches the surrounding tree-line. Once at the tree line the lower 10 degree portion of the 20 degree beam is stopped, allowing for a clear view of the airspace above tree-line up to a height of approximately 245 meters (203'). The area of ground clutter to the west (Figure 2-3) is a result of the radar beam detecting the eastern slope of Poplar Mountain across the valley nearly 1.4 km away.

The radar at this location (Figure 2-1) afforded coverage of the Stewart Mountain ridgeline to the north as well as Witham Mountain to the east. The goal of this particular location was to document nocturnal migration activity along these ridges as well as the saddle between them. This location also provided coverage of the valley west of Stewart Mountain which is bisected by the Long Falls Dam Road. The radar site, at an elevation of 671 m (2,200') and elevated even with the surrounding tree height provided excellent sampling of the airspace within 0.75 nautical miles (1.4 km, 4,557') of the site. One hundred percent of all quadrants were visible on the radar screen. In vertical mode views 5 degrees below the horizon to the west into the valley below were attainable due to low tree heights and steep topography on the western side of the radar location on south Stewart Mountain (Figure 2-1).

Radar surveys were conducted from sunset to sunrise, and were scheduled to occur on 20 nights between August 30 and October 7. Because the anti-rain function of the radar must be turned down to detect small songbirds and bats, surveys could not be conducted during active rainfall. Therefore, surveys were planned largely for nights without rain. However, in order to characterize migration patterns during nights without optimal conditions, some nights with weather forecasts including occasional showers, mist, or fog were sampled.

The radar was operated in two modes throughout the course of each night. In surveillance mode, the antenna spins horizontally to survey the airspace around the radar and detects the number of targets and their flight direction as they pass within .75 NM (1.4 km; the radar viewshed) surrounding the radar (Figure 2-3 and 2-4). At this range, the echoes of small birds can be easily detected, observed, and tracked. At greater ranges, larger targets can be detected, but the echoes of small birds are reduced in size and restricted to a smaller portion of the radar screen, thus limiting the ability to observe the movement pattern of individual targets. By analyzing the echo trail, the flight direction and flight speed of targets can be determined. In vertical mode, the radar unit is tilted 90° to vertically survey the airspace above the radar (Harmata *et al.* 1999). In vertical mode, target echoes do not provide directional data, but do provide information on the altitude of targets passing through the vertical, 20° radar beam (Figures 2-2 and 2-5). Both modes of operation were used during each hour of sampling.



Figure 2-5. Detection Range of the radar in vertical mode

#### 2.2.1 Data Collection

The radar display was connected to the video recording software of a computer enabling digital archiving of the radar data for subsequent analysis. This software recorded and archived video samples continuously every hour from sunset to sunrise of each survey night. By alternating the radar antenna every ten minutes from vertical mode to horizontal mode, a total of 30 minutes of vertical samples and 30 minutes of horizontal samples were collected within each hour. Video recordings were subsequently analyzed based on a random schedule for each night. This sampling schedule allowed for randomization of data analysis and prevented double-counting of targets due to the 30-second echo trail used to determine the flight path vector.

## 2.2.2 Data Analysis

Video samples were analyzed using a digital analysis software tool developed by Stantec. For horizontal samples, targets (either birds or bats) were differentiated from insects based on their flight speed. Following adjustment for wind speed and direction, targets traveling faster than approximately 6 m (20') per second were identified as a bird or bat target (Larkin 1991, Bruderer and Boldt 2001). The software tool recorded the time, location, and flight vector for each target traveling fast enough to be a bird or bat within each horizontal sample, and these results were output to a spreadsheet. For vertical samples, the software tool recorded the entry point of targets passing through the vertical radar beam, the time, and flight altitude above the radar location, and then subsequently outputs the data to a spreadsheet. These datasets were then used to calculate passage rate (reported as targets per kilometer of migratory front per hour), flight direction, and flight altitude of targets.

Mean target flight directions (± 1 circular standard deviation) were summarized using software designed specifically to analyze directional data (Oriana2<sup>®</sup> Kovach Computing Services). The statistics used for this analysis are based on those used by Batschelet (1965), because they take into account the circular nature of the data. Nightly wind direction, which was collected from the north Stewart met tower, was also summarized using this method.

Flight altitude data were summarized using linear statistics. Mean flight altitudes ( $\pm$  1 standard error [SE]) were calculated by hour, night, and overall season. The percent of targets flying below 130.5 m (428'), the approximate maximum height of the proposed wind turbines with blades, was also calculated hourly, for each night, and for the entire survey period.

### 2.2.3 Weather Data

Wind speed and direction were recorded on an hourly basis by the north Stewart met tower for the duration of the radar survey period. Temperature, relative humidity, wind speed, dew point, and barometric were also recorded for the duration of the survey period at hourly intervals by a weather station (HOBO Micro Station H21-002) located at the radar station. The mean, maximum, and minimum temperature, mean and maximum wind speed, relative humidity, barometric pressure, and dew point were calculated for each night. However, for the purposes of this report, weather data was used from the north Stewart met tower because this data is from heights closer to where migrants were observed to fly and the height of the proposed wind turbines.

# 2.3 RESULTS

Radar surveys were conducted during 20 nights from August 30 to October 7 (Appendix A, Table 1). The radar was located in the center of the meteorological tower (met tower) clearing, which was bordered by standing dead trees (snags) and regenerating red spruce (*Picea rubens*) (Figure 2-6). In vertical mode tree heights did not affect the radar view because the radar beam was directed vertically into the sky. Furthermore, as a result of elevating the radar antenna even with the heights of the surrounding trees and the steep topography to the west of the radar location, some targets were observed 5 degrees below the horizon in the valley to the west over the Long Falls Dam Road. Figure 2-3 shows the detection of the ridgeline to the west of the radar extended that far and provided full coverage of the valley.



Figure 2-6. Radar situated in Highland Project area.

#### 2.3.1 Passage Rates

The mean passage rate for the entire survey period was 549 targets/kilometer/hour (t/km/hr)  $\pm$  32 t/km/hr (Figure 2-7; Appendix A, Table 1). Nightly passage rates varied from 68 targets per kilometer per hour (t/km/hr) on October 7 to 1201 t/km/h on September 15. Individual hourly passage rates ranged from 0 to 2480 t/km/h (Appendix A, Table 2). Hourly passage rates varied between and within nights throughout the season. For the entire season, passage rates were highest during the fourth hour after sunset and dropped off significantly during the fifth hour through sunrise (Figure 2-8).



Figure 2-7. Nightly passage rates observed (error bars ± 1 SE)



Figure 2-8. Hourly passage rates for entire season

#### 2.3.2 Flight Direction

Mean flight direction through the Project area was  $227^{\circ} \pm 51$  (Figure 2-9). There was some variation between nights in mean flight direction, although most nights included flight directions generally to the southwest (Appendix A, Table 3).



Figure 2-9. Mean flight direction for the entire season (the bracket along the margin of the histogram is the 95% confidence interval)

#### 2.3.3 Flight Altitude

The seasonal mean flight height of all targets was  $348 \pm 8 \text{ m} (1142' \pm 26')$  above the radar site. The average nightly flight height ranged from 250 m (820') on September 16 to 531 m (1742') on October 6 (Figure 2-10; Appendix A, Table 4). The percent of targets observed flying below 130.5 m (428') averaged 17 percent for the season and varied by night from 4 to 28 percent (Figure 2-11). The mean hourly flight height for the entire season was relatively constant throughout the first eleven hours, but increased significantly in the twelfth hour (Figure 2-12). Overall, within each night, flight heights remained relatively constant while much more variation was observed between nights.



Figure 2-10. Mean nightly flight height of targets (error bars ± 1 SE)



Figure 2-11. Percent of targets observed flying below a height of 130.5 m (428')



**Figure 2-12.** Hourly target flight height distribution. The peak in flight height during the 13<sup>th</sup> hour after sunset includes data from only four nights at the end of the season and is not necessarily directly comparable to other hourly blocks. Prior to the end of September, sunrise occurred prior to this 13<sup>th</sup> hour therefore no data was collected.

#### 2.3.4 Weather Data

Mean nightly wind speeds in the Project area from August 30 to October 7 varied between 2 and 8 meters per second (m/s), with an overall mean of 4 m/s (Figure 2-13). Mean nightly temperatures varied between 3°C and 16°C, with an overall mean 9°C (Figure 2-14).



Figure 2-13. Mean wind speed versus passage rate in the Project area



Figure 2-14. Passage rate versus mean temperature in the Project area

### 2.4 DISCUSSION

The results of this field survey provide useful information about site-specific migration activity and patterns in the Project area. Within the last several years, data from nocturnal radar surveys completed using similar methods and equipment have become available, providing an opportunity to compare the results from this Project with others in Maine and the northeastern United States. It is important to note that there are limitations in comparing data from previous years with data from 2008, as year-to-year variation in populations may influence how many migrants pass through an area. Additionally, differences in site characteristics, particularly the topography, local landscape conditions, and vegetation surrounding a radar survey location, can play a large role in any radar's ability to detect targets and the subsequent calculation of passage rate. These differences should be recognized as one of the more significant limiting factors in making direct site-to-site comparisons of passage rates. Regardless of potential differences between radar survey locations, the results at the Project are within the typical range of results at projects on forested ridges in the northeast (Appendix A, Table 5).

Nightly variation in the magnitude and flight characteristics of nocturnally-migrating songbirds is not uncommon and is often attributed to weather patterns, such as cold fronts and winds aloft (Hassler *et al.* 1963, Gauthreaux and Able 1970, Richardson 1972, Able 1973, Bingman *et al.* 1982, Gauthreaux 1991). Nights with the highest passage rates appeared to have had moderate to light winds (2 to 4 m/s) from the northeast. Temperature does not seem to have an affect on passage rate at this site.

Some research suggests that bird migration may be affected by landscape features, such as coastlines, large river valleys, and mountain ranges. This has been documented for diurnally migrating birds, such as raptors, but is not as well established for nocturnal migrants (Sielman *et* 

*al.* 1981; Bingman 1980; Bingman *et al.* 1982; Bruderer and Jenni 1990; Richardson 1998; Fortin *et al.* 1999; Williams *et al.* 2001; Diehl *et al.* 2003). Studies suggesting that nocturnal migrants are influenced by topography have typically been conducted in areas of steep and abrupt topography, such as the most rugged areas of the northern Appalachians and the Alps.

Emerging evidence from other Stantec studies, other consultants, and academic research, is beginning to indicate that flight height seems to be more important in determining potential collision risk than passage rate or flight direction (Cooper and Mabee 2000; Cooper et al. 2004; Gauthreaux and Livingston 2006; Mizrahi et al. 2008). Comparison of flight height between survey sites as measured by radar is generally less influenced by site characteristics as the main portion of the radar beam is directed skyward, and the potential effects of surrounding vegetation on the radar's view can be more easily controlled. The radar, centrally located on an exposed knoll at this Project site, allowed for unobstructed views in vertical mode and targets were observed flying in all areas of the vertical detection range. The radar view in horizontal mode was comparable to other regional studies conducted by Stantec in the state. The emerging body of studies characterizing nocturnal migration shows a relatively consistent pattern in flight altitude, with most migrants appearing to fly at altitudes of several hundred meters or more above the ground (Appendix A, Table 5). This pattern applies to this site, as targets appeared to fly at fairly consistent heights near 300 m above the radar nightly and throughout the survey period. The flight heights at the Project are well above the proposed turbine height of 130.5 m, indicating a limited mortality risk during fall migration.

There is currently no accurate quantitative method of directly correlating pre-construction passage rates at wind farms to operational impacts to birds and bats. Until radar surveys are conducted at a constructed site followed by mortality surveys the morning after, no direct correlations to collision risk can be made. This radar survey is designed to sample migration activity over a given point of time to provide baseline data pre-construction.

# 3.0 Acoustic Bat Survey

# 3.1 INTRODUCTION

Acoustic sampling of bat activity has become a standard aspect of pre-construction surveys for proposed wind-energy developments (Kunz *et al.* 2007a, b). Acoustic surveys are associated with several major assumptions (Hayes 2000) and results should not be used to determine the number of bats inhabiting an area or to determine the number of bats that may collide with the proposed turbines. Acoustic surveys can provide insight into seasonal patterns in activity levels and examine how weather conditions influence bat activity. This data may be useful in predicting trends in post-construction mortality rates. The objectives of acoustic surveys at the Project were (1) to document bat activity patterns from August through October in airspace near the rotor zone of the proposed turbines, at an intermediate height, and near the ground; and (2) to document bat activity patterns in relation to weather factors including wind speed, temperature, and barometric pressure.

Eight species of bats occur in Maine, based upon their normal geographical range. These are the big brown bat (*Eptesicus fuscus*), silver-haired bat (*Lasionycteris noctivagans*), eastern red bat (*Lasiurus borealis*), hoary bat (*L. cinereus*), eastern small-footed myotis (*Myotis leibii*), little brown myotis (*M. lucifugus*), northern myotis, (*M. septentrionalis*), and tri-colored bat<sup>2</sup> (*Perimyotis subflavus*) (BCI 2001). Of these, the eastern small-footed myotis, eastern red bat, hoary bat, and silver-haired bat are listed in Maine as species of special concern.

## 3.2 METHODS

#### 3.2.1 Data Collection and Equipment

Anabat II and Anabat SD1 detectors (Titley Electronics Pty Ltd.) were used for the duration of the acoustic bat survey. Anabat detectors were selected based upon their widespread use for this type of survey, their ability to be deployed for long periods of time, and their ability to detect a broad frequency range, which allows detection of all species of bats that could occur in the Project area. Anabat II detectors were coupled with CF Storage ZCAIM (Titley Electronics Pty Ltd.), which programmed the on/off times and stored data on removable 1 GB compact flash cards, while newer SD1 model detectors do not require use of a ZCAIM. Anabat detectors are frequency division detectors that divide the frequency of echolocation sounds made by bats by a factor of 16, and then record these sounds for subsequent analysis. The audio sensitivity setting of each Anabat system was set between six and seven (on a scale of one to ten) to maximize sensitivity while limiting ambient background noise and interference. The sensitivity of individual detectors was then tested using an ultrasonic Bat Chirp (Reno, NV) to ensure that the detectors would be able to detect bats up to a distance of at least 10 m (33').

Each Anabat detector was powered by 12-volt batteries charged by solar panels. Each solarpowered Anabat system was deployed in waterproof housing enabling the detector to record while unattended for the duration of the survey. The housing suspends the Anabat microphone downward to give maximum protection from precipitation. To compensate for the downward position, a reflector shield of smooth plastic is placed at a 45-degree angle directly below the microphone. The angled reflector allows the microphone to record the airspace horizontally surrounding the detector and is only slightly less sensitive than an unmodified Anabat unit.

Data was collected by five detectors that were deployed in locations throughout the Project area from August 11 to October 20 and were programmed to run continuously between 6:00 PM and 8:00 AM (Figure 3-1). Prior to the installation of the met towers, detectors were initially placed in trees along the ridgelines and were installed at heights ranging from approximately 2 to 8 m. One detector was located in a tree within the Briggs Hill met tower opening, one in a tree within the Burnt Hill met tower opening, one in a tree along the edge of the south Stewart met tower opening, one along a small stream on the western side of Stewart Mountain (Stewart Valley Detector), and one in a tree along the edge of the north Stewart Mountain met tower opening (Figure 3-1). A sixth detector was placed in at tree at the edge of the Witham met tower clearing; however this detector malfunctioned and provided no useable data.

<sup>&</sup>lt;sup>2</sup> The scientific and common name of the eastern pipistrelle (*Pipistrellus subflavus*) has been changed to the tri-colored bat (*Perimyotis subflavus*).

The detectors were moved to the met towers once these structures were erected (August 11 to August 28, 2008, September 2, and September 8, 2008). Two detectors were suspended at different heights within the guy wire arrays of the south Stewart met tower, Witham Mountain met tower, and Briggs Hill met tower. "High" detectors were suspended at approximately 45 m and "Low" detectors were suspended at approximately 25 m. Maintenance visits for each detector were conducted roughly every two weeks to check on the condition of the detectors and download data to a computer for analysis. The "Low" detector at Witham malfunctioned and provided no useable data.



Briggs Hill Tree Detector: The Briggs Hill tree detector was deployed in this location from August 12 to August 28<sup>,</sup> 2008 until the met tower was installed. At this location the bat detector was suspended from a tree approximately 5 m (15<sup>,</sup>) high along the western edge of the met tower clearing with the microphone pointing north.



Burnt Hill Tree Detector: The Burnt Hill tree detector was deployed in this location from August 11 to September 2, 2008 until the met tower was installed at Briggs Hill. Once that met tower was installed this detector was moved to the Briggs Hill Met tower. During this period, the detector was attached to a dead softwood snag approximately 2 m (7') high on the summit of Burnt Hill at the edge of the access trail leading to the met tower opening. The microphone was pointed north across the trail.



Stewart Valley Detector: This detector was deployed at this location from August 11 to August 27, 2008 until the South Stewart Met Tower was installed. The detector at this location was approximately 1500' down slope from the Stewart Mountain Summit at approximately 8 m (25') high with the microphone directed across a skidder trail. A small stream crossed the skidder trail at this location and the microphone was directed up stream across the skidder trail.



South Stewart Tree Detector: This detector was deployed at this location from August 11 to September 2, 2008 until the met tower was installed. At this location the detector was positioned in a tree approximately 5 m (15') high at the southern edge of the met tower clearing with the microphone facing north into the met tower clearing.



North Stewart Tree Detector: This detector was deployed at this location from August 11 to September 8, 2008. This detector was deployed approximately 5 m (15') up in a tree with the microphone facing east. This detector was located at the northern edge of the met tower clearing where the trail entered the opening on the summit.





Stantec Consulting Services Inc. 30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Fax: (207) 729-2715 www.stantec.com

Legend

Bat Detector Location

Client/Project

Highland Wind, LLC Highland Wind Project Highland Plantation, Maine

Figure No. 3-1

Title

Bat Survey Location Map November 5, 2009

00385-F301-Bat-Survey-Location-Map.mxd

### 3.2.2 Data Analysis

Ultrasound recordings of bat echolocation may be broken into recordings of a single bat call or recordings of bat call sequences. A call is a single pulse of sound produced by a bat, while a call sequence is a combination of two or more pulses recorded in an Anabat file. Recordings containing less than two calls were eliminated from analysis as has been done in similar studies (Arnett *et al.* 2006).

Potential call files were extracted from data files using CFCread<sup>®</sup> software. The default settings for CFCread<sup>®</sup> were used during this file extraction process, as these settings are recommended for the calls that are characteristic of Maine bats. This software screens all data recorded by the bat detector and extracts call files using a filter. Using the default settings for this initial screen also ensures comparability between data sets. Settings used by the filter include a max TBC (time between calls) of 5 seconds, a minimum line length of 5 milliseconds, and a smoothing factor of 50. The smoothing factor refers to whether or not adjacent pixels can be connected with a smooth line. The higher the smoothing factor, the less restrictive the filter is and the more noise files and poor quality call sequences are retained within the data set.

Following extraction of call files, each file was visually inspected for species identification and to ensure that only bat calls were included in the data set. Insect activity, wind, and interference can also sometimes produce Anabat files that pass through the initial filter and need to be visually inspected and removed from the data set. Call sequences are easily differentiated from other recordings, which typically form a diffuse band of dots at either a constant frequency or widely varying frequency.

Because bat activity levels are highly variable among individual nights and individual hours (Hayes 1997, Arnett *et al.* 2006), detection rates are summarized on both of these temporal scales. Nightly detection rates were summarized by month as well as for the entire sampling period. Hourly detection rates were summarized by hour after sunset, as recommended by Kunz *et al.* (2007a,b). Quantitative comparisons among these temporal periods was not attempted because the high amount of variability associated with bat detection would required much larger sample sizes (Arnett *et al.* 2006, Hayes 1997).

Bat call sequences were individually marked and categorized by species group, or "guild" based on visual comparison to reference calls. Qualitative visual comparison of recorded call sequences of sufficient length to reference libraries of bat calls allows for relatively accurate identification of bat species (O'Farrell *et al.* 1999, O'Farrell and Gannon 1999). Call sequences were classified to species whenever possible, based on criteria developed from review of reference calls collected by Chris Corben, the developer of the Anabat system, as well as other bat researchers. However, due to similarity of call signatures between several species, all classified calls have been categorized into five guilds<sup>3</sup> reflecting the bat community in the region of the Project area and is as follows:

<sup>&</sup>lt;sup>3</sup> Gannon *et al.* 2003 categorized bats into guilds based upon similar minimum frequency and call shape. These guilds were: Unidentified, Myotis, LABO-PISU and EPFU-LANO-LACI. We broke hoary bats out into a separate guild due to the importance of reporting activity patterns of migratory species in the context of wind energy development.

- Unknown (UNKN) All call sequences with less than five calls, or poor quality sequences (those with indistinct call characteristics or background static). These sequences were further identified as either "high frequency unknown" (HFUN) for sequences with a minimum frequency above 30 to 35 kHz, or "low frequency unknown" (LFUN) for sequences with a minimum frequency below 30 to 35 kHz. The unknown calls are separated into these specific high frequency and low frequency groups because some inferences can be made as to the possible guilds based upon bats known to occur in this area. For this area, HFUN most likely represents eastern red bats, tricolored bats and *Myotis* species since these species typically produce ultrasound sequences of more than 30 kHz. Big brown, silver-haired and hoary bats would be the species in this area typically producing ultrasound sequences of less than 30 kHz.
- Myotis (MYSP) All bats of the genus *Myotis*. While there are some general characteristics believed to be distinctive for several of the species in this genus, these characteristics do not occur consistently enough for any one species to be relied upon at all times when using Anabat recordings.
- Eastern red bat/tri-colored bat<sup>4</sup> (RBTB) Eastern red bats and tri-colored bats. These
  two species can produce calls distinctive only to each species. However, significant
  overlap in the call pulse shape, frequency range, and slope can also occur.
- **Big brown/silver-haired bat (BBSH)** Big brown and silver-haired bats. These species' call signatures commonly overlap and have therefore been included as one guild in this report.
- Hoary bat (HB) Hoary bats. Calls of hoary bats can usually be distinguished from those of big brown and silver-haired bats by minimum frequency extending below 20 kHz or by calls varying widely in minimum frequency across a sequence.

This method of guild identification represents a conservative approach to bat call identification. Since some species sometimes produce calls unique only to that species, all calls were identified to the lowest possible taxonomic level before being grouped into the listed guilds. Tables and figures in the body of this report will reflect those guilds. However, since species-specific identification did occur in some cases, each guild will also be briefly discussed with respect to potential species composition of recorded call sequences.

Once all of the call files were identified and categorized in appropriate guilds, nightly tallies of detected calls were compiled. Mean detection rates (number of recordings/detector-night) for the entire sampling period were calculated for each detector and for all detectors combined.

#### 3.2.3 Weather Data

Temperature (°C), wind speed (m/s), and barometric pressure (mbar) was collected from a 50 meter on-site met tower and was provided by Highland Wind for the period from August 11

<sup>&</sup>lt;sup>4</sup> The scientific and common name of the eastern pipistrelle (*Pipistrellus subflavus*) has been changed to the tri-colored bat (*Perimyotis subflavus*).

through October 20. Mean nightly temperature, barometric pressure, and wind speed were calculated for each night, and nightly averages were plotted against nightly detections for this period for met tower detectors.

## 3.3 RESULTS

#### 3.3.1 Detector Call Analysis

Detectors were operational on 360 of 401 potential detector-nights (90%) between August 11 and October 20 (Table 3-1). Detector malfunction at the Witham Low and Witham Tree locations accounted for all 42 detector nights of lost data. All other detectors sampled successfully on 100% of potential detector-nights.

| Table 3-1.         Summary of bat detector field survey effort and results                                                                                                                |                  |                         |                        |                            |                      |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|------------------------|----------------------------|----------------------|--|--|--|--|
| Location                                                                                                                                                                                  | Dates            | # of Possible<br>Nights | # Detector-<br>Nights* | #<br>Recorded<br>sequences | Detection<br>Rate ** |  |  |  |  |
| Briggs Hill Met High                                                                                                                                                                      | Aug 28 – Oct 20  | 54                      | 54                     | 21                         | 0.4                  |  |  |  |  |
| Briggs Hill Met Low                                                                                                                                                                       | Aug 29 - Oct20   | 53                      | 53                     | 10                         | 0.2                  |  |  |  |  |
| Stewart South Met High                                                                                                                                                                    | Sept 03 - Oct 20 | 48                      | 48                     | 17                         | 0.4                  |  |  |  |  |
| Stewart South Met Low                                                                                                                                                                     | Aug 28 - Oct 20  | 54                      | 54                     | 15                         | 0.3                  |  |  |  |  |
| Witham Met High                                                                                                                                                                           | Sept 09 – Oct 20 | 42                      | 42                     | 4                          | 0.1                  |  |  |  |  |
| Overall Met Tow                                                                                                                                                                           | 251              | 251                     | 67                     | 0.3                        |                      |  |  |  |  |
| Briggs Hill Met Tree                                                                                                                                                                      | Aug12 - Aug 28   | 17                      | 17                     | 3731                       | 219.5                |  |  |  |  |
| Stewart South Met Tree                                                                                                                                                                    | Aug 11 – Sept 02 | 23                      | 23                     | 37                         | 1.6                  |  |  |  |  |
| Stewart Valley Tree                                                                                                                                                                       | Aug 11 – Aug 27  | 17                      | 17                     | 5478                       | 322.2                |  |  |  |  |
| Stewart North Met Tree                                                                                                                                                                    | Aug 11 - Sept 08 | 29                      | 29                     | 2197                       | 75.8                 |  |  |  |  |
| Burnt Hill Tree                                                                                                                                                                           | Aug 11 – Sept 02 | 23                      | 23                     | 73                         | 3.2                  |  |  |  |  |
| Overall Tree                                                                                                                                                                              | 109              | 109                     | 11516                  | 106                        |                      |  |  |  |  |
| Overall Re                                                                                                                                                                                | 360              | 360                     | 11583                  | 32.2                       |                      |  |  |  |  |
| * Detector-night is a sampling unit during which a single detector is deployed overnight. On nights when two detectors are deployed, the sampling effort equals two detector-nights, etc. |                  |                         |                        |                            |                      |  |  |  |  |
| ** Number of bat passes recorded per detector-night.                                                                                                                                      |                  |                         |                        |                            |                      |  |  |  |  |

The overall mean nightly detection rate at the Project was  $32.3 \pm 5.8$  (standard error [SE]) recordings/detector/night (r/d/n). Mean detection rate was highly variable among detectors and between met- and ground-level detectors (Table 3-2). Qualitatively, ground-level detectors exhibited higher detection rates and greater variability (106.6 ± 17.3 r/d/n) than met tower detectors (0.3 ± 0.1 r/d/n). Total number of detectors varied with hour past sunset, with different trends observed at met tower and ground-level detectors (Figures 3-14 through 3-15).

#### FALL 2008 BIRD AND BAT MIGRATION SURVEY REPORT Highland Wind Project, ME November 2009

| Tabl                                | e 3-2. Monthly summary of 2008 ac   | coustic survey      | results at Project de | tectors               |                      |
|-------------------------------------|-------------------------------------|---------------------|-----------------------|-----------------------|----------------------|
| Detector / Month                    | Dates                               | Number of<br>Nights | Nights Sampled        | Sequences<br>Recorded | Detection<br>Rate ** |
| Briggs Mountain Met High            |                                     | <b>.</b>            | L                     | <u>1</u>              | <u>4</u>             |
| August                              | August 28 - August 31               | 4                   | 4                     | 14                    | 3.5                  |
| September                           | September 01 - September 30         | 30                  | 30                    | 7                     | 0.2                  |
| October                             | October 01 - October 20             | 20                  | 20                    | 0                     | 0.0                  |
| Briggs Mountain Met Low             |                                     |                     |                       | •                     | •                    |
| August                              | August 29 - August 31               | 3                   | 3                     | 1                     | 0.3                  |
| September                           | September 01 - September 30         | 30                  | 30                    | 8                     | 0.3                  |
| October                             | October 01 - October 20             | 20                  | 20                    | 1                     | 0.1                  |
| Briggs Mountain Met Tree            | •                                   |                     |                       |                       |                      |
| August                              | August 12 - August 28               | 17                  | 17                    | 3731                  | 219.5                |
| September                           |                                     |                     |                       |                       |                      |
| October                             |                                     |                     |                       |                       | 1                    |
| Stewart South Met High              | •                                   |                     |                       |                       |                      |
| August                              |                                     |                     |                       |                       | 1                    |
| September                           | September 03 - September 30         | 28                  | 28                    | 13                    | 0.5                  |
| October                             | October 01 - October 20             | 20                  | 20                    | 4                     | 0.2                  |
| Stewart South Met Low               |                                     | 20                  | 20                    |                       | 0.2                  |
| August                              | August 28 - August 31               | 4                   | 4                     | 4                     | 1.0                  |
| September                           | September 01 - September 30         | 30                  | 30                    | 11                    | 0.4                  |
| October                             | October 01 - October 20             | 20                  | 20                    | 0                     | 0.0                  |
| Stewart South Met Tree              |                                     | 20                  | 20                    | Ū                     | 0.0                  |
|                                     | August 11 - August 31               | 21                  | 21                    | 35                    | 17                   |
| Sentember                           | September 01 - September 02         | 21                  | 21                    | 2                     | 1.7                  |
| October                             |                                     | 0                   | 0                     | L                     | 1.0                  |
| Stewart Valley Tree                 |                                     | 0                   | 0                     |                       | <u></u>              |
|                                     | August 11 August 27                 | 17                  | 17                    | 5479                  | 222.2                |
| August                              | August 11 - August 27               | 17                  | 0                     | 5476                  | 322.2                |
| September<br>Ostablar               |                                     | 0                   | 0                     |                       | ╉─────               |
| Stowart North Mot Trop              |                                     |                     |                       |                       |                      |
|                                     | August 11 August 21                 | 24                  | 21                    | 2142                  | 102.0                |
| August                              | August 11 - August 31               | 21                  | 21                    | 2143                  | 6.0                  |
| September<br>Ostablar               | September 01 - September 06         | 0                   | 0                     | 54                    | 0.0                  |
| Withom Mot High                     |                                     |                     |                       |                       |                      |
|                                     |                                     | 0                   | 0                     |                       | T                    |
| August                              | <br>Contombor 00 Contombor 20       | 0                   | 0                     | 4                     | 0.2                  |
| September<br>Ostablar               | September 09 - September 30         | 22                  | 22                    | 4                     | 0.2                  |
|                                     | October 01 - October 20             | 20                  | 20                    | 0                     | 0.0                  |
| Burnt Hill Tree                     | Assessed 4.0 Assessed 0.4           | 00                  | 00                    | 54                    |                      |
| August                              | August 12 - August 31               | 20                  | 20                    | 51                    | 2.0                  |
| September                           | September 01 - September 02         | 2                   | 2                     | 22                    | 11.0                 |
| October                             |                                     |                     |                       |                       | L                    |
| Over                                | rall Results                        | 359                 | 359                   | 11583                 | 32.3                 |
| Detector-night is a sampling        | unit during which a single detector | is deployed ov      | vernight. On nights v | when two detecto      | ors are              |
| deployed, the sampling effort       | equals two detector-nights, etc.    |                     |                       |                       |                      |
| I ** Number of ultrasound sequences | uences recorded per detector-night. |                     |                       |                       |                      |
The majority of the recorded call sequences were labeled as MYSP (n = 6,521; 56.3%), followed by UNKN sequences (n = 4,909; 42.4%), the BBSH guild (n = 112; 1.0%), the RBTB guild (n = 28; 0.2%), and hoary bats (n = 13; 0.1%; Table 3-3). Calls identified as UNKN consisted primarily of HFUN calls (n = 4,858; 99.0%), followed by LFUN calls (n = 49; 0.1%) and calls which could not be classified at all (n = 2; <0.1%). Calls identified as BBSH consisted primarily of calls that could not be identified to species (n = 85; 75.9%), followed by calls identified as RBTB consisted primarily of calls that could not be identified to species (n = 4; 3.6%). Calls identified as RBTB consisted primarily of calls that could not be identified to species (n = 17; 60.7%), followed by calls identified as red bats (n = 9; 32.1%) and tri-colored bats (n = 2; 7.1%).

| Table 3-3. Distribution of detections by guild for detectors at Highland, ME, August - October, 2008. |      |       |      |       |       |        |  |  |
|-------------------------------------------------------------------------------------------------------|------|-------|------|-------|-------|--------|--|--|
| Detector                                                                                              |      | Total |      |       |       |        |  |  |
|                                                                                                       | BBSH | HB    | RBTB | MYSP  | UNKN  |        |  |  |
| Briggs Hill Met High                                                                                  | 2    | 1     | 1    | 0     | 17    | 21     |  |  |
| Briggs Hill Met Low                                                                                   | 1    | 3     | 0    | 0     | 6     | 10     |  |  |
| Stewart South Met High                                                                                | 6    | 1     | 1    | 0     | 9     | 17     |  |  |
| Stewart South Met Low                                                                                 | 3    | 0     | 0    | 1     | 11    | 15     |  |  |
| Witham Met High                                                                                       | 1    | 0     | 0    | 0     | 3     | 4      |  |  |
| <b>Overall Met Tower Results</b>                                                                      | 13   | 5     | 2    | 1     | 46    | 67     |  |  |
| Briggs Hill Met Tree                                                                                  | 93   | 3     | 13   | 1,273 | 2,349 | 3,731  |  |  |
| Stewart South Met Tree                                                                                | 0    | 1     | 0    | 8     | 28    | 37     |  |  |
| Stewart Valley Tree                                                                                   | 0    | 0     | 12   | 3,757 | 1,709 | 5,478  |  |  |
| Stewart North Met Tree                                                                                | 0    | 1     | 1    | 1,464 | 731   | 2,197  |  |  |
| Burnt Hill Tree                                                                                       | 6    | 3     | 0    | 18    | 46    | 73     |  |  |
| Overall Tree Results                                                                                  | 99   | 8     | 26   | 6520  | 4863  | 11516  |  |  |
| Overall Results                                                                                       | 112  | 13    | 28   | 6,521 | 4,909 | 11,583 |  |  |
| Guild Composition %                                                                                   | 1.0% | 0.1%  | 0.2% | 56.3% | 42.4% |        |  |  |



**Figure 3-2**. Nightly detections at the Briggs Hill High Met detector from August through October, 2008. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



**Figure 3-3**. Nightly detections at the Briggs Hill Low Met detector from August through October, 2008. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



**Figure 3-4**. Nightly detections at the Briggs Hill Met Tree detector in August, 2008. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



**Figure 3-5**. Nightly detections at the Highland Stewart South Met High detector from September through October, 2008. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



**Figure 3-6**. Nightly detections at the Highland Stewart South Met Low detector from late August through October, 2008. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



Figure 3-7. Nightly detections at the Highland Stewart South Met Tree detector from August through early September, 2008. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



Figure 3-8. Nightly detections at the Highland Stewart North Met Tree detector from August through early September, 2008. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



**Figure 3-9**. Nightly detections at the Highland Stewart Valley Tree detector in August, 2008. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



**Figure 3-10**. Nightly detections at the Highland Witham Met High detector from September through October, 2008. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



Figure 3-11. Nightly detections at the Highland Burnt Hill Tree detector from August through early September, 2008. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



**Figure 3-12**. Number of guild and species detections at Highland met detectors from August through October, 2008. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



**Figure 3-13**. Number of guild and species detections at Highland ground-level detectors from August through October, 2008. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



Figure 3-14. Distribution of hourly recorded call sequences at Highland Met Tower detectors from August through October, 2008.



Figure 3-15. Distribution of hourly recorded call sequences at Highland ground level detectors from August through October, 2008.

Appendix B provides a series of tables with more specific information on the nightly timing, number, and species composition of recorded bat call sequences. Specifically, Appendix B

Tables 1 through 13 provide information on the number of call sequences, by guild and suspected species, recorded at each detector and the weather conditions for that night.

# 3.3.2 Weather Data

Mean nightly temperature during the sampling period varied from -1.7 to 20.3° C, with a mean of 10.2° C. Mean nightly wind speed varied from 1.7 to 15.5 m/s, with a mean of 7.4 m/s. Mean nightly barometric pressure varied from 911.5 to 955.1 mbar, with a mean of 933.1 mbar. Mean nightly temperature, wind speed, and barometric pressure values were plotted against nightly number of bat detections (Figure 3-16). Data were plotted separately for met tower detectors and ground-level detectors because bats may respond to weather conditions differently at various heights (Arnett *et al.* 2006). A qualitative look at scatter plots of these data show no evident relationships between mean nightly temperature, wind speed, or barometric pressure and nightly bat detections.



Figure 3-16. Nightly bat detections and mean nightly weather conditions at Highland bat detectors from August through October 2008.

# 3.4 DISCUSSION

Bat echolocation surveys provide some insight into possible activity patterns, species composition, and timing of movements of bats in the Project area. Variation in bat detections within and among detectors (Figures 3-2 through 3-15) illustrates the challenges associated with characterizing bat activity using acoustic detectors. However, some trends are evident based on patterns in timing and species composition of recorded call sequences.

Specifically, more than 99% of recorded sequences were collected at the tree detectors prior to being moved to the met towers. This difference in detection levels is likely a combination of several factors. First, the tree detectors were all placed at a height of 8 m (25') or less and therefore they were primarily picking up the activity of species that forage or are active closer to the ground. Based upon all of the call sequences collected during this field season, the highest percentage of identified calls (56.3%) were from genus Myotis and these species are more commonly detected beneath canopy level (Arnett et al. 2006). Putting these two factors together, the detectors placed in the trees were in a position to pick up more of the Myotis activity. Secondly, timing or seasonality of deployment also likely influenced call detection. Nightly activity rates at ground-level detectors were generally greatest during the first two weeks of sampling, and appeared to be generally declining by the end of August and early September when the detectors were moved to the met towers (Figures 3-2 to 3-11). Given the emerging relationship between bat activity and temperature at ground-level detectors documented in recent studies (Arnett et al. 2006), it is likely that ground-level detectors would have documented a substantial decline in activity during September and October had they remained deployed, since nightly average temperatures from September through October averaged only 8.6° C, with only 32 percent of nights having average nightly temperatures over 10° C.

Also of interest is the effect of wind speed and barometric pressure on bat detections and bat mortalities at wind developments. Acoustic surveys have documented a decrease in bat activity (or mortality) rates as wind speed increases, and as barometric pressure decreases (Arnett *et al.* 2005, Arnett *et al.* 2006, Arnett *et al.* 2008, Reynolds 2006). These patterns suggest that bats are more likely to migrate on nights with low wind speeds (less than 4 to 6 m/s) and high barometric pressure. No evident relationships were observed between wind speed and bat activity at this Project area.

Nightly trends in mean detections and mean weather conditions mask small-scale variation that occurs within a night. There are many factors driving such small-scale variation in hourly number of recordings, one of which is that most North American bats species emerge from their roost in large numbers shortly after dusk, periodically returning to their roosts for short periods during the night (see Hayes 1997 and cited references). This night-roosting behavior results in relatively higher activity levels shortly after dusk, when bats have not eaten or drank in many hours, and again just before dawn when many individuals will forage and drink again before returning to their roost for daylight hours. Although this bimodal trend in hourly activity rates is seen in many studies, this was not the case at the Highland site. Data from ground-level detectors showed a normal distribution of detections, and data from met towers showed an erratic pattern in hourly detections. While the erratic pattern documented at met detectors may be a result of low sample size, a much larger quantity of data were collected from ground-level

detectors. Data are insufficient to explain why hourly detections at ground-level detectors were greatest 3-7 hours after sunset, but may be a reflection of high foraging activity at that period of the night.

Differences in detection rates between guilds at the various detector locations may reflect varying vertical distribution and habitat preferences of bat species (Arnett *et al.* 2006, Hayes 2000). Recent research using Anabat detectors recorded *Myotis* species more frequently at lower heights and larger species such as big brown and hoary bats were more frequently detected at greater heights (Arnett *et al.* 2006). This general trend matches the guild compositions reported in Figures 3-12 and 3-13. However, interpretation of guild composition is confounded by the high number of UNKN call sequences. Unknown call sequences could not be identified to guild or species due to short call sequences (less than five pulses) or poor call signature formation, often a result of bats flying at the edge of the detection zone of the detector or flying away from the microphone. The relatively small area sampled by bat detectors makes scenarios leading to un-identifiable call sequences common, but some information can still be gleaned from these poor recordings.

Specifically, 99 percent of UNKN sequences were identified as being HFUN, nearly all of which likely consist of red bats, pipistrelles, and *Myotis* species, since these species nearly always produce ultrasound sequences greater than 30 kHz. Of those HFUN calls, 99 percent of HFUN sequences were recorded at ground-level detectors. Because *Myotis* species are more frequently detected beneath the canopy level (Arnett *et al.* 2006), the inference is that the majority of HFUN sequences represent *Myotis* species. Conversely, the majority of HFUN sequences recorded at tower detectors (1% of HFUN sequences) are most likely red bats or tricolored bats.

Qualitatively speaking, acoustic surveys at the Project site mirror similar surveys conducted in the Northeast during the fall. Specifically, detection rates at detectors suspended from met towers were low (less than 1 r/d/n), and detectors operating at ground-level exhibited tremendous variation, ranging from less than 10 to over 300 r/d/n. This type of variation reflects differing conditions (habitat, microclimates, etc.) and differing timing of operation among detectors. Thus, variability in bat activity, with generally low detection rates above canopy height, at the Highland site are consistent with the results of publicly available acoustic surveys conducted at other proposed wind developments in the northeast (Table 3-4).

|      | Table                   | 3-4. St | ummary of availa | ble fall bat det | ector surveys (  | results reported for in | dividual | detecto | ors)  |      |               |
|------|-------------------------|---------|------------------|------------------|------------------|-------------------------|----------|---------|-------|------|---------------|
| Year | Project                 | State   | City             | Habitat          | Height (m)       | Detector Nights         | Start    | End     | Calls | Rate | Reference     |
|      |                         |         | Tr               | ee or Low Towe   | er detectors (10 | m or below)             |          |         |       |      |               |
| 2005 | Clayton                 | NY      | Clayton          | forest edge      | 2                | 33                      | 8/19     | 9/20    | 154   | 4.7  | Woodlot 2005m |
| 2005 | High Sheldon            | NY      | Sheldon          | field            | 2                | 49                      | 8/1      | 10/4    | 5535  | 113  | Woodlot 2005n |
| 2005 | Howard                  | NY      | Howard           | field            | 2                | 25                      | 8/3      | 8/27    | 1493  | 51.5 | Woodlot 2005o |
| 2005 | Jordanville             | NY      | Jordanville      | field            | 2                | 34                      | 8/12     | 9/22    | 124   | 4.4  | Woodlot 2005q |
| 2005 | Lempster                | NH      | Lempster         | forest edge      | 7.5              | 34                      | 9/20     | 10/31   | 27    | 0.8  | Woodlot 2005d |
| 2005 | Lempster                | NH      | Lempster         | forest edge      | 2                | 42                      | 9/20     | 10/31   | 2     | 0    | Woodlot 2005d |
| 2005 | Marble River/Churubusco | NY      | Churubusco       | field            | 10               | 34                      | 8/1      | 10/11   | 150   | 4.4  | Woodlot 2005l |
| 2005 | Marble River/Churubusco | NY      | Churubusco       | field            | 2                | 18                      | 8/1      | 10/11   | 113   | 6.3  | Woodlot 2005l |
| 2005 | Stamford/Moresville     | NY      | Stamford         | forest edge      | 2                | 58                      | 8/15     | 10/15   | 280   | 4.8  | Woodlot 2005e |
| 2005 | Top Notch               | NY      | Fairfield        | field            | 2                | 34                      | 8/19     | 9/21    | 44    | 1.3  | Woodlot 2005p |
| 2005 | West Hill               | NY      | Munnsville       | field            | 2                | 30                      | 8/1      | 10/21   | 10    | 0.3  | Woodlot 2005r |
| 2006 | Lempster                | NH      | Lempster         | forest edge      | 10               | 29                      | 9/9      | 10/24   | 2     | 0.1  | Woodlot 2007a |
| 2006 | Lempster                | NH      | Lempster         | forest edge      | 3                | 44                      | 9/9      | 10/24   | 384   | 8.7  | Woodlot 2007a |
| 0005 | D M                     |         | 1                | MEI              | ower Detectors   | 5                       | 0/4      | 0/00    | 674   | 10.0 | Mar 11 1 0005 |
| 2005 | Dans Mountain           | MD      | Loarville        | forest edge      | 11               | 53                      | 8/1      | 9/22    | 574   | 10.8 | Woodlot 2005a |
| 2006 | Brandon                 |         | Brandon          |                  | 12               | 62                      | 7/25     | 10/4    | 1287  | 20.8 | Woodlot 2006j |
| 2005 | Clayton Dopo Mountoin   |         | Clayton          | forest edge      | 30               | 21                      | 8/19     | 9/20    | 200   | 12.5 | Woodlot 2005m |
| 2005 | High Shalden            |         | Shaldan          | field            | 23               | 51                      | 0/1      | 9/22    | 300   | 12.5 | Woodlot 2005a |
| 2005 | High Sheldon            |         | Shelden          | field            | 15               | 60                      | 8/1      | 10/4    | 335   | 5.2  | Woodlot 2005h |
| 2005 | Howard                  |         | Sheldon          | field            | 30               | 50                      | 0/1      | 0/10    | 20    | 2.4  | Woodlot 20051 |
| 2005 | Howard                  |         | Howard           | field            | 30               | 15                      | 0/3      | 0/19    | 30    | 2.3  | Woodlot 20050 |
| 2005 | lordanvillo             |         | lordanvillo      | field            | 15               | 15                      | 0/3      | 0/14    | 1/2   | 4.2  | Woodlot 20050 |
| 2005 |                         |         | Jordanville      | field            | 30               |                         | 8/12     | 9/22    | 255   | 4.2  | Woodlot 2005q |
| 2005 | Marble River/Churubusco | NV      | Churuhusco       | field            | 20               | 30                      | 8/1      | 10/11   | 243   | 6.2  | Woodlot 20054 |
| 2005 | Stamford/Moresville     |         | Stamford         | forest edge      | 15               | 43                      | 8/15     | 10/15   | 243   | 6.8  | Woodlot 2005  |
| 2005 | Stamford/Moresville     | NV      | Stamford         | forest edge      | 30               | 54                      | 8/15     | 10/15   | 235   | 5.3  | Woodlot 2005e |
| 2005 | Top Notch               | NY      | Fairfield        | field            | 15               | 34                      | 8/19     | 9/21    | 30    | 0.9  | Woodlot 2005p |
| 2005 | Top Notch               | NY      | Fairfield        | field            | 30               | 34                      | 8/19     | 9/21    | 99    | 3    | Woodlot 2005p |
| 2005 | West Hill               | NY      | Munnsville       | field            | 15               | 47                      | 8/1      | 10/21   | 179   | 3.8  | Woodlot 2005r |
| 2005 | West Hill               | NY      | Munnsville       | field            | 30               | 52                      | 8/1      | 10/21   | 106   | 2    | Woodlot 2005r |
| 2006 | Kibby                   | ME      | Eustis           | forest edge      | 45               | 72                      | 6/20     | 10/25   | 18    | 0.3  | Woodlot 2006m |
| 2006 | Kibby                   | ME      | Eustis           | forest edge      | 45               | 76                      | 6/20     | 10/25   | 0     | 0    | Woodlot 2006m |
| 2006 | Kibby                   | ME      | Eustis           | forest edge      | 20               | 44                      | 6/20     | 10/25   | 4     | 0.1  | Woodlot 2006m |
| 2006 | Kibby                   | ME      | Eustis           | forest edge      | 45               | 20                      | 6/20     | 10/25   | 0     | 0    | Woodlot 2006m |
| 2005 | Lempster                | NH      | Lempster         | forest edge      | 15               | 42                      | 9/20     | 10/31   | 14    | 0.3  | Woodlot 2005d |
| 2006 | Lempster                | NH      | Lempster         | forest edge      | 40               | 43                      | 9/9      | 10/24   | 16    | 0.4  | Woodlot 2007a |
| 2006 | Redington               | ME      | Redington        | forest edge      | 15               | 21                      | 8/10     | 10/24   | 0     | 0    | Woodlot 2005u |
| 2006 | Redington               | ME      | Redington        | forest edge      | 15               | 48                      | 8/10     | 10/24   | 0     | 0    | Woodlot 2005u |
| 2006 | Redington               | ME      | Redington        | forest edge      | 30               | 29                      | 8/10     | 10/24   | 0     | 0    | Woodlot 2005u |
| 2006 | Redington               | ME      | Redington        | forest edge      | 30               | 37                      | 8/10     | 10/24   | 0     | 0    | Woodlot 2005u |
| 2006 | Stetson                 | ME      | Danforth         | forest edge      | 30               | 73                      | 6/28     | 10/16   | 8     | 0.1  | Woodlot 2007b |
| 2006 | Stetson                 | ME      | Danforth         | forest edge      | 30               | 76                      | 6/28     | 10/16   | 170   | 2.2  | Woodlot 2007b |
| 2006 | Steuben                 | NY      | Hartsville       | field            | 15               | 76                      | 7/26     | 10/10   | 119   | 1.6  | EDR 2006b     |
| 2006 | Steuben                 | NY      | Hartsville       | field            | 30               | 49                      | 7/26     | 10/10   | 84    | 1.7  | EDR 2006b     |
| 2006 | Wethersfield            | NY      | Wethersfield     | field            | 15               | 54                      | 7/25     | 10/9    | 0     | 0    | Woodlot 2006l |
| 2006 | Wethersfield            | NY      | Wethersfield     | field            | 30               | 26                      | 7/25     | 10/9    | 22    | 0.8  | Woodlot 2006l |
| 2006 | Stetson                 | ME      | Danforth         | forest edge      | 15               | 105                     | 6/28     | 10/16   | 108   | 1    | Woodlot 2007b |
| 2006 | Stetson                 | ME      | Danforth         | forest edge      | 15               | 107                     | 6/28     | 10/16   | 651   | 6.1  | Woodlot 2007b |
| 2006 | Brandon                 | NY      | Brandon          | field            | 25               | 72                      | 7/25     | 10/4    | 464   | 6.4  | Woodlot 2006j |
| 2006 | Centerville             | NY      | Centerville      | field            | 15               | 48                      | 7/25     | 10/10   | 2     | 0    | Woodlot 2006l |
| 2006 | Centerville             | NY      | Centerville      | field            | 35               | 41                      | 7/25     | 10/10   | 3     | 0.1  | Woodlot 2006l |
| 2006 | Chateaugay              | NY      | Chateaugay       | field            | 40               | 58                      | 7/25     | 10/4    | 173   | 3    | Woodlot 2006j |
| 2006 | Chateaugay              | NY      | Chateaugay       | field            | 20               | 44                      | 7/25     | 10/4    | 345   | 7.8  | Woodlot 2006j |
| 2006 | Dutch Hill              | NY      | Cohocton         | field            | 15               | 43                      | 8/12     | 10/11   | 46    | 1.1  | Woodlot 2006c |
| 2006 | Dutch Hill              | NY      | Cohocton         | field            | 30               | 47                      | 8/12     | 10/11   | 57    | 1.2  | Woodlot 2006c |

When considering the level of activity documented at the Project from August to October, it is important to acknowledge that numbers of recorded bat call sequences are not necessarily correlated with number of bats in an area. Acoustic detectors do not allow for differentiation between a single bat making multiple passes and multiple bats each recorded a single time (Hayes 2000). Thus, results of acoustic surveys must be interpreted with caution. However, the discussed patterns in peak timing of detection rates, and patterns of species may be useful for understanding activity levels of bats during the fall migration period and the summer.

# 4.0 Diurnal Raptor Surveys

# 4.1 INTRODUCTION

The Highland Wind Project area is located in the eastern portion of the "Eastern Continental Hawk Flyway,<sup>5</sup>" which extends from the Canadian Maritimes south to eastern Florida. Within this large area, raptors tend to concentrate along linear ridges, which create updrafts or "thermals" that raptors can use to fly long distances with minimal exertion (Berhold 2001). Designated by the state, the Western Maine Mountains biophysical region is an area of varied topography, with high peaks, plateaus, steep sided valleys, and foothills (McMahon 1990).

In coordination with the Maine Department of Inland Fisheries and Wildlife (MDIFW), Stantec designed and conducted fall diurnal raptor surveys at the Highland Wind Project to identify potential popular migration corridors and document species specific flight and behavioral patterns near the Project area. The surveys were conducted during the fall migration season for 15 days from early September to late October.

# 4.2 METHODS

# 4.2.1 Field Surveys

Raptor surveys were conducted in two locations in the Project area. Two locations were discussed and chosen in coordination with MDIFW to provide adequate coverage the project area. The first was located in the clearing under the existing met tower on the summit of Witham Mountain and the other was located in the clearing under the existing met tower on Burnt Hill. Together these two locations afforded views of most of the Project area. Due to its topography and relatively low tree height, Witham Mountain location provided an excellent 360 degree view. The Burnt Hill location also afforded excellent views, although views to the south were slightly obstructed by trees and topography and views to the east were somewhat obstructed by trees (Figure 4-1). The majority of sampling occurred from the summit of Witham Mountain; however, 5 of the 15 survey days were sampled simultaneously with two observers

<sup>&</sup>lt;sup>5</sup> The Eastern Continental Flyway includes the Maritime Provinces; New England; New York (south and east of a line from Jamestown to Utica to the north end of Lake Champlain); Pennsylvania (all except Erie County); Mid-Atlantic States through Georgia, West Virginia, Kentucky and Tennessee; Florida east of a line from Lake Seminole south to Apalachicola (Kellogg 2007).

(one at each survey location). Because views south from Burnt Hill were somewhat obstructed, there was limited overlap in birds that could be viewed from both locations. In addition, observers coordinated during the course of the simultaneous surveys using cell phone communication to reduce the likelihood that they were counting the same birds.

Surveys were conducted from 9 am to 4 pm, in order to include the time of day when the strongest thermal lift is produced and the majority of raptor migration activity typically occurs. Fall raptor surveys were generally conducted on days with favorable flight conditions, which typically occur on days following the passage of weather fronts or low-pressure systems causing northerly winds.





Stantec Consulting Services Inc. 30 Park Drive Topsham, ME USA

04086 Phone (207) 729-1199 Fax: (207) 729-2715 www.stantec.com

## Legend

Raptor Survey Location

#### Client/Project

Highland Wind, LLC Highland Wind Project Highland Plantation, Maine

Figure No. 4-1

Title

Raptor Survey Location Map November 5, 2009

00385-F501-Raptor-Location-Map.mxd

Surveys were based on Hawk Migration Association of North America (HMANA) methods (HMANA 2007). During surveys, observers scanned the sky and surrounding landscape for raptors with binoculars and a spotting scope. Observations were recorded onto HMANA data sheets, which summarize the raptor count data by hour. Hourly weather observations, including wind speed and direction, temperature, percent cloud cover, and precipitation were recorded. Detailed notes for each observation were recorded on separate datasheets and Project area maps, including:

- The flight position(s) in relation to the ridge for each bird;
- The general flight path of each bird relative to topographic maps of the Project area;
- The minimum and maximum flight height for birds observed within 1 km-radius circle around the observer;
- An estimate of flight height for birds observed outside of 1 km-radius circle around the observer;
- The flight azimuth (in relation to true North); and
- Notes describing the general activity of the bird.

Flight positions were summarized into 4 categories: A) flight path directly over the ridge (A1parallel to the ridge, A2-perpendicular to the ridge, or A3-over a saddle), B) flight path over upper slope of ridge, C) flight path over lower slope of ridge, and D) flight path over a valley (see Figure 3-2 below). As individual birds traveled through or in the vicinity of the Project, all position categories in which a bird occurred were recorded.



Figure 3-2. Raptor flight position categories within the Project area

Birds that flew too rapidly or were too far to accurately identify were recorded as unidentified to their genus or, if the identification of genus was not possible, unidentified raptor. Priority was

given to raptor observations; however observers collected incidental data for other avian species observed including passerines and water birds.

## 4.2.2 Data Analysis

Results from raptor surveys were analyzed to derive the following summaries:

- Total number of individuals and species observed during each survey day and for the entire survey period;
- Total number of individuals observed flying above or below 130.5 m for each species observed within a 1 km-radius circle from the observer;
- Average flight height of birds observed outside of 1 km-radius circle from the observer;
- Number of birds suspected to be resident;
- The horizontal position of observed raptors with respect to the location of proposed turbines; and
- Hourly observation rate (birds per hour) for each survey day and for the entire survey period.

Flight height of each bird observed within 1 km was categorized as less than or greater than 130.5m (428') above ground level, which is the approximate height of the proposed wind turbines. The mapped flight paths and recorded flight positions were reviewed to identify any general patterns for migrants in the vicinity of the Project area.

Observations from the Project were compared to data from regional HMANA hawk watch sites (Appendix C, Table 4). The regional hawk watch sites included for comparison are: Cadillac Mountain, ME; Little Round Top, NH; Pack Monadnock, NH; Allegheny Front, PA; Hawk Mountain, PA; Barre Falls, MA; Shatterack Mountain, MA; and Montreal West Island, QC. Also provided for comparison are the results of available regional surveys conducted at proposed wind farms located in New York, Vermont, New Hampshire and Maine (Appendix C, Table 5).

# 4.3 RESULTS

Between September 3 and October 21, 2008, Stantec conducted raptor surveys on 15 days (five of which were performed simultaneously by observers in two different locations) for a total of135 survey hours. Most surveys were conducted on clear days allowing for optimal visibility. Temperatures ranged from 0 to 24°C (32 to 75°F) during the survey period. Wind speeds during the survey period ranged from 0 to 24 km/h (0 to 15 mph); the average wind speed was 19 km/h (12 mph). Wind direction was variable throughout the survey days; however, the majority of days had winds from a northerly direction which is favorable for fall migration. Wind direction did not appear to affect the number of raptors seen per day; however, the peak day



(n=87) occurred on September 15 when very light winds were predominantly from the westnorthwest (Figure 3-3; Appendix B, Table 1).



On a daily basis, the majority of observations occurred between 10:00 am and 4:00 pm; the peak activity hour was between 11:00 am and 12:00 pm, during the peak period of thermal development (Figure 4-4; Appendix B, Table 2).



Figure 4-4. Number of individuals observed per survey hour - Fall 2008

During fall 2008 surveys, a total of 301 raptors representing 10 species plus individuals that could not be identified to species were observed. These results yielded an overall observation rate of 2.25 individuals/hour. Daily count totals ranged from 1 to 87 raptors (Appendix C, Table 1), and daily passage rates ranged from 0.2 to 6.2 birds/hour. Of the 301 total observations, 199 (65%) of those observations occurred during the 5 days of simultaneous surveys with two observers. Communication by the observers during the surveys limited the potential for "double-counting" birds.

Broad-winged hawks (*Buteo platypterus*) were the most commonly observed raptor (n=134, 45%; Figure 4-5). Approximately 53 percent of all observations of broad-winged hawks occurred on one day (September 16, 2008). Ninety-nine percent were believed to be migrants based on their direct flight paths and migratory behavior. Sharp-shinned hawks (*Accipiter striatus*) were the second most common species, representing 25 percent of all observations (n=74). Observers also documented the majority of these species as migratory (89%). Turkey vultures (*Cathartes aura*)<sup>6</sup> were the third most commonly observed species, accounting for 7 percent of all observations (n=20), and were almost equally documented to be migrant and resident individuals (40% and 55% respectively – 5% could not be determined to be either).

<sup>&</sup>lt;sup>6</sup> While turkey vultures are not phylogenetically considered true raptors, they are diurnal migrants that exhibit flight characteristics similar to *Buteos, Accipiters* and other *Falconiformes* species, therefore vultures are typically included during hawk watch surveys.



Figure 4-5. Number of individuals of species observed at Highland, ME - Fall 2008

Flight heights were categorized as above or below 130.5 m (428'), the maximum height of the proposed turbines. Of those raptors observed within the 1 km-radius circle from the observer (n=251), 43 percent were flying less than or equal to 130.5 m above the ground for at least a portion of their flight through the Project area (Figures 4-6 and 4-7; Table 4-1) and 40 percent were observed flying above 130.5 m. The remaining 17 percent of raptors were observed outside of the 1 km-radius circle with an average estimated flight height of 286 m (938') above ground.









| Table 4-1.Number of observations and minimum flight heights within position categories relative to the<br>Highland, ME Wind Project Area - Fall 2008 |                                      |                                                      |                                                                    |                                                  |                                   |                                |                                |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------|--------------------------------|--|--|--|
|                                                                                                                                                      |                                      | Position A)                                          | flight over r                                                      |                                                  |                                   |                                |                                |  |  |  |
| Total # Position<br>Observations<br>(n=360)                                                                                                          | A)<br>flight<br>over<br>ridge        | A1)<br>flight<br>along<br>or<br>parallel<br>to ridge | A2)<br>crossed<br>ridge                                            | A3) flight<br>crossed<br>depression<br>or saddle | Position<br>B -<br>upper<br>slope | Position C<br>- lower<br>slope | Position<br>D - over<br>valley |  |  |  |
| No. of                                                                                                                                               |                                      |                                                      |                                                                    |                                                  |                                   |                                |                                |  |  |  |
| observations                                                                                                                                         | 30                                   | 121                                                  | 73                                                                 | 55                                               | 38                                | 19                             | 24                             |  |  |  |
| Average<br>minimum flight                                                                                                                            | 170                                  | 150                                                  | 109                                                                | 07                                               | 80                                | 150                            | 200                            |  |  |  |
| neight (m)                                                                                                                                           | neight (m) 178 150 108 87 80 153 288 |                                                      |                                                                    |                                                  |                                   |                                |                                |  |  |  |
|                                                                                                                                                      | average                              | e min flight<br>over platea<br>27                    | er of observa<br>: <b>height for a</b><br>u (A, A1, A2<br>9; 131 m |                                                  |                                   |                                |                                |  |  |  |

As raptors traveled through or in the vicinity of the Project area, they often occurred in multiple horizontal flight positions (A-D) along the ridge or outside of the Project area. Of the 360 total recorded flight positions, the majority of raptor observations<sup>7</sup> (n=279, 78%) flew over the ridge at some point in their flight path, 34 percent flying parallel to the ridge (Table 4-1; Figure 4-8). There were 55 observations of birds crossing the saddle between Witham and South Stewart Mountains at an average minimum flight height of 87 m.

<sup>&</sup>lt;sup>7</sup> The number of observations is greater than the number of individuals because individuals can be observed crossing multiple position categories.



**Figure 4-8.** Raptor flight position distribution at Highland, Fall 2008. A = flight path directly over ridgeline, A1 = parallel to ridge, A2 = crosses ridge, A3 = crosses ridge in a gap or low area, B = over upper half of ridge but not on ridgeline, C = over lower half of ridge, D = not within Project boundary.

## Rare, Threatened and Endangered Species

No state or federally listed threatened or endangered species were documented during the course of the raptor surveys. Observations during the fall surveys included, four bald eagles (*Haliaeetus leucocephalus*), a species currently listed as special concern in Maine<sup>8</sup>. These observations included one adult documented on September 16, a juvenile seen on September 22, a juvenile seen on October 7 and an adult bird recorded on October 15 (Figures 4-3 and 4-5). Observations occurred within the 1 km buffer zone as the individuals crossed the ridgeline (Figure 4-6; Appendix C, Table 2) and only one of the birds had a portion of its flight path below the proposed maximum turbine height. Three of the four individuals observed appeared to be residents based on their flight paths and behavior patterns. Three northern harriers (*Circus cyaneus*), also a Maine-listed species of special concern, were observed during these surveys.

<sup>&</sup>lt;sup>8</sup> Effective September 12, 2009, the bald eagle was removed from Maine's list of Endangered and Threatened Species. It is currently listed as a species of special concern.

## Incidental bird observations

During diurnal raptor surveys, other incidentally observed avian species also were documented (Table 4-2). These incidental observations were made while observers hiked to the designated survey points and during the course of the actual surveys. None of these species are state or federally listed as threatened or endangered. The white-throated sparrow (*Zonotrichia albicollis*) is a state listed species of special concern, but occurs commonly throughout much of the Project area.

| Table 4-2.Species of birdsobserved incidentally duringraptor surveys at Highland, MEFall 2008 |
|-----------------------------------------------------------------------------------------------|
| American crow                                                                                 |
| American goldfinch                                                                            |
| black-capped chickadee                                                                        |
| blue jay                                                                                      |
| boreal chickadee                                                                              |
| brown creeper                                                                                 |
| Canada goose                                                                                  |
| common raven                                                                                  |
| dark-eyed junco                                                                               |
| double-crested cormorant                                                                      |
| downy woodpecker                                                                              |
| golden-crowned kinglet                                                                        |
| gray jay                                                                                      |
| hairy woodpecker                                                                              |
| hermit thrush                                                                                 |
| yellow-rumped warbler                                                                         |
| pileated woodpecker                                                                           |
| red crossbill                                                                                 |
| snow bunting                                                                                  |
| unidentified waterfowl                                                                        |
| white-throated sparrow                                                                        |
| white-winged crossbill                                                                        |

# 4.4 **DISCUSSION**

Over the course of 15 survey days between September 3 and October 21, 301 raptors were observed. A total of 10 species as well as birds for which the species could not be determined were documented during this time. Broad-winged hawks, sharp-shinned hawks, and turkey vultures were the most commonly observed species. Most individuals, particularly among the broad-winged hawks, were believed to be migrant birds. Migrating raptors were generally observed moving in a southerly direction.

The passage rate at the Project area for the fall 2008 survey period was 2.25 birds/hour. The passage rates at the fall 2008 HMANA hawk watch sites in the region varied between a low of 7.7 (Second Mountain; Ft. Indiantown Gap, PA) and 18.2 (Waggoner's Gap; Carlisle, PA) birds/hr (Appendix B, Table 3 and 4). Compared to the HMANA 2008 fall data, the passage rate at the Project area was relatively low. It should be noted that visibility and topographic features at the Project area generally vary from those at HMANA sites; these factors can influence the results of observed passage rates at hawk watch sites. It should also be noted that raptor surveys at the Project area were not conducted on every possible day of the raptor migration period; therefore, peak movement days in the area were potentially missed, or have a greater potential to skew results given a limited number of overall survey days. For example, during the fall survey, a priority was placed on surveying consecutive days after the passage of a frontal system when northerly winds are most common. Additionally, the HMANA survey methods differ to some extent from survey methods conducted at proposed wind sites in that 1) flight heights are not gauged during HMANA surveys; 2) HMANA surveyors often do not count birds believed to be resident; and 3) HMANA surveys generally include multiple observers per day resulting in increased observer effort and increased detection rates. These factors should be considered when interpreting the results of the fall data.

Also, available for comparison are the public results of fall surveys at other proposed wind sites in the region from 1999 to 2006. Seasonal passage rates among these sites ranged from 0.9 (Deerfield Vermont; forested ridge) to 25.6 (Westfield, New York; Great Lakes Shore) birds/hr (Appendix A, Table 4 and 5). Raptor activity at the Highland site during fall 2008 was similar to passage rates observed in the region in recent years. There would be some degree of annual variation in passage rates at any particular hawk watch site due to variable regional populations from year to year, as well as differences in daily weather conditions at a site among years. The fall 2008 raptor survey is representative of a typical fall migration season in the Project area. Although there may be some annual variation in the fall passage rates, there is no reason to suspect that annual variations would be significant.

Raptors observed in Project area were observed flying along the ridge and over the ridgeline itself, including low flights through a saddle. Birds also were documented over the valley beyond the Project area. Flight heights ranged from treetop to nearly 1 km above the observation site, with 43 percent of raptors estimated to be below 130.5 m, the maximum height of proposed turbines. Studies have documented that raptors employ a high level of collision avoidance behaviors at modern wind facilities (Whitfield and Madders 2006, Chamberlain *et al.* 2006). As most raptors are diurnal, they may be able to visually, as well as acoustically detect turbines during periods of fair weather. Foraging raptors that become distracted by prey, or migrant raptors flying during periods of reduced visibility, may be at increased risk of collision with wind turbines.

Flight height of raptors varied by survey day, individual raptor, and species across the survey period. Variations in the flight heights of raptors are due to a variety of factors, particular flight behaviors of raptor species and daily weather conditions. Typically, accipiters and falcons use up-drafts from side slopes to gain lift and, therefore, fly low over ridgelines. Buteos and accipitors tend to use lift from thermals that develop over side slopes and valleys and tend

typically to fly higher during hours of peak thermal development. Raptors typically fly lower than usual during windy or inclement headwinds. Tailwinds, on the other hand, create deflective updrafts and push birds higher (Bildstein 2006).

Migration of raptors is a dynamic process due to various behavioral and environmental factors. As a result, flight pathways and movements along ridges, side slopes, and across valleys may vary seasonally, daily or hourly. Raptors may shift and use different ridge lines and cross different valleys from year to year or season to season. Weather and wind are major factors that influence migration pathways. Wind direction and strength, in particular, strongly affect the propensity of raptors to congregate along 'leading lines' or topographic features. The location of a raptor along a 'leading line' can be influenced by lateral drift caused by crosswinds (Richardson 1998).The flight paths of raptors observed at the Project area varied between survey dates and were likely influenced by varying wind direction and weather.

# 5.0 Literature Cited

- Able, K.P. 1973. The role of weather variables and flight direction in determining the magnitude of nocturnal migration. Ecology 54(5):1031–1041.
- Alerstam, T. 1990. Bird Migration. Cambridge University Press, Cambridge, United Kingdom.
- Arnett, E.B., technical editor. 2005. Relationships between bats and wind turbines in Pennsylvania and West Virginia: an assessment of bat fatality search protocols, patterns of fatality, and behavioral interactions with wind turbines. A final report submitted to the Bats and Wind Energy Cooperative. Bat Conservation International. Austin, Texas, USA.
- Arnett, E. B., J. P. Hayes, and M. M. P. Huso. 2006. An evaluation of the use of acoustic monitoring to predict bat fatality at a proposed wind facility in south central Batschelet, E. 1965. Statistical Methods for the Analysis of Problems in Animal Orientation and Certain Biological Rhythms. AIBS Monograph. American Institute of Biological Sciences. Washington, DC.
- Arnett, E.B., W.K. Brown, W.P. Erickson, J.K. Fiedler, B.L. Hamilton, T.H. Henry, A. Jain, G.D. Johnson, J. Kerns, R.R. Koford, C.P. Nicholson, T.J. O'Connell, M.D. Piorkowski, and R.D. Takersley Jr. 2008. Patterns of bat fatalities at wind energy facilities in North America. Journal of Wildlife Management 72:61-78.
- (BCI) Bat Conservation International. 2001. Bats in Eastern Woodlands. http://www.batcon.org/nabcp/newsite/forrep.pdf. Accessed on November 2007.
- Batschelet, E. 1965. Statistical Methods for the Analysis of Problems in Animal Orientation and Certain Biological Rhythms. AIBS Monograph. American Institute of Biological Sciences. Washington, DC.
- Berthold, P. 2001. Bird Migration: A General Survey. Second Edition. Oxford University Press.
- Bildstein, K.L. 2006. Migrating Raptors of the World: their ecology and conservation. Cornell University Press, Ithaca, 320 pp.
- Bingman V.P. 1980. Inland morning flight behavior of nocturnal passerine migrants in Eastern New York. Auk 97:465–72.
- Bingman, V.P., K.P. Able, and P. Kerlinger. 1982. Wind drift, compensation, and the use of landmarks by nocturnal bird migrants. Animal Behavior 30:49–53.
- Bruderer, B., and L. Jenni. 1990. Migration across the Alps. In Bird Migration: Physiology and Ecophysiology (E. Gwinner, Ed.). Springer Verlag, Berlin.

- Bruderer, B., and A. Boldt. 2001. Flight characteristics of birds: I. Radar measurements of speeds. Ibis. 143:178–204.
- Chamberlain, D.E., M.R. Rehfisch, A.D. Fox, M. Desholm, and S.J. Anthony. 2006. The effect of avoidance rates on bird mortality predictions made by wind turbine collision risk models. Ibis: 148, pp. 198-202.
- Cooper, B.A., R.H. Day, R.J. Ritchie, and C.L. Cranor. 1991. An improved marine radar system for studies of bird migration. Journal of Field Ornithology 62:367–377.
- Cooper, B.A., and T.J. Mabee. 2000. Bird migration near proposed wind turbine sites at Wethersfield and Harrisburg, New York. Unpublished report prepared for Niagara– Mohawk Power Corporation, Syracuse, NY, by ABR, Inc., Forest Grove, OR. 46 pp.
- Cooper, B.A., T.J. Mabee, and J.H. Plissner. 2004. A Radar Study of Nocturnal Bird Migration at a Proposed Mount Storm wind power development, West Virginia, Fall 2003. Appendix in Avian baseline studies Mount Storm wind power Project Grant County, West Virginia, final report 2004. Prepared for NedPower Mount Storm, LLC.
- Diehl, R., R. Larkin, and J. Black. 2003. Radar observations of bird migration over the Great Lakes. The Auk 120(2):278–290.
- EchoTrack Inc. 2008. Pre-Construction Bat and Nocturnal Migrant Bird Monitoring Report Wolfe Island Wind Project, Ontario, Canada, Fall 2007. Prepared for Canadian Renewable Energy Corporation.
- Fortin, D., F. Liechti, and B. Bruderer. 1999. Variation in the nocturnal flight behaviour of migratory birds along the northwest coast of the Mediterranean Sea. Ibis 141:480– 488.
- Gauthreaux, S.A., Jr. and J.W. Livingston. 2006. Monitoring bird migration with a fixed-beam radar and a thermal-imaging camera. Journal of Field Ornithology 77(3):319–328.
- Gauthreaux, S.A., Jr. 1991. The flight behavior of migrating birds in changing wind fields: radar and visual analyses. American Zoologist 31:187–204.
- Gauthreaux, S.A., Jr., and K.P. Able. 1970. Wind and the direction of nocturnal songbird migration. Nature 228:476–477.
- Gannon, W.L., R.E. Sherwin, and S. Haywood. 2003. On the importance of articulating assumptions when conducting acoustic studies of habitat use by bats. Wild. Soc. Bull. 31 (1):45–61.
- Hall, G. A. and R. K. Bell. 1981. The diurnal migration of passerines along an Appalachian ridge. American Birds 35:135.138.

- Harmata, A., K. Podruzny, J. Zelenak, and M. Morrison. 1999. Using marine surveillance radar to study bird movements and impact assessment. Wildlife Society Bulletin 27(1):44–52.
- Hassler, S.S., R.R. Graber, and F.C. Bellrose. 1963. Fall migration and weather, a radar study. The Wilson Bulletin 75(1):56–77.
- Hawk Migration Association of North America. 2007. http://www.hmana.org/forms.php
- Hayes J. P. 1997. Temporal variation in activity of bats and the design of echolocationmonitoring studies. Journal of Mammalogy 78:514–24.
- Hayes, J.P. 2000. Assumptions and practical considerations in the design and interpretation of echolocation-monitoring studies. Acta Chiropterologica 2(2):225-236.
- Kellogg, S (Ed.). 2007. Eastern Flyway Report: Eastern Continental Flyway. In Hawk Migration Studies (Vol. XXXIII, No. 1, pp.13). Hawk Migration Association of North America.
- Kerlinger, P. 1995. How Birds Migrate. Stackpole Books. Mechanicsburg, PA.
- Kerlinger, Paul. 1996. A Study of Hawk Migration at Green Mountain Power Corporation's Searsburg, Vermont, Wind Power Site: Autumn 1996. Prepared for the Vermont Public Service Board, Green Mountain Power, National Renewable Ener gy Laboratory, VERA.
- Kunz, T.H., E.B. Arnett, W.P. Erickson, A.R. Hoar, G.D. Johnson, R.P. Larkin, M.D. Strickland, R.W. Thresher, and M.D. Tuttle. 2007a. Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Frontiers in Ecology and the Environment 5:315-324.
- Kunz, T.H., E.B. Arnett, B.P. Cooper, W.P. Erickson, R.P. Larkin, T. Mabee, M.L. Morrison, M.D. Strickland, and J.M. Szewczak. 2007b. Assessing impacts of wind-energy development on nocturnally active birds and bats: A guidance document. Journal of Wildlife Management 71:2449-2486.
- Larkin, R.P. 1991. Flight speeds observed with radar, a correction: slow "birds" are insects. Behavioral Ecology and Sociobiology. 29:221–224.
- Maine Department of Inland Fisheries and Wildlife. 2005. Maine's Comprehensive Wildlife Conservation Strategy. Augusta, Maine.
- McMahon, J. S. 1990. The biophysical regions of Maine: patterns in the landscape and vegetation. M.S. Thesis, Univ. of Maine, Orono. 120 pp.

- Mizrahi, D.S., R. Fogg, K.A. Peters, and P.A. Hodgetts. 2008. Assessing bird and bat migration patterns in the mid Atlantic Appalachian Mountain Region using marine radar. Unpublished report prepared by the New Jersey Audubon Society Department of Research and Monitoring.
- O'Farrell, M.J., and W.L. Gannon. 1999. A comparison of acoustic versus capture techniques for the inventory of bats. Journal of Mammalogy 80(1):24–30.
- O'Farrell, M.J., B.W. Miller, and W.L. Gannon. 1999. Qualitative identification of free-flying bats using the anabat detector. Journal of Mammalogy 80(1):11–23.
- Reynolds, D. S. 2006. Monitoring the potential impacts of a wind development site on bats in the Northeast. Journal of Wildlife Management 70(5):1219 1227.
- Richardson, W.J. 1998. Bird migration and wind turbines: migration timing, flight behavior, and collision risk. Proceedings: National Avian-Wind Power Planning Meeting III, sponsored by Avian Workgroup of the National Wind Coordinating Committee, June 2000.
- Richardson, W.J. 1972. Autumn migration and weather in eastern Canada: a radar study. American Birds 26(1):10–16.
- Sielman, M., L. Sheriff, and T. Williams. 1981. Nocturnal Migration at Hawk Mountain, Pennsylvania. American Birds 35(6):906-909.
- Western EcoSystems Technology, Inc. (WEST). 2007. Avian and Bat Studies for the Proposed Cape Vincent Wind Power Project, Jefferson County, NY. Prepared for BP Alternative Energy North America.
- Whitfield, D.P. and M. Madders. 2006. A review of the impacts of wind farms on hen harriers (*Circus cyaneus*) and an estimation of collision avoidance rates. Natural Research, LTD, Natural Research Information Note 1 (Revised).
- Williams, T.C., J.M. Williams, P.G. Williams, and P. Stokstad. 2001. Bird Migration Through a Mountain Pass Studied with High Resolution Radar, Ceilometers, and Census. The Auk 118(2):389-403.

# **Appendix A**

Radar Survey Results

| Appendix A Table 1. Survey dates, results, level of effort, and weather - Fall 2008 |                 |                     |                      |                    |                    |                    |                     |                                |  |
|-------------------------------------------------------------------------------------|-----------------|---------------------|----------------------|--------------------|--------------------|--------------------|---------------------|--------------------------------|--|
| Date                                                                                | Passage<br>rate | Flight<br>Direction | Flight Height<br>(m) | % below<br>130.5 m | Hours of<br>Survey | Temperature<br>(C) | Wind Speed<br>(m/s) | Wind<br>Direction<br>(degrees) |  |
| 8/30                                                                                | 339             | 169                 | 351                  | 15%                | 6                  | 15                 | 5                   | 347                            |  |
| 8/31                                                                                | 375             | 201                 | 452                  | 9%                 | 11                 | 14                 | 8                   | 1                              |  |
| 9/1                                                                                 | 607             | 211                 | 380                  | 14%                | 11                 | 16                 | 7                   | 2                              |  |
| 9/2                                                                                 | 1196            | 275                 | 264                  | 26%                | 11                 | 15                 | 2                   | 63                             |  |
| 9/7                                                                                 | 451             | 199                 | 271                  | 21%                | 11                 | 10                 | 6                   | 330                            |  |
| 9/10                                                                                | 684             | 220                 | 355                  | 9%                 | 11                 | 6                  | 4                   | 356                            |  |
| 9/11                                                                                | 504             | 265                 | 268                  | 27%                | 12                 | 10                 | 3                   | 275                            |  |
| 9/15                                                                                | 1201            | 212                 | 333                  | 14%                | 9                  | 10                 | 4                   | 53                             |  |
| 9/16                                                                                | 685             | 249                 | 250                  | 25%                | 12                 | 9                  | 2                   | 1                              |  |
| 9/17                                                                                | 701             | 252                 | 357                  | 11%                | 9                  | 11                 | 4                   | 359                            |  |
| 9/18                                                                                | 548             | 229                 | 314                  | 13%                | 11                 | 3                  | 4                   | 74                             |  |
| 9/21                                                                                | 629             | 223                 | 357                  | 17%                | 6                  | 7                  | 4                   | 77                             |  |
| 9/22                                                                                | 777             | 249                 | 256                  | 28%                | 12                 | 6                  | 2                   | 110                            |  |
| 9/24                                                                                | 715             | 269                 | 310                  | 26%                | 12                 | 12                 | 2                   | 309                            |  |
| 9/29                                                                                | 833             | 220                 | 516                  | 10%                | 11                 | 10                 | 4                   | 85                             |  |
| 10/2                                                                                | 261             | 183                 | 254                  | 27%                | 12                 | 4                  | 6                   | 355                            |  |
| 10/3                                                                                | 117             | 177                 | 303                  | 18%                | 12                 | 4                  | 8                   | 15                             |  |
| 10/4                                                                                | 349             | 220                 | 290                  | 25%                | 12                 | 3                  | 4                   | 32                             |  |
| 10/6                                                                                | 195             | 189                 | 531                  | 6%                 | 12                 | 3                  | 7                   | 53                             |  |
| 10/7                                                                                | 68              | 173                 | 522                  | 4%                 | 13                 | 7                  | 3                   | 47                             |  |
| Entire Season                                                                       | 549             | 227                 | 348                  | 17%                | 216                | 9                  | 4                   | 25                             |  |

| Appendix A Table 2. Summary of passage rates by hour, night, and for entire season. |                                                   |          |          |           |          |          |          |              |         |         |          |        |        |         |            |       |     |
|-------------------------------------------------------------------------------------|---------------------------------------------------|----------|----------|-----------|----------|----------|----------|--------------|---------|---------|----------|--------|--------|---------|------------|-------|-----|
| Night of                                                                            | Passage Rate (targets/km/hr) by hour after sunset |          |          |           |          |          |          | Entire Night |         |         |          |        |        |         |            |       |     |
| Night of                                                                            | 1                                                 | 2        | 3        | 4         | 5        | 6        | 7        | 8            | 9       | 10      | 11       | 12     | 13     | Mean    | Median     | Stdev | SE  |
| 8/30                                                                                | 287                                               | 410      | 438      | 379       |          | 180      | 343      |              |         |         |          | N/A    | N/A    | 339     | 361        | 94    | 38  |
| 8/31                                                                                | 171                                               | 493      | 659      | 660       | 664      | 510      | 434      | 268          | 177     | 86      | 7        | N/A    | N/A    | 375     | 434        | 243   | 73  |
| 9/1                                                                                 | 231                                               | 557      | 654      | 977       | 1186     | 846      | 766      | 504          | 493     | 407     | 56       | N/A    | N/A    | 607     | 557        | 327   | 99  |
| 9/2                                                                                 | 471                                               | 1321     | 1466     | 1664      | 1468     | 1468     | 1400     | 1221         | 1414    | 980     | 284      | N/A    | N/A    | 1196    | 1400       | 441   | 133 |
| 9/7                                                                                 | 571                                               | 771      | 1063     | 573       | 439      | 418      | 285      | 236          | 188     | 332     | 82       |        | N/A    | 451     | 418        | 283   | 85  |
| 9/10                                                                                | 632                                               | 1275     | 1007     | 943       | 1043     | 868      | 626      | 439          | 343     | 236     | 114      |        | N/A    | 684     | 632        | 373   | 112 |
| 9/11                                                                                | 137                                               | 664      | 818      | 932       | 1093     | 696      | 506      | 321          | 246     | 188     | 386      | 64     | N/A    | 504     | 446        | 335   | 97  |
| 9/15                                                                                | 817                                               | 948      | 1452     | 2480      | 1757     |          | 1144     | 895          | 757     | 557     |          |        | N/A    | 1201    | 948        | 605   | 202 |
| 9/16                                                                                | 411                                               | 693      | 943      | 1775      | 1720     | 1071     | 900      | 289          | 171     | 136     | 91       | 21     | N/A    | 685     | 552        | 611   | 176 |
| 9/17                                                                                | 107                                               | 595      | 900      | 1302      | 1774     |          |          | 664          | 579     |         | 321      | 64     | N/A    | 701     | 595        | 557   | 186 |
| 9/18                                                                                | 875                                               | 1463     |          | 1050      | 823      | 757      | 447      | 157          | 189     | 145     | 107      | 11     | N/A    | 548     | 447        | 475   | 143 |
| 9/21                                                                                | 336                                               | 600      | 654      | 793       | 793      | 596      |          |              |         |         |          |        | N/A    | 629     | 627        | 169   | 69  |
| 9/22                                                                                | 514                                               | 973      | 1043     | 943       | 882      | 887      | 1082     | 938          | 871     | 605     | 570      | 11     | N/A    | 777     | 885        | 304   | 88  |
| 9/24                                                                                | 686                                               | 525      | 714      | 1039      | 960      | 807      | 804      | 789          | 607     | 686     | 701      | 257    | N/A    | 715     | 708        | 201   | 58  |
| 9/29                                                                                | 807                                               | 1582     | 2202     | 1655      | 1425     | 321      | 354      |              | 314     | 155     | 139      | 211    |        | 833     | 354        | 745   | 225 |
| 10/2                                                                                | 225                                               | 373      | 375      | 329       | 257      | 236      | 424      | 268          | 379     | 214     |          | 57     | 0      | 261     | 263        | 129   | 37  |
| 10/3                                                                                | 21                                                | 204      | 134      | 133       | 142      | 86       | 100      | 186          | 121     | 96      | 107      | 75     |        | 117     | 114        | 49    | 14  |
| 10/4                                                                                | 69                                                | 123      | 230      |           | 343      | 300      | 223      | 546          | 823     | 543     | 343      | 648    | 0      | 349     | 321        | 248   | 72  |
| 10/6                                                                                | 81                                                | 380      | 416      | 300       | 336      | 229      | 193      | 171          | 129     | 77      | 11       | 16     |        | 195     | 182        | 139   | 40  |
| 10/7                                                                                | 51                                                | 91       | 99       | 107       | 70       | 79       | 69       | 98           | 70      | 64      | 43       | 48     | 0      | 68      | 70         | 29    | 8   |
| Entire Season                                                                       | 375                                               | 702      | 803      | 949       | 904      | 575      | 561      | 470          | 437     | 324     | 210      | 124    | 0      | 549     | 421        | 468   | 32  |
| indica                                                                              | tes no                                            | data rec | corded f | or that I | hour; N/ | A indica | ates tha | t sunris     | e occur | red pri | or to tl | hat ho | ur and | no data | was collec | ted   |     |

| Appendix A Table 3. Mean Nightly Flight Direction |                       |                |  |  |  |  |  |  |
|---------------------------------------------------|-----------------------|----------------|--|--|--|--|--|--|
| Night of                                          | Mean Flight Direction | Circular Stdev |  |  |  |  |  |  |
| 8/30                                              | 169                   | 34             |  |  |  |  |  |  |
| 8/31                                              | 201                   | 22             |  |  |  |  |  |  |
| 9/1                                               | 211                   | 30             |  |  |  |  |  |  |
| 9/2                                               | 275                   | 39             |  |  |  |  |  |  |
| 9/7                                               | 199                   | 35             |  |  |  |  |  |  |
| 9/10                                              | 220                   | 29             |  |  |  |  |  |  |
| 9/11                                              | 265                   | 99             |  |  |  |  |  |  |
| 9/15                                              | 212                   | 34             |  |  |  |  |  |  |
| 9/16                                              | 249                   | 50             |  |  |  |  |  |  |
| 9/17                                              | 252                   | 61             |  |  |  |  |  |  |
| 9/18                                              | 229                   | 26             |  |  |  |  |  |  |
| 9/21                                              | 223                   | 38             |  |  |  |  |  |  |
| 9/22                                              | 249                   | 35             |  |  |  |  |  |  |
| 9/24                                              | 269                   | 71             |  |  |  |  |  |  |
| 9/29                                              | 220                   | 27             |  |  |  |  |  |  |
| 10/2                                              | 183                   | 61             |  |  |  |  |  |  |
| 10/3                                              | 177                   | 41             |  |  |  |  |  |  |
| 10/4                                              | 220                   | 37             |  |  |  |  |  |  |
| 10/6                                              | 189                   | 20             |  |  |  |  |  |  |
| 10/7                                              | 173                   | 30             |  |  |  |  |  |  |
| Entire Season                                     | 227                   | 51             |  |  |  |  |  |  |
|               | Α   | ppen | dix / | A Tal | ble 4 | . Sur | nma  | ry of | mea   | n flig | jht h | eight | s by   | hour, nig | ht, and fo | or entire | season. |              |
|---------------|-----|------|-------|-------|-------|-------|------|-------|-------|--------|-------|-------|--------|-----------|------------|-----------|---------|--------------|
|               | Me  | an F | light | Heig  | ht (m | ı) by | hour | afte  | r sur | nset   |       |       |        |           | Entire     | Night     |         | % of targets |
| Night of      |     |      |       |       |       |       |      |       |       |        |       |       |        |           |            |           |         | below 130.5  |
|               | 1   | 2    | 3     | 4     | 5     | 6     | 7    | 8     | 9     | 10     | 11    | 12    | 13     | Mean      | Median     | STDV      | SE      | meters       |
| 8/30          | 246 | 313  | 335   | 403   | 420   | 389   | 1    | 1     | -     |        |       |       |        | 351       | 362        | 66        | 27      | 15%          |
| 8/31          | 173 | 531  | 421   | 413   | 465   | 515   | 499  | 506   | 534   | 489    | 424   |       |        | 452       | 489        | 102       | 31      | 9%           |
| 9/1           | 301 | 511  | 506   | 473   | 401   | 347   | 370  | 364   | 361   | 266    | 280   |       |        | 380       | 364        | 86        | 26      | 14%          |
| 9/2           | 203 | 300  | 268   | 272   | 257   | 282   | 260  | 303   | 297   | 200    | 265   |       |        | 264       | 268        | 35        | 11      | 26%          |
| 9/7           | 304 | 335  | 343   | 377   | 271   | 282   | 275  | 202   | 317   | 148    | 206   | 195   |        | 271       | 278        | 70        | 20      | 21%          |
| 9/10          | 363 | 420  | 367   | 338   | 339   | 337   | 357  | 425   | 334   | 355    | 323   | 298   |        | 355       | 347        | 37        | 11      | 9%           |
| 9/11          | 328 | 442  | 340   | 282   | 274   | 235   | 257  | 215   | 173   | 200    | 165   | 308   |        | 268       | 266        | 79        | 23      | 27%          |
| 9/15          | 328 | 329  | 394   | 331   |       | 337   | 358  | 283   | 313   | 320    |       |       |        | 333       | 329        | 31        | 10      | 14%          |
| 9/16          | 316 | 373  | 272   | 216   | 244   | 233   | 221  | 234   | 298   | 211    | 334   | 50    |        | 250       | 239        | 82        | 24      | 25%          |
| 9/17          | 389 | 427  | 390   | 357   | 325   | 291   |      | 271   | 360   |        | 399   |       |        | 357       | 360        | 52        | 17      | 11%          |
| 9/18          | 271 | 351  | 274   | 249   | 354   | 369   | 384  | 371   | 361   | 286    | 367   | 129   |        | 314       | 352        | 75        | 22      | 13%          |
| 9/21          | 259 | 443  | 424   | 360   | 338   | 319   |      |       |       |        |       |       |        | 357       | 349        | 68        | 28      | 17%          |
| 9/22          | 272 | 246  | 231   | 296   | 287   | 238   | 275  | 295   | 295   | 250    | 221   | 169   |        | 256       | 261        | 38        | 11      | 28%          |
| 9/24          | 238 | 269  | 311   | 335   | 324   | 396   | 334  | 319   | 344   | 247    | 292   |       |        | 310       | 319        | 46        | 14      | 26%          |
| 9/29          | 312 | 310  | 361   | 417   | 612   | 731   | 701  | 598   | 563   | 624    | 482   | 502   | 489    | 516       | 502        | 139       | 38      | 10%          |
| 10/2          | 295 | 357  | 307   | 314   | 319   | 260   | 283  | 272   | 188   | 164    | 40    |       |        | 254       | 283        | 91        | 27      | 27%          |
| 10/3          | 285 | 334  | 434   | 303   | 317   | 321   | 316  | 230   | 275   | 314    | 275   | 316   | 219    | 303       | 314        | 53        | 15      | 18%          |
| 10/4          | 287 | 266  | 254   | 265   | 276   | 325   | 297  | 304   | 341   | 295    | 265   | 210   | 385    | 290       | 287        | 43        | 12      | 25%          |
| 10/6          | 294 | 542  | 589   | 588   | 625   | 565   | 617  | 563   | 522   | 441    | 586   | 423   | 550    | 531       | 563        | 93        | 26      | 6%           |
| 10/7          | 276 | 323  | 476   | 567   | 630   | 682   | 570  | 521   | 503   | 626    | 557   | 538   |        | 522       | 547        | 119       | 34      | 4%           |
| Entire Season | 287 | 371  | 365   | 358   | 372   | 373   | 375  | 349   | 354   | 320    | 322   | 285   | 411    | 348       | 321        | 119       | 8       | 17%          |
|               |     |      |       |       |       |       |      | ir    | ndica | tes n  | o dat | a for | that h | nour      |            |           |         |              |

|      | Appendix A Table 5. Se            | ummary of                        | available av                    | vian fall radar surv                  | vey results                             | conducted a                                | t proposed (                   | pre-constru                        | ction) US w                                                   | ind power facilities in eastern US, using X-band m                                                                                                    |
|------|-----------------------------------|----------------------------------|---------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------------|--------------------------------|------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year | Project Site                      | Number<br>of<br>Survey<br>Nights | Number<br>of<br>Survey<br>Hours | Landscape                             | Average<br>Passage<br>Rate<br>(t/km/hr) | Range<br>in<br>Nightly<br>Passage<br>Rates | Average<br>Flight<br>Direction | Average<br>Flight<br>Height<br>(m) | (Turbine<br>Ht)<br>%<br>Targets<br>Below<br>Turbine<br>Height | Refe                                                                                                                                                  |
| 2005 | Dairy Hills, Clinton<br>Cty, NY   | 57                               | n/a                             | Agricultural plateau                  | 64                                      | n/a                                        | 180                            | 466                                | (n/a)<br>10%                                                  | New York Department of Conservation [Internet]<br>Proposed Wind Sites in New York. Albany, NY:<br>Available at http://www.dec.ny.gov/docs/wildlife_   |
| 2005 | Perry, Wyoming Cty,<br>NY         | n/a                              | n/a                             | Agricultural plateau                  | 64                                      | n/a                                        | 180                            | 466                                | (125 m)<br>10%                                                | New York Department of Conservation [Internet]<br>Proposed Wind Sites in New York. Albany, NY:<br>Available at http://www.dec.ny.gov/docs/wildlife_   |
| 2005 | Alabama, Genesee<br>Cty, NY       | 59                               | n/a                             | Agricultural plateau                  | 67                                      | n/a                                        | 219                            | 489                                | (125 m)<br>11%                                                | New York Department of Conservation [Internet]<br>Proposed Wind Sites in New York. Albany, NY:<br>Available at http://www.dec.ny.gov/docs/wildlife_   |
| 2004 | Sheffield, Caledonia<br>Cty, VT   | 18                               | 176                             | Forested ridge                        | 114                                     | 19-320                                     | 200                            | 566                                | (125 m)<br>1%                                                 | Woodlot Alternatives, Inc. 2006. Avian and Bat the Proposed Sheffield Wind Power Project in S Management, LLC.                                        |
| 2005 | Alabama, Genesee<br>Cty, NY       | 40                               | n/a                             | Agricultural plateau                  | 111                                     | n/a                                        | 35                             | 413                                | (125 m)<br>14%                                                | New York Department of Conservation [Internet]<br>Proposed Wind Sites in New York. Albany, NY:<br>Available at http://www.dec.ny.gov/docs/wildlife_   |
| 2007 | New Grange,<br>Chautauqua Cty, NY | 57                               | n/a                             | Great Lakes<br>plain                  | 112                                     | n/a                                        | 208                            | 458                                | (125 m)<br>10%                                                | New York Department of Conservation [Internet]<br>Proposed Wind Sites in New York. Albany, NY:<br>Available at http://www.dec.ny.gov/docs/wildlife_   |
| 2005 | Churubusco, Clinton<br>Cty, NY    | 38                               | 414                             | Great Lakes<br>plain/ADK<br>foothills | 152                                     | 9-429                                      | 193                            | 438                                | (120 m)<br>5%                                                 | Woodlot Alternatives, Inc. 2005. A Fall Radar,<br>Migration at the Proposed Marble River Wind Pr<br>Prepared for AES Corporation.                     |
| 2005 | Maple Ridge, Lewis<br>Cty, NY     | 57                               | n/a                             | Agricultural plateau                  | 158                                     | n/a                                        | 195                            | 415                                | (125 m)<br>8%                                                 | New York Department of Conservation [Internet<br>Proposed Wind Sites in New York. Albany, NY:<br>Available at http://www.dec.ny.gov/docs/wildlife_    |
| 2005 | Swallow Farm, PA                  | 58                               | n/a                             | Forested ridge                        | 166                                     | n/a                                        | n/a                            | 402                                | (125 m)<br>5%                                                 | New York Department of Conservation [Internet<br>Proposed Wind Sites in New York. Albany, NY:<br>Available at http://www.dec.ny.gov/docs/wildlife_    |
| 2004 | Casselman, PA                     | 30                               | n/a                             | Forested ridge                        | 174                                     | n/a                                        | n/a                            | 436                                | (125 m)<br>7%                                                 | New York Department of Conservation [Internet<br>Proposed Wind Sites in New York. Albany, NY:<br>Available at http://www.dec.ny.gov/docs/wildlife_    |
| 2004 | Dans Mountain, MD                 | 34                               | 318                             | Forested ridge                        | 188                                     | 2-633                                      | 193                            | 542                                | (125 m)<br>11%                                                | Woodlot Alternatives, Inc. 2004. A Fall 2004 Ra<br>Migration at the Proposed Dan's Mountain Wind<br>Wind Force.                                       |
| 2006 | Villenova,<br>Chautauqua Cty, NY  | 36                               | n/a                             | Great Lakes<br>plain                  | 189                                     | 16-604                                     | 216                            | 353                                | (120 m)<br>9%                                                 | Stantec Consulting Services Inc. 2008. A Fall 20<br>Bat Migration at the Proposed Ball Hill Windpark<br>for Noble Environmental Power, LLC and Ecolog |
| 2004 | Prattsburgh, Steuben<br>Cty, NY   | 30                               | 315                             | Agricultural plateau                  | 193                                     | 12-474                                     | 188                            | 516                                | (125 m)<br>3%                                                 | Woodlot Alternatives, Inc. 2005. A Fall 2005 Ra<br>Migration at the Proposed Windfarm Prattsburgh<br>UPC Wind Management, LLC.                        |
| 2005 | Sheldon, Wyoming<br>Cty, NY       | 36                               | 347                             | Agricultural plateau                  | 197                                     | 43-529                                     | 213                            | 422                                | (120 m)<br>3%                                                 | Woodlot Alternatives, Inc. 2006. A Fall 2005 Ra<br>Sheldon Wind Project in Sheldon, New York. Pro                                                     |

### obile radar systems (2004-present)

#### erence

]. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_pdf/radarwindsum.pdf

]. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_pdf/radarwindsum.pdf

]. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_pdf/radarwindsum.pdf

Information Summary and Risk Assessment for Sheffield, Vermont. Prepared for UPC Wind

]. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_pdf/radarwindsum.pdf

]. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_pdf/radarwindsum.pdf

Visual, and Acoustic Survey of Bird and Bat roject in Clinton and Ellenburg, New York.

]. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_pdf/radarwindsum.pdf

]. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_pdf/radarwindsum.pdf

]. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_pdf/radarwindsum.pdf

adar, Visual, and Acoustic Survey of Bird and Bat I Project in Frostburg, Maryland. Prepared for US

007 Radar, Visual, and Acoustic Survey of Bird and (in Villenova and Hanover, New York. Prepared gy and Environment.

adar, Visual, and Acoustic Survey of Bird and Bat n Project in Prattsburgh, New York. Prepared for

adar Survey of Bird Migration at the Proposed High epared for Invenergy.

|      | Annendix A Table 5 Si                | immary of                        | available a                     | vian fall radar sun                   | vov rosulte o                           | onducted a                                 | t proposed (                   | nra-constru                        | ction) LIS w                                                  | ind nower facilities in eastern LIS, using X-band mobile radar systems (2004-present)                                                                                                                                                                            |
|------|--------------------------------------|----------------------------------|---------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------------|--------------------------------|------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year | Project Site                         | Number<br>of<br>Survey<br>Nights | Number<br>of<br>Survey<br>Hours | Landscape                             | Average<br>Passage<br>Rate<br>(t/km/hr) | Range<br>in<br>Nightly<br>Passage<br>Rates | Average<br>Flight<br>Direction | Average<br>Flight<br>Height<br>(m) | (Turbine<br>Ht)<br>%<br>Targets<br>Below<br>Turbine<br>Height | Reference                                                                                                                                                                                                                                                        |
| 2005 | Ellenberg, Clinton<br>Cty, NY        | 57                               | n/a                             | Great Lakes<br>plain/ADK<br>foothills | 197                                     | n/a                                        | 162                            | 333                                | (125 m)<br>12%                                                | New York Department of Conservation [Internet]. c2008. Publicly Available Radar Results for<br>Proposed Wind Sites in New York. Albany, NY: NYDEC; [updated May 2008; cited June 2009].<br>Available at http://www.dec.ny.gov/docs/wildlife_pdf/radarwindsum.pdf |
| 2005 | Prattsburgh-Italy, NY                | 41                               | n/a                             | Agricultural<br>plateau               | 200                                     | n/a                                        | 177                            | 365                                | (125 m)<br>9%                                                 | New York Department of Conservation [Internet]. c2008. Publicly Available Radar Results for<br>Proposed Wind Sites in New York. Albany, NY: NYDEC; [updated May 2008; cited June 2009].<br>Available at http://www.dec.ny.gov/docs/wildlife_pdf/radarwindsum.pdf |
| 2005 | Kibby, Franklin Cty,<br>ME (Range 1) | 12                               | 101                             | Forested ridge                        | 201                                     | 12-783                                     | 196                            | 352                                | (125 m)<br>12%                                                | Woodlot Alternatives, Inc. 2006. A Fall 2005 Survey of Bird and Bat Migration at the Proposed Kibby Wind Power Project in Kibby and Skinner Townships, Maine. Prepared for TransCanada Maine.                                                                    |
| 2004 | Franklin, Pendleton<br>Cty, WV       | 34                               | 349                             | Forested ridge                        | 229                                     | 7-926                                      | 175                            | 583                                | (125 m)<br>8%                                                 | Woodlot Alternatives, Inc. 2005. A Fall 2005 Radar and Acoustic Survey of Bird and Bat Migration at the Proposed Liberty Gap Wind Project in Franklin, West Virginia. Prepared for US Wind Force, LLC.                                                           |
| 2006 | Wethersfield,<br>Wyoming Cty, NY     | 56                               | n/a                             | Agricultural plateau                  | 256                                     | 31-701                                     | 208                            | 344                                | (125 m)<br>11%                                                | New York Department of Conservation [Internet]. c2008. Publicly Available Radar Results for<br>Proposed Wind Sites in New York. Albany, NY: NYDEC; [updated May 2008; cited June 2009].<br>Available at http://www.dec.ny.gov/docs/wildlife_pdf/radarwindsum.pdf |
| 2006 | Centerville, Allegany<br>Cty, NY     | 57                               | n/a                             | Agricultural plateau                  | 259                                     | 12-877                                     | 208                            | 350                                | (125 m)<br>12%                                                | New York Department of Conservation [Internet]. c2008. Publicly Available Radar Results for Proposed Wind Sites in New York. Albany, NY: NYDEC; [updated May 2008; cited June 2009]. Available at http://www.dec.ny.gov/docs/wildlife_pdf/radarwindsum.pdf       |
| 2008 | Hounsfield, Jefferson<br>Cty, NY     | 60                               | 674                             | Great Lakes<br>island                 | 281                                     | 64-835                                     | 207                            | 298                                | (125 m)<br>17%                                                | Stantec Consulting Services Inc. 2008. A Fall 2008 Survey of Bird Migration at the Hounsfield Wind Project, New York. Prepared for American Consulting Professionals of New York, PLLC.                                                                          |
| 2005 | Fayette Cty, PA                      | 26                               | n/a                             | Forested ridge                        | 297                                     | n/a                                        | n/a                            | 426                                | (125 m)<br>5%                                                 | New York Department of Conservation [Internet]. c2008. Publicly Available Radar Results for Proposed Wind Sites in New York. Albany, NY: NYDEC; [updated May 2008; cited June 2009]. Available at http://www.dec.ny.gov/docs/wildlife_pdf/radarwindsum.pdf       |
| 2005 | Stamford, Delaware<br>Cty, NY        | 48                               | 418                             | Forested ridge                        | 315                                     | 22-784                                     | 251                            | 494                                | (110 m)<br>3%                                                 | Woodlot Alternatives, Inc. 2007. A Spring and Fall 2005 Radar and Acoustic Survey of Bird Migration at the Proposed Moresville Energy Center in Stamford and Roxbury, New York. Prepared for Invenergy, LLC. Rockville, MD.                                      |
| 2006 | Somerset Cty, PA                     | 29                               | n/a                             | Forested ridge                        | 316                                     | n/a                                        | n/a                            | 374                                | (125 m)<br>8%                                                 | New York Department of Conservation [Internet]. c2008. Publicly Available Radar Results for Proposed Wind Sites in New York. Albany, NY: NYDEC; [updated May 2008; cited June 2009]. Available at http://www.dec.ny.gov/docs/wildlife_pdf/radarwindsum.pdf       |
| 2007 | Laurel Mountain,<br>Barbour Cty, WV  | 20                               | 212                             | Forested ridge                        | 321                                     | 76-513                                     | 209                            | 533                                | (130 m)<br>6%                                                 | Stantec Consulting Services Inc. 2007. A Fall 2007 Radar, Visual, and Acoustic Survey of Bird and Bat Migration at the Proposed Laurel Mountain Wind Energy Project near Elkins, West Virginia. Prepared for AES Laurel Mountain, LLC.                           |
| 2008 | Georgia Mountain,<br>VT              | 21                               | n/a                             | Forested ridge                        | 326                                     | 56-700                                     | 230                            | 371                                | (120 m)<br>7%                                                 | Stantec Consulting Services Inc. 2008. A Fall 2008 Survey of Bird Migration at the Georgia Mountain Wind Project, Vermont. Prepared for Georgia Mountain Community Wind.                                                                                         |
| 2006 | Cape Vincent,<br>Jefferson Cty, NY   | 63                               | 508                             | Great Lakes<br>plain                  | 346                                     | n/a                                        | 209                            | 490                                | (125 m)<br>8%                                                 | New York Department of Conservation [Internet]. c2008. Publicly Available Radar Results for<br>Proposed Wind Sites in New York. Albany, NY: NYDEC; [updated May 2008; cited June 2009].<br>Available at http://www.dec.ny.gov/docs/wildlife_pdf/radarwindsum.pdf |
| 2007 | Errol, Coos County,<br>NH            | 29                               | 232                             | Forested ridge                        | 366                                     | 54 to<br>1234                              | 223                            | 343                                | (125 m)<br>15%                                                | Stantec Consulting Inc. 2007. Fall 2007 Radar, Visual, and Acoustic Survey of Bird and Bat Migration at the Proposed Windpark in Coos County, New Hampshire by Granite Reliable Power, LLC. Prepared for Granite Reliable Power, LLC.                            |

|      | Appendix A Table 5. Su              | ummary of                        | available av                    | vian fall radar sur     | vey results o                           | conducted a                                | t proposed (                   | pre-constru                        | ction) US w                                                   | ind power facilities in eastern US, using X-band n                                                                                                |
|------|-------------------------------------|----------------------------------|---------------------------------|-------------------------|-----------------------------------------|--------------------------------------------|--------------------------------|------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Year | Project Site                        | Number<br>of<br>Survey<br>Nights | Number<br>of<br>Survey<br>Hours | Landscape               | Average<br>Passage<br>Rate<br>(t/km/hr) | Range<br>in<br>Nightly<br>Passage<br>Rates | Average<br>Flight<br>Direction | Average<br>Flight<br>Height<br>(m) | (Turbine<br>Ht)<br>%<br>Targets<br>Below<br>Turbine<br>Height | Ref                                                                                                                                               |
| 2007 | Lincoln, Penobscot<br>Cty, ME       | 22                               | 231                             | Forested ridge          | 368                                     | 82-953                                     | 284                            | 343                                | (120 m)<br>13%                                                | Woodlot Alternatives, Inc. 2008. A Fall 2007 Su<br>Project, Washington County, Maine. Prepared                                                    |
| 2005 | Preston Cty, WV                     | 26                               | n/a                             | Forested ridge          | 379                                     | n/a                                        | n/a                            | 420                                | (125 m)<br>10%                                                | Plissner, J.H., T.J. Mabee, and B.A. Cooper. 20<br>bat migration at the proposed Preston Wind Dev<br>Highland New Wind Development, LLC.          |
| 2005 | Jordanville, Herkimer<br>Cty, NY    | 38                               | 404                             | Agricultural plateau    | 380                                     | 26-1019                                    | 208                            | 440                                | (125 m)<br>6%                                                 | New York Department of Conservation [Internet<br>Proposed Wind Sites in New York. Albany, NY:<br>Available at http://www.dec.ny.gov/docs/wildlife |
| 2005 | Highland, VA                        | 58                               | n/a                             | Forested ridge          | 385                                     | n/a                                        | n/a                            | 442                                | (125 m)<br>12%                                                | Plissner, J.H., T.J. Mabee, and B.A. Cooper. 20<br>bat migration at the proposed Highland New Wi<br>Report to Highland New Wind Development, LL   |
| 2005 | Clayton, Jefferson<br>Cty, NY       | 37                               | 385                             | Agricultural plateau    | 418                                     | 83-877                                     | 168                            | 475                                | (150 m)<br>10%                                                | Woodlot Alternatives, Inc. 2005. A Fall 2005 R<br>Migration at the Proposed Clayton Wind Project<br>Renewable.                                    |
| 2007 | Roxbury, Oxford Cty,<br>ME          | 20                               | 220                             | Forested ridge          | 420                                     | 88-1006                                    | 227                            | 365                                | (130 m)<br>14%                                                | Woodlot Alternatives, Inc. 2007. A Fall 2007 Su<br>Wind Project, Roxbury, Maine. Prepared for Ro                                                  |
| 2006 | Bedford Cty, PA                     | 29                               | n/a                             | Forested ridge          | 438                                     | n/a                                        | n/a                            | 379                                | (125 m)<br>10%                                                | New York Department of Conservation [Internet<br>Proposed Wind Sites in New York. Albany, NY:<br>Available at http://www.dec.ny.gov/docs/wildlife |
| 2005 | Bliss, Wyoming Cty,<br>NY           | 8                                | n/a                             | Agricultural<br>plateau | 440                                     | 52-1392                                    | n/a                            | 411                                | (125 m)<br>13%                                                | New York Department of Conservation [Internet<br>Proposed Wind Sites in New York. Albany, NY:<br>Available at http://www.dec.ny.gov/docs/wildlife |
| 2007 | Allegany,<br>Cattaraugus Cty, NY    | 46                               | n/a                             | Forested ridge          | 451                                     | n/a                                        | 230                            | 382                                | (150 m)<br>14%                                                | New York Department of Conservation [Internet<br>Proposed Wind Sites in New York. Albany, NY:<br>Available at http://www.dec.ny.gov/docs/wildlife |
| 2005 | Kibby, Franklin Cty,<br>ME (Valley) | 5                                | 13                              | Forested ridge          | 452                                     | 52-995                                     | 193                            | 391                                | (125 m)<br>16%                                                | Woodlot Alternatives, Inc. 2006. A Fall 2005 Su<br>Kibby Wind Power Project in Kibby and Skinner<br>Maine.                                        |
| 2006 | Stetson, Washington<br>Cty, ME      | 12                               | 77                              | Forested ridge          | 476                                     | 131-<br>1192                               | 227                            | 378                                | (125 m)<br>13%                                                | Woodlot Alternatives, Inc. 2007. A Fall 2006 Su<br>Project, Washington County, Maine. Prepared                                                    |
| 2005 | Howard, Steuben<br>Cty, NY          | 39                               | 405                             | Agricultural plateau    | 481                                     | 18-1434                                    | 185                            | 491                                | (125 m)<br>5%                                                 | Woodlot Alternatives, Inc. 20065 A Fall 2005 S<br>Howard Wind Power Project in Howard, New Yo                                                     |
| 2008 | Oakfield, Penobscot<br>Cty, ME      | 20                               | n/a                             | Forested ridge          | 501                                     | 116-945                                    | 200                            | 309                                | (125 m)<br>18%                                                | Woodlot Alternatives, Inc. 2008. A Fall 2008 Su<br>Project, Washington County, Maine. Prepared                                                    |
| 2005 | Mars Hill, Aroostook<br>Cty, ME     | 18                               | 117                             | Forested ridge          | 512                                     | 60-1092                                    | 228                            | 424                                | (120 m)<br>8%                                                 | Woodlot Alternatives, Inc. 2006. A Fall 2005 Ra<br>at the Mars Hill Wind Farm in Mars Hill, Maine.                                                |
| 2006 | Dutch Hill, Steuben<br>Cty, NY      | 21                               | n/a                             | Agricultural<br>plateau | 535                                     | n/a                                        | 215                            | 358                                | (125 m)<br>11%                                                | New York Department of Conservation [Internet<br>Proposed Wind Sites in New York. Albany, NY:<br>Available at http://www.dec.ny.gov/docs/wildlife |

nobile radar systems (2004-present)

#### ference

urvey of Bird and Bat Migration at the Rollins Wind for Evergreen Wind, LLC.

006 A radar and visual study of nocturnal bird and evelopment project, Virginia, Fall 2005. Report to

t]. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_\_pdf/radarwindsum.pdf

006 A radar and visual study of nocturnal bird and ind Development project, Virginia, Fall 2005. -C.

Radar, Visual, and Acoustic Survey of Bird and Bat t in Clayton, New York. Prepared for PPM Atlantic

urvey of Bird and Bat Migration at the Record Hill oxbury Hill Wind LLC.

t]. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_pdf/radarwindsum.pdf

t]. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_pdf/radarwindsum.pdf

t]. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_pdf/radarwindsum.pdf

urvey of Bird and Bat Migration at the Proposed r Townships, Maine. Prepared for TransCanada

urvey of Bird and Bat Migration at the Stetson Wind for Evergreen Wind V, LLC.

Survey of Bird and Bat Migration at the Proposed ork. Prepared for Everpower Global.

urvey of Bird and Bat Migration at the Oakfield Wind for Evergreen Wind, LLC.

adar, Visual, and Acoustic Survey of Bird Migration Prepared for Evergreen Windpower, LLC.

t]. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_pdf/radarwindsum.pdf

|      | Appendix A Table 5. Su                | ummary of                        | available av                    | vian fall radar surv  | vey results o                           | conducted a                                | t proposed (                   | pre-constru                        | ction) US w                                                   | ind power facilities in eastern US, using X-band n                                                                                                |
|------|---------------------------------------|----------------------------------|---------------------------------|-----------------------|-----------------------------------------|--------------------------------------------|--------------------------------|------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Year | Project Site                          | Number<br>of<br>Survey<br>Nights | Number<br>of<br>Survey<br>Hours | Landscape             | Average<br>Passage<br>Rate<br>(t/km/hr) | Range<br>in<br>Nightly<br>Passage<br>Rates | Average<br>Flight<br>Direction | Average<br>Flight<br>Height<br>(m) | (Turbine<br>Ht)<br>%<br>Targets<br>Below<br>Turbine<br>Height | Ref                                                                                                                                               |
| 2005 | Deerfield, Bennington<br>Cty, VT      | 32                               | 324                             | Forested ridge        | 559                                     | 3-1736                                     | 221                            | 395                                | (100 m)<br>13%                                                | Woodlot Alternatives, Inc. 2006. Fall 2005 Bird<br>Deerfield Wind Project in Searsburg and Reads                                                  |
| 2005 | Kibby, Franklin Cty,<br>ME (Mountain) | 12                               | 115                             | Forested ridge        | 565                                     | 109-<br>1107                               | 167                            | 370                                | (125 m)<br>16%                                                | Woodlot Alternatives, Inc. 2006. A Fall 2005 Su<br>Kibby Wind Power Project in Kibby and Skinner<br>Maine.                                        |
| 2006 | Lempster, Sullivan<br>Cty, NH         | 32                               | 290                             | Forested ridge        | 620                                     | 133-<br>1609                               | 206                            | 387                                | (125 m)<br>8%                                                 | Woodlot Alternatives, Inc. 2007. A Fall 2007 Su<br>and Bicknell's Thrush at the Proposed Lempster<br>Hampshire. Prepared for Lempster Wind, LLC.  |
| 2006 | Chateaugay, Franklin<br>Cty, NY       | 35                               | 327                             | Agricultural plateau  | 643                                     | 38-1373                                    | 212                            | 431                                | (120 m)<br>8%                                                 | Woodlot Alternatives, Inc. 2006. Fall 2006 Rada in Chateaugay, New York. Prepared for Ecology                                                     |
| 2005 | Fairfield, Herkimer<br>Cty, NY        | 38                               | 423                             | Agricultural plateau  | 691                                     | 116-<br>1351                               | 198                            | 516                                | (145 m)<br>6% <sup>1</sup>                                    | Woodlot Alternatives, Inc. 2005. A Fall 2005 R<br>Proposed Top Notch Wind Project in Fairfield, N                                                 |
| 2005 | Munnsville, Madison<br>Cty, NY        | 31                               | 292                             | Agricultural plateau  | 732                                     | 15-1671                                    | 223                            | 644                                | (118 m)<br>2%                                                 | Woodlot Alternatives, Inc. 2005. A Fall 2005 R<br>Migration at the Proposed Munnsville Wind Proj<br>EHN NY Wind, LLC.                             |
| 2007 | New Creek, Grant<br>Cty, WV           | 20                               | n/a                             | Forested ridge        | 811                                     | 263-<br>1683                               | 231                            | 360                                | (130 m)<br>17%                                                | Stantec Consulting Services Inc. 2008. A Fall 2<br>Creek Wind Project, West Virginia. Prepared for                                                |
| 2007 | Wolfe Island, Ontario,<br>Canada*     | n/a                              | n/a                             | Great Lakes<br>island | n/a                                     | n/a                                        | 95                             | 233                                | (125m)<br>23%                                                 | New York Department of Conservation [Internet<br>Proposed Wind Sites in New York. Albany, NY:<br>Available at http://www.dec.ny.gov/docs/wildlife |

Note:

1 The percent targets below turbine height can be found in the addendum to the report "Effect of Top Notch (now Hardscrabble) Wind Project revision to turbine layout and model changes on the spring and fall 2005 nocturnal radar survey reports." Prepared August 26, 2009, by Stantec Consulting Services Inc.

nobile radar systems (2004-present)

#### erence

and Bat Migration Surveys at the Proposed sboro, Vermont. Prepared for PPM Energy, Inc. urvey of Bird and Bat Migration at the Proposed

Townships, Maine. Prepared for TransCanada

urvey of Nocturnal Bird Migration,Breeding Birds, r Mountain Wind Power Project Lempster, New

ar Surveys at the Proposed Chateaugay Windpark y and Environment, Inc. and Noble Power, LLC. Radar Survey of Bird and Bat Migration at the New York. Prepared for PPM Atlantic Renewable.

adar, Visual, and Acoustic Survey of Bird and Bat ject in Munnsville, New York. Prepared for AES-

2007 Survey of Bird and Bat Migration at the New r AES New Creek, LLC.

i]. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_pdf/radarwindsum.pdf

# **Appendix B**

Acoustic Bat Survey Results

| Appendix B Table | <ol> <li>Summary of fall 20</li> </ol> | 008 acoustic bat data a | and weather durir                            | g each survey | night at    | the Briggs M        | et High | detector     | r               |               |         |          | -                | -                   |                       |                       |
|------------------|----------------------------------------|-------------------------|----------------------------------------------|---------------|-------------|---------------------|---------|--------------|-----------------|---------------|---------|----------|------------------|---------------------|-----------------------|-----------------------|
|                  |                                        | BBS                     | SH                                           | LACI          |             | RBEP                |         | MYSP         |                 | UNKN          |         |          |                  |                     |                       |                       |
| Night of         | Operated Okay?                         | HSBB                    | big brown                                    | hoary bat     | eastern red | eastern pipistrelle | RBEP    | MYSP         | ≿high-frequency | low-frequency | unknown | Total    | Wind Speed (m/s) | Barometric Pressure | Relative Humidity (%) | Temperature (celsius) |
| 08/28/08         | Yes                                    | 1                       |                                              |               |             |                     |         |              | 11              |               |         | 12       | 4.3              | 943                 |                       | 15.6                  |
| 08/29/08         | Yes                                    |                         |                                              | 1             | <u> </u>    |                     |         |              |                 |               |         | 1        | 10.1             | 942                 |                       | 14.2                  |
| 08/30/08         | Yes                                    |                         |                                              |               | 1           |                     |         |              |                 |               |         | 1        | 14.5             | 945                 |                       | 13.6                  |
| 08/31/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        |                  |                     |                       |                       |
| 09/01/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 9.5              | 931                 |                       | 14.7                  |
| 09/02/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 3.6              | 929                 |                       | 14.5                  |
| 09/03/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 5.3              | 924                 |                       | 16.1                  |
| 09/04/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 4.5              | 930                 |                       | 14.0                  |
| 09/05/08         | Yes                                    |                         |                                              |               |             |                     |         |              | 2               | 2             |         | 4        | 9.0              | 928                 |                       | 18.4                  |
| 09/06/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 5.3              | 921                 |                       | 16.6                  |
| 09/07/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 10.9             | 925                 |                       | 9.8                   |
| 09/08/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 6.8              | 929                 |                       | 13.5                  |
| 09/09/08         | Yes                                    |                         |                                              |               |             | ļ                   |         |              |                 |               |         | 0        | 10.2             | 925                 |                       | 7.8                   |
| 09/10/08         | Yes                                    |                         |                                              |               |             | ļ                   |         |              |                 |               |         | 0        | 4.0              | 936                 |                       | 6.2                   |
| 09/11/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 5.6              | 933                 |                       | 9.6                   |
| 09/12/08         | Yes                                    |                         |                                              |               |             | ļ                   |         |              |                 |               |         | 0        | 5.6              | 924                 |                       | 12.5                  |
| 09/13/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 10.0             | 924                 |                       | 13.3                  |
| 09/14/08         | Yes                                    |                         |                                              |               |             | ļ                   |         |              |                 |               |         | 0        | 15.5             | 912                 |                       | 17.8                  |
| 09/15/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 7.4              | 926                 |                       | 8.5                   |
| 09/16/08         | Yes                                    |                         |                                              |               |             |                     |         |              | 4               |               |         | 1        | 5.6              | 930                 |                       | 7.9                   |
| 09/17/08         | Yes                                    |                         |                                              |               |             |                     |         |              | 1               |               |         | 1        | 8.0              | 928                 |                       | 9.6                   |
| 09/18/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 4.4              | 938                 |                       | 2.1                   |
| 09/19/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 7.8              | 937                 |                       | 0.7                   |
| 09/20/08         | Yee                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 8.4              | 931                 |                       | F 0                   |
| 09/21/08         | Vec                                    |                         |                                              |               |             | 1                   |         |              |                 |               |         | 0        | 3.0              | 930                 |                       | 5.0                   |
| 09/22/08         | Ves                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 2.0              | 941                 |                       | 0.0<br>8.1            |
| 09/23/00         | Vec                                    |                         |                                              |               |             |                     |         |              | 1               |               |         | 1        | 1.2              | 042                 |                       | 13.7                  |
| 09/25/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | o i      | 7.6              | 943                 |                       | 12.3                  |
| 09/26/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | ő        | 8.3              | 937                 |                       | 11.5                  |
| 09/27/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 5.6              | 930                 |                       | 15.8                  |
| 09/28/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 7.6              | 923                 |                       | 12.5                  |
| 09/29/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 4.2              | 926                 |                       | 8.8                   |
| 09/30/08         | Yes                                    |                         |                                              |               |             | 1                   |         |              |                 |               |         | 0        | 5.6              | 920                 |                       | 9.4                   |
| 10/01/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 3.8              | 912                 |                       | 9.4                   |
| 10/02/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 8.9              | 913                 |                       | 3.0                   |
| 10/03/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 14.8             | 920                 |                       | 3.7                   |
| 10/04/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 8.0              | 930                 |                       | 2.9                   |
| 10/05/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 6.4              | 932                 |                       | 2.2                   |
| 10/06/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 12.7             | 931                 |                       | 1.9                   |
| 10/07/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 14.2             | 928                 |                       | 5.8                   |
| 10/08/08         | Yes                                    |                         | ļļ_                                          |               | ļ           |                     | L       |              |                 |               |         | 0        | 7.7              | 922                 |                       | 9.7                   |
| 10/09/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 10.4             | 923                 |                       | 9.2                   |
| 10/10/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 9.0              | 934                 |                       | 6.2                   |
| 10/11/08         | Yes                                    |                         |                                              |               |             |                     |         |              |                 |               |         | 0        | 8.1              | 939                 |                       | 5.1                   |
| 10/12/08         | res                                    |                         | <b>├</b> ─── <b>├</b> ─                      |               | +           |                     | +       | l            |                 |               |         | <u> </u> | 1.2              | 937                 |                       | ö.2                   |
| 10/13/08         | Vee                                    |                         | ├                                            |               | <u> </u>    | <u> </u>            | ┣───    | <u> </u>     |                 | <u> </u>      |         | <u> </u> | 10.2             | 934                 |                       | 1.5                   |
| 10/14/08         | Vee                                    |                         | <b>├</b> ─── <b>├</b> ─                      |               |             | <u> </u>            |         |              |                 |               |         |          | 10.2             | 927                 |                       | 0.4                   |
| 10/15/08         | Vec                                    |                         | <u>├</u>                                     |               | ł           | <del> </del>        | ł —     | <del> </del> |                 |               |         | - U      | 10.4             | 920                 |                       | 0.0                   |
| 10/10/00         | Yee                                    |                         | <u>├</u> ──┤─                                |               | +           | <u> </u>            | +       | 1            |                 |               |         | 0        | 7.9              | 923                 |                       | -0.8                  |
| 10/17/00         | Yee                                    |                         | <u>├                                    </u> |               | +           | <u> </u>            | +       | <u> </u>     |                 |               | 1       | n 0      | 4.7              | 920                 |                       | -0.0                  |
| 10/19/08         | Yes                                    |                         | <u>├</u> ──                                  |               | 1           | <u> </u>            | 1       | 1            |                 |               |         | <u> </u> | 17               | 934                 |                       | 25                    |
| 10/20/08         | Yes                                    | 1                       |                                              |               | 1           | 1                   | 1       | 1            |                 |               | 1       | n n      | 5.5              | 923                 |                       | 4.0                   |
| Bv S             | pecies                                 | 1                       | 0 .                                          | 1             | 1           | 0                   | 0       | 0            | 15              | 2             | 0       | , i      | 0.0              | 010                 |                       |                       |
|                  | Cuild                                  | 3                       | · · · · ·                                    | 1             | İ 🗌         | 1                   |         | 0            | -               | 17            |         | 21       |                  |                     |                       |                       |
| Ву               | Guila                                  | BBS                     | SH                                           | LACI          | 1           | RBEP                |         | MYSP         |                 | UNKN          |         | Total    | 1                |                     |                       |                       |

| Appendix B Table | <ol><li>Summary of fall 2</li></ol> | 008 acoustic | bat dat   | a and weath   | ner durin | ig each    | survey night        | at the Br | iggs Met Low | detector       |                 |         |        |                  |                     |                       |                       |
|------------------|-------------------------------------|--------------|-----------|---------------|-----------|------------|---------------------|-----------|--------------|----------------|-----------------|---------|--------|------------------|---------------------|-----------------------|-----------------------|
|                  |                                     |              | BBSH      |               | HB        |            | RBEP                |           | MYSP         |                | UNKN            |         |        |                  |                     |                       |                       |
| light of         | Dperated Okay?                      | 3BSH         | oig brown | silver-hiared | ioary bat | astern red | aastern pipistrelle | REP       | ЧХSР         | nigh-frequency | ow-frequency    | umouyur | Total  | Wind Speed (m/s) | Barometric Pressure | Relative Humidity (%) | Temperature (celsius) |
| 08/29/08         | Yes                                 |              |           |               | -         |            | , v                 | -         | -            | -              | 1               |         | 1      | 10.1             | 942                 |                       | 14.2                  |
| 08/30/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 14.5             | 945                 |                       | 13.6                  |
| 08/31/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      |                  |                     |                       |                       |
| 09/01/08         | Yes                                 | 1            |           |               |           |            |                     |           |              |                |                 |         | 1      | 9.5              | 931                 |                       | 14.7                  |
| 09/02/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 3.6              | 929                 |                       | 14.5                  |
| 09/03/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 5.3              | 924                 |                       | 16.1                  |
| 09/04/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 4.5              | 930                 |                       | 14.0                  |
| 09/05/08         | Yes                                 |              |           |               |           |            |                     |           |              | 1              | 1               |         | 2      | 9.0              | 928                 |                       | 18.4                  |
| 09/06/08         | Yes                                 |              |           |               | 1         |            |                     |           |              |                |                 |         | 1      | 5.3              | 921                 |                       | 16.6                  |
| 09/07/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 10.9             | 925                 |                       | 9.8                   |
| 09/08/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 6.8              | 929                 |                       | 13.5                  |
| 09/09/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 10.2             | 925                 |                       | 7.8                   |
| 09/10/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 4.0              | 936                 |                       | 6.2                   |
| 09/11/08         | Yes                                 |              |           |               | 4         |            |                     |           |              |                | 1               |         | 1      | 5.6              | 933                 |                       | 9.6                   |
| 09/12/08         | Yes                                 |              |           |               | 1         |            |                     |           |              |                |                 |         | 1      | 5.6              | 924                 |                       | 12.5                  |
| 09/13/08         | Voc                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 10.0             | 924                 |                       | 13.3                  |
| 09/14/08         | Voc                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 7.4              | 912                 |                       | 9.5                   |
| 09/16/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 5.6              | 920                 |                       | 7.9                   |
| 09/17/08         | Yes                                 |              |           |               | 1         |            |                     |           |              |                |                 |         | 1      | 3.0<br>8.0       | 930                 |                       | 9.6                   |
| 09/18/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 4.4              | 020                 |                       | 2.1                   |
| 09/19/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 7.8              | 937                 |                       | 5.7                   |
| 09/20/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | ů<br>0 | 8.4              | 931                 |                       | 11.7                  |
| 09/21/08         | Yes                                 |              |           |               |           |            |                     |           |              | 1              |                 |         | 1      | 3.6              | 938                 |                       | 5.0                   |
| 09/22/08         | Yes                                 |              |           |               |           |            |                     |           |              | -              |                 |         | 0      | 2.6              | 941                 |                       | 6.0                   |
| 09/23/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 7.2              | 940                 |                       | 8.1                   |
| 09/24/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 4.4              | 942                 |                       | 13.7                  |
| 09/25/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 7.6              | 943                 |                       | 12.3                  |
| 09/26/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 8.3              | 937                 |                       | 11.5                  |
| 09/27/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 5.6              | 930                 |                       | 15.8                  |
| 09/28/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 7.6              | 923                 |                       | 12.5                  |
| 09/29/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 4.2              | 926                 |                       | 8.8                   |
| 09/30/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 5.6              | 920                 |                       | 9.4                   |
| 10/01/08         | Yes                                 | ļ            |           |               |           |            |                     |           |              |                |                 |         | 0      | 3.8              | 912                 |                       | 9.4                   |
| 10/02/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 8.9              | 913                 |                       | 3.0                   |
| 10/03/08         | res                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 14.8             | 920                 |                       | 3./                   |
| 10/04/08         | Vec                                 | <u> </u>     |           |               |           |            |                     |           |              |                |                 |         | 0      | 0.0              | 930                 |                       | 2.9                   |
| 10/05/08         | Yee                                 | <del> </del> |           |               |           |            |                     |           |              |                | $ \rightarrow $ |         | 0      | 0.4              | 93Z<br>021          |                       | <u> </u>              |
| 10/00/08         | Yes                                 |              |           |               |           |            |                     |           |              | 1              |                 |         | 1      | 14.2             | 928                 |                       | 5.8                   |
| 10/08/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 77               | 920                 |                       | 9.7                   |
| 10/09/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0<br>0 | 10.4             | 923                 |                       | 9.2                   |
| 10/10/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | ő      | 9.0              | 934                 |                       | 6.2                   |
| 10/11/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 8.1              | 939                 |                       | 5.1                   |
| 10/12/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 7.2              | 937                 |                       | 8.2                   |
| 10/13/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 7.6              | 934                 |                       | 7.5                   |
| 10/14/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 10.2             | 927                 |                       | 5.4                   |
| 10/15/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 5.8              | 925                 |                       | 8.5                   |
| 10/16/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 10.4             | 923                 |                       | 3.7                   |
| 10/17/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 7.8              | 928                 |                       | -0.8                  |
| 10/18/08         | Yes                                 | ļ            |           |               |           |            |                     |           |              |                |                 |         | 0      | 4.7              | 935                 |                       | -1.7                  |
| 10/19/08         | Yes                                 |              |           |               |           |            |                     |           |              |                |                 |         | 0      | 1.7              | 934                 |                       | 2.5                   |
| 10/20/08         | Yes                                 | <u> </u>     | Ļ         |               |           |            |                     |           |              | L              |                 |         | 0      | 5.5              | 923                 |                       | 4.0                   |
| By S             | pecies                              | 1            |           | 0             | 3         | 0          |                     | 0         | 0            | 3              | 3               | 0       | 10     |                  |                     |                       | I                     |
| By               | Guild                               |              | 4<br>BBSH |               | 3<br>HR   |            |                     |           | U            |                | <u> 1101KN</u>  |         | Total  |                  |                     |                       | ľ                     |

| Appendix B Table | <ol><li>Summary of fall 20</li></ol> | 08 acoustic bat data a | and weather during ea | ch survey nigł | nt at the | Briggs Met  | Tree det            | ector |      |                |               |         |       |                  |                     |                       |                       |
|------------------|--------------------------------------|------------------------|-----------------------|----------------|-----------|-------------|---------------------|-------|------|----------------|---------------|---------|-------|------------------|---------------------|-----------------------|-----------------------|
|                  |                                      |                        | BBSH                  |                | LACI      | F           | RBEP                |       | MYSP |                | UNKN          |         |       |                  |                     |                       |                       |
| Night of         | Operated Okay?                       | BBSH                   | big brown             | silver-haired  | hoary     | eastern red | eastern pipistrelle | RBEP  | MYSP | high-frequency | low-frequency | unknown | Total | Wind Speed (m/s) | Barometric Pressure | Relative Humidity (%) | Temperature (celsius) |
| 08/11/08         | No                                   |                        |                       |                |           |             |                     |       |      |                |               |         |       | 7.2              | 934                 |                       | 12.4                  |
| 08/12/08         | Yes                                  | 2                      |                       |                |           | 1           |                     |       | 122  | 238            |               |         | 363   | 2.5              | 938                 |                       | 15.3                  |
| 08/13/08         | Yes                                  | 9                      |                       | 8              |           |             |                     |       | 36   | 123            | 2             |         | 178   | 5.5              | 941                 |                       | 14.4                  |
| 08/14/08         | Yes                                  |                        |                       |                |           |             |                     | 1     |      | 1              |               |         | 2     | 3.5              | 944                 |                       | 16.3                  |
| 08/15/08         | Yes                                  | 2                      | 1                     | 1              |           | 1           |                     | 1     | 70   | 92             | 1             |         | 169   | 7.8              | 937                 |                       | 15.0                  |
| 08/16/08         | Yes                                  | 1                      |                       |                |           | 3           |                     | 1     | 134  | 333            |               |         | 472   | 6.0              | 940                 |                       | 15.2                  |
| 08/17/08         | Yes                                  |                        | 2                     |                |           |             |                     |       | 71   | 160            | 1             |         | 234   | 7.4              | 937                 |                       | 15.3                  |
| 08/18/08         | Yes                                  | 2                      |                       | 1              |           | 1           |                     |       | 61   | 204            |               |         | 269   | 11.7             | 942                 |                       | 7.7                   |
| 08/19/08         | Yes                                  | 1                      |                       |                |           |             |                     |       | 117  | 75             |               |         | 193   | 9.7              | 947                 |                       | 11.6                  |
| 08/20/08         | Yes                                  |                        |                       |                |           |             |                     |       | 125  | 197            |               |         | 322   | 6.2              | 954                 |                       | 17.2                  |
| 08/21/08         | Yes                                  | 2                      |                       |                |           | 1           |                     |       | 96   | 173            | 1             |         | 273   | 3.3              | 955                 |                       | 20.3                  |
| 08/22/08         | Yes                                  | 7                      | 1                     | 4              | 1         |             |                     |       | 56   | 91             | 3             |         | 163   | 8.3              | 948                 |                       | 16.5                  |
| 08/23/08         | Yes                                  | 1                      |                       |                |           |             | 1                   | 1     | 74   | 137            | 1             |         | 215   | 7.0              | 939                 |                       | 15.9                  |
| 08/24/08         | Yes                                  |                        |                       | 1              | 1         |             |                     | 1     | 59   | 96             |               |         | 158   | 11.2             | 939                 |                       | 8.8                   |
| 08/25/08         | Yes                                  | 1                      |                       |                |           |             |                     |       | 138  | 158            |               |         | 297   | 9.8              | 945                 |                       | 10.5                  |
| 08/26/08         | Yes                                  |                        |                       |                |           |             |                     |       | 51   | 109            |               |         | 160   | 5.2              | 948                 |                       | 15.6                  |
| 08/27/08         | Yes                                  | 46                     |                       |                | 1         |             |                     |       | 51   | 100            | 12            |         | 210   | 5.6              | 946                 |                       | 14.9                  |
| 08/28/08         | Yes                                  |                        |                       |                |           |             |                     |       | 12   | 40             | 1             |         | 53    | 4.3              | 943                 |                       | 15.6                  |
| By S             | pecies                               | 74                     | 4                     | 15             | 3         | 7           | 1                   | 5     | 1273 | 2327           | 22            | 0       | 2724  |                  |                     | -                     |                       |
| D.,              | Guild                                |                        | 96                    |                | 3         |             | 13                  |       | 1273 |                | 2349          |         | 3/31  |                  |                     |                       |                       |
| Ву               | Guild                                |                        | BBSH                  |                | LACI      | F           | RBEP                |       | MYSP |                | UNKN          |         | Total | 1                |                     |                       |                       |

| Appendix B Table | 4. Summary of fall | 2008 acousti | c bat d   | ata and wea       | ther duri | ng each surv | ey night            | at the E | Burnt Hill Tree | e detecto      | or            |         |       |                  |                     |                       |                       |
|------------------|--------------------|--------------|-----------|-------------------|-----------|--------------|---------------------|----------|-----------------|----------------|---------------|---------|-------|------------------|---------------------|-----------------------|-----------------------|
|                  |                    |              | BBSH      |                   | LACI      | R            | BEP                 |          | MYSP            |                | UNKN          |         |       |                  |                     |                       |                       |
| Night of         | Operated Okay?     | BBSH         | big brown | silver-haired bat | hoary     | eastern red  | eastern pipistrelle | RBEP     | MYSP            | high-frequency | low-frequency | unknown | Total | Wind Speed (m/s) | Barometric Pressure | Relative Humidity (%) | Temperature (celsius) |
| 08/11/08         | No                 |              |           |                   |           |              |                     |          |                 |                |               |         |       | 7.2              | 934                 |                       | 12.4                  |
| 08/12/08         | Yes                |              |           |                   |           |              |                     |          |                 |                |               |         | 0     | 2.5              | 938                 |                       | 15.3                  |
| 08/13/08         | Yes                | 1            |           |                   |           |              |                     |          |                 |                | 1             |         | 2     | 5.5              | 941                 |                       | 14.4                  |
| 08/14/08         | Yes                |              |           |                   | 1         |              |                     |          | 1               | 1              |               |         | 3     | 3.5              | 944                 |                       | 16.3                  |
| 08/15/08         | Yes                | 1            |           |                   |           |              |                     |          |                 | 2              | 1             |         | 4     | 7.8              | 937                 |                       | 15.0                  |
| 08/16/08         | Yes                |              |           |                   |           |              |                     |          |                 |                | 2             |         | 2     | 6.0              | 940                 |                       | 15.2                  |
| 08/17/08         | Yes                | 1            |           |                   |           |              |                     |          |                 | 1              |               |         | 2     | 7.4              | 937                 |                       | 15.3                  |
| 08/18/08         | Yes                |              |           |                   |           |              |                     |          |                 |                |               |         | 0     | 11.7             | 942                 |                       | 7.7                   |
| 08/19/08         | Yes                |              |           |                   |           |              |                     |          |                 |                |               |         | 0     | 9.7              | 947                 |                       | 11.6                  |
| 08/20/08         | Yes                |              |           |                   |           |              |                     |          |                 |                |               |         | 0     | 6.2              | 954                 |                       | 17.2                  |
| 08/21/08         | Yes                |              |           |                   | 1         |              |                     |          | 1               | 5              | 2             |         | 9     | 3.3              | 955                 |                       | 20.3                  |
| 08/22/08         | Yes                | 1            |           |                   | 1         |              |                     |          |                 | 4              |               |         | 6     | 8.3              | 948                 |                       | 16.5                  |
| 08/23/08         | Yes                |              |           |                   |           |              |                     |          | 2               | 3              |               |         | 5     | 7.0              | 939                 |                       | 15.9                  |
| 08/24/08         | Yes                |              |           |                   |           |              |                     |          | 1               | 2              |               |         | 3     | 11.2             | 939                 |                       | 8.8                   |
| 08/25/08         | Yes                | 1            |           |                   |           |              |                     |          |                 | 1              | 2             |         | 4     | 9.8              | 945                 |                       | 10.5                  |
| 08/26/08         | Yes                |              | 1         |                   |           |              |                     |          | 1               |                |               |         | 1     | 5.2              | 948                 |                       | 15.6                  |
| 08/27/08         | Yes                | 1            |           |                   |           |              |                     |          | 6               | 2              | 1             |         | 10    | 5.6              | 946                 |                       | 14.9                  |
| 08/28/08         | Yes                |              |           |                   |           |              |                     |          |                 |                |               |         | 0     | 4.3              | 943                 |                       | 15.6                  |
| 08/29/08         | Yes                |              |           |                   |           |              |                     |          |                 |                |               |         | 0     | 10.1             | 942                 |                       | 14.2                  |
| 08/30/08         | Yes                |              |           |                   |           |              |                     |          |                 |                |               |         | 0     | 14.5             | 945                 |                       | 13.6                  |
| 08/31/08         | Yes                |              |           |                   |           |              |                     |          |                 |                |               |         | 0     |                  |                     |                       |                       |
| 09/01/08         | Yes                |              |           |                   |           |              |                     |          |                 |                |               |         | 0     | 9.5              | 931                 |                       | 14.7                  |
| 09/02/08         | Yes                |              |           |                   |           |              | 1                   |          | 6               | 16             |               |         | 22    | 3.6              | 929                 |                       | 14.5                  |
| By Sp            | ecies              | 6            | 0         | 0                 | 3         | 0            | 0                   | 0        | 18              | 37             | 9             | 0       | 70    |                  |                     |                       | -                     |
| Du O             | uild               |              | 9         |                   | 3         |              | 0                   |          | 18              |                | 46            |         |       |                  |                     |                       |                       |
| БуG              | ullu               |              | BBSH      |                   | LACI      | R            | BEP                 |          | MYSP            |                | UNKN          |         | Total | ]                |                     |                       |                       |

| Appendix B Table | 5. Summary of fall 2008 ad | coustic bat o | data and  | weather duri      | ng each | survey night a | at the St           | tewart N | Met E Tree | detector       |               |         |       |                  |                     |                       |                       |
|------------------|----------------------------|---------------|-----------|-------------------|---------|----------------|---------------------|----------|------------|----------------|---------------|---------|-------|------------------|---------------------|-----------------------|-----------------------|
|                  |                            |               | BBSH      |                   | LACI    | RI             | BEP                 |          | MYSP       |                | UNKN          |         |       |                  |                     |                       |                       |
| Night of         | Operated Okay?             | BBSH          | big brown | silver-haired bat | hoary   | eastern red    | eastern pipistrelle | RBEP     | MYSP       | high-frequency | low-frequency | unknown | Total | Wind Speed (m/s) | Barometric Pressure | Relative Humidity (%) | Temperature (celsius) |
| 08/11/08         | Yes                        |               |           |                   |         |                |                     |          | 341        | 262            |               |         | 603   | 7.2              | 934                 |                       | 12.4                  |
| 08/12/08         | Yes                        |               |           |                   |         |                |                     |          | 5          | 450            |               |         | 5     | 2.5              | 938                 |                       | 15.3                  |
| 08/13/08         | Yes                        |               |           |                   |         |                |                     |          | 67         | 150            |               |         | 217   | 5.5              | 941                 |                       | 14.4                  |
| 08/14/08         | Yes                        |               |           |                   |         |                |                     | 4        | 700        | 407            |               |         | 0     | 3.5              | 944                 |                       | 16.3                  |
| 08/15/08         | Yes                        |               |           |                   |         |                |                     | 1        | 720        | 187            |               |         | 908   | 7.8              | 937                 |                       | 15.0                  |
| 08/16/08         | Yes                        |               |           |                   | 1       |                |                     |          | 88         | 4              |               |         | 93    | 6.0              | 940                 |                       | 15.2                  |
| 08/17/08         | Yes                        |               |           |                   |         |                |                     |          | 61         | /              |               |         | 68    | 7.4              | 937                 |                       | 15.3                  |
| 08/18/08         | Yes                        |               |           |                   |         |                |                     |          |            | 3              |               |         | 3     | 11./             | 942                 |                       | 1.1                   |
| 08/19/08         | Yes                        |               |           |                   |         |                |                     |          |            | 1              |               |         | 1     | 9.7              | 947                 |                       | 11.6                  |
| 08/20/08         | Yes                        |               |           |                   |         |                |                     |          |            |                |               |         | 0     | 6.2              | 954                 |                       | 17.2                  |
| 08/21/08         | Yes                        |               |           |                   |         |                |                     |          | 9          | 1              |               |         | 10    | 3.3              | 955                 |                       | 20.3                  |
| 08/22/08         | Yes                        |               |           |                   |         |                |                     |          | 26         | 3              |               |         | 29    | 8.3              | 948                 |                       | 16.5                  |
| 08/23/08         | Yes                        |               |           |                   |         |                |                     |          | 18         |                |               |         | 18    | 7.0              | 939                 |                       | 15.9                  |
| 08/24/08         | Yes                        |               |           |                   |         |                |                     |          | 7          | 3              |               |         | 10    | 11.2             | 939                 |                       | 8.8                   |
| 08/25/08         | Yes                        |               |           |                   |         |                |                     |          |            |                |               |         | 0     | 9.8              | 945                 |                       | 10.5                  |
| 08/26/08         | Yes                        |               |           |                   |         |                |                     |          |            |                |               |         | 0     | 5.2              | 948                 |                       | 15.6                  |
| 08/27/08         | Yes                        |               |           |                   |         |                |                     |          | 68         | 100            |               |         | 168   | 5.6              | 946                 |                       | 14.9                  |
| 08/28/08         | Yes                        |               |           |                   |         |                |                     |          |            | 4              |               |         | 4     | 4.3              | 943                 |                       | 15.6                  |
| 08/29/08         | Yes                        |               |           |                   |         |                |                     |          | 4          | 2              |               |         | 6     | 10.1             | 942                 |                       | 14.2                  |
| 08/30/08         | Yes                        |               |           |                   |         |                |                     |          |            |                |               |         | 0     | 14.5             | 945                 |                       | 13.6                  |
| 08/31/08         | Yes                        |               |           |                   |         |                |                     |          |            |                |               |         | 0     |                  |                     |                       |                       |
| 09/01/08         | Yes                        |               |           |                   |         |                |                     |          |            | 1              |               |         | 1     | 9.5              | 931                 |                       | 14.7                  |
| 09/02/08         | Yes                        |               |           |                   |         |                |                     |          |            |                |               |         | 0     | 3.6              | 929                 |                       | 14.5                  |
| 09/03/08         | Yes                        |               |           |                   |         |                |                     |          | 42         | 1              | 1             |         | 44    | 5.3              | 924                 |                       | 16.1                  |
| 09/04/08         | Yes                        |               |           |                   |         |                |                     |          | 7          | 1              |               |         | 8     | 4.5              | 930                 |                       | 14.0                  |
| 09/05/08         | Yes                        |               |           |                   |         |                |                     |          |            |                |               |         | 0     | 9.0              | 928                 |                       | 18.4                  |
| 09/06/08         | Yes                        |               |           |                   |         |                |                     |          |            |                |               |         | 0     | 5.3              | 921                 |                       | 16.6                  |
| 09/07/08         | Yes                        |               |           |                   |         |                |                     |          |            |                |               |         | 0     | 10.9             | 925                 |                       | 9.8                   |
| 09/08/08         | Yes                        |               |           |                   |         |                |                     |          | 1          |                |               |         | 1     | 6.8              | 929                 |                       | 13.5                  |
| Ву               | / Species                  | 0             | 0         | 0                 | 1       | 0              | 0                   | 1        | 1464       | 730            | 1 731         | 0       | 2197  |                  |                     |                       |                       |
| E                | By Guild                   |               | BBSH      |                   | LACI    | RI             | BEP                 |          | MYSP       |                | UNKN          |         | Total |                  |                     |                       |                       |

| Appendix B Table | 6. Summary of fall 2008 ac | coustic bat data and weather | r during each | survey r          | night at the St | ewart N Met | W Tree              | detector |      |                |               |         |       |           |
|------------------|----------------------------|------------------------------|---------------|-------------------|-----------------|-------------|---------------------|----------|------|----------------|---------------|---------|-------|-----------|
|                  |                            | BBSH                         |               |                   | LACI            |             | RBEP                |          | MYSP |                | UNKN          |         | ]     | ſ         |
| Night of         | Operated Okay?             | BBSH                         | big brown     | silver-haired bat | hoary           | eastern red | eastern pipistrelle | RBEP     | MYSP | high-frequency | low-frequency | unknown | Total |           |
| 08/11/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | Τ         |
| 08/12/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     |           |
| 08/13/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     |           |
| 08/14/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     |           |
| 08/15/08         | Yes                        |                              |               |                   |                 |             |                     |          |      | 1              |               |         | 1     |           |
| 08/16/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     |           |
| 08/17/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | Τ         |
| 08/18/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | Т         |
| 08/19/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | Т         |
| 08/20/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | Т         |
| 08/21/08         | Yes                        |                              |               |                   |                 |             |                     |          |      | 1              |               |         | 1     | Т         |
| 08/22/08         | Yes                        |                              |               |                   |                 |             |                     |          |      | 1              |               |         | 1     | Т         |
| 08/23/08         | Yes                        |                              |               |                   |                 |             |                     |          |      | 2              |               |         | 2     | Τ         |
| 08/24/08         | Yes                        |                              |               |                   |                 |             |                     |          |      | 1              |               |         | 1     | Т         |
| 08/25/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | Т         |
| 08/26/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | T         |
| 08/27/08         | Yes                        |                              |               |                   |                 |             |                     |          |      | 1              | 1             |         | 2     | T         |
| 08/28/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | T         |
| 08/29/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | T         |
| 08/30/08         | Yes                        |                              |               |                   |                 |             |                     |          |      | 1              |               |         | 1     | T         |
| 08/31/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | T         |
| 09/01/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | T         |
| 09/02/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | T         |
| 09/03/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | t         |
| 09/04/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | t         |
| 09/05/08         | Yes                        |                              |               |                   |                 |             |                     |          |      | 1              |               |         | 1     | t         |
| 09/06/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | Ť         |
| 09/07/08         | Yes                        |                              |               |                   |                 |             |                     |          |      |                |               |         | 0     | Ť         |
| 09/08/08         | Yes                        |                              |               | 1                 |                 |             | 1                   |          |      |                |               |         | 0     | $\dagger$ |
| B                | / Species                  | 0                            | 0             | 0                 | 0               | 0           | 0                   | 0        | 0    | 9              | 1             | 0       |       | t         |
|                  |                            | 0                            |               |                   | 0               |             | 0                   | 1        | 0    |                | 10            |         | 1 10  |           |
| L F              | sy Gulla                   | BBSH                         |               |                   | LACI            |             | RBEP                |          | MYSP |                | UNKN          |         | Total | 1         |

| Wind Speed (m/s) | Wind Direction (degrees) | Relative Humidity (%) | Temperature (celsius) |
|------------------|--------------------------|-----------------------|-----------------------|
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |
|                  |                          |                       |                       |

| Appendix B Table | <ol><li>Summary of fall 2008</li></ol> | acoustic bat | data a    | nd weather        | during e | ach survey ni | ght at th           | e Stewa | art S Met Hig | h detecte      | or            |         |        |                  |                     |                       |                       |
|------------------|----------------------------------------|--------------|-----------|-------------------|----------|---------------|---------------------|---------|---------------|----------------|---------------|---------|--------|------------------|---------------------|-----------------------|-----------------------|
|                  |                                        |              | BBSH      | -                 | LACI     | R             | BEP                 |         | MYSP          |                | UNKN          |         |        |                  |                     |                       |                       |
| Night of         | Operated Okay?                         | BBSH         | big brown | silver-haired bat | hoary    | eastern red   | eastern pipistrelle | RBEP    | ЧХХМ          | high-frequency | low-frequency | unknown | Total  | Wind Speed (m/s) | Barometric Pressure | Relative Humidity (%) | Temperature (celsius) |
| 09/03/08         | Yes                                    |              |           | 1                 |          |               |                     |         |               |                |               |         | 1      | 5.3              | 924                 |                       | 16.1                  |
| 09/04/08         | Yes                                    |              |           | 1                 |          |               |                     |         |               |                |               |         | 1      | 4.5              | 930                 |                       | 14.0                  |
| 09/05/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 9.0              | 928                 |                       | 18.4                  |
| 09/06/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 5.3              | 921                 |                       | 10.0                  |
| 09/07/08         | Ves                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 6.9              | 925                 |                       | 9.0                   |
| 09/09/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 10.2             | 929                 |                       | 7.8                   |
| 09/10/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 4.0              | 936                 |                       | 6.2                   |
| 09/11/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 5.6              | 933                 |                       | 9.6                   |
| 09/12/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 5.6              | 924                 |                       | 12.5                  |
| 09/13/08         | Yes                                    |              |           | 1                 | 1        |               |                     |         |               |                |               |         | 2      | 10.0             | 924                 |                       | 13.3                  |
| 09/14/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 15.5             | 912                 |                       | 17.8                  |
| 09/15/08         | Yes                                    |              |           |                   |          | 1             |                     |         |               | 1              | 1             |         | 3      | 7.4              | 926                 |                       | 8.5                   |
| 09/16/08         | Yes                                    |              |           |                   |          |               |                     |         |               | 1              |               |         | 1      | 5.6              | 930                 |                       | 7.9                   |
| 09/17/08         | Yes                                    |              |           |                   |          |               |                     |         |               | 1              |               |         | 1      | 8.0              | 928                 |                       | 9.6                   |
| 09/18/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 4.4              | 938                 |                       | 2.1                   |
| 09/19/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 7.8              | 937                 |                       | 5.7                   |
| 09/20/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 8.4              | 931                 |                       | 11.7                  |
| 09/21/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 3.6              | 938                 |                       | 5.0                   |
| 09/22/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 2.6              | 941                 |                       | 6.0                   |
| 09/23/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 7.2              | 940                 |                       | 8.1                   |
| 09/24/08         | Yes                                    |              |           | 2                 |          |               |                     |         |               |                |               |         | 2      | 4.4              | 942                 |                       | 13.7                  |
| 09/25/08         | Yes                                    |              |           | 1                 |          |               |                     |         |               |                | 1             |         | 2      | 7.6              | 943                 |                       | 12.3                  |
| 09/26/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 8.3              | 937                 |                       | 11.5                  |
| 09/27/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 5.6              | 930                 |                       | 15.8                  |
| 09/28/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 7.6              | 923                 |                       | 12.5                  |
| 09/29/08         | Vee                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 4.2              | 920                 |                       | 0.0                   |
| 09/30/08         | Voc                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 2.0              | 920                 |                       | 9.4                   |
| 10/01/08         | Voc                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 3.0              | 912                 |                       | 9.4                   |
| 10/02/08         | Vec                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 1/ 9             | 913                 |                       | 3.0                   |
| 10/03/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 8.0              | 920                 |                       | 2.9                   |
| 10/05/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 6.4              | 932                 |                       | 2.0                   |
| 10/06/08         | Yes                                    |              |           |                   |          |               |                     |         |               | 1              |               |         | 1      | 12 7             | 931                 |                       | 1.9                   |
| 10/07/08         | Yes                                    | 1            |           |                   |          |               |                     |         |               | <u> </u>       |               |         | 0      | 14.2             | 928                 |                       | 5.8                   |
| 10/08/08         | Yes                                    | 1            |           |                   |          |               |                     |         |               |                |               |         | ō      | 7.7              | 922                 |                       | 9.7                   |
| 10/09/08         | Yes                                    |              | 1         | 1                 |          |               | İ                   |         |               | 1              | 1             |         | 1      | 10.4             | 923                 |                       | 9.2                   |
| 10/10/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 9.0              | 934                 |                       | 6.2                   |
| 10/11/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 8.1              | 939                 |                       | 5.1                   |
| 10/12/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 7.2              | 937                 |                       | 8.2                   |
| 10/13/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 7.6              | 934                 |                       | 7.5                   |
| 10/14/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 10.2             | 927                 |                       | 5.4                   |
| 10/15/08         | Yes                                    |              |           |                   |          |               |                     |         |               |                |               |         | 0      | 5.8              | 925                 |                       | 8.5                   |
| 10/16/08         | Yes                                    | ļ            |           |                   |          |               |                     |         |               |                |               |         | 0      | 10.4             | 923                 |                       | 3.7                   |
| 10/17/08         | Yes                                    | ļ            | L         |                   |          |               |                     |         |               |                |               |         | 0      | 7.8              | 928                 |                       | -0.8                  |
| 10/18/08         | Yes                                    |              | L         | ļ                 |          |               | ļ                   |         |               |                |               |         | 0      | 4.7              | 935                 |                       | -1.7                  |
| 10/19/08         | Yes                                    |              | ─         |                   |          |               |                     |         |               |                |               |         | 0      | 1.7              | 934                 |                       | 2.5                   |
| 10/20/08         | Yes                                    |              | <u> </u>  | <u> </u>          |          | <u> </u>      |                     |         |               | 2              | <u> </u>      |         | 2      | 5.5              | 923                 |                       | 4.0                   |
| By               | species                                | 0            |           | 6                 |          | 1             |                     | 0       | 0             | 6              | 3             | 0       | 17     |                  |                     |                       |                       |
| Ву               | / Guild                                |              | /<br>BBGN |                   |          |               | I<br>REP            |         |               |                | <u> </u>      |         | Total  | 4                |                     |                       |                       |
| 1                |                                        | 1            | 0000      |                   |          |               |                     |         | MI OF         | 1              |               |         | 1.0.01 | 1                |                     |                       |                       |

| Appendix B Table | 8. Summary of fall 200 | 8 acoustic bat data and | weather during | g each s      | urvey night at | the Ste     | wart S              | Met Low dete | ector    | 1              |               |         | · · · · · · |                  |                     |                       | T                     |
|------------------|------------------------|-------------------------|----------------|---------------|----------------|-------------|---------------------|--------------|----------|----------------|---------------|---------|-------------|------------------|---------------------|-----------------------|-----------------------|
|                  |                        | BBS                     | SH             | 1             | НВ             |             | RBI                 | EP           | MYSP     |                | UNKN          |         | -           |                  |                     |                       |                       |
| Night of         | Operated Okay?         | HSBB                    | big brown      | silver-hiared | hoary bat      | eastern red | eastern pipistrelle | RBEP         | MYSP     | high-frequency | low-frequency | unknown | Total       | Wind Speed (m/s) | Barometric Pressure | Relative Humidity (%) | Temperature (celsius) |
| 08/28/08         | Yes                    |                         |                |               |                |             |                     |              |          | 1              |               |         | 0           | 4.3              | 943                 |                       | 15.6                  |
| 08/29/08         | Yes                    |                         |                |               |                |             |                     |              |          | 1              |               |         | 1           | 10.1             | 942                 |                       | 14.2                  |
| 08/30/08         | Yes                    |                         |                |               |                |             |                     |              |          | <u> </u>       |               |         | 2           | 14.5             | 945                 |                       | 13.0                  |
| 00/01/08         | Ves                    |                         |                |               |                |             |                     |              |          | 1              | 1             |         | 1           | 9.5              | 031                 |                       | 14.7                  |
| 09/02/08         | Yes                    |                         |                |               |                |             |                     |              | 1        | 1              |               |         | 2           | 3.5              | 929                 |                       | 14.7                  |
| 09/03/08         | Yes                    | 1                       |                |               |                |             |                     |              | <u> </u> | 1              |               |         | 2           | 5.3              | 924                 |                       | 16.1                  |
| 09/04/08         | Yes                    | 1                       |                |               |                |             |                     |              |          | •              |               |         | 1           | 4.5              | 930                 |                       | 14.0                  |
| 09/05/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 9.0              | 928                 |                       | 18.4                  |
| 09/06/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 5.3              | 921                 |                       | 16.6                  |
| 09/07/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 10.9             | 925                 |                       | 9.8                   |
| 09/08/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 6.8              | 929                 |                       | 13.5                  |
| 09/09/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 10.2             | 925                 |                       | 7.8                   |
| 09/10/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 4.0              | 936                 |                       | 6.2                   |
| 09/11/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 5.6              | 933                 |                       | 9.6                   |
| 09/12/08         | Yes                    |                         |                |               |                |             |                     |              |          | 1              |               |         | 1           | 5.6              | 924                 |                       | 12.5                  |
| 09/13/08         | Yes                    |                         |                | 1             |                |             |                     |              |          |                |               |         | 1           | 10.0             | 924                 |                       | 13.3                  |
| 09/14/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 15.5             | 912                 |                       | 17.8                  |
| 09/15/08         | Yes                    |                         |                |               |                |             |                     |              |          |                | 1             |         | 1           | 7.4              | 926                 |                       | 8.5                   |
| 09/16/08         | Yes                    |                         |                |               |                |             |                     |              |          | 2              |               |         | 2           | 5.6              | 930                 |                       | 7.9                   |
| 09/17/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 8.0              | 928                 |                       | 9.6                   |
| 09/18/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 4.4              | 938                 |                       | 2.1                   |
| 09/19/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 1.8              | 937                 |                       | 0./<br>11.7           |
| 09/20/08         | Voc                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 0.4              | 931                 |                       | 5.0                   |
| 09/21/00         | Ves                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 2.6              | 930                 |                       | 6.0                   |
| 09/23/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 7.2              | 940                 |                       | 8.1                   |
| 09/24/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 4.4              | 942                 |                       | 13.7                  |
| 09/25/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | ő           | 7.6              | 943                 |                       | 12.3                  |
| 09/26/08         | Yes                    |                         |                |               |                |             |                     |              | 1        |                |               |         | 0           | 8.3              | 937                 |                       | 11.5                  |
| 09/27/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 5.6              | 930                 |                       | 15.8                  |
| 09/28/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 7.6              | 923                 |                       | 12.5                  |
| 09/29/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 4.2              | 926                 |                       | 8.8                   |
| 09/30/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 5.6              | 920                 |                       | 9.4                   |
| 10/01/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 3.8              | 912                 |                       | 9.4                   |
| 10/02/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 8.9              | 913                 |                       | 3.0                   |
| 10/03/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 14.8             | 920                 |                       | 3.7                   |
| 10/04/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 8.0              | 930                 |                       | 2.9                   |
| 10/05/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 6.4              | 932                 |                       | 2.2                   |
| 10/06/08         | Yes                    |                         |                |               |                |             | <u> </u>            |              | <u> </u> |                | <b> </b>      |         | 0           | 12.7             | 931                 |                       | 1.9                   |
| 10/07/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 14.2             | 928                 |                       | 5.8                   |
| 10/08/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 1.1              | 922                 |                       | 9.7                   |
| 10/09/06         | Vee                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 10.4             | 923                 |                       | 9.2                   |
| 10/10/08         | Yes                    |                         |                |               |                |             |                     |              |          |                | 1             |         | 0           | 9.0              | 934                 |                       | 5.1                   |
| 10/12/08         | Yes                    |                         |                |               |                |             |                     |              |          |                | 1             |         | 0           | 7.2              | 939                 |                       | 8.2                   |
| 10/13/08         | Yes                    | 1                       |                |               |                | 1           | 1                   |              | 1        |                |               |         | 0           | 7.6              | 934                 |                       | 7.5                   |
| 10/14/08         | Yes                    |                         |                |               |                |             |                     |              | 1        |                |               |         | 0           | 10.2             | 927                 | 1                     | 5.4                   |
| 10/15/08         | Yes                    | 1                       | l .            |               | İ              |             | l                   |              | 1        |                |               |         | Ő           | 5.8              | 925                 |                       | 8.5                   |
| 10/16/08         | Yes                    |                         |                |               |                |             |                     |              | 1        |                |               |         | 0           | 10.4             | 923                 |                       | 3.7                   |
| 10/17/08         | Yes                    |                         |                |               |                | l           |                     |              | 1        |                |               |         | 0           | 7.8              | 928                 |                       | -0.8                  |
| 10/18/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 4.7              | 935                 |                       | -1.7                  |
| 10/19/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 1.7              | 934                 |                       | 2.5                   |
| 10/20/08         | Yes                    |                         |                |               |                |             |                     |              |          |                |               |         | 0           | 5.5              | 923                 |                       | 4.0                   |
| By               | Species                | 2                       | 0              | 1             | 0              | 0           | 0                   | 0            | 1        | 10             | 1             | 0       | 15          |                  |                     |                       |                       |
| By               | / Guild                | 3                       |                |               | 0              |             | 0                   |              | 1        |                | 11            |         |             | 1                |                     |                       |                       |
|                  |                        | BBS                     | SH             |               | I HB           | 1           | RB                  | EP           | IMYSP    | 1              | UNKN          |         | Total       | 1                |                     |                       |                       |

| Appendix B Table | <ol><li>Summary of fall 2008</li></ol> | acoustic ba | at data ai | nd weather du | uring ead | ch surve    | ey night            | at the Stewa | art S Met | Tree detector  | •             |         |       |                  |                     |                       |                       |
|------------------|----------------------------------------|-------------|------------|---------------|-----------|-------------|---------------------|--------------|-----------|----------------|---------------|---------|-------|------------------|---------------------|-----------------------|-----------------------|
|                  |                                        |             | BBSH       |               | HB        |             | RBE                 | <u>P</u>     | MYSP      |                | UNKN          | -       |       |                  |                     |                       |                       |
| Night of         | Operated Okay?                         | BBSH        | big brown  | silver-hiared | hoary bat | eastern red | eastern pipistrelle | RBEP         | MYSP      | high-frequency | low-frequency | unknown | Total | Wind Speed (m/s) | Barometric Pressure | Relative Humidity (%) | Temperature (celsius) |
| 08/11/08         | Yes                                    |             |            |               |           |             |                     |              | 1         | 1              | 1             |         | 3     | 7.2              | 934                 |                       | 12.4                  |
| 08/12/08         | Yes                                    |             |            |               |           |             |                     |              |           |                |               |         | 0     | 2.5              | 938                 | ļ                     | 15.3                  |
| 08/13/08         | Yes                                    |             |            |               |           |             |                     |              |           | 1              |               |         | 1     | 5.5              | 941                 | <b>ا</b> ا            | 14.4                  |
| 08/14/08         | Yes                                    |             |            |               | 1         |             |                     |              |           | 1              |               |         | 2     | 3.5              | 944                 | <sup> </sup>          | 16.3                  |
| 08/15/08         | Yes                                    |             |            |               |           |             |                     |              | 1         | 4              | 1             |         | 6     | 7.8              | 937                 | <sup> </sup>          | 15.0                  |
| 08/16/08         | Yes                                    |             |            |               |           |             |                     |              |           |                |               |         | 0     | 6.0              | 940                 | <sup> </sup>          | 15.2                  |
| 08/17/08         | Yes                                    |             |            |               |           |             |                     |              | 1         |                | 1             |         | 2     | 7.4              | 937                 | <sup> </sup>          | 15.3                  |
| 08/18/08         | Yes                                    |             |            |               |           |             |                     |              |           |                |               |         | 0     | 11.7             | 942                 |                       | 7.7                   |
| 08/19/08         | Yes                                    |             |            |               |           |             |                     |              |           |                |               | 2       | 2     | 9.7              | 947                 |                       | 11.6                  |
| 08/20/08         | Yes                                    |             |            |               |           |             |                     |              |           | 3              |               |         | 3     | 6.2              | 954                 | ļ                     | 17.2                  |
| 08/21/08         | Yes                                    |             |            |               |           |             |                     |              | 2         | 1              |               |         | 3     | 3.3              | 955                 |                       | 20.3                  |
| 08/22/08         | Yes                                    |             |            |               |           |             |                     |              | 1         | 2              |               |         | 3     | 8.3              | 948                 |                       | 16.5                  |
| 08/23/08         | Yes                                    |             |            |               |           |             |                     |              |           |                | 1             |         | 1     | 7.0              | 939                 |                       | 15.9                  |
| 08/24/08         | Yes                                    |             |            |               |           |             |                     |              |           | 3              |               |         | 3     | 11.2             | 939                 |                       | 8.8                   |
| 08/25/08         | Yes                                    |             |            |               |           |             |                     |              |           |                |               |         | 0     | 9.8              | 945                 |                       | 10.5                  |
| 08/26/08         | Yes                                    |             |            |               |           |             |                     |              |           | 1              | 1             |         | 2     | 5.2              | 948                 |                       | 15.6                  |
| 08/27/08         | Yes                                    |             |            |               |           |             |                     |              |           | 2              |               |         | 2     | 5.6              | 946                 |                       | 14.9                  |
| 08/28/08         | Yes                                    |             |            |               |           |             |                     |              |           |                |               |         | 0     | 4.3              | 943                 |                       | 15.6                  |
| 08/29/08         | Yes                                    |             |            |               |           |             |                     |              | 1         | 1              |               |         | 2     | 10.1             | 942                 |                       | 14.2                  |
| 08/30/08         | Yes                                    |             |            |               |           |             |                     |              |           |                |               |         | 0     | 14.5             | 945                 |                       | 13.6                  |
| 08/31/08         | Yes                                    |             |            |               |           |             |                     |              |           |                |               |         | 0     |                  |                     |                       |                       |
| 09/01/08         | Yes                                    |             |            |               |           |             |                     |              |           | 1              |               |         | 1     | 9.5              | 931                 |                       | 14.7                  |
| 09/02/08         | Yes                                    |             |            |               |           |             |                     |              | 1         |                |               |         | 1     | 3.6              | 929                 |                       | 14.5                  |
| By               | Species                                | 0           | 0          | 0             | 1         | 0           | 0                   | 0            | 8         | 21             | 5             | 2       | 27    |                  |                     |                       |                       |
| D,               | ( Guild                                |             | 1          |               | 1         |             | 0                   |              | 8         |                | 28            |         | 31    |                  |                     |                       |                       |
| Ъ                | Guild                                  |             | BBSH       |               | HB        |             | RB                  | EP           | MYSP      |                | UNKN          |         | Total |                  |                     |                       |                       |

| Appendix B Table | 10. Summary of fall 200 | 8 acoustic bat data and v | weather durin | g each s      | survey night at | the Ste     | ewart Va            | alley I ree dei | tector |                |               |         |       | -                |                     |                       |                       |
|------------------|-------------------------|---------------------------|---------------|---------------|-----------------|-------------|---------------------|-----------------|--------|----------------|---------------|---------|-------|------------------|---------------------|-----------------------|-----------------------|
|                  |                         | BBS                       | Н             |               | HB              |             | RB                  | EP              | MYSP   |                | UNKN          |         |       |                  |                     |                       |                       |
| Night of         | Operated Okay?          | BBSH                      | big brown     | silver-hiared | hoary bat       | eastern red | eastern pipistrelle | RBEP            | MYSP   | high-frequency | low-frequency | unknown | Total | Wind Speed (m/s) | Barometric Pressure | Relative Humidity (%) | Temperature (celsius) |
| 08/11/08         | Yes                     |                           |               |               |                 |             |                     |                 | 56     | 21             |               |         | 77    | 7.2              | 934                 |                       | 12.4                  |
| 08/12/08         | Yes                     |                           |               |               |                 |             |                     |                 | 44     | 12             |               |         | 56    | 2.5              | 938                 |                       | 15.3                  |
| 08/13/08         | Yes                     |                           |               |               |                 |             |                     |                 | 102    | 41             |               |         | 143   | 5.5              | 941                 |                       | 14.4                  |
| 08/14/08         | Yes                     |                           |               |               |                 |             |                     |                 | 72     | 40             |               |         | 112   | 3.5              | 944                 |                       | 16.3                  |
| 08/15/08         | Yes                     |                           |               |               |                 |             |                     |                 | 132    | 57             |               |         | 189   | 7.8              | 937                 |                       | 15.0                  |
| 08/16/08         | Yes                     |                           |               |               |                 |             |                     |                 | 495    | 67             |               |         | 562   | 6.0              | 940                 |                       | 15.2                  |
| 08/17/08         | Yes                     |                           |               |               |                 |             |                     | 1               | 275    | 79             |               |         | 355   | 7.4              | 937                 |                       | 15.3                  |
| 08/18/08         | Yes                     |                           |               |               |                 |             |                     | 1               | 331    | 100            |               |         | 432   | 11.7             | 942                 |                       | 7.7                   |
| 08/19/08         | Yes                     |                           |               |               |                 |             |                     |                 | 90     | 56             |               |         | 146   | 9.7              | 947                 |                       | 11.6                  |
| 08/20/08         | Yes                     |                           |               |               |                 |             |                     |                 | 489    | 176            |               |         | 665   | 6.2              | 954                 |                       | 17.2                  |
| 08/21/08         | Yes                     |                           |               |               |                 |             |                     | 3               | 287    | 157            |               |         | 447   | 3.3              | 955                 |                       | 20.3                  |
| 08/22/08         | Yes                     |                           |               |               |                 |             |                     | 3               | 280    | 143            |               |         | 426   | 8.3              | 948                 |                       | 16.5                  |
| 08/23/08         | Yes                     |                           |               |               |                 |             |                     | 3               | 400    | 255            |               |         | 658   | 7.0              | 939                 |                       | 15.9                  |
| 08/24/08         | Yes                     |                           |               |               |                 |             | 1                   |                 | 154    | 79             |               |         | 234   | 11.2             | 939                 |                       | 8.8                   |
| 08/25/08         | Yes                     |                           |               |               |                 |             |                     |                 | 268    | 129            | 1             |         | 398   | 9.8              | 945                 |                       | 10.5                  |
| 08/26/08         | Yes                     |                           |               |               |                 |             |                     |                 | 79     | 109            |               |         | 188   | 5.2              | 948                 |                       | 15.6                  |
| 08/27/08         | Yes                     |                           |               |               |                 |             |                     |                 | 203    | 187            |               |         | 390   | 5.6              | 946                 |                       | 14.9                  |
| By S             | Species                 | 0                         | 0             | 0             | 0               | 0           | 1                   | 11              | 3757   | 1708           | 1             | 0       | 5478  |                  |                     |                       |                       |
| Rv               | / Guild                 | 0                         |               |               | 0               |             | 12                  |                 | 3757   |                | 1709          |         | 5478  | ļ                |                     |                       |                       |
| Uy               | Cand                    | BBS                       | Н             |               | HB              |             | RB                  | EP              | MYSP   |                | UNKN          |         | Total |                  |                     |                       |                       |

| Appendix B Table | 11. Summarv of fall 2 | 008 acoustic I | bat data  | and we      | eather during | each su    | rvev night at t | he Witham M | let High detec | tor        |            |         |          |           |            |             |               |
|------------------|-----------------------|----------------|-----------|-------------|---------------|------------|-----------------|-------------|----------------|------------|------------|---------|----------|-----------|------------|-------------|---------------|
|                  |                       | B              | BSH       |             | HB            |            | RBEP            | ,           | MYSP           |            | UNKN       |         |          |           |            |             |               |
|                  | Dkay?                 |                |           | þe          |               | T          | oistrelle       |             |                | ency       | incy       |         | Total    | (s/m) pē  | c Pressure | umidity (%) | ıre (celsius) |
| Night of         | Operated (            | BBSH           | big brown | silver-hiar | hoary bat     | eastern re | eastern pi      | RBEP        | MYSP           | high-frequ | low-freque | unknown |          | Wind Spee | Barometri  | Relative H  | Temperatu     |
| 09/09/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 10.2      | 925        |             | 7.8           |
| 09/10/08         | Yes                   |                |           |             |               |            |                 |             |                |            | 1          |         | 1        | 4.0       | 936        |             | 6.2           |
| 09/11/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 5.6       | 933        |             | 9.6           |
| 09/12/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 5.6       | 924        |             | 12.5          |
| 09/13/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 10.0      | 924        |             | 13.3          |
| 09/14/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 15.5      | 912        |             | 17.8          |
| 09/15/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 7.4       | 926        |             | 8.5           |
| 09/16/08         | Yes                   |                |           |             |               |            |                 |             |                | 1          |            |         | 1        | 5.6       | 930        |             | 7.9           |
| 09/17/08         | Yes                   | 1              |           |             |               |            |                 |             |                |            |            |         | 1        | 8.0       | 928        |             | 9.6           |
| 09/18/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 4.4       | 938        |             | 2.1           |
| 09/19/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 7.8       | 937        |             | 5.7           |
| 09/20/08         | Yes                   |                |           |             |               |            |                 |             |                |            | 1          |         | 1        | 8.4       | 931        |             | 11.7          |
| 09/21/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 3.6       | 938        |             | 5.0           |
| 09/22/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 2.6       | 941        |             | 6.0           |
| 09/23/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 7.2       | 940        |             | 8.1           |
| 09/24/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 4.4       | 942        |             | 13.7          |
| 09/25/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 7.6       | 943        |             | 12.3          |
| 09/26/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 8.3       | 937        |             | 11.5          |
| 09/27/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 5.6       | 930        |             | 15.8          |
| 09/28/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 7.6       | 923        |             | 12.5          |
| 09/29/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 4.2       | 926        |             | 8.8           |
| 09/30/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 5.6       | 920        |             | 9.4           |
| 10/01/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 3.8       | 912        |             | 9.4           |
| 10/02/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 8.9       | 913        |             | 3.0           |
| 10/03/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 14.8      | 920        |             | 3.7           |
| 10/04/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 8.0       | 930        |             | 2.9           |
| 10/05/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 6.4       | 932        |             | 2.2           |
| 10/06/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 12.7      | 931        |             | 1.9           |
| 10/07/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 14.2      | 928        |             | 5.8           |
| 10/08/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 7.7       | 922        |             | 9.7           |
| 10/09/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 10.4      | 923        |             | 9.2           |
| 10/10/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 9.0       | 934        |             | 6.2           |
| 10/11/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 8.1       | 939        |             | 5.1           |
| 10/12/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 7.2       | 937        |             | 8.2           |
| 10/13/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 7.6       | 934        |             | 7.5           |
| 10/14/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 10.2      | 927        |             | 5.4           |
| 10/15/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 5.8       | 925        |             | 8.5           |
| 10/16/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 10.4      | 923        |             | 3.7           |
| 10/17/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 7.8       | 928        |             | -0.8          |
| 10/18/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 4.7       | 935        |             | -1.7          |
| 10/19/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 1.7       | 934        |             | 2.5           |
| 10/20/08         | Yes                   |                |           |             |               |            |                 |             |                |            |            |         | 0        | 5.5       | 923        |             | 4.0           |
| By S             | Species               | 1              | 0         | 0           | 0             | 0          | 0               | 0           | 0              | 1          | 2          | 0       | 1        |           |            |             |               |
| Bu               | Guild                 |                | 1         |             | 0             |            | 0               |             | 0              |            | 3          |         | <u> </u> |           |            |             |               |
| Бу               | Guilu                 | В              | BSH       |             | HB            |            | RBEP            |             | MYSP           |            | UNKN       |         | Total    | ]         |            |             |               |

| Appendix B Table | 12. Summary of fall 2 | 008 acoustic | bat data  | a and we      | eather during | each su     | rvey night at t     | he Whitham | Met Low dete | ctor           |               |         |        |                  |                         |                       |                       |
|------------------|-----------------------|--------------|-----------|---------------|---------------|-------------|---------------------|------------|--------------|----------------|---------------|---------|--------|------------------|-------------------------|-----------------------|-----------------------|
|                  |                       | BI           | BSH       |               | HB            |             | RBEP                |            | MYSP         |                | UNKN          |         |        |                  | (                       |                       |                       |
| Night of         | Operated Okay?        | BBSH         | big brown | silver-hiared | hoary bat     | eastern red | eastern pipistrelle | RBEP       | ЧSР          | high-frequency | low-frequency | unknown | Total  | Wind Speed (m/s) | Wind Direction (degrees | Relative Humidity (%) | Temperature (celsius) |
| 09/16/08         | No                    |              |           |               |               |             |                     |            | 1            | 1              |               |         | 2      |                  |                         |                       |                       |
| 09/17/08         | No                    |              |           |               |               |             |                     |            |              | 1              |               |         | 1      |                  |                         |                       |                       |
| 09/18/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 09/19/08         | No                    |              |           |               |               |             |                     |            |              | 1              |               |         | 1      |                  |                         |                       |                       |
| 09/20/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 09/21/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 09/22/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 09/23/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 09/24/08         | No                    |              |           |               |               |             |                     |            |              |                | 1             |         | 1      |                  |                         |                       |                       |
| 09/25/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 09/26/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 09/27/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 09/28/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 09/29/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 09/30/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/01/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/02/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/03/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/04/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/05/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/06/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | ů<br>0 |                  |                         |                       |                       |
| 10/07/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/07/08         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/00/00         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/00/00         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/10/00         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/11/00         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/12/00         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/13/00         | No                    |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/14/00         | No                    |              |           |               |               |             | <u> </u>            |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/10/08         | NO                    |              |           |               |               |             | <u> </u>            |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/10/08         | INU<br>No             |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/17/08         | INO<br>No             |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/18/08         | INO                   |              |           |               |               |             |                     |            |              |                |               |         | 0      |                  |                         |                       |                       |
| 10/19/08         | INO                   |              |           |               |               |             |                     |            |              |                |               |         | U      |                  |                         |                       |                       |
| 10/20/08         | INO                   |              |           |               |               |             |                     |            |              |                |               |         | U      |                  |                         |                       | I                     |
| Ву 5             | precies               | U            |           | U             | 0             | U           | ^                   | U          | 1            | 3              |               | U       | 5      |                  |                         |                       |                       |
| By               | Guild                 |              |           |               | U             |             | U                   |            |              |                | 4             |         | Tatal  |                  |                         |                       |                       |
|                  |                       | BI           | 82H       |               | НВ            |             | KBEP                |            | MY SP        |                | UNKN          |         | i otal |                  |                         |                       |                       |

| Appendix B Table | <ol> <li>Summary of fall 20</li> </ol> | 008 acoustic bat data a | and weather d | luring eac    | h survey nigh | nt at the Whit | ham Met Tree        | e detector |      |                |               |         |       |                  |                         |                       |                       |
|------------------|----------------------------------------|-------------------------|---------------|---------------|---------------|----------------|---------------------|------------|------|----------------|---------------|---------|-------|------------------|-------------------------|-----------------------|-----------------------|
|                  |                                        | BB                      | SH            |               | HB            |                | RBEP                |            | MYSP |                | UNKN          |         |       |                  | (                       |                       |                       |
| Night of         | Operated Okay?                         | BBSH                    | big brown     | silver-hiared | hoary bat     | eastern red    | eastern pipistrelle | RBEP       | МУSР | high-frequency | low-frequency | unknown | Total | Wind Speed (m/s) | Wind Direction (degrees | Relative Humidity (%) | Temperature (celsius) |
| 09/09/08         | Yes                                    |                         |               |               |               |                |                     |            |      |                |               |         | 0     |                  |                         |                       |                       |
| 09/10/08         | Yes                                    |                         |               |               |               |                |                     |            |      |                | 1             |         | 1     |                  |                         |                       |                       |
| 09/11/08         | Yes                                    |                         |               |               |               |                |                     |            |      |                |               |         | 0     |                  |                         |                       |                       |
| 09/12/08         | Yes                                    |                         |               |               |               |                |                     |            |      |                |               |         | 0     |                  |                         |                       |                       |
| 09/13/08         | Yes                                    |                         |               |               |               |                |                     |            |      | 1              |               |         | 1     |                  |                         |                       |                       |
| 09/14/08         | Yes                                    |                         |               |               |               |                |                     |            |      |                |               |         | 0     |                  |                         |                       |                       |
| 09/15/08         | Yes                                    |                         |               |               |               |                |                     |            |      |                |               |         | 0     |                  |                         |                       |                       |
| By S             | pecies                                 | 0                       | 0             | 0             | 0             | 0              | 0                   | 0          | 0    | 1              | 1             | 0       | 2     |                  |                         |                       |                       |
| By               | Guild                                  | (                       |               |               | 0             |                | 0                   |            | 0    |                | 2             |         | 2     |                  |                         |                       |                       |
| Бу               | Guila                                  | BB                      | SH            |               | HB            |                | RBEP                |            | MYSP |                | UNKN          |         | Total |                  |                         |                       |                       |

|      |              |                               | Appondix B Table | 14 Summa      | ny of available fa | Il bat datacto | or curvove (r | oculte ropor | tod for indivi | dual detectors)                                                                                                                 |
|------|--------------|-------------------------------|------------------|---------------|--------------------|----------------|---------------|--------------|----------------|---------------------------------------------------------------------------------------------------------------------------------|
| Year | Project      | Project Location              | Habitat          | Height<br>(m) | Detector<br>Nights | Start          | End           | Calls        | Rate           |                                                                                                                                 |
|      |              |                               |                  |               | Tree or Low To     | wer detecto    | ors (10 m or  | below)       |                |                                                                                                                                 |
| 2007 | Rollins      | Rollins, Penobscot Cty, ME    | forest edge      | 3             | 114                | 7/12           | 11/2          | 12291        | 107.8          | Stantec Consulting Services Inc. 2007. F                                                                                        |
| 2007 | Rollins      | Rollins, Penobscot Cty, ME    | forest edge      | 3             | 53                 | 8/2            | 10/16         | 5360         | 101.1          | Stantec Consulting Services Inc. 2007. F                                                                                        |
| 2007 | Rollins      | Rollins, Penobscot Cty, ME    | forest edge      | 3             | 107                | 7/12           | 11/2          | 8996         | 84.1           | Stantec Consulting Services Inc. 2007. F<br>and Acoustic Bat Surveys for the Rollins                                            |
| 2005 | Lempster     | Lempster, Sullivan Cty, NH    | forest edge      | 7.5           | 34                 | 9/20           | 10/31         | 27           | 0.8            | Woodlot Alternatives, Inc. 2005. Summa<br>Keeler (CEI) from Bob Roy (Woodlot Alte                                               |
| 2005 | Lempster     | Lempster, Sullivan Cty, NH    | forest edge      | 2             | 42                 | 9/20           | 10/31         | 2            | 0              | Woodlot Alternatives, Inc. 2005. Summa<br>Keeler (CEI) from Bob Roy (Woodlot Alte                                               |
| 2006 | Lempster     | Lempster, Sullivan Cty, NH    | forest edge      | 10            | 29                 | 9/9            | 10/24         | 2            | 0.1            | Woodlot Alternatives, Inc. 2007. A Fall 2<br>Mountain Wind Power Project in Lempste                                             |
| 2006 | Lempster     | Lempster, Sullivan Cty, NH    | forest edge      | 3             | 44                 | 9/9            | 10/24         | 384          | 8.7            | Woodlot Alternatives, Inc. 2007. A Fall 2<br>Mountain Wind Power Project in Lempste                                             |
| 2005 | High Sheldon | Sheldon, Wyoming Cty, NY      | field            | 2             | 49                 | 8/1            | 10/4          | 5535         | 113            | Woodlot Alternatives, Inc. 2006. A Fall 2<br>Migration at the Proposed High Sheldon                                             |
| 2005 | Howard       | Howard, Steuben Cty, NY       | field            | 2             | 25                 | 8/3            | 8/27          | 1493         | 51.5           | Woodlot Alternatives, Inc. 2005. A Fall 2<br>Wind Power Project in Howard, New York                                             |
| 2005 | Jordanville  | Jordanville, Herkimer Cty, NY | field            | 2             | 34                 | 8/12           | 9/22          | 124          | 4.4            | Woodlot Alternatives, Inc. 2005. A Fall 2<br>Proposed Jordanville Wind Project in Jord                                          |
| 2005 | Marble River | Churubusco, Clinton Cty, NY   | field            | 10            | 34                 | 8/1            | 10/11         | 150          | 4.4            | Woodlot Alternatives, Inc. 2005. A Fall 2<br>Migration at the Proposed Marble River V<br>AES Corporation.                       |
| 2005 | Marble River | Churubusco, Clinton Cty, NY   | field            | 2             | 18                 | 8/1            | 10/11         | 113          | 6.3            | Woodlot Alternatives, Inc. 2005. A Fall 2<br>Migration at the Proposed Marble River V<br>AFS Corporation                        |
| 2005 | Top Notch    | Fairfield, Herkimer Cty, NY   | field            | 2             | 34                 | 8/19           | 9/21          | 44           | 1.3            | Woodlot Alternatives, Inc. 2005. A Sumr<br>Migration at the Proposed Top Notch Wir<br>Renewable.                                |
| 2005 | West Hill    | Munnsville, Madison Cty, NY   | field            | 2             | 30                 | 8/1            | 10/21         | 10           | 0.3            | Woodlot Alternatives, Inc. 2005. Summe<br>Munnsville Wind Project in Munnsville. No                                             |
| 2005 | Horse Creek  | Clayton, Jefferson Cty, NY    | forest edge      | 2             | 33                 | 8/19           | 9/20          | 154          | 4.7            | Woodlot Alternatives, Inc. 2005. A Fall 2<br>Migration at the Proposed Clayton Wind R<br>Renewable.                             |
| 2005 | Moresville   | Stamford, Delaware Cty, NY    | forest edge      | 2             | 58                 | 8/15           | 10/15         | 280          | 4.8            | Woodlot. 2007. A Spring and Fall 2005 R<br>Moresville Energy Center in Stamford and<br>MD.                                      |
| 2007 | Record Hill  | Roxbury, Oxford Cty, ME       | forest edge      | 2             | 13                 | 8/9            | 8/21          | 148          | 11.4           | Stantec Consulting Services Inc. 2007. I<br>of Bird and Bat Migration Conducted at th<br>Prepared for Independence Wind, LLC.   |
| 2007 | Record Hill  | Roxbury, Oxford Cty, ME       | forest edge      | 5             | 4                  | 8/9            | 8/21          | 1            | 0.3            | Stantec Consulting Services Inc. 2007. I<br>of Bird and Bat Migration Conducted at th<br>Prepared for Independence Wind, LLC.   |
| 2007 | Record Hill  | Roxbury, Oxford Cty, ME       | forest edge      | 3             | 13                 | 8/9            | 8/21          | 524          | 40.3           | Stantec Consulting Services Inc. 2007. I<br>of Bird and Bat Migration Conducted at th<br>Prepared for Independence Wind, LLC.   |
| 2007 | Record Hill  | Roxbury, Oxford Cty, ME       | forest edge      | 10            | 13                 | 8/9            | 8/21          | 1576         | 121.2          | Stantec Consulting Services Inc. 2007.<br>of Bird and Bat Migration Conducted at th<br>Prepared for Independence Wind, LLC.     |
|      | -            |                               |                  | •             | ME                 | T Tower De     | tectors       | •            |                |                                                                                                                                 |
| 2007 | Ball Hill    | Villenova, Chautauqua Cty, NY | field            | 40            | 77                 | 7/30           | 10/14         | 246          | 3.2            | Stantec Consulting Services Inc. 2008. A<br>Migration at the Proposed Ball Hill Windp<br>Environmental Power, LLC and Ecology a |

#### Reference

all 2007 Bird and Bat Migration Survey Report: Visual, Radar *Nind* Project. Prepared for FirstWind Management, LLC. all 2007 Bird and Bat Migration Survey Report: Visual, Radar *Nind* Project. Prepared for FirstWind Management, LLC. all 2007 Bird and Bat Migration Survey Report: Visual, Radar *Nind* Project. Prepared for FirstWind Management, LLC. ry of fall 2005 Lempster bat survey. Memorandum to Jeff rnatives, Inc.) dated November 18, 2005. ry of fall 2005 Lempster bat survey. Memorandum to Jeff rnatives, Inc.) dated November 18, 2005.

2006 Survey of Bird and Bat Migration at the Proposed Lempster ar, New Hampshire. Prepared for Lempster Wind, LLC. 2006 Survey of Bird and Bat Migration at the Proposed Lempster ar, New Hampshire. Prepared for Lempster Wind, LLC. 2005 Radar, Visual, and Acoustic Survey of Bird and Bat Wind Project in Sheldon, New York. Prepared for Invenergy. 2005 Survey of Bird and Bat Migration at the Proposed Howard K. Prepared for Everpower Global.

005 Radar and Acoustic Survey of Bird and Bat Migration at the danville, New York. Prepared for Community Energy, Inc. 005 Radar, Visual, and Acoustic Survey of Bird and Bat /ind Project in Clinton and Ellenburg, New York. Prepared for

005 Radar, Visual, and Acoustic Survey of Bird and Bat /ind Project in Clinton and Ellenburg, New York. Prepared for

ner and Fall 2005 Radar and Acoustic Surveys of Bird and Bat d Project in Fairfield, New York. Prepared for PPM Atlantic

er and Fall 2005 Bird and Bat Surveys at the Proposed ew York. Prepared for AES-EHN NY Wind, LLC. 205 Radar, Visual, and Acoustic Survey of Bird and Bat Project in Clayton, New York. Prepared for PPM Atlantic

adar and Acoustic Survey of Bird Migration at the Proposed Roxbury, New York. Prepared for Invenergy, LLC. Rockville,

Fall 2007 Migration Report: Visual, Acoustic and Radar Surveys e Proposed Record Hill Wind Project in Roxbury, Maine.

Fall 2007 Migration Report: Visual, Acoustic and Radar Surveys e Proposed Record Hill Wind Project in Roxbury, Maine.

Fall 2007 Migration Report: Visual, Acoustic and Radar Surveys e Proposed Record Hill Wind Project in Roxbury, Maine.

Fall 2007 Migration Report: Visual, Acoustic and Radar Surveys e Proposed Record Hill Wind Project in Roxbury, Maine.

Fall 2007 Radar, Visual, and Acoustic Survey of Bird and Bat ark in Villenova and Hanover, New York. Prepared for Noble and Environment, Inc.

|      |               |                               | Appendix B Table | 14. Summar    | y of available fal | bat detecto | or surveys (re | esults report | ed for individ | lual detectors)                                                                                                                    |
|------|---------------|-------------------------------|------------------|---------------|--------------------|-------------|----------------|---------------|----------------|------------------------------------------------------------------------------------------------------------------------------------|
| Year | Project       | Project Location              | Habitat          | Height<br>(m) | Detector<br>Nights | Start       | End            | Calls         | Rate           |                                                                                                                                    |
|      |               |                               |                  |               |                    |             |                |               |                |                                                                                                                                    |
| 2007 | Ball Hill     | Villenova, Chautauqua Cty, NY | field            | 20            | 77                 | 7/30        | 10/14          | 295           | 3.8            | Stantec Consulting Services Inc. 2008. A I<br>Migration at the Proposed Ball Hill Windpa<br>Environmental Power, LLC and Ecology a |
| 2007 | Record Hill   | Roxbury, Oxford Cty, ME       | forest edge      | 45            | 46                 | 8/22        | 10/18          | 7             | 0.2            | Stantec Consulting Services Inc. 2007. F<br>of Bird and Bat Migration Conducted at the<br>Prepared for Independence Wind, LLC.     |
| 2007 | Record Hill   | Roxbury, Oxford Cty, ME       | forest edge      | 20            | 58                 | 8/22        | 10/18          | 93            | 1.6            | Stantec Consulting Services Inc. 2007. F<br>of Bird and Bat Migration Conducted at the<br>Prepared for Independence Wind, LLC.     |
| 2007 | Record Hill   | Roxbury, Oxford Cty, ME       | forest edge      | 45            | 59                 | 8/22        | 10/19          | 18            | 0.4            | Stantec Consulting Services Inc. 2007. F<br>of Bird and Bat Migration Conducted at the<br>Prepared for Independence Wind, LLC.     |
| 2007 | Record Hill   | Roxbury, Oxford Cty, ME       | forest edge      | 20            | 59                 | 8/22        | 10/19          | 252           | 5.1            | Stantec Consulting Services Inc. 2007. F<br>of Bird and Bat Migration Conducted at the<br>Prepared for Independence Wind, LLC.     |
| 2005 | Dans Mountain | Loarville, Allegany Cty, MD   | forest edge      | 11            | 53                 | 8/1         | 9/22           | 574           | 10.8           | Woodlot Alternatives, Inc. 2005. Fall 2009<br>Wind Project in Frostburg, Maryland. Prep                                            |
| 2005 | Dans Mountain | Loarville, Allegany Cty, MD   | forest edge      | 23            | 31                 | 8/1         | 9/22           | 388           | 12.5           | Woodlot Alternatives, Inc. 2005. Fall 2009<br>Wind Project in Frostburg, Maryland. Prep                                            |
| 2007 | Rollins       | Rollins, Penobscot Cty, ME    | forest edge      | 40            | 95                 | 7/12        | 11/2           | 66            | 0.7            | Stantec Consulting Services Inc. 2007. Fa<br>and Acoustic Bat Surveys for the Rollins V                                            |
| 2007 | Rollins       | Rollins, Penobscot Cty, ME    | forest edge      | 20            | 106                | 7/12        | 11/2           | 155           | 1.5            | Stantec Consulting Services Inc. 2007. Fa<br>and Acoustic Bat Surveys for the Rollins V                                            |
| 2006 | Kibby         | Kibby, Franklin Cty, ME       | forest edge      | 45            | 72                 | 6/20        | 10/25          | 18            | 0.3            | Woodlot Alternatives, Inc. 2006. Summer<br>Power Project in Kibby and Skinner Towns<br>Development Inc.                            |
| 2006 | Kibby         | Kibby, Franklin Cty, ME       | forest edge      | 45            | 76                 | 6/20        | 10/25          | 0             | 0              | Woodlot Alternatives, Inc. 2006. Summer<br>Power Project in Kibby and Skinner Towns<br>Development Inc.                            |
| 2006 | Kibby         | Kibby, Franklin Cty, ME       | forest edge      | 20            | 44                 | 6/20        | 10/25          | 4             | 0.1            | Woodlot Alternatives, Inc. 2006. Summer<br>Power Project in Kibby and Skinner Towns<br>Development Inc.                            |
| 2006 | Kibby         | Kibby, Franklin Cty, ME       | forest edge      | 45            | 20                 | 6/20        | 10/25          | 0             | 0              | Woodlot Alternatives, Inc. 2006. Summer<br>Power Project in Kibby and Skinner Towns<br>Development Inc.                            |
| 2006 | Redington     | Redington, Franklin Cty, ME   | forest edge      | 15            | 21                 | 8/10        | 10/24          | 0             | 0              | Woodlot Alternatives, Inc. 2006. Fall 200<br>Project. Prepared for Maine Mountain Pow                                              |
| 2006 | Redington     | Redington, Franklin Cty, ME   | forest edge      | 15            | 48                 | 8/10        | 10/24          | 0             | 0              | Woodlot Alternatives, Inc. 2006. Fall 200<br>Project. Prepared for Maine Mountain Pow                                              |
| 2006 | Redington     | Redington, Franklin Cty, ME   | forest edge      | 30            | 29                 | 8/10        | 10/24          | 0             | 0              | Woodlot Alternatives, Inc. 2006. Fall 200<br>Project. Prepared for Maine Mountain Pow                                              |
| 2006 | Redington     | Redington, Franklin Cty, ME   | forest edge      | 30            | 37                 | 8/10        | 10/24          | 0             | 0              | Woodlot Alternatives, Inc. 2006. Fall 200<br>Project. Prepared for Maine Mountain Pow                                              |
| 2006 | Stetson       | Stetson, Penobscot Cty, ME    | forest edge      | 30            | 73                 | 6/28        | 10/16          | 8             | 0.1            | Woodlot Alternatives, Inc. 2007. A Fall 20<br>Mountain Wind Power Project in Washingt                                              |

Fall 2007 Radar, Visual, and Acoustic Survey of Bird and Bat ark in Villenova and Hanover, New York. Prepared for Noble and Environment, Inc.

Fall 2007 Migration Report: Visual, Acoustic and Radar Surveys e Proposed Record Hill Wind Project in Roxbury, Maine.

Fall 2007 Migration Report: Visual, Acoustic and Radar Surveys e Proposed Record Hill Wind Project in Roxbury, Maine.

Fall 2007 Migration Report: Visual, Acoustic and Radar Surveys e Proposed Record Hill Wind Project in Roxbury, Maine.

Fall 2007 Migration Report: Visual, Acoustic and Radar Surveys e Proposed Record Hill Wind Project in Roxbury, Maine.

5 Bat Echolocation Surveys at the Proposed Dan's Mountain pared for US Wind Force.

5 Bat Echolocation Surveys at the Proposed Dan's Mountain pared for US Wind Force.

all 2007 Bird and Bat Migration Survey Report: Visual, Radar Wind Project. Prepared for FirstWind Management, LLC.

all 2007 Bird and Bat Migration Survey Report: Visual, Radar Wind Project. Prepared for FirstWind Management, LLC. rr/Fall 2006 Survey of Bat Activity at the Proposed Kibby Wind Iships, Maine. Prepared for TransCanada Maine Wind

r/Fall 2006 Survey of Bat Activity at the Proposed Kibby Wind ships, Maine. Prepared for TransCanada Maine Wind

r/Fall 2006 Survey of Bat Activity at the Proposed Kibby Wind ships, Maine. Prepared for TransCanada Maine Wind

r/Fall 2006 Survey of Bat Activity at the Proposed Kibby Wind ships, Maine. Prepared for TransCanada Maine Wind

06 Bat Detector Surveys at the Proposed Redington Wind wer.

06 Bat Detector Surveys at the Proposed Redington Wind wer.

06 Bat Detector Surveys at the Proposed Redington Wind wer.

06 Bat Detector Surveys at the Proposed Redington Wind wer.

006 Survey of Bird and Bat Migration at the Proposed Stetson ton County, Maine. Prepared for Evergreen Wind V, LLC.

|      |              |                               | Appendix B Table | e 14. Summar  | y of available fal | l bat detecto | or surveys (re | esults report | ted for indivi | dual detectors)                                                                                                                     |
|------|--------------|-------------------------------|------------------|---------------|--------------------|---------------|----------------|---------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Year | Project      | Project Location              | Habitat          | Height<br>(m) | Detector<br>Nights | Start         | End            | Calls         | Rate           |                                                                                                                                     |
| 2006 | Stetson      | Stetson, Penobscot Cty, ME    | forest edge      | 30            | 76                 | 6/28          | 10/16          | 170           | 2.2            | Woodlot Alternatives, Inc. 2007. A Fall 20<br>Mountain Wind Power Project in Washingt                                               |
| 2006 | Stetson      | Stetson, Penobscot Cty, ME    | forest edge      | 15            | 105                | 6/28          | 10/16          | 108           | 1              | Woodlot Alternatives, Inc. 2007. A Fall 20<br>Mountain Wind Power Project in Washingt                                               |
| 2006 | Stetson      | Stetson, Penobscot Cty, ME    | forest edge      | 15            | 107                | 6/28          | 10/16          | 651           | 6.1            | Woodlot Alternatives, Inc. 2007. A Fall 20<br>Mountain Wind Power Project in Washingt                                               |
| 2005 | Lempster     | Lempster, Sullivan Cty, NH    | forest edge      | 15            | 42                 | 9/20          | 10/31          | 14            | 0.3            | Woodlot Alternatives, Inc. 2005. Summar<br>Keeler (CEI) from Bob Roy (Woodlot Alter                                                 |
| 2006 | Lempster     | Lempster, Sullivan Cty, NH    | forest edge      | 40            | 43                 | 9/9           | 10/24          | 16            | 0.4            | Woodlot Alternatives, Inc. 2007. A Fall 20<br>Mountain Wind Power Project in Lempster                                               |
| 2006 | Brandon      | Brandon, Franklin, Cty, NY    | field            | 12            | 62                 | 7/25          | 10/4           | 1287          | 20.8           | Woodlot Alternatives, Inc. 2006. Fall 200<br>Chateaugay Windparks in Western New Y<br>Power, LLC.                                   |
| 2005 | High Sheldon | Sheldon, Wyoming Cty, NY      | field            | 15            | 65                 | 8/1           | 10/4           | 335           | 5.2            | Woodlot Alternatives, Inc. 2006. A Fall 20<br>Migration at the Proposed High Sheldon V                                              |
| 2005 | High Sheldon | Sheldon, Wyoming Cty, NY      | field            | 30            | 58                 | 8/1           | 10/4           | 137           | 2.4            | Woodlot Alternatives, Inc. 2006. A Fall 20<br>Migration at the Proposed High Sheldon V                                              |
| 2005 | Howard       | Howard, Steuben Cty, NY       | field            | 30            | 13                 | 8/3           | 8/19           | 30            | 2.3            | Woodlot Alternatives, Inc. 2005. A Fall 20<br>Wind Power Project in Howard, New York                                                |
| 2005 | Howard       | Howard, Steuben Cty, NY       | field            | 27            | 15                 | 8/3           | 8/14           | 30            | 2              | Woodlot Alternatives, Inc. 2005. A Fall 20<br>Wind Power Project in Howard, New York                                                |
| 2005 | Jordanville  | Jordanville, Herkimer Cty, NY | field            | 15            | 34                 | 8/12          | 9/22           | 143           | 4.2            | Woodlot Alternatives, Inc. 2005. A Fall 20<br>Proposed Jordanville Wind Project in Jord                                             |
| 2005 | Jordanville  | Jordanville, Herkimer Cty, NY | field            | 30            | 41                 | 8/12          | 9/22           | 255           | 6.2            | Woodlot Alternatives, Inc. 2005. A Fall 20<br>Proposed Jordanville Wind Project in Jord                                             |
| 2005 | Marble River | Churubusco, Clinton Cty, NY   | field            | 20            | 39                 | 8/1           | 10/11          | 243           | 6.2            | Woodlot Alternatives, Inc. 2005. A Fall 20<br>Migration at the Proposed Marble River W<br>AES Corporation.                          |
| 2005 | Top Notch    | Fairfield, Herkimer Cty, NY   | field            | 15            | 34                 | 8/19          | 9/21           | 30            | 0.9            | Woodlot Alternatives, Inc. 2005. A Summ<br>Migration at the Proposed Top Notch Wind<br>Renewable.                                   |
| 2005 | Top Notch    | Fairfield, Herkimer Cty, NY   | field            | 30            | 34                 | 8/19          | 9/21           | 99            | 3              | Woodlot Alternatives, Inc. 2005. A Summ<br>Migration at the Proposed Top Notch Wind<br>Renewable.                                   |
| 2005 | West Hill    | Munnsville, Madison Cty, NY   | field            | 15            | 47                 | 8/1           | 10/21          | 179           | 3.8            | Woodlot Alternatives, Inc. 2005. Summer<br>Munnsville Wind Project in Munnsville, Ne                                                |
| 2005 | West Hill    | Munnsville, Madison Cty, NY   | field            | 30            | 52                 | 8/1           | 10/21          | 106           | 2              | Woodlot Alternatives, Inc. 2005. Summer<br>Munnsville Wind Project in Munnsville, Ne                                                |
| 2006 | Steuben      | Hartsville, Steuben Cty, NY   | field            | 15            | 76                 | 7/26          | 10/10          | 119           | 1.6            | Environmental Design and Research (RDa<br>Cohocton Wind Power Project. Town of Co<br>Canandaigua Wind Partners, LLC.                |
| 2006 | Steuben      | Hartsville, Steuben Cty, NY   | field            | 30            | 49                 | 7/26          | 10/10          | 84            | 1.7            | Environmental Design and Research (RD&<br>Cohocton Wind Power Project. Town of Co<br>Canandaigua Wind Partners, LLC.                |
| 2006 | Wethersfield | Wethersfield, Wyoming Cty, NY | field            | 15            | 54                 | 7/25          | 10/9           | 0             | 0              | Woodlot Alternatives, Inc. 2006. A Fall 20<br>Centerville and Wethersfield Windparks in<br>and Environment, Inc. and Noble Power, L |
| 2006 | Wethersfield | Wethersfield, Wyoming Cty, NY | field            | 30            | 26                 | 7/25          | 10/9           | 22            | 0.8            | Woodlot Alternatives, Inc. 2006. A Fall 20<br>Centerville and Wethersfield Windparks in<br>and Environment, Inc. and Noble Power, L |

006 Survey of Bird and Bat Migration at the Proposed Stetson ton County, Maine. Prepared for Evergreen Wind V, LLC. 006 Survey of Bird and Bat Migration at the Proposed Stetson ton County, Maine. Prepared for Evergreen Wind V, LLC. 006 Survey of Bird and Bat Migration at the Proposed Stetson ton County, Maine. Prepared for Evergreen Wind V, LLC. ry of fall 2005 Lempster bat survey. Memorandum to Jeff rnatives, Inc.) dated November 18, 2005.

006 Survey of Bird and Bat Migration at the Proposed Lempster r, New Hampshire. Prepared for Lempster Wind, LLC. 06 Bat Detector Surveys at the Proposed Brandon and York. Prepared for Ecology and Environment, Inc. and Noble

005 Radar, Visual, and Acoustic Survey of Bird and Bat
Nind Project in Sheldon, New York. Prepared for Invenergy.
005 Radar, Visual, and Acoustic Survey of Bird and Bat
Nind Project in Sheldon, New York. Prepared for Invenergy.
005 Survey of Bird and Bat Migration at the Proposed Howard
c. Prepared for Everpower Global.

005 Survey of Bird and Bat Migration at the Proposed Howard x. Prepared for Everpower Global.

005 Radar and Acoustic Survey of Bird and Bat Migration at the danville, New York. Prepared for Community Energy, Inc. 005 Radar and Acoustic Survey of Bird and Bat Migration at the danville, New York. Prepared for Community Energy, Inc. 005 Radar, Visual, and Acoustic Survey of Bird and Bat /ind Project in Clinton and Ellenburg, New York. Prepared for

ner and Fall 2005 Radar and Acoustic Surveys of Bird and Bat d Project in Fairfield, New York. Prepared for PPM Atlantic

ner and Fall 2005 Radar and Acoustic Surveys of Bird and Bat d Project in Fairfield, New York. Prepared for PPM Atlantic

r and Fall 2005 Bird and Bat Surveys at the Proposed ew York. Prepared for AES-EHN NY Wind, LLC.

er and Fall 2005 Bird and Bat Surveys at the Proposed ew York. Prepared for AES-EHN NY Wind, LLC. &R). 2006. Draft Environmental Impact Statement for the cohocton, Steuben County, New York, Prepared for

&R). 2006. Draft Environmental Impact Statement for the cohocton, Steuben County, New York, Prepared for

006 Survey of Bird and Bat Migration at the Proposed n Centerville and Wethersfield, New York. Prepared for Ecology LLC.

006 Survey of Bird and Bat Migration at the Proposed n Centerville and Wethersfield, New York. Prepared for Ecology LLC.

|      |                     |                               | Appendix B Table | e 14. Summar  | y of available fal | l bat detecto | or surveys (re | esults report | ted for indivi | dual detectors)                                                                                                                    |
|------|---------------------|-------------------------------|------------------|---------------|--------------------|---------------|----------------|---------------|----------------|------------------------------------------------------------------------------------------------------------------------------------|
| Year | Project             | Project Location              | Habitat          | Height<br>(m) | Detector<br>Nights | Start         | End            | Calls         | Rate           |                                                                                                                                    |
| 2006 | Brandon             | Brandon, Franklin, Cty, NY    | field            | 25            | 72                 | 7/25          | 10/4           | 464           | 6.4            | Woodlot Alternatives, Inc. 2006. Fall 200<br>Chateaugay Windparks in Western New Y<br>Power, LLC.                                  |
| 2006 | Centerville         | Centerville, Allegany Cty, NY | field            | 15            | 48                 | 7/25          | 10/10          | 2             | 0              | Woodlot Alternatives, Inc. 2006. A Fall 2<br>Centerville and Wethersfield Windparks in<br>and Environment, Inc. and Noble Power, I |
| 2006 | Centerville         | Centerville, Allegany Cty, NY | field            | 35            | 41                 | 7/25          | 10/10          | 3             | 0.1            | Woodlot Alternatives, Inc. 2006. A Fall 2<br>Centerville and Wethersfield Windparks in<br>and Environment, Inc. and Noble Power, I |
| 2006 | Chateaugay          | Chateaugay, Franklin Cty, NY  | field            | 40            | 58                 | 7/25          | 10/4           | 173           | 3              | Woodlot Alternatives, Inc. 2006. Fall 200<br>Chateaugay Windparks in Western New Y<br>Power, LLC.                                  |
| 2006 | Chateaugay          | Chateaugay, Franklin Cty, NY  | field            | 20            | 44                 | 7/25          | 10/4           | 345           | 7.8            | Woodlot Alternatives, Inc. 2006. Fall 200<br>Chateaugay Windparks in Western New Y<br>Power, LLC.                                  |
| 2006 | Cohocton/Dutch Hill | Cohocton, Steuben Cty, NY     | field            | 15            | 43                 | 8/12          | 10/11          | 46            | 1.1            | Woodlot Alternatives, Inc. 2006. Avian an<br>Proposed Cohocton Wind Power Project i<br>LLC.                                        |
| 2006 | Cohocton/Dutch Hill | Cohocton, Steuben Cty, NY     | field            | 30            | 47                 | 8/12          | 10/11          | 57            | 1.2            | Woodlot Alternatives, Inc. 2006. Avian an<br>Proposed Cohocton Wind Power Project i<br>LLC.                                        |
| 2005 | Clayton             | Clayton, Jefferson Cty, NY    | forest edge      | 30            | 0                  | 8/19          | 9/20           | 0             | 0              | Woodlot Alternatives, Inc. 2005. A Fall 20<br>Migration at the Proposed Clayton Wind F<br>Renewable.                               |
| 2005 | Munnsville          | Munnsville, Madison Cty, NY   | field            | 23            | 67                 | 7/31          | 10/16          | 280           | 0.2            | Woodlot Alternatives, Inc. 2005. Summe<br>Munnsville Wind Project in Munnsville. Ne                                                |
| 2005 | Munnsville          | Munnsville, Madison Cty, NY   | field            | 15            | 67                 | 7/31          | 10/16          | 210           | 0.3            | Woodlot Alternatives, Inc. 2005. Summe<br>Munnsville Wind Project in Munnsville, Ne                                                |
| 2005 | Moresville          | Stamford, Delaware Cty, NY    | forest edge      | 15            | 43                 | 8/15          | 10/15          | 293           | 6.8            | Woodlot. 2007. A Spring and Fall 2005 Ra<br>Moresville Energy Center in Stamford and<br>MD.                                        |
| 2005 | Moresville          | Stamford, Delaware Cty, NY    | forest edge      | 30            | 54                 | 8/15          | 10/15          | 285           | 5.3            | Woodlot. 2007. A Spring and Fall 2005 Ra<br>Moresville Energy Center in Stamford and<br>MD.                                        |
| 2004 | Liberty Gap         | Franklin, Pendleton Cty, WV   | forest edge      | 15            | 14                 | Sep           | Nov            | 168           | 0.35           | Woodlot Alternatives, Inc. 2005. A Rada<br>Proposed Liberty Gap Wind Project in Fra<br>LLC.                                        |
| 2004 | Liberty Gap         | Franklin, Pendleton Cty, WV   | forest edge      | 30            | 14                 | Sep           | Nov            | 165           | 0.19           | Woodlot Alternatives, Inc. 2005. A Radar<br>Proposed Liberty Gap Wind Project in Fra<br>LLC.                                       |
| 2004 | Sheffield           | Sheffield, Caledonia Cty, VT  | forest edge      | 15            | 6                  | 9/10          | 9/15           | 30            | 0.23           | Woodlot Alternatives, Inc. 2006. Avian an<br>Proposed Sheffield Wind Power Project in<br>LLC.                                      |
| 2004 | Sheffield           | Sheffield, Caledonia Cty, VT  | forest edge      | 30            | 5                  | 10/17         | 10/21          | 0             | 0              | Woodlot Alternatives, Inc. 2006. Avian an<br>Proposed Sheffield Wind Power Project in<br>LLC.                                      |
| 2005 | Mars Hill           | Mars Hill, Aroostook Cty, ME  | forest edge      | 20            | 22                 | 8/31          | 9/21           | 25            | n/a            | Woodlot Alternatives, Inc. 2005. A Fall 2<br>Migration at the Proposed Mars Hill Wind<br>Management, LLC.                          |

06 Bat Detector Surveys at the Proposed Brandon and York. Prepared for Ecology and Environment, Inc. and Noble

006 Survey of Bird and Bat Migration at the Proposed n Centerville and Wethersfield, New York. Prepared for Ecology LLC.

2006 Survey of Bird and Bat Migration at the Proposed n Centerville and Wethersfield, New York. Prepared for Ecology LLC.

06 Bat Detector Surveys at the Proposed Brandon and York. Prepared for Ecology and Environment, Inc. and Noble

06 Bat Detector Surveys at the Proposed Brandon and York. Prepared for Ecology and Environment, Inc. and Noble

nd Bat Information Summary and Risk Assessment for the in Cohocton, New York. Prepared for UPC Wind Management,

nd Bat Information Summary and Risk Assessment for the in Cohocton, New York. Prepared for UPC Wind Management,

005 Radar, Visual, and Acoustic Survey of Bird and Bat Project in Clayton, New York. Prepared for PPM Atlantic

er and Fall 2005 Bird and Bat Surveys at the Proposed ew York. Prepared for AES-EHN NY Wind, LLC. er and Fall 2005 Bird and Bat Surveys at the Proposed ew York. Prepared for AES-EHN NY Wind, LLC.

adar and Acoustic Survey of Bird Migration at the Proposed d Roxbury, New York. Prepared for Invenergy, LLC. Rockville,

adar and Acoustic Survey of Bird Migration at the Proposed d Roxbury, New York. Prepared for Invenergy, LLC. Rockville,

r and Acoustic Survey of Bird and Bat Migration at the anklin, West Virginia – Fall 2004. Prepared for US Wind Force,

r and Acoustic Survey of Bird and Bat Migration at the anklin, West Virginia – Fall 2004. Prepared for US Wind Force,

nd Bat Information Summary and Risk Assessment for the Sheffield, Vermont. Prepared for UPC Wind Management,

nd Bat Information Summary and Risk Assessment for the Sheffield, Vermont. Prepared for UPC Wind Management,

2005 Radar, Visual, and Acoustic Survey of Bird and Bat Project in Mars Hill, Maine. Prepared for UPC Wind

|      |           |                              | Appendix B Table | 14. Summar    | y of available fall | bat detecto | or surveys (re | esults report | ed for individ | lual detectors)                                                                                            |
|------|-----------|------------------------------|------------------|---------------|---------------------|-------------|----------------|---------------|----------------|------------------------------------------------------------------------------------------------------------|
| Year | Project   | Project Location             | Habitat          | Height<br>(m) | Detector<br>Nights  | Start       | End            | Calls         | Rate           |                                                                                                            |
| 2005 | Mars Hill | Mars Hill, Aroostook Cty, ME | forest edge      | 20            | 22                  | 8/31        | 9/21           | 25            | n/a            | Woodlot Alternatives, Inc. 2005. A Fall 20<br>Migration at the Proposed Mars Hill Wind<br>Management, LLC. |

2005 Radar, Visual, and Acoustic Survey of Bird and Bat I Project in Mars Hill, Maine. Prepared for UPC Wind

# Appendix C

Raptor Survey Results

|                        | Appendix C Table 1. Species composition of raptors observed during raptor surveys |          |           |           |           |           |           |           |           |           |           |           |            |            |            |                |
|------------------------|-----------------------------------------------------------------------------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|----------------|
| Species                | 9/3/2008                                                                          | 9/4/2008 | 9/10/2008 | 9/11/2008 | 9/16/2008 | 9/18/2008 | 9/22/2008 | 9/23/2008 | 9/25/2008 | 9/29/2008 | 10/6/2008 | 10/7/2008 | 10/15/2008 | 10/20/2008 | 10/31/2008 | Grand<br>Total |
| American kestrel       |                                                                                   |          |           | 1         |           |           |           |           |           | 2         | 8         | 1         |            |            |            | 12             |
| bald eagle             |                                                                                   |          |           |           | 1         |           | 1         |           |           |           |           | 1         | 1          |            |            | 4              |
| broad-winged hawk      | 2                                                                                 |          | 3         | 9         | 72        | 11        | 3         | 14        | 2         |           | 11        | 5         | 2          |            |            | 134            |
| Cooper's hawk          |                                                                                   |          |           |           |           |           |           |           |           |           | 1         | 1         | 4          | 1          |            | 7              |
| merlin                 |                                                                                   |          |           | 1         |           |           |           | 1         |           |           | 1         | 1         |            |            |            | 4              |
| northern harrier       |                                                                                   |          | 1         |           | 1         |           |           |           |           | 1         |           |           |            |            |            | 3              |
| osprey                 |                                                                                   |          | 1         |           | 3         |           |           | 2         | 2         | 2         | 2         |           |            |            |            | 12             |
| red-tailed hawk        | 1                                                                                 | 1        | 1         | 1         |           |           | 1         |           |           |           | 3         | 1         | 1          |            | 1          | 11             |
| sharp-shinned hawk     |                                                                                   | 1        | 2         | 3         | 2         | 7         | 6         | 3         | 1         | 9         | 17        | 8         | 10         | 5          |            | 74             |
| turkey vulture         | 1                                                                                 | 2        |           |           | 5         | 1         | 3         | 2         | 2         |           | 2         | 2         |            |            |            | 20             |
| unidentified accipiter | 1                                                                                 | 1        |           |           |           | 1         |           |           |           |           |           |           |            |            |            | 3              |
| unidentified buteo     |                                                                                   |          |           | 3         | 2         |           | 1         |           |           |           |           |           |            |            |            | 6              |
| unidentified falcon    |                                                                                   |          |           |           |           |           |           |           |           |           | 2         |           |            |            |            | 2              |
| unidentified raptor    |                                                                                   |          | 1         | 2         | 1         |           | 2         |           |           |           | 1         | 1         | 1          |            |            | 9              |
| Grand Total            | 5                                                                                 | 5        | 9         | 20        | 87        | 20        | 17        | 22        | 7         | 14        | 48        | 21        | 19         | 6          | 1          | 301            |

| Appendix C Table 2. Observation totals of raptors by hour |                |                 |                 |                |           |           |           |                |  |  |  |  |  |
|-----------------------------------------------------------|----------------|-----------------|-----------------|----------------|-----------|-----------|-----------|----------------|--|--|--|--|--|
| Species                                                   | 9:00-<br>10:00 | 10:00-<br>11:00 | 11:00-<br>12:00 | 12:00-<br>1:00 | 1:00-2:00 | 2:00-3:00 | 3:00-4:00 | Grand<br>Total |  |  |  |  |  |
| American kestrel                                          | 2              | 1               | 3               | 2              | 1         | 3         | 0         | 12             |  |  |  |  |  |
| bald eagle                                                | 0              | 0               | 0               | 2              | 0         | 2         | 0         | 4              |  |  |  |  |  |
| broad-winged hawk                                         | 12             | 27              | 28              | 16             | 8         | 1         | 42        | 134            |  |  |  |  |  |
| Cooper's hawk                                             | 2              | 1               | 2               | 0              | 1         | 1         | 0         | 7              |  |  |  |  |  |
| merlin                                                    | 0              | 2               | 0               | 1              | 1         | 0         | 0         | 4              |  |  |  |  |  |
| northern harrier                                          | 1              | 0               | 0               | 1              | 0         | 1         | 0         | 3              |  |  |  |  |  |
| osprey                                                    | 1              | 4               | 3               | 2              | 0         | 1         | 1         | 12             |  |  |  |  |  |
| red-tailed hawk                                           | 1              | 1               | 1               | 2              | 3         | 1         | 2         | 11             |  |  |  |  |  |
| sharp-shinned hawk                                        | 10             | 14              | 11              | 13             | 8         | 9         | 9         | 74             |  |  |  |  |  |
| turkey vulture                                            | 0              | 2               | 6               | 2              | 6         | 4         | 0         | 20             |  |  |  |  |  |
| unidentified accipiter                                    | 0              | 0               | 0               | 1              | 1         | 1         | 0         | 3              |  |  |  |  |  |
| unidentified buteo                                        | 0              | 1               | 4               | 0              | 1         | 0         | 0         | 6              |  |  |  |  |  |
| unidentified falcon                                       | 0              | 2               | 0               | 0              | 0         | 0         | 0         | 2              |  |  |  |  |  |
| unidentified raptor                                       | 1              | 1               | 3               | 2              | 1         | 1         | 0         | 9              |  |  |  |  |  |
| Hourly totals                                             | 30             | 56              | 61              | 44             | 31        | 25        | 54        | 301            |  |  |  |  |  |

| Appendix C Table 3. Raptor flight altitudes by species |            |                   |                                        |                |  |  |  |  |  |  |  |  |
|--------------------------------------------------------|------------|-------------------|----------------------------------------|----------------|--|--|--|--|--|--|--|--|
| Species                                                | 130.5 m or | less than 130.5 m | outside<br>of 1 km<br>from<br>observer | Grand<br>Total |  |  |  |  |  |  |  |  |
| American kestrel                                       | 0          | 12                | 0                                      | 12             |  |  |  |  |  |  |  |  |
| bald eagle                                             | 1          | 1                 | 2                                      | 4              |  |  |  |  |  |  |  |  |
| broad-winged hawk                                      | 86         | 21                | 27                                     | 134            |  |  |  |  |  |  |  |  |
| Cooper's hawk                                          | 2          | 4                 | 1                                      | 7              |  |  |  |  |  |  |  |  |
| merlin                                                 | 0          | 4                 | 0                                      | 4              |  |  |  |  |  |  |  |  |
| northern harrier                                       | 1          | 1                 | 1                                      | 3              |  |  |  |  |  |  |  |  |
| osprey                                                 | 1          | 7                 | 4                                      | 12             |  |  |  |  |  |  |  |  |
| red-tailed hawk                                        | 6          | 4                 | 1                                      | 11             |  |  |  |  |  |  |  |  |
| sharp-shinned hawk                                     | 8          | 62                | 4                                      | 74             |  |  |  |  |  |  |  |  |
| turkey vulture                                         | 7          | 9                 | 4                                      | 20             |  |  |  |  |  |  |  |  |
| unidentified accipiter                                 | 1          | 1                 | 1                                      | 3              |  |  |  |  |  |  |  |  |
| unidentified buteo                                     | 5          | 0                 | 1                                      | 6              |  |  |  |  |  |  |  |  |
| unidentified falcon                                    | 0          | 2                 | 0                                      | 2              |  |  |  |  |  |  |  |  |
| unidentified raptor                                    | 3          | 2                 | 4                                      | 9              |  |  |  |  |  |  |  |  |
| Grand Total                                            | 121        | 130               | 50                                     | 301            |  |  |  |  |  |  |  |  |

| Appendix C Table 4. Summary of Regional Fall (August to October) Migration Surveys* |              |       |     |     |     |     |      |     |    |    |      |     |    |    |     |    |    |    |    |    |    |    |    |       |                |
|-------------------------------------------------------------------------------------|--------------|-------|-----|-----|-----|-----|------|-----|----|----|------|-----|----|----|-----|----|----|----|----|----|----|----|----|-------|----------------|
| Location                                                                            | Obs<br>Hours | BV    | тν  | os  | BE  | NH  | SS   | СН  | NG | RS | BW   | RT  | RL | GE | AK  | ML | PG | sw | UR | UB | UA | UF | UE | TOTAL | Birds<br>/Hour |
| Cadillac Mountain,                                                                  |              |       |     |     |     |     |      |     |    |    |      |     |    |    |     |    |    |    |    |    |    |    |    |       |                |
| ME *                                                                                | 242          | 0     | 40  | 230 | 21  | 145 | 1141 | 31  | 7  | 1  | 268  | 56  | 1  | 0  | 494 | 99 | 35 | 0  | 63 | 6  | 0  | 0  | 0  | 2,638 | 10.9           |
| Little Round Top,                                                                   |              |       |     |     |     |     |      |     |    |    |      |     |    |    |     |    |    |    |    |    |    |    |    |       |                |
| NH*                                                                                 | 84           | 0     | 18  | 41  | 32  | 1   | 34   | 12  | 0  | 0  | 3071 | 14  | 0  | 1  | 10  | 1  | 0  | 0  | 31 | 3  | 4  | 2  | 0  | 3,275 | 38.8           |
| Pack Monadnock,                                                                     |              |       |     |     |     |     |      |     |    |    |      |     |    |    |     |    |    |    |    |    |    |    |    |       |                |
| NH*                                                                                 | 338          | 0     | 21  | 255 | 48  | 66  | 1064 | 131 | 16 | 30 | 6835 | 74  | 0  | 0  | 180 | 51 | 17 | 0  | 15 | 6  | 3  | 2  | 0  | 8,814 | 26.1           |
| Allegheny Front, PA *                                                               | 476          | 15    | 92  | 108 | 56  | 36  | 899  | 136 | 5  | 10 | 3887 | 475 | 1  | 4  | 53  | 27 | 12 | 0  | 64 | 37 | 23 | 5  | 0  | 5,945 | 12.5           |
| Hawk Mountain, PA *                                                                 | 610          | 19    | 108 | 449 | 181 | 174 | 2717 | 386 | 0  | 20 | 4289 | 176 | 0  | 10 | 286 | 95 | 58 | 0  | 44 | 13 | 15 | 10 | 0  | 9,050 | 14.8           |
| Barre Falls, MA *                                                                   | 199          | 0     | 193 | 165 | 51  | 23  | 702  | 62  | 11 | 7  | 5235 | 40  | 0  | 0  | 135 | 30 | 19 | 0  | 12 | 1  | 0  | 0  | 0  | 6,686 | 33.6           |
| Shatterack Mountain,                                                                |              |       |     |     |     |     |      |     |    |    |      |     |    |    |     |    |    |    |    |    |    |    |    |       |                |
| MA *                                                                                | 116          | 0     | 21  | 70  | 15  | 18  | 391  | 15  | 0  | 5  | 5039 | 11  | 0  | 1  | 44  | 5  | 7  | 0  | 6  | 0  | 0  | 0  | 0  | 5,648 | 48.8           |
| Montreal West                                                                       |              |       |     |     |     |     |      |     |    |    |      |     |    |    |     |    |    |    |    |    |    |    |    |       |                |
| Island, QC *                                                                        | 160          | 0     | 174 | 39  | 20  | 10  | 151  | 0   | 0  | 11 | 2142 | 157 | 0  | 0  | 31  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 2,735 | 17.1           |
| * Data obtained from HM                                                             | IANA webs    | site. |     |     |     |     |      |     |    |    |      |     |    |    |     |    |    |    |    |    |    |    |    |       |                |

# Abbreviation Key:

|      |            | -   |
|------|------------|-----|
| BV - | Black Vult | ure |

- TV Turkey Vulture
- OS Osprey
- BE Bald Eagle
- NH Northern Harrier
- SS Sharp-shinned Hawk
- CH Cooper's Hawk NG - Northern Goshawk
- UR unidentified Raptor UB - unidentified Buteo

GE - Golden Eagle

AK - American Kestrel

PG - Peregrine Falcon SW - Swainson's Hawk

UA - unidentified Accipiter

ML - Merlin

- RS Red-shouldered Hawk
- BW Broad-winged Hawk
- RT Red-tailed Hawk
- RL Rough-legged Hawk
- UF unidentified Falcon
- UE unidentified Eagle

|                                                      |                                 |                    | _                  |                                       |                                     |                            |                                                                                                                 |
|------------------------------------------------------|---------------------------------|--------------------|--------------------|---------------------------------------|-------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                      |                                 |                    | Appendix C Table 5 | <ol> <li>Summary of availa</li> </ol> | ble fall raptor survey results at v | vind sites in the east     | 1                                                                                                               |
| Project Site                                         | Landscape                       | Survey Period      | # of Survey Days   | # of Survey<br>Hours                  | Total # Observed                    | # of Species<br>Observed   |                                                                                                                 |
|                                                      |                                 |                    |                    |                                       | Fall 1996                           |                            |                                                                                                                 |
| Searsburg, Bennington County, VT                     | Forested ridge                  | Sept. 11 - Nov. 3  | 20                 | 80                                    | 430                                 | 12                         | Kerlinger, Paul. 1996. A Study of H<br>Searsburg, Vermont, Wind Powewe<br>Board, Green Mountain Power, Nat      |
|                                                      |                                 |                    |                    | l                                     | Fall 1998                           |                            | 1                                                                                                               |
| Harrisburg, Lewis County, NY                         | Great Lakes plain/ADK foothills | Sept. 2 - Oct. 1   | 13                 | 68                                    | 554                                 | 12                         | Cooper, B.A., and T.J. Mabee. 1999<br>Wethersfield and Harrisburg, New Y<br>Corporation, Syracuse, NY, by ABR   |
| Wethersfield, Wyoming Cty, NY                        | Agricultural plateau            | Sept. 2 - Oct. 1   | 24                 | 107                                   | 256                                 | 12                         | Cooper, B.A., and T.J. Mabee. 1999<br>Wethersfield and Harrisburg, New Y<br>Corporation, Syracuse, NY, by ABR   |
|                                                      |                                 |                    |                    |                                       | Fall 2004                           |                            |                                                                                                                 |
|                                                      |                                 | [                  |                    |                                       |                                     |                            | Woodlot Alternatives, Inc. 2005b, A                                                                             |
| Prattsburgh, Steuben Cty, NY                         | Agricultural plateau            | Sept. 2 - Oct. 28  | 13                 | 73                                    | 220                                 | 10                         | Migration at the Proposed Windfarn<br>UPC Wind Management, LLC.                                                 |
| Cohocton, Stueben, Cty, NY                           | Agricultural plateau            | Sept. 2 - Oct. 28  | 8                  | 41.3                                  | 128                                 | 8                          | Woodlot Alternatives, Inc. 2005. A<br>Proposed Cohocton Wind Power Pr<br>Management, LLC.                       |
| Deerfield, Bennington Cty, VT<br>(Existing Facility) | Forested ridge                  | Sept. 2 - Oct. 31  | 10                 | 60                                    | 147                                 | 11 for both sites combined | Woodlot Alternatives, Inc. 2005c. F<br>Wind/Searsburg Expansion Project<br>Wind, LLC and Vermont Environme      |
| Deerfield, Bennington Cty, VT<br>(Western Expansion) | Forested ridge                  | Sept. 2 - Oct. 31  | 10                 | 57                                    | 725                                 | 11 for both sites combined | Woodlot Alternatives, Inc. 2005c. F<br>Wind/Searsburg Expansion Project<br>Wind, LLC and Vermont Environme      |
| Sheffield, Caledonia Cty, VT                         | Forested ridge                  | Sept. 11 - Oct. 14 | 10                 | 60                                    | 193                                 | 10                         | Woodlot Alternatives, Inc. 2006a. A<br>the Proposed Sheffield Wind Power<br>Management, LLC.                    |
|                                                      | ·                               |                    | •                  |                                       | Fall 2005                           | •                          |                                                                                                                 |
| Alabama, Genesee Cty, NY                             | Great Lakes plain/ADK foothills | Sept. 11 - Oct. 10 | 5                  | 19                                    | 148                                 | 4                          | New York State Department of Env.<br>Migration Data for Proposed Wind S<br>http://www.dec.ny.gov/docs/wildlife_ |
| High Sheldon, Wyoming Cty, NY                        | Agricultural and wooded plateau | Aug. 29 - Nov. 4   | 8                  | 53.5                                  | 168                                 | 9                          | New York State Department of Envi<br>Migration Data for Proposed Wind S<br>http://www.dec.ny.gov/docs/wildlife_ |
| l                                                    | i                               |                    |                    |                                       |                                     |                            |                                                                                                                 |

|--|

lawk Migration at Green Mountain Power Corporation's er Site: Autumn 1996. Prepared for the Vermont Public Service ional Renewable Ener gy Laboratory, VERA.

9. Bird migration near proposed wind turbine sites at York. Unpublished report prepared for Niagara–Mohawk Power R, Inc., Forest Grove, OR. 46 pp.

9. Bird migration near proposed wind turbine sites at York. Unpublished report prepared for Niagara–Mohawk Power R, Inc., Forest Grove, OR. 46 pp.

Fall 2004 Radar, Visual, and Acoustic Survey of Bird and Bat Prattsburgh Project in Prattsburgh, New York. Prepared for

vian and Bat Information Summary and Risk Assessment for the oject in Cohocton, New York. Prepared for UPC Wind

all 2004 Avian Migration Surveys at the Proposed Deerfield in Searsburg and Readsboro, Vermont. Prepared for Deerfield ntal Research Associates.

Fall 2004 Avian Migration Surveys at the Proposed Deerfield in Searsburg and Readsboro, Vermont. Prepared for Deerfield antal Research Associates.

Avian and Bat Information Summary and Risk Assessment for r Project in Sheffield, Vermont. Prepared for UPC Wind

ironmental Conservation. 2008. Publicly Available Raptor Sites in NYS. Available at \_pdf/raptorwinsum. Accessed November 7, 2008.

ronmental Conservation. 2008. Publicly Available Raptor Sites in NYS. Available at \_pdf/raptorwinsum. Accessed November 7, 2008.

|                                      |                                 |                     | Appendix C Table 5 | . Summary of availab | ole fall raptor survey results at v | wind sites in the east   |                                                                                                                                                                                                                                             |
|--------------------------------------|---------------------------------|---------------------|--------------------|----------------------|-------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Site                         | Landscape                       | Survey Period       | # of Survey Days   | # of Survey<br>Hours | Total # Observed                    | # of Species<br>Observed | Reference                                                                                                                                                                                                                                   |
| Wethersfield, Wyoming Cty, NY        | Agricultural plateau            | Sept. 13 - Sept. 18 | 3                  | 21                   | 0                                   | 0                        | New York State Department of Environmental Conservation. 2008. Publicly Available Raptor Migration Data for Proposed Wind Sites in NYS. Available at http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum. Accessed November 7, 2008.       |
| Wethersfield, Wyoming Cty, NY        | Agricultural plateau            | Sept. 21 - Nov. 1   | 3                  | 21                   | 231                                 | 11                       | New York State Department of Environmental Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS. Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum. Accessed November 7, 2008. |
| Bliss, Wyoming Cty, NY               | Agricultural and wooded plateau | Sept. 12 - Sept. 17 | 2                  | 21                   | 0                                   | 0                        | New York State Department of Environmental Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS. Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum. Accessed November 7, 2008. |
| Cohocton, Stueben, Cty, NY           | Agricultural plateau            | Sept. 7 - Oct. 1    | 7                  | 40.12                | 131                                 | 10                       | Woodlot Alternatives, Inc. 2005. Avian and Bat Information Summary and Risk Assessment for the Proposed Cohocton Wind Power Project in Cohocton, New York. Prepared for UPC Wind Management, LLC.                                           |
| West Hill, Maidson Cty, NY           | Agricultural plateau            | Sept. 6 - Oct. 31   | 11                 | 65                   | 369                                 | 14                       | New York State Department of Environmental Conservation. 2008. Publicly Available Raptor Migration Data for Proposed Wind Sites in NYS. Available at http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum. Accessed November 7, 2008.       |
| Clinton / Ellenburg, Clinton Cty, NY | Agricultural plateau            | Sept. 23 - Sept. 28 | 3                  | 21                   | 0                                   | 0                        | New York State Department of Environmental Conservation. 2008. Publicly Available Raptor Migration Data for Proposed Wind Sites in NYS. Available at http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum. Accessed November 7, 2008.       |
| Altona, Clinton Cty, NY              | Great Lakes plain/ADK foothills | Sept. 24 - Sept. 30 | 3                  | 21                   | 0                                   | 0                        | New York State Department of Environmental Conservation. 2008. Publicly Available Raptor Migration Data for Proposed Wind Sites in NYS. Available at http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum. Accessed November 7, 2008.       |
| Marble River, Clinton Cty, NY        | Great Lakes plain/ADK foothills | Sept. 6 - Nov. 2    | 10                 | 60                   | 217                                 | 15                       | New York State Department of Environmental Conservation. 2008. Publicly Available Raptor Migration Data for Proposed Wind Sites in NYS. Available at http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum. Accessed November 7, 2008.       |
| Clayton, Jefferson Cty, NY           | Great Lakes plain/ADK foothills | Sept. 9 - Oct. 16   | 11                 | 63.5                 | 575                                 | 13                       | New York State Department of Environmental Conservation. 2008. Publicly Available Raptor Migration Data for Proposed Wind Sites in NYS. Available at http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum. Accessed November 7, 2008.       |
| New Grange, Chautauqua Cty, NY       | Forested ridge                  | Sept. 17 - Oct. 15* | 6                  | 18                   | 49                                  | 5                        | New York State Department of Environmental Conservation. 2008. Publicly Available Raptor Migration Data for Proposed Wind Sites in NYS. Available at http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum. Accessed November 7, 2008.       |
| Moresville, Deleware Cty, NY         | Forested ridge                  | Aug. 31 - Nov. 3    | 11                 | 72                   | 228                                 | 11                       | New York State Department of Environmental Conservation. 2008. Publicly Available Raptor Migration Data for Proposed Wind Sites in NYS. Available at http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum. Accessed November 7, 2008.       |
| Churubusco, Clinton Cty, NY          | Great Lakes plain/ADK foothills | Sept. 6 - Oct. 22   | 10                 | 60                   | 217                                 | 15                       | Woodlot Alternatives, Inc. 2005I. A Fall 2005 Radar, Visual, and Acoustic Survey of Bird and Bat<br>Migration at the Proposed Marble River Wind Project in Clinton and Ellenburg, New York. Prepared<br>for AES Corporation.                |

|                                 | -                               |                    | Appendix C Table 5 | . Summary of availa  | ble fall raptor survey results at | wind sites in the east   |                                                                                                                                                                                                                                             |
|---------------------------------|---------------------------------|--------------------|--------------------|----------------------|-----------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Site                    | Landscape                       | Survey Period      | # of Survey Days   | # of Survey<br>Hours | Total # Observed                  | # of Species<br>Observed | Reference                                                                                                                                                                                                                                   |
| Dairy Hills, Wyoming Cty, NY    | Agricultural plateau            | Sept. 11 - Oct. 10 | 4                  | 16                   | 48                                | 6                        | New York State Department of Environmental Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS. Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum. Accessed November 7, 2008. |
| Howard, Steuben Cty, NY         | Agricultural plateau            | Sept. 1 - Oct. 28  | 10                 | 57                   | 206                               | 12                       | Woodlot Alternatives, Inc. 2005o. A Fall 2005 Survey of Bird and Bat Migration at the Proposed Howard Wind Power Project in Howard, New York. Prepared for Everpower Global.                                                                |
| Munnsville, Madison Cty, NY     | Agricultural plateau            | Sept. 6 - Oct. 31  | 11                 | 65                   | 369                               | 14                       | Woodlot Alternatives, Inc. 2005r. Summer and Fall 2005 Bird and Bat Surveys at the Proposed Munnsville Wind Project in Munnsville, New York. Prepared for AES-EHN NY Wind, LLC.                                                             |
| Mars Hill, Aroostook Cty, ME    | Forested ridge                  | Sept. 9 - Oct. 13  | 8                  | 42.5                 | 115                               | 13                       | Woodlot Alternatives, Inc. 2005t. A Fall 2005 Radar, Visual, and Acoustic Survey of Bird and Bat Migration at the Proposed Mars Hill Wind Project in Mars Hill, Maine. Prepared for UPC Wind Management, LLC.                               |
| Lempster, Sullivan County, NH   | Forested ridge                  | Fall 2005          | 10                 | 80                   | 264                               | 10                       | Woodlot Alternatives, Inc. 2007c. Lempster Wind Farm Wildlife Habitat Summary and Assessment.<br>Prepared for Lempster Wind, LLC.                                                                                                           |
| Clayton, Jefferson Cty, NY      | Agricultural plateau            | Sept. 9 - Oct. 16  | 11                 | 63.5                 | 575                               | 13                       | Woodlot Alternatives, Inc. 2005m. A Fall 2005 Radar, Visual, and Acoustic Survey of Bird and Bat Migration at the Proposed Clayton Wind Project in Clayton, New York. Prepared for PPM Atlantic Renewable.                                  |
|                                 |                                 |                    | 1                  |                      | Fall 2006                         | -                        |                                                                                                                                                                                                                                             |
| Stetson, Penobscot Cty, ME      | Forested ridge                  | Sept. 14 - Oct. 26 | 7                  | 42                   | 86                                | 11                       | Woodlot Alternatives, Inc. 2007b. A Fall 2006 Survey of Bird and Bat Migration at the Proposed Stetson Mountain Wind Power Project in Washington County, Maine. Prepared for Evergreen Wind V, LLC.                                         |
| Lincoln, Penobscot Cty, ME      | Forested ridge                  | Sept. 13 - Oct. 16 | 12                 | 89                   | 144                               | 12                       | Woodlot Alternatives, Inc. 2007. Fall 2006 Survey of<br>Bird and Bat Migration at the Proposed<br>Stetson Wind Power Project<br>in Washington County, Maine. Prepared for Evergreen Wind V.                                                 |
| Wethersfield, Wyoming Cty, NY   | Agricultural plateau            | Sept. 21 - Nov. 11 | 3                  | 21?                  | 231                               | 11                       | New York State Department of Environmental Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS. Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum. Accessed November 7, 2008. |
| Chateaugay, Franklin Cty, NY    | Great Lakes plain/ADK foothills | Sept. 6 - Oct. 26  | 2                  | 24                   | 42                                | 5                        | New York State Department of Environmental Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS. Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum. Accessed November 7, 2008. |
| St. Lawrence, Jefferson Cty, NY | Agricultural plateau            | Sept. 23 - Nov. 11 | 10                 | 30                   | 288                               | 10                       | New York State Department of Environmental Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS. Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum. Accessed November 7, 2008. |

|                                         |                                  |                                 | Appendix C Table 5  | . Summary of availal | ble fall raptor survey results at w | ind sites in the east    |                                                                                                                                                         |
|-----------------------------------------|----------------------------------|---------------------------------|---------------------|----------------------|-------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Site                            | Landscape                        | Survey Period                   | # of Survey Days    | # of Survey<br>Hours | Total # Observed                    | # of Species<br>Observed |                                                                                                                                                         |
| Cape Vincent, Jefferson Cty, NY         | Great Lakes plain/ADK foothills  | Sept. 23 - Nov. 11              | 10                  | 30                   | 165                                 | 10                       | New York State Department of Envi<br>Migration Data for Proposed Wind S<br>http://www.dec.ny.gov/docs/wildlife_                                         |
| Jordanville, Herkimer Cty, NY           | Agricultural plateau             | Oct. 13 - Nov. 30               | 44                  | 234.7                | 629                                 | 12                       | New York State Department of Envi<br>Migration Data for Proposed Wind S<br>http://www.dec.ny.gov/docs/wildlife_                                         |
|                                         |                                  |                                 |                     |                      | Fall 2007                           |                          |                                                                                                                                                         |
| Roxbury, Oxford Cty, ME                 | Forested ridge                   | Sept. 3 - Oct. 15               | 14                  | 86                   | 96                                  | 12                       | Stantec Consulting. 2008. Fall 200<br>Visual, Acoustic, and Radar Surveys<br>at the proposed Record Hill Wind Pr<br>In Roxbury, Maine. Prepared for Inc |
| Errol, Coos Cty, NH                     | Forested ridge                   | Sept. 5 - Oct. 16               | 11                  | 68                   | 44                                  | 9                        | Stantec Consulting. 2007. Fall 200<br>of Bird and Bat Migration at the<br>Proposed Windpark in Coos County<br>for Granite Reliable Power, LLC.          |
| Laurel Mountain, Preston Cty, WV        | Forested ridge                   | Sept. 12 - Dec. 1               | 24                  | 147                  | 769                                 | 12                       | Stantec Consulting Services Inc. 20<br>Bat Migration at the Proposed Laure<br>Prepared for AES Laurel Mountain,                                         |
| Greenland, Grant Cty, WV                | Forested ridge                   | Sept. 12 - Dec. 1               | 27                  |                      | 858                                 | 13                       | Stantec Consulting Services Inc. 20<br>Creek Wind Project,West Virginia. I                                                                              |
| New Grange, Chautauqua Cty, NY          | Forested ridge                   | Sept. 21 - Oct. 28              | 6                   | n/a                  | n/a                                 | n/a                      | New York State Department of Envi<br>Migration Data for Proposed Wind S<br>http://www.dec.ny.gov/docs/wildlife_                                         |
| Allegany, Cattaraugus Cty, NY           | Forested ridge                   | Sept. 8 - Oct. 11               | 11                  | 63.78                | 125                                 | 10                       | New York State Department of Envi<br>Migration Data for Proposed Wind S<br>http://www.dec.ny.gov/docs/wildlife_                                         |
| Jericho Rise, Franklin Cty, NY          | Great Lakes plain/ADK foothills  | Sept. 12 - Oct. 26              | 7                   | 28                   | 59                                  | 7                        | New York State Department of Envi<br>Migration Data for Proposed Wind S<br>http://www.dec.ny.gov/docs/wildlife_                                         |
|                                         |                                  |                                 |                     | <u> </u>             | Fall 2008                           |                          |                                                                                                                                                         |
| Oakfield, Aroostock Cty, ME             | Agricultural plateau             | Sept. 26 - Oct. 14              | 12                  | 84                   | 60                                  | 8                        | Woodlot Alternatives, Inc. 2008. A<br>Project, Washington County, Maine.                                                                                |
| *Calculated for spring and fall combin  | ed.                              | L                               | 1                   | 1                    | 1                                   | 1                        | 1                                                                                                                                                       |
| **Calculated for spring and fall 2006 a | and 2007 combined.               |                                 |                     |                      |                                     |                          |                                                                                                                                                         |
| ***Non-migrants were not included in    | seasonal passage rates in NYSDEC | 2008 table but were included in | passage rates here. |                      |                                     |                          |                                                                                                                                                         |

ronmental Conservation. 2008. Publicly Available Raptor Sites in NYS. Available at \_pdf/raptorwinsum. Accessed November 7, 2008.

ronmental Conservation. 2008. Publicly Available Raptor Sites in NYS. Available at \_pdf/raptorwinsum. Accessed November 7, 2008.

07 Migration Survey Report 's of Bird and Bat Migration conducted roject dependence Wind, LLC.

7 Radar, Visual, and Acoustic Survey

, New Hampshire by Granite Reliable Power, LLC. Prepared

007. A Fall 2007 Radar, Visual, and Acoustic Survey of Bird and el Mountain Wind Energy Project near Elkins, West Virginia. LLC.

008. A Fall 2007 Survey of Bird and Bat Migration at the New Prepared for AES New Creek, LLC.

ronmental Conservation. 2008. Publicly Available Raptor Sites in NYS. Available at \_pdf/raptorwinsum. Accessed November 7, 2008.

ronmental Conservation. 2008. Publicly Available Raptor Sites in NYS. Available at \_pdf/raptorwinsum. Accessed November 7, 2008.

ronmental Conservation. 2008. Publicly Available Raptor Sites in NYS. Available at \_pdf/raptorwinsum. Accessed November 7, 2008.

Fall 2008 Survey of Bird and Bat Migration at the Oakfield Wind Prepared for Evergreen Wind, LLC.

# Spring 2009 Ecological Surveys

for the Highland Wind Project in Highland Plantation, Maine

Prepared for

Highland Wind LLC P.O. Box 457 Brunswick, ME 04011

Prepared by

Stantec Consulting 30 Park Drive Topsham, ME 04086



November 2009



# **Executive Summary**

Highland Wind LLC (Highland) has proposed to construct a 128.6-megawatt (MW) wind energy project located in Highland Plantation and Pleasant Ridge Plantation, Somerset County, Maine (Figure 1-1). The Highland Wind Project (Project) includes 48 turbines, a 34.5-kilovolt (kV) electrical collector system, an electrical collection substation, a 115-kV generator lead, an Operations and Maintenance Building, and permanent meteorological (met) towers.

The turbines will be located in two distinct strings. The western string will include 26 turbines located on the ridgeline that connects Stewart Mountain, Witham Mountain and Bald Mountain. The meteorological data collected on this ridgeline suggests that weather conditions can be extreme and that the wind resource is excellent. These conditions require a Class I turbine and the Project has opted to use Vestas V90 3 MW turbines in most of the 26 turbine locations along the western string. The Vestas turbines have an 80-meter (m) hub height, a 90 m rotor diameter and a maximum tip-of-blade height of 125 m. The eastern string will include 22 turbines extending from the northeastern end of Burnt Hill south to Briggs Hill. Because of a more moderate wind capacity, Siemens SWT-2.3-101 turbines will be used along the eastern string to maximize energy output. These turbines have an 80 m hub height, a 101 m rotor diameter and a maximum tip-of-blade height of 130.5 m. Turbines will be located at elevations between 1550 and 2670 feet above sea level.

The electrical collector system will transfer power from the turbines to the proposed collector substation located north of Witham Mountain. These collector lines will be located underground along the ridgeline to reduce the project footprint and to reduce potential line maintenance costs along the exposed ridges. The approximately 11 mile long 115 kV generator lead will connect the on-site collector station to the existing Wyman Dam substation located in Moscow, Maine, where power will be transferred to the Central Maine Power system and ultimately distributed to the New England grid.

In preparation for this Project, Highland Wind contracted Stantec Consulting (Stantec) to perform a variety of environmental surveys within the Project area. In 2009, Stantec conducted surveys to document nocturnal and diurnal migration activity focusing on avian and bat populations. This work represented the first season of breeding bird surveys and the second season for each of the other surveys. The survey protocol and locations were discussed and chosen in coordination with the Maine Department of Inland Fisheries and Wildlife to provide adequate coverage of the Project area. A work plan describing methods and level of effort needed was approved by MDIFW on April 16, 2009.

# Nocturnal Radar Survey

The spring 2009 radar survey targeted 20 nights between April 15 and May 31, 2009. Surveys were conducted using X-band radar, sampling from sunset to sunrise. Each hour of sampling included the recording of radar video files during horizontal and vertical operation at two different locations to provide adequate coverage of the Project area. The first radar unit was located on the summit of South Stewart Mountain, the same location as that used during the fall



2008 survey. Radar operations at this location completed one full survey year (fall and spring migration seasons) of sampling from a single local location. The second radar unit was situated just off a gravel road near Briggs Hill. This site was operated simultaneously with the radar on South Stewart on most nights. The radar at this second location supplied information on nocturnal migration activity from the eastern side of the Project area and provided views of the Sandy Stream Valley and the ridgeline saddle between Burnt Hill and Briggs Hill.

Radar surveys are intended to document several variables that characterize nocturnal migration within the Project area: passage rates, flight heights, and flight direction. The survey documented an overall passage rate for the entire survey period of 511 targets per kilometer per hour (t/km/hr) at Stewart and 496 t/km/hr at Briggs. Passage rates varied greatly between nights during the season, indicating migration occurred in pulses, with rates of migration likely influenced by weather patterns and conditions from night to night. In contrast, flight heights remained fairly consistent at both sites both throughout the survey period and in comparison with other seasons, suggesting a similar "use" of the airspace above the ridgeline by nocturnal migrants in fall and spring. The seasonal average flight height was 314 m (1035 feet [']) at Stewart and 287 m (946') at Briggs. When compared to the anticipated maximum turbine height of 130.5 m (428'), the seasonal average of targets flying below turbine height (using the adjusted flight heights) was 23 percent at Stewart and 26 percent at Briggs. Mean flight direction through the Project area was generally to the northeast for both radar sites.

Spring radar surveys at Highland documented patterns in nocturnal migration similar to those documented at most recent radar surveys. These include highly variable passage rates between nights, a generally northeastern flight direction, and flight heights primarily occurring between 200 and 600 m above ground. Within nights, migration activity was generally greatest 4-5 hours after sunset and declined steadily through the end of the night. While comparisons between radar studies are vague at best due to the variability of site circumstances, studies performed in similar regions, habitats, and at equivalent levels of effort to those at Highland do show a consistency in range of migratory activity.

# Bat Survey

Six Anabat® acoustic bat detectors were deployed during the spring/summer 2009 survey between April 23 and August 17 to document the occurrence of bats near the rotor zone of the proposed turbines. Detectors were located within the same on-site met towers used during the second portion of the fall 2008 survey (South Stewart, Witham Mountain, and Briggs Hill). Data were summarized by guild and species and tallied per detector on a nightly and hourly basis. Data were also summarized by detector and detector groups according to height (e.g., high versus low detectors) and location (e.g., South Stewart vs. Witham Mountain met towers). Nightly acoustic activity levels were compared with nightly weather variables to identify any trends. Data recorded by the detectors were analyzed to provide the total number of detections per hour, per night, and per season by detector.


A total of 166 bat call sequences were recorded over 553 detector-nights ( $\bar{x} = 0.3 \pm 0.05$  SE recordings/detector/night [r/d/n]; range = 0 - 6). This detection rate is relatively low, but is comparable to the fall 2008 detection rate for those detectors deployed within the met towers. In 2009, extensive periods of rain during the deployment of the detectors may have contributed to the overall low activity levels that were documented. A total of 26.5 inches of rain fell in the nearby town of Bingham during the survey period with July experiencing the most rain during this period. In addition, the spring/summer survey period did not capture the peak in activity that typically occurs later in the season (mid-August to early September), but was captured during the 2008 surveys. Viewed seasonally, detection rates at detectors were generally very low, with activity level increasing through August. Those species that produce low frequency calls were detected most commonly, including the hoary bat (Lasiurus cinereus), silver-haired bat (Lasionycteris noctivagans), and big brown bat (Eptesicus fuscus). These species also were most commonly detected when the detectors were deployed in the met towers in 2008: however, these results contrasts sharply with the results for detectors deployed in trees during the earlier part of the fall 2008 season. Detectors placed in trees were closer to the ground (within 8 m) and more commonly recorded *Myotis* species; a genus that is more commonly detected at lower heights.

### **Breeding Bird Surveys**

Breeding bird surveys were conducted during spring/summer 2009 to determine the species composition, abundance, diversity, and distribution of breeding birds in the Project area. Consistent with United States Geological Survey North American Breeding Bird Survey methods, Stantec biologists conducted breeding bird point count surveys during three separate visits to the Project area: the first visit was at the end of May, and consecutive visits took place in June 2009. The habitats in the Project area were grouped into four categories: coniferous forest, deciduous forest, mixed coniferous and deciduous forest, and disturbed (e.g., clearings for meteorological towers and early succession cuts). Habitat types for each point count location were assigned based on the dominant vegetation cover present at each survey location. Quantitative data collected during point counts were used to calculate the species richness, relative abundance, community diversity, and frequency of breeding birds within the available habitats of the Project area. Surveys were conducted during optimal weather conditions for detection. It is likely, therefore, that the species richness detected during surveys is a suitable reflection of the species composition of breeding birds in the area.

There were a total of 35 breeding bird point count locations surveyed within the Project. Each point was surveyed during the three separate site visits. A total of 52 species plus an unidentified woodpecker and two unidentified ducks were observed during field surveys at point count locations. The composition of species detected during breeding bird surveys was representative of the habitats that occur in the Project area. The most birds were observed within the disturbed habitat, but this in large part reflects the greater number of survey points within this habitat category. The greatest species richness also was documented in disturbed habitat. The relative abundance was highest within the deciduous forest followed by the



disturbed habitat. The Shannon Diversity Index was relatively similar across the four habitat categories, indicating a similar species diversity and distribution among points sampled. The species with the greatest relative abundances among all points sampled included, white-throated sparrow (*Zonotrichia albicollis*), chestnut-sided warbler (*Dendroica pensylvanica*), black-throated-blue warbler (*Dendroica caerulescens*), and dark-eyed junco (*Junco hyemalis*).

In general, the species detected in the Project area are common and relatively abundant in the region. No state or federally threatened or endangered species were detected during the breeding bird surveys. Ten state-listed species of special concern were documented during these surveys; however many of these species including the white-throated sparrow and chestnut-sided warbler were commonly observed and are species that are typically associated with regenerating cuts and second-growth forests such as occur throughout the Project area.

### **Diurnal Raptor Survey**

Diurnal raptor surveys were conducted during the spring 2009 migration season. The purpose of the surveys was to document the species that occur in the vicinity of the Project, as well as the relative flights height, flight path locations, and other flight behaviors of observed raptors. These surveys were conducted from two different sites in the Project area: the summits of Witham Mountain and Briggs Hill. Surveys were based on Hawk Migration Association of North America methods and were typically conducted from 9 am to 4 pm.

Raptor surveys were conducted from March 25, 2009 to May 19, 2009, resulting in a total of 139 survey hours. Surveys included 12 days (83 hours) on Witham Mountain and 8 days (56 hours) on Briggs Hill. On four of these days, surveys were conducted simultaneously by observers at both survey locations.

A total of 260 raptors were observed resulting in an overall passage rate of 1.87 birds per hour. At Witham, a total of 153 raptors were observed for a passage rate of 1.84 birds per hour. At Briggs, a total of 107 raptors were observed resulting in a passage rate of 1.91 birds per hour. Ten different species plus unidentified raptors and buteos were recorded. The most commonly seen species were turkey vultures and red-tailed hawks (*Buteo jamaicensis*).

Of the 260 birds observed during the surveys, 236 occurred within the Project boundaries. The majority of the birds within the Project boundaries were seen over Witham Mountain (n=94; 39 percent) and Briggs Hill (n=83; 35 percent). Birds flying over the surrounding valleys (n=43; 18 percent) and Stewart Mountain (n=16; 7 percent) represented a relatively small percentage of the observations. Although observation sites provided views of the surrounding ridgelines and valleys, birds closer to the observer's location on Witham Mountain and Briggs Hill would have been more readily detected. As such, the higher percentage of observations over these sites may in part reflect the proximity of birds to the observers.

For those flight positions most likely associated with the proposed turbine locations within the Project boundaries, flight heights were categorized as above or below the proposed maximum turbine height of 130.5 m (428'). Eighty percent of the raptors observed from Witham occurred



below the proposed maximum rotor height (n=116) (Figure 5-6a, Appendix D Table 3). Similarly 86 percent of the raptors observed from Briggs Hill occurred below the proposed maximum rotor height (n=78).

No federally-listed threatened or endangered species were observed during the raptor surveys. A single peregrine falcon (*Falco peregrinus*), the breeding population of which is a state-listed endangered species, was observed flying through the Project area on April 10. Eight state-listed species of conservation concern also were identified during raptor surveys, including bald eagle (*Haliaeetus leucocephalus*), northern harrier (*Circus cyaneus*), chimney swift (*Chaetura pelagica*), tree swallow (*Tachycineta bicolor*), American redstart (*Setophaga ruticilla*), chestnut-sided warbler (*Dendroica pensylvanica*), white-throated sparrow and black-and-white warbler (*Mniotilta varia*).



# **Table of Contents**

| EXE         | ECUTIVE SUMMARY                                                  | E.1 |  |  |  |
|-------------|------------------------------------------------------------------|-----|--|--|--|
| 1.0         | INTRODUCTION                                                     | 1   |  |  |  |
| 1.1         | PROJECT BACKGROUND                                               | 1   |  |  |  |
| 1.2         | KEY QUESTIONS AND RESEARCH PRIORITIES                            | 2   |  |  |  |
| 1.3         | PROJECT AREA DESCRIPTION                                         | 2   |  |  |  |
| 2.0         | NOCTURNAL RADAR SURVEY                                           | 5   |  |  |  |
| 2.1         | INTRODUCTION                                                     | 5   |  |  |  |
| 2.2         | SURVEY DESIGN                                                    | 5   |  |  |  |
| 2.3         | DATA COLLECTION METHODS                                          | 10  |  |  |  |
|             | 2.3.1 Radar Data                                                 | 10  |  |  |  |
| 2.4         | DATA ANALYSIS METHODS                                            | 10  |  |  |  |
|             | 2.4.1 Radar Data                                                 | 10  |  |  |  |
|             | 2.4.2 Weather Data                                               | 11  |  |  |  |
| 2.5         | RESULTS                                                          | 11  |  |  |  |
|             | 2.5.1 Passage Rates                                              | 11  |  |  |  |
|             | 2.5.2 Flight Direction                                           | 12  |  |  |  |
|             | 2.5.3 Flight Altitude                                            |     |  |  |  |
|             | 2.5.4 Weather Data                                               |     |  |  |  |
| 2.6         | DISCUSSION                                                       | 16  |  |  |  |
| 3.0         | ACOUSTIC BAT SURVEY                                              | 19  |  |  |  |
| 3.1         | INTRODUCTION                                                     | 19  |  |  |  |
| 3.2         | SURVEY DESIGN                                                    |     |  |  |  |
|             | 3.2.1 Data Collection Methods                                    |     |  |  |  |
|             | 3.2.2 Data Analysis Methods                                      |     |  |  |  |
|             | 3.2.2.1 Weather Data                                             | 24  |  |  |  |
| 3.3         | RESULTS                                                          | 24  |  |  |  |
|             | 3.3.1 Detector Call Analysis                                     | 24  |  |  |  |
|             | 3.3.2 Weather Data                                               |     |  |  |  |
| 3.4         | DISCUSSION                                                       |     |  |  |  |
| 4.0         | BREEDING BIRD SURVEY                                             |     |  |  |  |
| 4.1         | INTRODUCTION                                                     |     |  |  |  |
| 4.2         | METHODS                                                          |     |  |  |  |
|             | 4.2.1 Breeding Bird Survey Point Counts                          |     |  |  |  |
| 4.3 RESULTS |                                                                  |     |  |  |  |
|             | 4.3.1 BBS Point Counts                                           |     |  |  |  |
|             | 4.3.2 Species relative abundances and frequencies among habitats |     |  |  |  |
|             | 4.3.2.1 Coniferous forest                                        |     |  |  |  |
|             | 4.3.2.2 Deciduous forest                                         |     |  |  |  |



|     | <ul><li>4.3.2.3 Mixed forest</li><li>4.3.2.4 Disturbed</li></ul> | 42<br>42 |  |  |  |
|-----|------------------------------------------------------------------|----------|--|--|--|
| 4.4 | DISCUSSION                                                       | 42       |  |  |  |
| 5.0 | DIURNAL RAPTOR SURVEYS                                           | 44       |  |  |  |
| 5.1 | INTRODUCTION                                                     | 44       |  |  |  |
| 5.2 | DATA COLLECTION METHODS                                          | 45       |  |  |  |
|     | 5.2.1 Field Surveys                                              | 45       |  |  |  |
| 5.3 | DATA ANALYSIS METHODS                                            | 48       |  |  |  |
| 5.4 | RESULTS                                                          |          |  |  |  |
|     | 5.4.1 Rare, Threatened and Endangered Species                    |          |  |  |  |
|     | 5.4.2 Incidental bird observations                               | 56       |  |  |  |
| 5.5 | DISCUSSION                                                       | 57       |  |  |  |
| 6.0 | LITERATURE CITED                                                 | 60       |  |  |  |

### Tables

| Table 3-1 | Summary of bat detector field survey effort and results, spring/summer 2009 surveys |
|-----------|-------------------------------------------------------------------------------------|
| Table 3-2 | Monthly combined detection rates for six acoustic detectors during 2009 surveys     |
| Table 3-3 | Monthly summary of 2009 acoustic survey results by detector                         |
| Table 3-4 | Distribution of detections by guild for detectors during spring/summer 2009         |
|           | surveys                                                                             |
| Table 4-1 | Summary of breeding bird point count results by habitat type                        |
| Table 4-2 | Maine species of special concern detected during the 2009 breeding bird surveys     |
| Table 5-1 | Number of observations and average flight heights for each position category for    |
|           | birds observed at Highland Wind Project, Spring 2009                                |
| Table 5-2 | Non-raptor avian species observed incidentally during raptor surveys at Highland    |
|           | Wind Project, Spring 2009                                                           |

### Figures

- Figure 1-1 Project Location Map
- Figure 2-1 Radar Location Map
- Figure 2-2 Ground clutter in horizontal mode and vertical mode.
- Figure 2-3 Proper site selection can reduce ground clutter to the center of the radar screen, so that the majority of the two-dimensional radar screen remains relatively uncluttered, allowing targets to be tracked as they both enter and leave the cluttered area
- Figure 2-4 Briggs Hill and Stewart radar screen shots
- Figure 2-5 Detection Range of the radar in vertical mode
- Figure 2-6 Nightly passage rates observed
- Figure 2-7 Hourly passage rates for entire season
- Figure 2-8 Mean flight direction for the entire season
- Figure 2-9 Mean nightly flight height of targets



- Figure 2-10 Percent of targets observed flying below a height of 130.5 m (428')
- Figure 2-11 Hourly target flight height distribution
- Figure 3-1 Acoustic Bat Survey Location Map
- Figure 3-2 View of acoustic bat detectors deployed in a met tower
- Figure 3-3 Total nightly bat call sequences by detector
- Figure 3-4 (a-f) Nightly detections by detector
- Figure 3-5 Guild and species composition of recorded bat call sequences
- Figure 3-6 Timing of acoustic activity
- Figure 3-7 Nightly mean wind speed and bat call detections
- Figure 3-8 Nightly mean temperature and bat call detections
- Figure 3-9 Nightly mean barometric pressure and bat call detections
- Figure 3-10 24 hour total precipitation and bat call detections
- Figure 4-1 Breeding Bird Survey Point Location Map
- Figure 5-1 Raptor Survey Location Map
- Figure 5-2 Raptor flight position categories in relation to the topography of the Project area.
- Figure 5-3 Total number of birds observed per survey day at Highland Wind Project Spring 2009
- Figure 5-4 Number of individuals of species observed at Highland Wind Project Spring 2009
- Figure 5-5 Number of individuals observed per survey hour at Highland Wind Project Spring 2009
- Figure 5-6 Number of individuals of species observed within Highland Wind Project boundary in proposed turbine areas (A1, A2, A3, and B) above or below 130.5 m Spring 2009
- Figure 5-7 (a and b) Number of individuals by species observed below turbine height by location
- Figure 5-8 Number of observations of flight behaviors at Highland Wind Project Spring 2009

#### Appendices

- Appendix A Radar Survey Data Tables
- Appendix B Publicly Available Bat Table
- Appendix C Breeding Bird Survey Data Tables
- Appendix D Raptor Survey Data Tables

PN19560385\*

<sup>&</sup>lt;sup>\*</sup> This report was prepared by Stantec Consulting Services Inc. for Highland Wind LLC. The material in it reflects Stantec's judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. Stantec accepts no responsibility for damages, if any suffered by any third party as a result of decisions made or actions based on this report.



# 1.0 Introduction

Highland Wind LLC (Highland) has proposed to construct a 128.6-megawatt (MW) wind energy project located in Highland Plantation and Pleasant Ridge Plantation, Somerset County, Maine (Figure 1-1). The Highland Wind Project (Project) includes 48 turbines, a 34.5-kilovolt (kV) electrical collector system, an electrical collection substation, a 115 kV generator lead, an Operations and Maintenance Building, and permanent meteorological (met) towers.

The turbines will be located in two distinct strings. The western string will include 26 turbines located on the ridgeline that connects Stewart Mountain, Witham Mountain and Bald Mountain. The meteorological data collected on this ridgeline suggests that weather conditions can be extreme and that the wind resource is excellent. These conditions require a Class I turbine and the Project has opted to use Vestas V90 3 MW turbines in most of the 26 turbine locations along the western string. The Vestas turbines have an 80 meter (m) hub height, a 90 m rotor diameter and a maximum tip-of-blade height of 125 m. The eastern string will include 22 turbines extending from the northeastern end of Burnt Hill south to Briggs Hill. Because of a more moderate wind capacity, Siemens SWT-2.3-101 turbines will be used along the eastern string to maximize energy output. These turbines have an 80 m hub height, a 101 m rotor diameter and a maximum tip-of-blade height of 130.5 m. Turbines will be located at elevations between 1550 and 2670 feet above sea level.

The electrical collector system will transfer power from the turbines to the proposed collector substation located north of Witham Mountain. These collector lines will be located underground along the ridgeline to reduce the project footprint and to reduce potential line maintenance costs along the exposed ridges. The approximately 11 mile long 115 kV generator lead will connect the on-site collector station to the existing Wyman Dam substation located in Moscow, Maine, where power will be transferred to the Central Maine Power system and ultimately distributed to the New England grid.

### 1.1 PROJECT BACKGROUND

In 2008, Stantec Consulting (Stantec) conducted a variety of environmental surveys as part of the continued planning for this Project, including surveys to characterize bird and bat activity within the Project area. Surveys conducted in 2008 included:

- Nocturnal radar surveys;
- Acoustic bat surveys;
- Raptor migration surveys; and
- Wetland delineation and vernal pool reconnaissance.

The scope of these surveys was based on a combination of developing standard methods within the wind power industry for pre-construction surveys, guidelines outlined by U.S. Fish and Wildlife Service (USFWS) and Maine Department of Inland Fisheries and Wildlife (MDIFW), and is consistent with other studies conducted recently in the state and the Northeast.

Surveys conducted in 2009 represent the first season of breeding bird surveys and the second season for each of the other surveys. During winter 2009, Stantec worked with MDIFW to



finalize the methods and level of effort needed for spring 2009 field surveys. A work plan describing methods and level of effort needed was approved by MDIFW on April 16, 2009. In addition to the bird and bat surveys described in this report a separate report summarizes surveys for northern bog lemming (*Synaptomys borealis*), northern spring salamander (*Gyrinophilus porphyriticus*), and Roaring Brook mayfly (*Epeorus frisoni*).

### 1.2 KEY QUESTIONS AND RESEARCH PRIORITIES

Surveys in the Project area are intended to provide baseline biological use information, which can be used to help make Project design decisions. In coordination and through consultations with state agencies, Stantec developed a work plan which addresses several Project specific ecological concerns using the following survey methods.

- Nocturnal radar surveys were used to document nocturnal migration patterns within the Project area and in relation to area ridgelines, especially during migration periods. Spring surveys were conducted to supplement the fall 2008 radar surveys.
- 2) Passive acoustic bat surveys helped characterize presence and species composition of bats in the Project area and specifically within the blade-swept area of the proposed turbines. The surveys also should provide information from lower heights within the tree canopy to document activity of different species that utilize various heights. Spring and summer 2009 surveys were conducted to supplement the fall 2008 acoustic surveys.
- 3) Breeding bird surveys were conducted in order to document and characterize the breeding bird assemblage of the Project area, in a quantitative, repeatable way. The data collected will provide baseline information on the breeding bird species and abundance that are currently present within the Project area for later comparison with post-construction surveys.
- 4) Diurnal raptor surveys were used to develop baseline information regarding use of the Project area by migrating raptors. These surveys help characterize the occurrence and flight patterns of diurnally migrating raptors (hawks, falcons, harriers, and eagles) and turkey vultures (*Cathartes aura*) in the Project area. Data collected during the surveys include number and species, general flight direction, and approximate flight altitude. Spring 2009 surveys were conducted to supplement the fall 2008 raptor surveys.

Following is a brief description of the Project; a review of the methods used to conduct scientific surveys and the results of those surveys; a discussion of results; and the conclusions reached based on those results.

### 1.3 PROJECT AREA DESCRIPTION

The Project area is located within the Central and Western Mountains Ecoregion as defined in *Maine's Comprehensive Wildlife Conservation Strategy* (MDIFW 2005). This ecoregion is a consolidation of the Western Mountains and Central Mountains biophysical regions originally described by McMahon (1990). The Central and Western Mountains Ecoregion extends from the New Hampshire boarder south the White Mountains National Forest, north to Aroostook



County and east to the western foothills. The average elevation within the western portion of the ecoregion (former Western Mountain Biophysical Region) is between approximately 305 m to 610 m (1,000' to 2,000') with several peaks exceeding 823 m (2,700'). The northern portion of this ecoregion includes some of the highest peaks in the state and has elevations that range from 183 m to 1,603 m (600' to 5,258'). The climate of this ecoregion is characterized by relatively low annual precipitation and cool temperatures. Heavy snow fall prolongs the winter resulting in a relatively short growing season (McMahon 1990). In general, ridge tops within this ecoregion are dominated by red spruce (*Picea rubens*) and balsam fir (*Abies balsamea*) with lower elevations supporting deciduous species such as sugar maple (*Acer saccharum*), yellow birch (*Betula alleghaniensis*) and American beech (*Fagus grandifolia*).

The Project area is located primarily within land managed by Wagner Forest Management, Ltd on a series of ridgelines that do not exceed 732 m (2,680') in elevation. These include Stewart, Witham, and Bald Mountains; and Briggs and Burnt Hill. Stewart Mountain represents the western boundary of the project and Briggs and Burnt Hill represent the eastern boundary. These two ridgelines are separated by the Sandy Stream Valley. The northern end of Stewart Mountain is the highest in elevation reaching 817 m (2,680') and decreases southward to 671 m (2,200'). Witham Mountain is the next highest in elevation reaching nearly 701 m (2,300'); the remaining ridgelines heights are approximately 671 m (2,200') and lower.

Due to its relatively low elevation, the vegetation in the Project area is dominantly northern hardwood species and includes: sugar maple, yellow birch, and American beech. Due to its relatively low elevation, the vegetation in the Project area is dominantly northern hardwood species and includes: sugar maple, yellow birch, and American beech. Red spruce and balsam fir are present primarily on those ridge tops that exceed approximately 610 m (2,000'). Historically and presently, the land within and surrounding the Project area, including the summits of the ridgelines, have been used for commercial timber management. This is evident by the recent and past cuts as well as the presence of the network of haul roads that extend through the Project area. These forest management operations have resulted in a variation of forest age classes.





#### Stantec Consulting Services Inc.

30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Fax: (207) 729-2715 www.stantec.com

#### Legend

★ Turbine

#### Client/Project

Highland Wind, LLC Highland Wind Project Highland Plantation, Maine

Figure No. 1-1

Title

Project Location Map November 4, 2009

00385-F101-Locus.mxd



# 2.0 Nocturnal Radar Survey

### 2.1 INTRODUCTION

Nocturnal radar surveys were conducted in the Project area to characterize spring 2009 nocturnal migration patterns of passerine birds (songbirds) and bats. Unlike raptors, which migrate during the day using thermals resulting from rising warm air, the majority of North American passerines migrate at night. Raptors soaring flight uses the laminar flow of air over the landscape, which creates updrafts along hillsides and ridgelines; whereas, passerines may have evolved the strategy of migrating at night to take advantage of more stable atmospheric conditions for their flapping flight (Kerlinger 1995). Waiting to migrate during the cooler nighttime temperatures may have also provided passerines the extra benefits of a more efficient method of regulating body temperature during more active, flapping flight and the reduction of predation risk while in flight (Alerstam 1990, Kerlinger 1995). Therefore, while raptor migration can be documented by visual daytime (diurnal) surveys, documenting the patterns of nocturnal migrants requires the use of radar or other non-visual technologies. This approach also captures migrating bats, which are typically active at night. The goal of the surveys was to document the overall passage rates for nocturnal migration in the vicinity of the Project area, including the number of migrants, their flight direction, and their flight altitude.

### 2.2 SURVEY DESIGN

The spring 2009 radar study was conducted from two sites to provide more complete coverage of the Project area. One radar unit was located on the southern end of Stewart Mountain, the same location as that used during the fall 2008 survey. Radar operations at this location completed one full survey year (fall and spring migration seasons) of sampling from a single local location. The second radar unit was situated just off a gravel road near Briggs Hill. This site was operated simultaneously with the radar on South Stewart on most nights. The radar at this second location supplied information on nocturnal migration activity from the eastern side of the Project area and provided views of the Sandy Stream Valley and the ridgeline saddle between Burnt Hill and Briggs Hill. The radar sites (Figure 2 -1), provided excellent sampling of the airspace within 1.4 kilometers (km; approximately 4,500') of the site. Most of the quadrants were visible on the radar screen for both sites. Efforts were made to maximize the airspace sampled by elevating the antennae to approximately 3 m (10'), thus reducing the amount of the radar beam reflected back by surrounding vegetation (Figure 2-2). Marine surveillance radar, similar to that described by Cooper et al. (1991), was used during field data collection. The radar has a peak power output of 12 kilowatts and has the ability to track small animals, including birds, bats, and even insects, based on settings selected for the radar functions. It cannot, however, readily distinguish between different types of animals being detected. Consequently, all animals observed on the radar screen were identified as "targets." The radar has an "echo trail" function which captures past echoes of flight trails, enabling determination of flight direction. During all operations, the radar's echo trail was set to 30 seconds. The radar was equipped with a 2 m (6.5') waveguide antenna. The antenna has a vertical beam width of 20° (10° above and below horizontal).





Stantec Consulting Services Inc. 30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Fax: (207) 729-2715 www.stantec.com

#### Legend

- ★ Radar Location
- Horizontal Radar Detection Range
- Alignment Vertical Radar Sweep

#### Client/Project

Highland Wind, LLC Highland Wind Project Highland Plantation, Maine



Title

Radar Location Map August 12, 2009

00385-F201-Radar-Location-Map.mxd



Objects on the ground detected by the radar cause returns on the radar screen (echoes) that appear as blotches called ground clutter. Large amounts of ground clutter reduce the ability of the radar to track birds and bats flying over those areas (Figure 2-2).



**Figure 2-2.** Ground clutter in horizontal mode (top) and vertical mode (bottom). Although the radar records three-dimensional space, it is translated by the radar screen into a two dimensional representation, which can cause targets to be obscured from view.





However, vegetation and hilltops near the radar can be used to reduce or eliminate ground clutter by "hiding" clutter-causing objects from the radar (Figure 2-3). These nearby features also cause ground clutter, but their proximity to the radar antenna generally limits the ground clutter to the center of the radar screen – targets are indistinguishable from the "clutter" as represented on the radar screen (Figure 2-4). The presence or reduction of potential clutter producing objects was carefully considered during site selection and radar station configuration.



**Figure 2-3.** Proper site selection can reduce ground clutter to the center of the radar screen (top), so that the majority of the two-dimensional radar screen remains relatively uncluttered, allowing targets to be tracked as they both enter and leave the cluttered area (bottom).



**Figure 2-4** (top) Briggs Hill Radar Screen Shots (left = horizontal mode and right = vertical mode) (bottom) South Stewart Radar Screenshots (left = horizontal mode and right = vertical mode)





Radar surveys were conducted from sunset to sunrise, and were scheduled to occur on 20 nights between April 15 and June 1, 2009. Because the anti-rain function of the radar must be turned down to detect small songbirds and bats, surveys could not be conducted during active rainfall. Therefore, surveys were planned largely for nights without rain. However, in order to characterize migration patterns during nights without optimal conditions, some nights with weather forecasts including occasional showers, mist, or fog were sampled.

The radar was operated in two modes throughout the course of each night. In surveillance mode, the antenna spins horizontally to survey the airspace around the radar and detects the number of targets and their flight direction as they pass through the Project Site (Figures 2-3 and 2-4). By analyzing the echo trail, the flight direction and flight speed of targets can be determined.

In vertical mode, the radar unit is tilted 90° to vertically survey the airspace above the radar (Harmata *et al.* 1999). In vertical mode, target echoes do not provide directional data, but do provide information on the altitude of targets passing through the vertical, 20° radar beam (Figure 2-5). Both modes of operation were used during each hour of sampling.



Figure 2-5. Detection Range of the radar in vertical mode



The radar was operated at a range of 1.4 km (4500'). At this range, the echoes of small birds can be easily detected, observed, and tracked. At greater ranges, larger birds can be detected but the echoes of small birds are reduced in size and restricted to a smaller portion of the radar screen, thus limiting the ability to observe the movement pattern of individual targets.

## 2.3 DATA COLLECTION METHODS

### 2.3.1 Radar Data

The radar display was connected to the video recording software of a computer enabling digital archiving of the radar data for subsequent analysis. This software recorded and archived video samples continuously every hour from sunset to sunrise of each survey night. By alternating the radar antenna every 10 minutes from vertical mode to horizontal mode, a total of 30 minutes of vertical samples and 30 minutes of horizontal samples were collected within each hour. Video recordings were subsequently analyzed based on a random schedule for each night. This sampling schedule allowed for randomization of sample collection and prevented double-counting of targets due to the 30-second echo trail used to determine the flight path vector.

## 2.4 DATA ANALYSIS METHODS

### 2.4.1 Radar Data

Video samples were analyzed using a digital analysis software tool developed by Stantec. For horizontal samples, targets (either birds or bats) were differentiated from insects based on their flight speed. Following adjustment for wind speed and direction, targets traveling faster than approximately 6 m (20') per second were identified as a bird or bat target (Larkin 1991, Bruderer and Boldt 2001). The software tool recorded the time, location, and flight vector for each target traveling fast enough to be a bird or bat within each horizontal sample, and these results were output to a spreadsheet. For vertical samples, the software tool recorded the entry point of targets passing through the vertical radar beam, the time, and flight altitude above the radar location, and then subsequently outputs the data to a spreadsheet. These datasets were then used to calculate passage rate (reported as targets per kilometer of migratory front per hour), flight direction, and flight altitude of targets.

Mean target flight directions ( $\pm$  1 circular standard deviation) were summarized using software designed specifically to analyze directional data (Oriana2<sup>©</sup> Kovach Computing Services). The statistics used for this analysis are based on those used by Batschelet (1965), because they take into account the circular nature of the data. Nightly wind direction, which was collected from the met tower next to the radar site, was also summarized using this method.

Flight altitude data were summarized using linear statistics. Mean flight altitudes ( $\pm$  1 standard error [SE]) were calculated by hour, night, and overall season. The percent of targets flying below 130.5 m, the approximate maximum height of the proposed wind turbines with blades, was also calculated hourly, for each night, and for the entire survey period.



### 2.4.2 Weather Data

Temperature, wind speed, and wind direction were recorded on an hourly basis by the south Stewart met tower for the duration of the radar survey period (April 29 to May 31). The mean, maximum, and minimum temperature, mean and maximum wind speed, relative humidity, barometric pressure, and dew point were calculated for each night.

### 2.5 RESULTS

Radar surveys were conducted during 21 nights at the Briggs Hill radar site (April 29 to May 31, 2009); and 19 nights at the South Stewart Mountain radar site (April 29 to May 26, 2009). Of those nights, 16 were performed simultaneously at both radar sites (Appendix A, Table 1A & B).

### 2.5.1 Passage Rates

The mean passage rate for the entire survey period was  $496 \pm 31$  targets per kilometer per hour (t/km/hr) at Briggs Hill and  $511\pm 46$  t/km/hr at South Stewart (Figure 2-6; also Appendix A, Table 1A & B). Nightly passage rates at Briggs Hill varied from  $10 \pm 4$  t/km/hr on May 5 to  $1,262 \pm 173$  t/km/h on May 19. At South Stewart, nightly passage rates ranged from  $8 \pm 5$  t/km/hr on May 10 to  $1735 \pm 235$  t/km/hr May 20. Individual hourly passage rates varied from 0 to 1757 t/km/hr at Briggs Hill and 0 to 2268 t/km/hr at South Stewart (Appendix A, Table 1A & B). The days with the highest mean passage rates for the two sites were different, but both sites had their lowest mean passage rates on the same days, May 5 and May 10. Hourly passage rates varied between and within nights throughout the season. For the entire season, passage rates were highest during the fourth or fifth hour after sunset (Figure 2-7).



Figure 2-6. Nightly passage rates observed (error bars ± 1 SE)





Figure 2-7. Hourly passage rates for entire season

### 2.5.2 Flight Direction

Mean flight direction through the Project area was  $47^{\circ} \pm 39^{\circ}$  at Briggs Hill and  $53^{\circ} \pm 48^{\circ}$  at South Stewart (Figure 2-8). There was some variation between nights in mean flight direction although most nights at both sites included flight directions generally to the northeast, as is typical for the spring migration period (Appendix A, Table 2A & B).





Figure 2-8. Stewart (top) and Briggs (bottom) mean flight directions for the entire season (the bracket along the margin of the histogram is the 95% confidence interval)



### 2.5.3 Flight Altitude

The seasonal mean flight height of all targets at Briggs Hill was  $287 \pm 8$  m above the radar site and at South Stewart it was  $314 \pm 10$  m. At Briggs Hill the average nightly flight height ranged from  $115 \pm 12$  m on May 18 to  $451 \pm 33$  m on April 30 and at South Stewart the average flight height ranged from  $168 \pm 14$  m April 29 to  $514 \pm 39$  m on May 12 on South Stewart (Figure 2-9; Appendix A, Table 3A & B). The percent of targets observed flying below 130.5 m averaged 26 percent at Briggs Hill for the season and 23 percent at South Stewart for the season (Figure 2-



10). In general, those nights with the lowest mean flight heights corresponded to the nights with the highest percentage of targets below the maximum turbine height of 130.5 m. The mean hourly flight height for the entire season was relatively constant throughout the night at both sites (Figure 2-11).



Figure 2-9. Mean nightly flight height of targets (error bars ± 1 SE)







Figure 2-10. Stewart (top) and Briggs (bottom) percent of targets observed flying below a height of 130.5 m (428')





Figure 2-11. Hourly target flight height distribution

### 2.5.4 Weather Data

Mean nightly wind speeds in the Project area from April 29 to May 31 varied between 3.5 and 14.9 meters per second (m/s), with an overall mean of 7.7 m/s. Mean nightly temperatures varied between 1.5°C and 19.8°C, with an overall mean of 7.8°C.

### 2.6 DISCUSSION

The results of this field survey provide useful information about site-specific migration activity and patterns in the Project area, especially when the results of the two sites are compared with each other and when results are compared with results of previous surveys conducted in Fall 2008.

The mean nightly passage rates at Stewart and Briggs were similar on most nights. On three nights in late May, the passage rate at Stewart was noticeably higher than at Briggs and on two nights in mid May and late May, the passage rate at Briggs was noticeably higher than at Briggs. This variation may be due to a general migration pattern where migrants, although moving in a broad front will occasionally pass in random concentrated pulses over the landscape. The overall trend of mean hourly passage rate was very similar at both sites. The mean nightly flight heights were also similar on most nights. The hourly mean flight height was relatively consistent throughout the night at both sites and ranged between 200 and 350 m above the radar.

Within the last several years, data from nocturnal radar surveys using similar methods and equipment as those used at this Project area rapidly becoming available. These other studies



provide an opportunity to compare the results of this project to others in Maine and the northeastern United States. However, it is important to note that there are limitations in comparing data from previous years with data from 2009, as year-to-year variation in continental bird populations may influence how many birds migrate through an area. Additionally, differences in site characteristics, particularly the topography, local landscape conditions, and vegetation surrounding a radar survey location, can play a large role in any radar's ability to detect targets and the subsequent calculation of passage rate. These differences should be recognized as one of the most significant limiting factors in making direct site-to-site comparisons of passage rates. Regardless of potential differences between radar survey locations, the results at the Project are within the typical range of results at projects on forested ridges in the northeast (Appendix A Table 5).

Nightly variation in the magnitude and flight characteristics of nocturnally-migrating songbirds is not uncommon and is often attributed to weather patterns, such as cold fronts and winds aloft (Hassler *et al.* 1963, Gauthreaux and Able 1970, Richardson 1972, Able 1973, Bingman *et al.* 1982, Gauthreaux 1991). Nights with the highest passage rates appeared to have had moderate to light winds (2 to 4 m/s) from the northeast. Temperature does not seem to have an affect on passage rate at this site.

Some research suggests that bird migration may be affected by landscape features, such as coastlines, large river valleys, and mountain ranges. This has been documented for diurnally migrating birds, such as raptors, but is not as well established for nocturnally migrating birds (Sielman *et al.* 1981; Bingman 1980; Bingman *et al.* 1982; Bruderer and Jenni 1990; Richardson 1998; Fortin *et al.* 1999; Williams *et al.* 2001; Diehl *et al.* 2003). Those studies that suggest night-migrating birds are influenced by topography typically have been conducted in areas of steep and abrupt topography, such as the most rugged areas of the northern Appalachians and the Alps. Topography at the project site did not appear to influence migration patterns through the area.

Emerging evidence from other studies conducted by Stantec and other consultants, and academic research, suggests that flight height seems to be more important in determining potential collision risk than passage rate or flight direction (Cooper and Mabee 2000; Cooper et al. 2004; Gauthreaux and Livingston 2006; Mizrahi et al. 2008). Comparison of flight height between survey sites as measured by radar is generally less influenced by site characteristics as the main portion of the radar beam is directed skyward, and the potential effects of surrounding vegetation on the radar's view can be more easily controlled. The radars were centrally located within openings at this Project site, which allowed for unobstructed views in vertical mode and targets were observed flying in all areas of the vertical detection range. The radar views in horizontal mode were comparable to other regional studies conducted by Stantec in the state. The emerging body of studies characterizing nocturnal migrants shows a relatively consistent pattern in flight altitude, with most targets appearing to fly at altitudes of several hundred meters or more above the ground (Appendix A, Table 5). This pattern applies to this site, as targets appeared to fly at fairly consistent heights near 300 m above the ground nightly and throughout the survey period. The flight heights at the Project are well above the proposed turbine height of 130.5 m, indicating a limited mortality risk during migration.



There is currently no accurate quantitative method of directly correlating pre-construction passage rates at wind farms to operational impacts to birds and bats. Until radar surveys are conducted at a constructed site followed by mortality surveys the morning after, no direct correlations to collision risk can be made. This radar survey is designed to sample migration activity over a given point of time to provide baseline data pre-construction.



# 3.0 Acoustic Bat Survey

### 3.1 INTRODUCTION

Acoustic monitoring of bat activity has become a standard element of pre-construction surveys for proposed wind-energy developments (Kunz *et al.* 2007a,b). Acoustic surveys are associated with several major assumptions (Hayes 2000) and results should not be used to determine the number of bats inhabiting an area or to determine the number of bats that may collide with the proposed turbines. However, acoustic surveys can provide insight into seasonal patterns in activity levels and examine how weather conditions influence bat activity. This data may be useful in predicting trends in post-construction mortality rates. The objectives of acoustic surveys at the Project were (1) to document bat activity patterns from August through October in airspace near the rotor zone of the proposed turbines and at an intermediate height and (2) to document bat activity patterns in relation to weather factors including wind speed, temperature, and barometric pressure.

Eight species of bats occur in Maine, based upon their normal geographical range. These are the big brown bat (*Eptesicus fuscus*), silver-haired bat (*Lasionycteris noctivagans*), eastern red bat (*Lasiurus borealis*), hoary bat (*L. cinereus*), eastern small-footed myotis (*Myotis leibii*), little brown myotis (*M. lucifugus*), northern myotis, (*M. septentrionalis*), and tri-colored bat (*Perimyotis subflavus*) (BCI 2001). Of these, the eastern small-footed myotis, eastern red bat, hoary bat, and silver-haired bat are listed in Maine as species of special concern

An initial season of acoustic surveys was conducted in the Project area between mid August and late October 2008. Detectors first were deployed in trees along access road corridors. Once the met towers were constructed in early September, the detectors were moved to guy wires at each of the three met towers. The second season of acoustic surveys began in April 2009, and continued through mid August 2009. The detectors were located in met towers for the duration of this survey period. This section summarizes results of 2009 surveys, making comparison to acoustic data collected in 2008 where appropriate.

## 3.2 SURVEY DESIGN

### 3.2.1 Data Collection Methods

Anabat SD1 detectors (Titley Electronics Pty Ltd.) were used for the duration of the spring/summer 2009 acoustic bat survey. Each detector was programmed to sample continuously between 1900 and 0800 on a nightly basis, storing data from each night on removable compact flash cards. Anabat detectors operate by dividing the frequency of ultrasonic calls by an adjustable factor (set to 16 for North American species) so that they are audible to humans. The detectors also record frequency profiles of each detected bat call



sequence for analysis and species identification, as described below. Anabat detectors were selected for use in this study based on their widespread use for this type of survey, their ability to be deployed for long periods of time, and their ability to detect a broad frequency range, which allows detection of all species of bats that could occur in the Project area.

The audio sensitivity setting of each Anabat system was set between 6 and 7 (on a scale of 1 to 10) to maximize sensitivity while limiting ambient background noise and interference. The sensitivity of individual detectors was then tested using an ultrasonic Bat Chirp (Reno, NV) to ensure that the detectors would be able to detect bats up to a distance of at least 10 m (33'). Detectors were powered by 12-volt batteries, charged by solar panels, and housed within waterproof boxes. Bat calls are directed to the microphone on the bat detectors using a 1.5 inch diameter PVC elbow, which protects the microphone from rain and weather while maximizing the volume of air sampled.

A total of six detectors were deployed between mid April and mid August 2009. Two detectors were deployed in each of the three met towers: South Stewart, Witham Mountain, and Briggs Hill (Figure 3-1). One detector was suspended at a height of approximately 20 m (66') and the other at a height of approximately 40 m (131') in each tower (Figure 3-2). Table 3-1 in section 3.3 lists deployment dates for each detector.





Stantec Consulting Services Inc. 30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Fax: (207) 729-2715 www.stantec.com Legend



Bat Detector Location

#### Client/Project

Highland Wind, LLC Highland Wind Project Highland Plantation, Maine

| iyui | c | 14          | v |
|------|---|-------------|---|
|      | 3 | <b>-</b> -' | 1 |

Title

Bat Survey Location Map August 12, 2009

00385-F301-Bat-Survey-Location-Map.mxd





Figure 3-2. Typical view of acoustic bat detectors deployed from met tower guy wires.

### 3.2.2 Data Analysis Methods

Ultrasound recordings of bat echolocation may be broken into recordings of a single bat call or recordings of bat call sequences. A call is a single pulse of sound produced by a bat, while a call sequence is a combination of two or more pulses recorded in an Anabat file. Recordings containing less than two calls were eliminated from analysis as has been done in similar studies (Arnett *et al.* 2006).

Potential call files were extracted from data files using CFCread<sup>®</sup> software. The default settings for CFCread<sup>®</sup> were used during this file extraction process, as these settings are recommended for the calls that are characteristic of Maine bats. This software screens all data recorded by the bat detector and extracts call files using a filter. Using the default settings for this initial screen also ensures comparability between data sets. Settings used by the filter include a max TBC (time between calls) of 5 seconds, a minimum line length of 5 milliseconds, and a smoothing factor of 50. The smoothing factor refers to whether or not adjacent pixels can be connected with a smooth line. The higher the smoothing factor, the less restrictive the filter is and the more noise files and poor quality call sequences are retained within the data set.



Following extraction of call files, each file was visually inspected for species identification and to ensure that only bat calls were included in the data set. Insect activity, wind, and interference can also sometimes produce Anabat files that pass through the initial filter and need to be visually inspected and removed from the data set. Call sequences are easily differentiated from other recordings, which typically form a diffuse band of dots at either a constant frequency or widely varying frequency.

Because bat activity levels are highly variable among individual nights and individual hours (Hayes 1997, Arnett *et al.* 2006), detection rates are summarized on both of these temporal scales. Nightly detection rates were summarized by month as well as for the entire sampling period. Hourly detection rates were summarized by hour after sunset, as recommended by Kunz *et al.* (2007a, b). Quantitative comparisons among these temporal periods was not attempted because the high amount of variability associated with bat detection would required much larger sample sizes (Arnett *et al.* 2006, Hayes 1997).

Bat call sequences were individually marked and categorized by species group, or "guild" based on visual comparison to reference calls. Qualitative visual comparison of recorded call sequences of sufficient length to reference libraries of bat calls allows for relatively accurate identification of bat species (O'Farrell *et al.* 1999, O'Farrell and Gannon 1999). Call sequences were classified to species whenever possible, based on criteria developed from review of reference calls collected by Chris Corben, the developer of the Anabat system, as well as other bat researchers. However, due to similarity of call signatures between several species, all classified calls have been categorized into five guilds<sup>2</sup> reflecting the bat community in the region of the Project area and is as follows:

- Unknown (UNKN) All call sequences with less than five calls, or poor quality sequences (those with indistinct call characteristics or background static). These sequences were further identified as either "high frequency unknown" (HFUN) for sequences with a minimum frequency above 30 to 35 kHz, or "low frequency unknown" (LFUN) for sequences with a minimum frequency below 30 to 35 kHz. The unknown calls are separated into these specific high frequency and low frequency groups because some inferences can be made as to the possible guilds based upon bats known to occur in this area. For this area, HFUN most likely represents eastern red bats, tricolored bats and *Myotis* species since these species typically produce ultrasound sequences of more than 30 kHz. Big brown, silver-haired and hoary bats would be the species in this area typically producing ultrasound sequences of less than 30 kHz.
- Myotis (MYSP) All bats of the genus *Myotis*. While there are some general characteristics believed to be distinctive for several of the species in this genus, these characteristics do not occur consistently enough for any one species to be relied upon at all times when using Anabat recordings.

<sup>&</sup>lt;sup>2</sup> Gannon *et al.* 2003 categorized bats into guilds based upon similar minimum frequency and call shape. These guilds were: Unidentified, Myotis, LABO-PISU and EPFU-LANO-LACI. We broke hoary bats out into a separate guild due to the importance of reporting activity patterns of migratory species in the context of wind energy development.



- Eastern red bat/tri-colored bat<sup>3</sup> (RBTB) Eastern red bats and tri-colored bats. These two species can produce calls distinctive only to each species. However, significant overlap in the call pulse shape, frequency range, and slope can also occur.
- **Big brown/silver-haired bat (BBSH)** Big brown and silver-haired bats. These species' call signatures commonly overlap and have therefore been included as one guild in this report.
- Hoary bat (HB) Hoary bats. Calls of hoary bats can usually be distinguished from those of big brown and silver-haired bats by minimum frequency extending below 20 kHz or by calls varying widely in minimum frequency across a sequence.

This method of guild identification represents a conservative approach to bat call identification. Since some species sometimes produce calls unique only to that species, all calls were identified to the lowest possible taxonomic level before being grouped into the listed guilds. Tables and figures in the body of this report will reflect those guilds. However, since speciesspecific identification did occur in some cases, each guild will also be briefly discussed with respect to potential species composition of recorded call sequences.

Once all of the call files were identified and categorized in appropriate guilds, nightly tallies of detected calls were compiled. Mean detection rates (number of recordings/detector-night) for the entire sampling period were calculated for each detector and for all detectors combined.

### 3.2.2.1 Weather Data

Temperature (°C), wind speed (m/s), and barometric pressure (mbar) were collected from a 50 meter met tower at South Stewart and provided by Highland Wind for the duration of the survey period (April 23-August 17). Mean nightly temperature, barometric pressure, and wind speed were calculated for each night, and nightly averages were plotted against nightly detections.

## 3.3 RESULTS

### 3.3.1 Detector Call Analysis

Detectors were deployed for a total of 117 calendar-nights (692 detector-nights) between April 23 and August 17. Detectors were operational during 553, or approximately 80%, of these nights. At least one detector was operational at each met tower during every night of the survey period with the exception of a 6-night period at the Witham tower in early May, during which both detectors malfunctioned. Table 3-1 summarizes the ranges of dates each detector was deployed and overall results per detector.

<sup>&</sup>lt;sup>3</sup> The scientific and common name of the eastern pipistrelle (*Pipistrellus subflavus*) has been changed to the tri-colored bat (*Perimyotis subflavus*).



| Table 3-1. Summary of bat detector field survey effort and results, spring/summer 2009 surveys |                    |                    |                      |                       |                      |                                         |
|------------------------------------------------------------------------------------------------|--------------------|--------------------|----------------------|-----------------------|----------------------|-----------------------------------------|
| Location                                                                                       | Dates Deployed     | Calendar<br>Nights | Detector-<br>Nights* | Recorded<br>Sequences | Detection<br>Rate ** | Maximum<br>Sequences<br>recorded<br>*** |
| Briggs High                                                                                    | April 23-August 13 | 113                | 73                   | 19                    | 0.3                  | 3                                       |
| Briggs Low                                                                                     | April 23-August 13 | 113                | 112                  | 57                    | 0.5                  | 6                                       |
| Stewart High                                                                                   | April 23-August 17 | 117                | 117                  | 31                    | 0.3                  | 3                                       |
| Stewart Low                                                                                    | April 23-August 17 | 117                | 74                   | 22                    | 0.3                  | 3                                       |
| Witham High                                                                                    | April 24-August 17 | 116                | 110                  | 19                    | 0.2                  | 3                                       |
| Witham Low                                                                                     | April 24-August 17 | 116                | 67                   | 18                    | 0.3                  | 4                                       |
| Overa                                                                                          | all Results        | 692                | 553                  | 166                   | 0.3                  |                                         |
| * One detector-night is equal to a one detector successfully operating throughout the night.   |                    |                    |                      |                       |                      |                                         |
| ** Number of bat echolocation sequences recorded per detector-night.                           |                    |                    |                      |                       |                      |                                         |
| *** Maximum number of bat passes recorded from any single detector for a detector-night.       |                    |                    |                      |                       |                      |                                         |

A total of 166 bat call sequences were recorded during the survey period, resulting in an overall detection rate of  $0.3 \pm 0.05$  (standard error [SE]) recordings/detector/night (r/d/n) among detectors. Detection rates were similar between detectors, with individual detectors accounting for between 11% and 34% of the total number of recordings. Detection rates were higher in August than during any other month of the survey period, overall and by individual detector, although the mean number of recordings per detector-night remained below 1 even during August (Tables 3-2 and 3-3; Figure 3-3).

| Table 3-2. Monthly combined detection rates for sixacoustic detectors during 2009 surveys |     |    |      |  |  |  |
|-------------------------------------------------------------------------------------------|-----|----|------|--|--|--|
| Month # Detector-nights # Recordings                                                      |     |    |      |  |  |  |
| April                                                                                     | 22  | 1  | 0.05 |  |  |  |
| May                                                                                       | 121 | 24 | 0.20 |  |  |  |
| June                                                                                      | 135 | 36 | 0.27 |  |  |  |
| July                                                                                      | 181 | 36 | 0.20 |  |  |  |
| August 94 69 0.7                                                                          |     |    |      |  |  |  |
| Overall 553 166 0.30                                                                      |     |    |      |  |  |  |



| Table 3-3. Monthly summary of 2009 acoustic survey results by detector                       |             |                    |                      |                       |                      |                                      |
|----------------------------------------------------------------------------------------------|-------------|--------------------|----------------------|-----------------------|----------------------|--------------------------------------|
| Detector /<br>Month                                                                          | Dates       | Calendar<br>Nights | Detector-<br>Nights* | Recorded<br>Sequences | Detection<br>Rate ** | Maximum<br>Sequences<br>recorded *** |
| Briggs High                                                                                  |             | -                  |                      |                       |                      |                                      |
| April                                                                                        | April 23-30 | 8                  | 0                    | 0                     | -                    | -                                    |
| May                                                                                          | May 1-31    | 31                 | 20                   | 3                     | 0.2                  | 1                                    |
| June                                                                                         | June 1-30   | 30                 | 11                   | 0                     | 0.0                  | 0                                    |
| July                                                                                         | July 1-31   | 31                 | 29                   | 5                     | 0.2                  | 3                                    |
| August                                                                                       | August 1-13 | 13                 | 13                   | 11                    | 0.8                  | 3                                    |
| Briggs Low                                                                                   |             | •                  |                      |                       | •                    |                                      |
| April                                                                                        | April 23-30 | 8                  | 7                    | 0                     | 0.0                  | 0                                    |
| May                                                                                          | May 1-31    | 31                 | 31                   | 12                    | 0.4                  | 2                                    |
| June                                                                                         | June 1-30   | 30                 | 30                   | 17                    | 0.6                  | 6                                    |
| July                                                                                         | July 1-31   | 31                 | 31                   | 13                    | 0.4                  | 5                                    |
| August                                                                                       | August 1-13 | 13                 | 13                   | 15                    | 1.2                  | 4                                    |
| Stewart High                                                                                 |             |                    |                      |                       |                      |                                      |
| April                                                                                        | April 23-30 | 8                  | 8                    | 0                     | 0.0                  | 0                                    |
| May                                                                                          | May 1-31    | 31                 | 31                   | 9                     | 0.3                  | 1                                    |
| June                                                                                         | June 1-30   | 30                 | 30                   | 11                    | 0.4                  | 3                                    |
| July                                                                                         | July 1-31   | 31                 | 31                   | 1                     | 0.0                  | 1                                    |
| August                                                                                       | August 1-17 | 17                 | 17                   | 10                    | 0.6                  | 2                                    |
| Stewart Low                                                                                  |             |                    |                      |                       | •                    |                                      |
| April                                                                                        | April 23-30 | 8                  | 1                    | 1                     | 1.0                  | 1                                    |
| May                                                                                          | May 1-31    | 31                 | 7                    | 0                     | 0.0                  | 0                                    |
| June                                                                                         | June 1-30   | 30                 | 18                   | 4                     | 0.2                  | 3                                    |
| July                                                                                         | July 1-31   | 31                 | 31                   | 2                     | 0.1                  | 1                                    |
| August                                                                                       | August 1-17 | 17                 | 17                   | 15                    | 1.0                  | 2                                    |
| Witham High                                                                                  |             | •                  |                      |                       | •                    |                                      |
| April                                                                                        | April 24-30 | 7                  | 6                    | 0                     | 0.0                  | 0                                    |
| May                                                                                          | May 1-31    | 31                 | 26                   | 0                     | 0.0                  | 0                                    |
| June                                                                                         | June 1-30   | 30                 | 30                   | 1                     | 0.0                  | 1                                    |
| July                                                                                         | July 1-31   | 31                 | 31                   | 7                     | 0.2                  | 3                                    |
| August                                                                                       | August 1-17 | 17                 | 17                   | 11                    | 0.9                  | 2                                    |
| Witham Low                                                                                   |             |                    |                      |                       |                      |                                      |
| April                                                                                        | April 24-30 | 7                  | 0                    | 0                     | -                    | -                                    |
| May                                                                                          | May 1-31    | 31                 | 6                    | 0                     | 0.0                  | 0                                    |
| June                                                                                         | June 1-30   | 30                 | 16                   | 3                     | 0.2                  | 1                                    |
| July                                                                                         | July 1-31   | 31                 | 28                   | 8                     | 0.3                  | 4                                    |
| August                                                                                       | August 1-17 | 17                 | 17                   | 7                     | 0.4                  | 3                                    |
| Overa                                                                                        | II Results  | 692                | 546                  | 166                   | 0.3                  |                                      |
| * One detector-night is equal to a one detector successfully operating throughout the night. |             |                    |                      |                       |                      |                                      |
| ** Number of bat echolocation sequences recorded per detector-night.                         |             |                    |                      |                       |                      |                                      |
| *** Maximum number of bat passes recorded from any single detector for a detector-night.     |             |                    |                      |                       |                      |                                      |





**Figure 3-3.** Total nightly bat call sequence detections by detector. The Witham Low detector was the only detector to record a bat call during April and it recorded only a single call sequence and as such this value for April is artificially high.

Figures 3-4 through 3-9 display nightly acoustic activity by guild at each acoustic detector deployed within the Project area during 2009 surveys. Generally, high and low detectors at each met tower documented similar acoustic activity patterns, with peaks in activity often coordinated between detectors. Levels of acoustic activity were also similar between high and low detectors, with no clear trend of greater activity at either the high or the low detectors (Figures 3-4 through 3-9).





Figure 3-4a. Nightly detections at the Briggs Hill High detector from April through August, 2009. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



**Figure 3-4b**. Nightly detections at the Briggs Hill Low detector from April through August, 2009. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat/evening bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).





**Figure 3-4c**. Nightly detections at the Stewart High detector from April through August, 2009. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



**Figure 3-4d**. Nightly detections at the Stewart Low detector from April through August, 2009. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).





**Figure 3-4e**. Nightly detections at the Witham High detector from April through August, 2009. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).



**Figure 3-4f**. Nightly detections at the Witham Low detector from April through August, 2009. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).


Most recorded call sequences were classified as BBSH (n = 63; 38.0%), followed by UNKN (n = 57; 34.3%). Remaining sequences were split roughly evenly between HB (n = 26; 15.7%) and MYSP (n = 20; 12.0%). No call sequences were identified as RBTB (Table 3-4). Within the BBSH guild, 23 (37%) were identified as silver-haired bats, 3 (5%) were identified as big brown bats, and 37 (58%) could not be identified between the species. Within the UNKN category, the majority (n = 39; 68%) of call sequences were low frequency. Of those species documented within the Project area, the hoary bat (HB), silver-haired bat (SH) and big brown bat (BB) typically produce low frequency calls. As a single species, hoary bats (HB) accounted for a relatively high percentage of the total number of recorded sequences (n = 26; 16%).

| Table 3-4. Distribution of detections by guild for detectors during spring/summer 2009 surveys |       |       |       |      |       |       |
|------------------------------------------------------------------------------------------------|-------|-------|-------|------|-------|-------|
| Detector                                                                                       | Guild |       |       |      |       | Total |
| Delector                                                                                       | BBSH  | HB    | MYSP  | RBTB | UNKN  | Total |
| Briggs High                                                                                    | 7     | 2     | 1     | 0    | 9     | 19    |
| Briggs Low                                                                                     | 25    | 8     | 9     | 0    | 15    | 57    |
| Stewart High                                                                                   | 6     | 7     | 3     | 0    | 15    | 31    |
| Stewart Low                                                                                    | 5     | 1     | 7     | 0    | 9     | 22    |
| Witham High                                                                                    | 9     | 5     | 0     | 0    | 5     | 19    |
| Witham Low                                                                                     | 11    | 3     | 0     | 0    | 4     | 18    |
| Total                                                                                          | 63    | 26    | 20    | 0    | 57    | 166   |
| Guild Composition %                                                                            | 38.0% | 15.7% | 12.0% | 0.0% | 34.3% |       |

Among detectors, species composition varied slightly, although overall numbers of recorded call sequences were too low to characterize patterns. Figure 3-5 summarizes species composition of acoustic activity by detector for the entire survey period.





**Figure 3-5**. Guild and species composition of recorded bat call sequences at Highland met detectors from April through August, 2009. UNKN (*unknown guild*); RBTB (*red bat/tri-colored bat*); BBSH (*big brown/silver haired*); HB (*hoary bat*); MYSP (*myotis*).

Timing of acoustic activity varied between detectors and nights, but exhibited a gradual peak between the second and fourth hour past sunset when data were combined for all detectors and all nights. Activity levels then dropped gradually between the fourth and tenth hour past sunset (Figure 3-6).





Figure 3-6. Timing of acoustic activity during 2009 surveys relative to sunset for six detectors combined.

### 3.3.2 Weather Data

Mean nightly wind speeds in the Project area from April 23 through August 17 varied between 2.0 and 16.6 m/s, with an overall mean of 6.8 m/s (Figure 3-7). Mean nightly temperatures varied between 1.5°C and 22.0°C, with an overall mean of 12.0°C (Figure 3-8). Mean nightly barometric pressure varied from 920 mm Hg to 952 mm Hg with a mean value of 940 mm Hg (Figure 3-9). Whereas wind speed and barometric pressure were variable throughout the survey period, mean nightly temperatures trended higher throughout the survey period. Generally speaking, bat activity levels were higher on nights with lower mean wind speeds and higher mean temperatures. Rainfall totaled 26.5 inches during the survey period and bats were seldom detected on nights with rainfall (Figure 3-10).





Figure 3-7. Nightly mean wind speed (m/s) (blue line) and bat call detections averaged across the six detectors



Figure 3-8. Nightly mean temperature (Celsius) (blue line) and bat call detections averaged across the six detectors





Figure 3-9. Nightly mean barometric pressure (mm Hg) (blue line) and bat call detections averaged across the six detectors



Figure 3-10. 24-hr total precipitation (inches; blue line) and bat call detections averaged across the six detectors. Because data on timing of rainfall were not available, rainfall data are reported as 24-hour totals, including daytime rain.



# 3.4 DISCUSSION

Bat echolocation surveys provide some insight into possible activity patterns, species composition, and timing of movements of bats in the Project area. Between 2008 and 2009 acoustic surveys, Stantec conducted nearly eight months of acoustic monitoring at three different met towers and several near-ground locations (in 2008) within the Project area. Together, these two seasons of monitoring provide information on the activity patterns of bats in the Project area. Acoustic surveys in 2009 documented low levels of acoustic activity among all six detectors. No detector recorded more than six call sequences during any single night, which is very low for this type of survey work, particularly in mid summer. Weather conditions during this time period, particularly high rainfall amounts, may have significantly influenced bat activity and resulting detection rates. In addition, the 2009 spring/summer survey period did not capture the peak in activity that typically occurs later in the season (mid-August to early September) because this time was cover during the 2008 surveys.

Comparison of the 2008 and 2009 survey results, using only the data collected at the met tower locations, indicates that the overall mean detection rate was the same (0.3 r/d/n). In 2008, detectors were originally deployed in trees along forested corridors and were placed at a height of 8 m or less. These lower detectors picked up a high number of call sequences (n=11,516) many of which were determined to be either *Myotis* sp. or high frequency unknown calls.

Species composition of recorded bat activity suggests that most bats flying above the canopy within the Project area are larger species, with hoary bats and silver-haired bats appearing to be the most commonly detected species, followed by big brown bats. Very few *Myotis* sp. bats were recorded above the tree canopy. These trends were true for both 2008 and 2009 acoustic surveys, and have also been observed at other regional studies. The *Myotis* sp. bats are detected most frequently near the ground and larger bats, which are presumably more capable fliers, are detected more frequently by detectors mounted high in met towers.

Differences in detection rates between guilds at the various detector locations may reflect varying vertical distribution and habitat preferences of bat species (Arnett et al. 2006, Hayes 2000). Recent research using Anabat detectors recorded *Myotis* species more frequently at lower heights and larger species such as big brown and hoary bats were more frequently at higher heights (Arnett et al. 2006). This general trend matches the guild compositions reported in Figure 3-5. However, interpretation of guild composition is confounded by the high number of UNKN call sequences. Unknown call sequences could not be identified to guild or species due to short call sequences (less than five pulses) or poor call signature formation, often a result of bats flying at the edge of the detection zone of the detector or flying away from the microphone. The relatively small area sampled by bat detectors makes scenarios leading to un-identifiable call sequences common, but some information can still be gleaned from these poor recordings. Specifically, 68 percent of UNKN sequences recorded in the Project area during 2009 surveys were identified as being LFUN, which include the hoary bat, silver-haired bat, and big brown bat, the three most commonly identified species during 2009 surveys. These species also were most commonly detected when the detectors were deployed in the met towers in 2008; however, these results contrasts sharply with the results for detectors deployed in trees during the earlier part of the fall 2008 season. Detectors placed in trees were closer to the ground



(within 8 m) and more commonly recorded *Myotis* species; a genus that is more commonly detected at lower heights.

When met tower acoustic data from 2008 and 2009 are considered together, August stands out as the month with the highest acoustic activity levels. Although only half of the month was sampled during each year, activity levels peaked in August and gradually declined in September and October during 2008 surveys, and peaked in August after a gradual increase during 2009 surveys.

Comparison of acoustic bat activity levels and weather variables suggest that bats are most active during mild nights with no precipitation and low wind speeds. The large amount of rain between April and August, 2009, may have contributed to the overall low levels of acoustic activity documented in the Project area. July was the rainiest month, and a corresponding drop in activity levels was observed during this month. Because weather variables are not independent of one another, activity levels of bats are likely determined by the combination of variables rather than one single variable. Visual comparison of Figures 3-7 through 3-10 above show that during certain periods with low or no bat activity (example May 29 through June 2) wind speeds were high, temperatures were low, barometric pressure dropped, and considerable rain fell. While the weather was clearly not favorable for bats during certain intervals in the survey period, it is difficult to isolate which weather variable influenced bat activity most.

Qualitatively speaking, acoustic surveys at the Project area mirror similar surveys conducted in the Northeast Specifically, detection rates at detectors suspended from met towers were low (less than 1 r/d/n), and detectors operating at ground-level exhibited tremendous variation, ranging from less than 10 to over 300 r/d/n. This type of variation reflects differing conditions (habitat, microclimates, etc.) and differing timing of operation among detectors. The results of these Project specific surveys, including variability in bat activity and generally low detection rates above canopy height, are consistent with other publicly available acoustic surveys conducted at proposed wind developments in the Northeast. This Project area does appear to have activity levels that are consistently below those from similar surveys conducted in the region (Appendix B Table 1).



# 4.0 Breeding Bird Survey

### 4.1 INTRODUCTION

Stantec conducted a breeding bird survey during the spring and summer of 2009. The goal of the surveys was to determine the species composition, abundance, diversity, and distribution of breeding birds in the Project area. The surveys focused effort on documenting the occurrence of species of conservation concern, but considered all avian species visually or acoustically detected. Survey methods were conducted in accordance with the United States Geological Survey (USGS) North American Breeding Bird Survey methods (Sauer *et al.* 2003). The survey provides baseline data of the species present in the Project area, their abundance, as well as the community structures among the different habitats present on-site.

### 4.2 METHODS

### 4.2.1 Breeding Bird Survey Point Counts

Consistent with USGS North American Breeding Bird Survey methods, Stantec biologists conducted breeding bird point count surveys during three separate visits to the Project area: the first visit occurred at the end of May, and the other visits took place in June 2009.

The timing of surveys targeted the timeframe starting 15 minutes before sunrise to 6 hours after sunrise on days with suitably clear weather, mild temperatures, and when rain or wind would not inhibit the detection of birds. Point count locations were established over the proposed Project area using Global Positioning System (GPS) equipment (Figure 4-1), and were positioned to sample all habitats representative of the Project area. These included points along the ridgelines in proximity to the proposed turbine locations or access roads. At each survey point, GPS location, time, weather, habitat, species, number of individuals, and other behavioral notes were recorded.

During surveys, observers oriented themselves toward the north and record the general location of birds onto the directional quadrants of a count circle. Point count sample periods were broken into three periods: the first three minutes, the following two minutes, and the final five minutes. For the duration of the 10-minute count period, the species and the number of individuals occurring at distances of 0-50 m, 50-100 m, or greater than 100 m from the observer, or flying overhead, were recorded on datasheets for the period during which they were first heard. During each consecutive time period, observers would determine the location of previously recorded birds and track any movements within the count circle to avoid recounting birds. When possible, observers made digital recordings of rare or unusual birds. Observations of birds made before and after the point count timeframes were recorded separately as incidental observations.





Stantec Consulting Services Inc. 30 Park Drive Topsham, ME USA 04086 Phone (207) 729-1199 Fax: (207) 729-2715 www.stantec.com

Legend

BBS Point Location

Highland Wind, LLC Highland Wind Project Highland Plantation, Maine

Figure No. 4-1

Title

Breeding Bird Survey Location Map October 15, 2009

00385-F401-BBS-Points.mxd



The habitats in the Project area were summarized into four categories: coniferous forest, deciduous forest, mixed coniferous and deciduous forest, and disturbed. Habitat types for each point count location were assigned based on the dominant vegetation cover present at each survey location. The disturbed habitat category included clearings created for meteorological (met) towers as well as early successional cuts created by timber harvesting. Habitats that share similar characteristics were grouped wherever possible for statistical analysis purposes. For example, coniferous forest habitats included second-growth stands as well as coniferous stands that had undergone more recent harvesting, but were beyond the initial early successional stage of regeneration.

Quantitative data collected during point counts were used to calculate the species richness, relative abundance, community diversity, and frequency of breeding birds within the available habitats of the Project area.

- Species richness (SR) is the total number of species that are detected at a specific point, within a habitat classification, or across the Project area.
- Relative abundance (RA) measures the number of individuals of a species within a habitat classification or across the Project area, and takes into account the number of times each point is surveyed and the number of points per habitat, or per Project area.
- Frequency (Fr) of occurrence, expressed as a percentage, measures the number of points within a habitat type, or across the Project area, where a particular species is detected.
- The Shannon Diversity Index (SDI) is a measure of species diversity in a community or habitat. SDI can provide more information about community composition than species richness alone because it takes into account relative abundance and evenness of species. It indicates not only the number of species, but also how abundance is distributed among all the species in the community or habitat.

Species recorded as beyond 100 m from the observer, as flyovers, or birds detected incidentally were not included in the statistical analysis for relative abundance, species frequency, or community diversity due to the probability that they were not breeding within the direct vicinity of the point count location; however, these data were used to determine overall species richness and the total number of birds observed.

# 4.3 RESULTS

One round of surveys was conducted in May (May 21 to 22), and two were conducted in June (June 9 and 10, and June 21, 25, and 26). Breeding bird surveys were conducted when wind or rain conditions had no adverse effect on bird detection. Wind conditions were predominantly calm to 4 to 7 kph (2 to 4 mph); wind speeds did not typically exceed 19 kph (12 mph) during the surveys except for brief periods on May 21 and 22, June 9, and June 21. Weather conditions generally ranged from clear to overcast skies, although there were periods of fog or



mist, drizzle, and showers during surveys on June 10, 21, and 26. Temperatures during the surveys ranged from -18 to  $23^{\circ}$  C (-0.4° to  $73.4^{\circ}$  F).

There were a total of 35 breeding bird point count locations surveyed within the Project area. Each point was surveyed during the three separate site visits. Fifty-two species and an unidentified woodpecker and two unidentified ducks were observed during point count surveys (Appendix C Table 1). Three additional species were detected incidentally between point count surveys: American kestrel (*Falco sparverius*), American woodcock (*Scolopax minor*), and eastern phoebe (*Sayornis phoebe*) (Appendix C Table 2).

# 4.3.1 BBS Point Counts

Including birds detected beyond 100 m from the observer and birds seen flying over head, a total of 1,057 individual birds representing 52 species were documented during the point count surveys. Fifty-two percent of birds (n=553) were detected within 50 meters of the observer, 37 percent (n=390) were detected 50 to 100 m, 7 percent (n=77) were detected at greater than 100 m from the observer, and 4 percent (n=37) were observed as flyovers (Appendix C Table 1). The species with the greatest relative abundance among the 35 point counts included white-throated sparrow (*Zonotrichia albicollis*; RA=1.02), chestnut-sided warbler (*Dendroica pensylvanica*; RA=0.68), black-throated-blue warbler (*Dendroica caerulescens*; RA=0.67), and dark-eyed junco (*Junco hyemalis*; RA=0.60).

Point count data were analyzed to determine species richness, relative abundances, and diversity for each habitat type (Table 4-1). Excluding birds detected greater than 100 m from the observer and birds seen flying over head (n=943), the species richness was 47 and the relative abundance of all birds among the 35 point count locations was 8.98. The SDI for all points surveyed was 3.25.

The ridgeline portion of the Project area is dominated by two habitat categories, and these were the most frequently surveyed habitats: disturbed areas (n=17 points) and coniferous forest (n=15 points). The most birds were observed within the disturbed habitat (n=517), but this in large part reflects the greater number of survey points within this habitat category. The greatest species richness also was documented in disturbed habitat (SR=38). The relative abundance was highest within the deciduous forest (RA=11.33) followed by the disturbed habitat (RA=10.14). The SDI was relatively similar across the four habitat categories, indicating a similar species diversity and distribution among points sampled.

| Table 4-1. Summary of breeding bird point count results by habitat type |                 |                            |                       |                     |                               |
|-------------------------------------------------------------------------|-----------------|----------------------------|-----------------------|---------------------|-------------------------------|
| Habitat Type                                                            | # BBS<br>Points | Total<br>Birds<br>Observed | Relative<br>Abundance | Species<br>Richness | Shannon<br>Diversity<br>Index |
| Coniferous forest                                                       | 15              | 341                        | 7.58                  | 32                  | 2.95                          |
| Deciduous forest                                                        | 1               | 34                         | 11.33                 | 19                  | 2.80                          |
| Mixed forest                                                            | 2               | 51                         | 8.50                  | 20                  | 2.82                          |
| Disturbed                                                               | 17              | 517                        | 10.14                 | 38                  | 2.98                          |
| All points                                                              | 35              | 943                        | 8.98                  | 47                  | 3.25                          |



### 4.3.2 Species relative abundances and frequencies among habitats

Following is a summary of the relative abundance and frequency of occurrence for the most commonly detected species in the four surveyed habitats (Appendix C, Tables 3).

### 4.3.2.1 Coniferous forest

The species with the greatest relative abundance among the coniferous forest points were Nashville warbler (*Vermivora ruficapilla*; RA=0.89), yellow-rumped warbler (*Dendroica coronata*; RA=0.76), and golden-crowned kinglet (*Regulus satrapa*); RA=0.67). The species occurring most frequently among the coniferous forest points were dark-eyed junco (Fr=100%), yellow-rumped warbler (Fr=93%), golden-crowned kinglet (Fr=87%), and Nashville warbler (Fr=87%).

### 4.3.2.2 Deciduous forest

Species with the greatest relative abundances among deciduous forest points were dark-eyed junco (RA=1.33), black-throated blue warbler (RA=1.33), American redstart (*Setophaga ruticilla*); RA=1.00), and mourning warbler (*Oporornis philadelphia*); RA=1.00). Because only one point was surveyed in this habitat, the frequency of occurrence yields little information; all detected birds had a value of 100 percent.

### 4.3.2.3 Mixed forest

Species with the greatest relative abundances among mixed forest points were black-throated blue warbler (RA=2.67), yellow-rumped warbler (RA=1.67), hermit thrush (*Catharus guttatus*); RA=1.33) and bay-breasted warbler (*Dendroica castanea*); RA=1.33). Because only two points were surveyed in this habitat, species either had a frequency of occurrence of 50 percent (n=12) or 100 percent (n=8).

### 4.3.2.4 Disturbed

Species with the greatest relative abundances among disturbed habitat points were whitethroated sparrow (RA=1.55), chestnut-sided warbler (RA=1.24), common yellowthroat (RA=1.10), and black-throated blue warbler (RA=0.78). The species observed most frequently were white-throated sparrow (Fr=100%), chestnut-sided warbler (Fr=94%), and common yellowthroat (Fr=88%).

# 4.4 DISCUSSION

During the 2009 breeding bird surveys, a total of 55 species were documented in the Project area. Surveys were conducted during the peak nesting period, and were initiated in the early morning when birds are typically the most vocal. Surveys were generally conducted during optimal weather conditions for detection of vocalizations. Certain species of bird vocalize less frequently and are, therefore, often under-represented during breeding bird surveys (Farnsworth *et al.* 2002). The 2009 surveys used standard methods that are comparable to other breeding



bird surveys conducted in the region; therefore, the results of the surveys provide a suitable reflection of the breeding bird community in the Project area. The 2009 data represents baseline data that can be compared to similar studies conducted in the region, as well as future studies conducted on-site.

The ridgeline portion of the Project area consists primarily of disturbed habitat and coniferous forests and as a result more of the point count locations fell within these two habitats. Largely as a result of number of survey points, most of the birds were observed within these two habitats. These two habitats also had comparatively higher species richness when compared to the deciduous and mixed habitat categories. The SDI for the four habitats was similar indicating a relatively even distribution of species among the surveyed points.

The species detected during breeding bird surveys were those that would typically be associated with the available habitats in the Project area. Those stands of more mature coniferous and deciduous forests provided habitat for interior forest species such as the goldencrowned kinglet and bay-breasted warbler. In contrast generalist species such as the Nashville warbler and edge-associated species (i.e., mourning warbler and white-throated sparrow) occurred more commonly in less mature stands and in the very early successional cuts and clearings.

No state- or federally-listed endangered or threatened species were observed during the 2009 breeding bird surveys, but 10 state-listed species of special concern were documented (Table 4-2). Although these species are listed as species of special concern in Maine, several of them are considered globally and regionally secure (NatureServe Explorer 2009). For example, the chestnut-sided warbler has shown no statistically significant decline and no clear population trends across its range. White-throated sparrow and chestnut-sided warbler, two species that respond well to regeneration following timber harvesting, had the highest RA during the point count surveys. With the possible exception of the black-throated blue warbler, which is more typically associated with interior forest habitats, the species with the greatest relative abundances among all points sampled are forest edge dwelling species and will inhabit areas with past forest disturbances such as timber harvesting. In general, the species that were detected on-site are common and regionally abundant species and they are representative of the habitats in which they were detected.



| Table 4-2.     Maine species of special concern       detected during the 2009 breeding bird surveys |                                        |  |  |  |
|------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|
| Species                                                                                              | Relative abundance<br>among all points |  |  |  |
| least flycatcher                                                                                     | 0.01                                   |  |  |  |
| yellow warbler                                                                                       | 0.01                                   |  |  |  |
| Tennessee warbler                                                                                    | 0.03                                   |  |  |  |
| Canada warbler                                                                                       | 0.04                                   |  |  |  |
| American redstart                                                                                    | 0.24                                   |  |  |  |
| black-and-white warbler                                                                              | 0.28                                   |  |  |  |
| chestnut-sided warbler                                                                               | 0.68                                   |  |  |  |
| white-throated sparrow                                                                               | 1.02                                   |  |  |  |
| olive-sided flycatcher *                                                                             |                                        |  |  |  |
| eastern wood-pewee *                                                                                 |                                        |  |  |  |
| *Observed greater than 100 m from observer.                                                          |                                        |  |  |  |

# 5.0 Diurnal Raptor Surveys

# 5.1 INTRODUCTION

The Project area is within the "Eastern Continental Hawk Flyway"<sup>4</sup>, which extends from the Canadian Maritimes south to eastern Florida. Within this large area, raptors tend to concentrate along linear mountain ridgelines which provide 'leading lines' for migrants (Kellogg 2007). Updrafts are formed along the side slopes of ridges which raptors use in order to fly long distances with minimal exertion (Berthold 2001). Raptors also use thermals, pockets of warm, air that rise from the ground's surface as it is heated by the sun, to minimize energy expenditure during migration movements (Bildstein 2006). Because many raptor species avoid crossing large bodies of water, raptor migration in the Eastern Continental Hawk Flyway also tends to be concentrated along the shores of large bodies of water including lakes and the Atlantic Coast (Kellogg 2007).

It was the purpose of the raptor surveys to sample migration activity at central and prominent locations within the Project area, to document the species that occur in the vicinity of the Project, and the general flights height, flight path locations, and other flight behaviors of raptors within or in the vicinity of the Project.

<sup>&</sup>lt;sup>4</sup> The Eastern Continental Flyway includes the Maritime Provinces; New England; New York (south and east of a line from Jamestown to Utica to the north end of Lake Champlain); Pennsylvania (all except Erie County); Mid-Atlantic States through Georgia, West Virginia, Kentucky and Tennessee; Florida east of a line from Lake Seminole south to Apalachicola (Kellogg 2007).



# 5.2 DATA COLLECTION METHODS

### 5.2.1 Field Surveys

Diurnal raptor surveys were conducted on days with favorable flight conditions. Days following the passage of weather fronts bringing favorable weather, good visibility, and days with southerly winds were targeted. Raptor migration is facilitated by tail winds (winds aligned with the preferred direction of travel), which "push" migrating raptors forward (Bildstien 2006); however, some raptors will fly in light or moderate headwinds. Days with headwinds also were sampled as some flight behaviors differ in moderate to strong headwinds.

Raptor surveys were conducted from two different sites in the Project area (see Figure 5-1). These two locations were chosen in coordination with MDIFW because they provided adequate coverage of the Project area. The primary raptor observation site was located on the exposed-bedrock summit of Witham Mountain, where unobstructed 360-degree views of the Project area are available. The summit of Briggs Hill located at the southern edge of the Project area was chosen as the second survey site<sup>5</sup>. Briggs offers good views to the south of approaching raptors as well as sweeping vistas across Bald, Witham, and Stewart Mountains.

<sup>&</sup>lt;sup>5</sup> Burnt Hill, which is located at the northern end of the Project area, was used as the second survey site during the fall migration. This more northerly location provided a better opportunity to observe birds migrating south.





Stantec Consulting Services Inc. 30 Park Drive

Topsham, ME USA 04086 Phone (207) 729-1199 Fax: (207) 729-2715 www.stantec.com

#### Legend

Raptor Survey Location

#### Client/Project

Highland Wind, LLC Highland Wind Project Highland Plantation, Maine Figure No.

| • | .9 | - | ~ | 1  |    |
|---|----|---|---|----|----|
|   |    |   | 5 | ;- | -1 |

Title

Raptor Survey Location Map August 12, 2009

00385-F501-Raptor-Location-Map.mxd



Surveys were based on Hawk Migration Association of North America (HMANA) methods (HMANA 2007). Surveys were generally conducted from 9 am to 4 pm, during the peak hours of thermal development and raptor movement. During surveys, observers scanned the sky and surrounding landscape for raptors with binoculars or a spotting scope. Hourly weather observations, including wind speed and direction, temperature, sky conditions, percent cloud cover, and relative cloud height and type were recorded. Detailed information for each observation was recorded on datasheets and Project area maps, including:

- Observation date and time;
- Species, number of individuals, and age (if possible);
- If the raptor occurred within the Project boundary (as depicted in Figure 5-1);
- The flight positions of each bird in relation to topography of the area;
- The flight height (above ground) of each bird (within each different topographical flight position);
- The specific flight behaviors of each bird;
- The general flight direction of each bird; and
- If the bird was actively migrating as well as other notes describing the general activity of each bird.

Topographical flight positions were summarized into categories that describe the landscape surrounding the observation site (these positions apply to birds observed both within as well as outside of the Project boundary): A1) parallel to ridge, A2) perpendicular to ridge, A3) over saddle, B) flight path over upper slope of ridge, C) flight path over lower slope of ridge, and D) flight path over a valley (see Figure 5-2 below). As individual birds traveled through or in the vicinity of the Project, all position categories in which a bird occurred were recorded.







Nearby objects with known heights, such as the met towers located on the ridges of Witham Mountain and Briggs Hill, were used to gauge flight height.

Flight behaviors where categorized as: circle soaring, linear soaring (straight-line soaring or slow gliding in a 'thermal street' formed between updrafts), gliding (with wings partially closed and bent wrists), powered flight (flapping wings), banking (breaking with fully extended wings and tail fanned), diving (wings partially to mostly closed while in descent), kiting (using wind current to kite with partially closed wings and tail), hovering (maintaining a stationary altitude with some flapping and fanned tail while hunting and looking downward), aerial feeding (eating prey in flight while in a soar or slow glide), aerial hunting low over the ground, aerial display (territorial or courtship aerial display), or perched. These behaviors in association with flight direction, species, and seasonality, were used to describe birds as actively migrating or not-actively migrating.

Birds that flew too rapidly or were too far to accurately identify were recorded as unidentified to their genus or, if the identification of genus was not possible, unidentified raptor. Although priority was given to raptor observations, incidental observations for other avian species, including passerines and water birds also were recorded.

# 5.3 DATA ANALYSIS METHODS

The raptor observation data was summarized by survey day and for the entire survey period for surveys conducted from both observation sites. Analysis included a summary of:

- The total number of individuals per species observed each survey day, and for the entire survey period;
- Daily passage rates (birds per hour [birds/hr]) calculated for each survey day, as well as for the entire survey period;
- Hourly observation totals per species;
- The percentage of birds within each topographical flight position category;
- The average minimum flight height of birds within each topographical flight position category;
- The percentage of all birds that occurred within the Project boundary;
- For all birds observed within the Project boundary, and within topographical positions where the turbines are to be located, flight heights were categorized as less than or greater than 130.5 m (428') above ground;
- A summary of the flight behaviors of all birds observed.

Observations from the Project survey were compared to Spring 2009 data from the following hawk watch sites: Barre Falls, Barre, Massachusetts; Poquonock, Poquonock, Connecticut; Plum Island, Newburyport, Massachusetts; Pilgrim Heights, North Truro, Massachusetts; and Bradbury Mountain, Pownal, Maine (<u>HMANA</u> 2009). Also provided for comparison were the



results of available surveys conducted at proposed wind farms located primarily in New York, Vermont, New Hampshire, and Maine.

# 5.4 RESULTS

Raptor surveys were conducted from March 25, 2009 to May 19, 2009, resulting in a total of 139 survey hours. Surveys included 12 days (83 hours) on Witham Mountain and 8 days (56 hours) on Briggs Hill. On four of these days, surveys were conducted simultaneously observers at both survey locations. During the simultaneous surveys, observers used cell phones to communicate observations and limit potentially double-counting birds. Surveys were generally conducted from 9:00 am to 4:00 pm, and also included some extended morning and/or evening hours on days when flight conditions were favorable.

Survey days were dominated by high pressure atmospheric conditions and good visibility. Clouds heights were generally mid- to high-elevation, with cumulus and cirrus being the predominant cloud type. Temperatures ranged from -4° C, with a three foot snow-pack early season, to 24°C in mid-May (25 - 75°F). A few surveys were conducted on days with marginal flight conditions. Weather on two days included stratus clouds, drizzle, and passing low pressure, and two days had strong, gusty winds. The majority of days had winds from a westerly direction, which is normal for spring migration, but wind direction was variable throughout the survey period. Wind direction did not appear to affect the number of raptors seen per day; however, migration on April 29 may have been hampered by strong northerly winds (Figure 5-3; Appendix D Table 1).

During the spring 2009 surveys, a total of 260 raptors representing 10 species<sup>6</sup> plus unidentified raptors and unidentified buteos were observed. This included birds within the 1 kilometer Project boundary as well as birds observed beyond this boundary. The overall passage rate was 1.87 birds/hr. At Witham, a total of 153 raptors were observed for a passage rate of 1.84 birds/hr. At Briggs, a total of 107 raptors were observed resulting in a passage rate of 1.91 birds/hr. At Witham, daily counts ranged from 0 to 13 birds with daily passage rates ranging from 0 to 3.28 birds/hr. At Briggs, daily counts ranged from 4 to 30 birds with daily passage rates ranging from 0.57 to 4.29 birds/hr (Appendix D, Table 1).

Turkey vultures (*Cathartes aura*) were the most commonly observed species (Witham, n=57; Briggs, n=75), representing 37 percent and 70 percent of all observations at Witham and Briggs, respectively. At Witham, red-tailed hawks (*Buteo jamaicensis*; n=46; 30 percent) and sharp-shinned hawk (*Accipiter striatus*; n=15; 10 percent) were the next most commonly observed species. Similarly, at Briggs red-tailed hawks (n=14; 13 percent) were the most commonly observed species after turkey vultures. Ten or few observations were documented for each of the remaining species.

<sup>&</sup>lt;sup>6</sup> While turkey vultures are not phylogenetically considered true raptors, they are diurnal migrants that exhibit flight characteristics similar to *Buteos, Accipiters* and other *Falconiformes* species, therefore vultures are typically included during hawk watch surveys.





Figure 5-3. Total number of birds observed per survey day at Highland Wind Project – Spring 2009



Figure 5-4. Number of individuals of species observed at Highland Wind Project - Spring 2009



On a daily basis, most observations occurred between 11:00 am and 1:00 pm, when thermal development is strong. A second, weaker peak occurred between 3:00 pm and 4:00 pm (Figure 5-5; Appendix D, Table 2).



Figure 5-5. Number of individuals observed per survey hour at Highland Wind Project – Spring 2009





Figure 5-6. Number of individuals observed over topographical features of the Highland Wind Project as observed from Witham Mountain or Briggs Hill – Spring 2009

Raptors observed within the Project area were categorized as occurring over Stewart Mountain, Witham Mountain, Briggs Hill, and over the valleys surrounding the ridges (Figure 5-6). Of the 260 birds observed during the survey, 236 occurred within the Project boundary. Of these 236 birds, the majority were seen over Witham Mountain (n=94; 39 percent) and Briggs Hill (n=83; 35 percent). Birds flying over the surrounding valleys (n=43; 18 percent) and Stewart Mountain (n=16; 7 percent) represented a relatively small percentage of the observations. Although observation sites provided views of the surrounding ridgelines and valleys, birds closer to the observer's location on Witham Mountain and Briggs Hill would have been more readily detected. As such, the higher percentage of observations over these sites may in part reflect the proximity of birds to the observers.



| Table 5-1.   Number of observations and average flight heights for each position category for     birds observed at, Highland - Spring 2009 |                                            |                                                      |                         |                                                  |                      |                      |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|-------------------------|--------------------------------------------------|----------------------|----------------------|-------------------|
| Location                                                                                                                                    | Flight Position<br>Characteristic          | A1)<br>flight<br>along<br>or<br>parallel<br>to ridge | A2)<br>crossed<br>ridge | A3) flight<br>crossed<br>depression<br>or saddle | B)<br>upper<br>slope | C)<br>Iower<br>slope | D) over<br>valley |
| Witham                                                                                                                                      | No. of position<br>observations<br>(n=339) | 44                                                   | 47                      | 36                                               | 99                   | 66                   | 47                |
|                                                                                                                                             | Average<br>minimum flight<br>height (m)    | 79.2                                                 | 104.2                   | 79.6                                             | 123.8                | 201.5                | 280.7             |
| Briggs                                                                                                                                      | No. of position<br>observations<br>(n=133) | 37                                                   | 16                      | 5                                                | 19                   | 18                   | 38                |
|                                                                                                                                             | Average<br>minimum flight<br>height (m)    | 80.1                                                 | 113.0                   | 117.2                                            | 99.9                 | 272.3                | 356.7             |

As raptors passed through the area they were typically observed in multiple flight positions (A-D) either within or beyond the Project boundary. Because birds occurred in more than one flight position, the following analysis includes more flight positions than total individuals observed within the Project boundary. At Witham, 339 total flight positions were documented. Twentynine percent of flight positions occurred along the upper slope (n=99) and 19 percent occurring along the lower slope (n=66) (Table 5-1). Each of the other flight positions represented 14 percent or less of the observations. At Briggs, 133 total fight positions were documented. Twenty-nine percent (n=38) of these flight position occurred over the valley and 28 percent occurred along/parallel (n=37) to the ridge (Table 5-1). Each of the other flight positions represented 14 percent or less of the observations.

For those flight positions within the Project boundary most likely associated with the proposed turbine locations (positions A1, A2, A3, and B), flight heights were categorized as above or below the proposed maximum turbine height of 130.5 m (428'). Eighty percent of the raptors observed from Witham in these four flight positions occurred below the proposed maximum rotor height (n=116) (Figure 5-7a, Appendix D Table 3). Similarly 86 percent of the raptors observed from Briggs Hill in these flight positions occurred below the proposed maximum rotor height (n=78) (Figure 5-7 b, Appendix D Table 3).





Figure 5-7a. Number of individuals by species observed within Highland Wind Project boundary in proposed turbine areas (A1, A2, A3, and B) below 130.5 m – Spring 2009



**Figure 5-7b.** Number of individuals by species observed within Highland Wind Project boundary in proposed turbine areas (A1, A2, A3, and B) below 130.5 m – Spring 2009



As raptors traveled within or beyond the Project boundary, they often exhibited multiple flight behaviors. As a result, the summary of flight behaviors includes more flight behaviors than total number of birds observed. Of the 207 flight behaviors documented from Witham Mountain, the majority of raptors were gliding (n=77; 37 percent) or circle soaring (n=69; 33 percent) (Figure 5-8; Appendix D Table 4). Of the 103 flight behaviors documented from Briggs Hill, the majority of birds were circle soaring (n=43; 42 percent) and linear soaring (n=36; 35 percent) (Figure 5-8; Appendix D Table 4).

Based on their flight behaviors and direction of travel, raptors were categorized as either migrants or non-migrants (seasonally local or stop-over birds). Birds that were traveling in a non-migration direction, were perched, engaged in aerial display, or appeared to be foraging were generally considered non-migrants. Sixty-three percent (n=165) of all raptors observed during the 2009 spring surveys were considered to be non-migrants, 33 percent (n=85) were considered to be migrants, and 4 percent (n=10) could not be categorized based on observed behavior.



Figure 5-8. Number of observations by flight behaviors at Highland Wind Project – Spring 2009



### 5.4.1 Rare, Threatened and Endangered Species

No federally-listed threatened or endangered species were observed during the raptor surveys. Surveys documented one state-listed threatened species<sup>7</sup>, peregrine falcon (*Falco peregrinus*; n=1). A single juvenile peregrine falcon was observed flying over Witham Mountain on April 7, at approximately 40 m above ground level. The bird continued north through the saddle between Witham and Stewart mountains. Two state-listed species of special concern, bald eagle (*Haliaeetus leucocephalus*; n=7) and northern harrier (*Circus cyaneus*; n=1) also were identified during the raptors surveys. The adult northern harrier was observed on April 30 at approximately 38 m above ground level. Seven bald eagles were documented in the Project area including four adults, one sub-adult, one juvenile, and one eagle of indeterminate age.<sup>8</sup> Four of the bald eagles crossed over the ridge and three of these were below the maximum turbine height for a portion of their flight. Six observations included flight paths along the slope, three of which included portions below maximum turbine height. One additional bald eagle was observed during the surveys, but it occurred outside of the 1 km Project boundary.

### 5.4.2 Incidental bird observations

During the 2009 raptor surveys, observers documented other avian species seen incidental to the targeted surveys (Table 5-2). These incidental observations were made while observers hiked to the designated survey points, or during the course of the raptor surveys. In total, 51 non-raptor avian species were observed.

Six of these incidentally observed species—tree swallow (*Tachycineta bicolor*), chimney swift (*Chaetura pelagica*), American redstart, black-and-white warbler, chestnut-sided warbler, white-throated sparrow—are state species of special concern. No breeding habitat exists within the Project area for the chimney swift so the single bird that was observed was migrating through the area. The two tree swallows also may have been migrating through the Project area. The other four species were documented during the 2009 breeding bird survey and two of the species, white-throated sparrow and chestnut-sided warbler, were the most commonly observed species based upon relative abundance calculations (Refer to Section 4 for additional discussion).

<sup>&</sup>lt;sup>7</sup> The state status of endangered species only applies to breeding populations of peregrine falcons.

<sup>&</sup>lt;sup>8</sup> The nearest documented bald eagle nests and are located on the Kennebec River approximately 6 miles from the nearest turbine. The nearest peregrine nest is located on the Kennebec River approximately 8 miles from the nearest turbine.

Īī



| Table 5-2. Incidental observation of non-raptor avian species made during raptor |                          |  |  |  |
|----------------------------------------------------------------------------------|--------------------------|--|--|--|
| surveys - Highland Wind Project, Spring 2009                                     |                          |  |  |  |
| American crow                                                                    | golden-crowned kinglet   |  |  |  |
| American goldfinch                                                               | hairy woodpecker         |  |  |  |
| American redstart                                                                | hermit thrush            |  |  |  |
| American robin                                                                   | killdeer                 |  |  |  |
| black-and-white warbler                                                          | magnolia warbler         |  |  |  |
| black-capped chickadee                                                           | mourning dove            |  |  |  |
| black-backed gull                                                                | Nashville warbler        |  |  |  |
| blue-headed vireo                                                                | northern flicker         |  |  |  |
| blue jay                                                                         | ovenbird                 |  |  |  |
| boreal chickadee                                                                 | pine siskin              |  |  |  |
| bohemian waxwing                                                                 | pileated woodpecker      |  |  |  |
| brown creeper rose-breasted grosbeak                                             |                          |  |  |  |
| black-throated blue warbler ruby-crowned kinglet                                 |                          |  |  |  |
| black-throated green warbler                                                     | ruffed grouse            |  |  |  |
| Canada goose                                                                     | sandhill crane           |  |  |  |
| chipping sparrow                                                                 | tree swallow             |  |  |  |
| chimney swift                                                                    | unidentified duck        |  |  |  |
| cliff swallow                                                                    | unidentified gull        |  |  |  |
| common loon                                                                      | unidentified finch       |  |  |  |
| common merganser                                                                 | unknown passerine        |  |  |  |
| common raven                                                                     | white-breasted nuthatch  |  |  |  |
| common yellowthroat                                                              | winter wren              |  |  |  |
| chestnut-sided warbler                                                           | white-throated sparrow   |  |  |  |
| dark-eyed junco                                                                  | white-winged crossbill   |  |  |  |
| downy woodpecker                                                                 | yellow-bellied sapsucker |  |  |  |
| European starling                                                                | yellow-rumped warbler    |  |  |  |

# 5.5 DISCUSSION

A total of 260 individual raptors were documented during the 2009 spring raptor surveys. These observations included birds from 10 different species. Turkey vultures and red-tailed hawks were the most commonly observed species. Based upon flight behavior, the majority of individuals (65%) were believed to be non-migratory birds. During the fall 2008 raptor surveys, a total of 301 individual raptors were documented. These observations also included birds from 10 different species. The most commonly observed species were broad-winged hawks (*Buteo platypterus*) and sharp-shinned hawks (*Accipiter striatus*) and in contrast to the spring 2009 survey the majority of all birds (89%) were believed to be migratory based upon flight behavior.

During the spring 2009 survey period, the passage rates for the two observations sites were similar with 1.84 birds/hr at Witham and 1.91 birds/hr at Briggs. For those birds seen flying in



the proposed turbine areas, 80 percent of those observed from Witham occurred below the maximum turbine height and 86 percent of the birds observed from Briggs occurred below the maximum turbine height. More of the birds observed from Witham occurred over the upper and lower slopes than the other flight positions. In contrast, more of the birds observed from Briggs occurred over the valleys or flying parallel to the ridgelines. Annual variation in passage rates at any hawk watch site is expected as a result of regional population fluctuations and differences in daily weather conditions. Despite this expected variation, the results of the spring 2009 raptor survey appears to be representative of a typical spring migration for the Project area.

The 2009 spring passage rates at other regional HMANA hawk watch sites ranged from 3.78 (Poquonock, CT) to 9.3 (Bradbury Mountain, ME) birds/hr (Appendix D Table 4). Compared to these HMANA survey results, the passage rates at the Project area were relatively low. It should be noted that visibility and topographic features at the Project area generally vary from those at HMANA sites, which can influence the results of observed passage rates. Additionally, the HMANA survey methods differ to some extent from survey methods employed for this Project: 1) flight heights are not gauged during HMANA surveys; 2) HMANA surveyors often do not count birds believed to be non-migrants; and 3) multiple observers used during HMANA surveys have the potential to increase detection rates. These factors should be considered when interpreting the results of the spring data.

In addition to the results of HMANA surveys, data from spring surveys conducted at other proposed wind sites in the region were compared to the Project area surveys. Seasonal passage rates at these other sites ranged from 0.1 (Clinton/Ellenburg, NY and Whethersfield, NY) to 25.6 (Westfield, New York)) birds/hr (Appendix D Table 5). The results of the Project area surveys fell within this range, although at the lower end of the range. The percentage of raptors observed below the maximum turbine height also fell within the range of 3 to 94.7 percent observed at other regional Project sites (Appendix D Table 5).

Despite the relatively low flight heights of raptors, studies have documented high turbine collision avoidance behaviors at modern wind facilities (Whitfield and Madders 2006, Chamberlain *et al.* 2006). Raptor flight heights vary due to a variety of factors; particularly fight behaviors and daily weather conditions. Typically, *accipiters* and falcons use up-drafts from side slopes to gain lift and, therefore, usually fly low over ridgelines. *Buteos* tend to use lift from thermals that develop over side slopes and valleys and tend to fly high during hours of peak thermal development. Raptors, particularly *accipiters*, typically fly lower during windy or inclement conditions. Local birds also may fly at lower altitudes while making small scale movements between foraging locations (Barrios and Rodriguez, 2004).

Although the occurrence of some raptors within the zone of the proposed rotor blades increases the potential for migrating raptors to come into the vicinity of the turbines, raptor mortality in the United States, outside of California, has been documented to be relatively low. With some exceptions, mortality rates found at wind developments have ranged from 0 to 0.07 fatalities/turbine/year from 2000-2004 (GAO 2005). Several recent studies have documented relatively low raptor mortality with less than 50 total raptor and owl fatalities documented by 25 studies at 20 different locations throughout the United States (Osborn *et al.* 2000, Johnson *et al.* 2002, Kerlinger 2002, Young *et al.* 2003, Erickson *et al.* 2000, Erickson *et al.* 2004, Kerlinger



2006, Erickson *et al.* 2003, Johnson *et al.* 2003, Kerns and Kerlinger 2004, Arnett *et al* 2005, Koford *et al.* 2005, Fiedler *et al.* 2007, Howe *et al.* 2002, Jain *et al.* 2007, Jain *et al.* 2008, Jain *et al.* 2009a, Stantec 2008, Stantec 2009, Young *et al.* 2009, Tidhar 2009, Jain *et al.* 2009b, Jain *et al.* 2009c, Jain *et al.* 2009d). In general, these results suggest that there is a relatively low collision risk of raptors with wind turbines. As most raptors are diurnal, they may be able to visually, as well as acoustically detect turbines during periods of fair weather. Foraging raptors that may become distracted by prey, or migrant raptors flying during periods of reduced visibility, may be at increased risk of collision with wind turbines.

During the spring 2009 surveys, raptors were observed in multiple flight positions along the ridgelines as well as over the valley beyond the Project area boundary. Raptor migration is a dynamic process due to behavioral and environmental factors. As a result, flight pathways and movements along ridges, side slopes, and across valleys may vary seasonally, daily or hourly. Raptors may shift and use different ridge lines and cross different valleys from year to year or season to season. Weather and wind are major factors that influence migration pathways. Wind direction and strength, in particular, affect the propensity of raptors to congregate along 'leading lines' or topographic features. The location of a raptor along a 'leading line' can be influenced by lateral drift caused by crosswinds (Richardson 1998). The flight paths of raptors observed in the Project area varied between survey dates and were likely influenced by varying wind direction and weather.



# 6.0 Literature Cited

- Able, K.P. 1973. The role of weather variables and flight direction in determining the magnitude of nocturnal migration. Ecology 54(5):1031–1041.
- Alerstam, T. 1990. Bird Migration. Cambridge University Press, Cambridge, United Kingdom.
- Arnett, E.B., technical editor. 2005. Relationships between bats and wind turbines in Pennsylvania and West Virginia: an assessment of bat fatality search protocols, patterns of fatality, and behavioral interactions with wind turbines. A final report submitted to the Bats and Wind Energy Cooperative. Bat Conservation International. Austin, Texas, USA.
- Arnett, E. B., J. P. Hayes, and M. M. P. Huso. 2006. An evaluation of the use of acoustic monitoring to predict bat fatality at a proposed wind facility in south central Batschelet, E. 1965. Statistical Methods for the Analysis of Problems in Animal Orientation and Certain Biological Rhythms. AIBS Monograph. American Institute of Biological Sciences. Washington, DC.
- (BCI) Bat Conservation International. 2001. Bats in Eastern Woodlands. http://www.batcon.org/nabcp/newsite/forrep.pdf. Accessed on November 2007.
- Batschelet, E. 1965. Statistical Methods for the Analysis of Problems in Animal Orientation and Certain Biological Rhythms. AIBS Monograph. American Institute of Biological Sciences. Washington, DC.
- Berthold, P. 2001. Bird Migration: A General Survey. Second Edition. Oxford University Press.
- Bildstein, K.L. 2006. Migrating Raptors of the World: their ecology and conservation. Cornell University Press, Ithaca, 320 pp.
- Bingman V.P. 1980. Inland morning flight behavior of nocturnal passerine migrants in Eastern New York. Auk 97:465–72.
- Bingman, V.P., K.P. Able, and P. Kerlinger. 1982. Wind drift, compensation, and the use of landmarks by nocturnal bird migrants. Animal Behavior 30:49–53.
- Bruderer, B. and A. Boldt. 2001. Flight characteristics of birds: I. Radar measurements of speeds. Ibis. 143:178-204.
- Bruderer, B., and L. Jenni. 1990. Migration across the Alps. In Bird Migration: Physiology and Ecophysiology (E. Gwinner, Ed.). Springer Verlag, Berlin.



- Chamberlain, D.E., M.R. Rehfisch, A.D. Fox, M. Desholm, and S.J. Anthony. 2006. The effect of avoidance rates on bird mortality predictions made by wind turbine collision risk models. Ibis: 148, pp. 198-202.
- Cooper, B.A., R.H. Day, R.J. Ritchie, and C.L. Cranor. 1991. An improved marine radar system for studies of bird migration. Journal of Field Ornithology 62:367–377.
- Cooper, B.A., and T.J. Mabee. 2000. Bird migration near proposed wind turbine sites at Wethersfield and Harrisburg, New York. Unpublished report prepared for Niagara– Mohawk Power Corporation, Syracuse, NY, by ABR, Inc., Forest Grove, OR. 46 pp.
- Cooper, B.A., T.J. Mabee, and J.H. Plissner. 2004. A Radar Study of Nocturnal Bird Migration at a Proposed Mount Storm wind power development, West Virginia, Fall 2003.
  Appendix in Avian baseline studies Mount Storm wind power Project Grant County, West Virginia, final report 2004. Prepared for NedPower Mount Storm, LLC.
- Diehl, R., R. Larkin, and J. Black. 2003. Radar observations of bird migration over the Great Lakes. The Auk 120(2):278–290.
- EchoTrack Inc. 2008. Pre-Construction Bat and Nocturnal Migrant Bird Monitoring Report Wolfe Island Wind Project, Ontario, Canada, Fall 2007. Prepared for Canadian Renewable Energy Corporation.
- Environmental Design and Research. 2006a. Draft Environmental Impact Statement for the Dairy Hills Wind Farm Project. Towns of Perry, Warsaw and Covington, Wyoming County, New York. Prepared for Dairy Hills Wind Farm, LLC.
- Environmental Design and Research. 2006b. Draft Environmental Impact Statement for the Cohocton Wind Power Project. Town of Cohocton, Steuben County, New York. Prepared for Canandaigua Wind Partners, LLC.
- Erickson, W. P., G. D. Johnson, M. D. Strickland and K. Kronner. 2000. Avian and bat mortality associated with the Vansycle Wind Project, Umatilla County, Oregon: 1999 study year. Tech. Report to Umatila County Department of Resource Services and Development, Pendleton, OR.
- Erickson, W. 2003. Nine Canyon Wind Power Project Avian and Bat Monitoring Report September 2002 – August 2003. Prepared for Nine Canyon Technical Advisory Committee Energy Northwest, October 2003.
- Farnsworth, G.L.F, K.H.P. Pollock, J.D. Nichols, T.R. Simons, J.E. Hines, and J.R. Sauer. 2002. A removal model for estimating detection probabilities from point-count surveys. The Auk 119(2): 414-425.
- Fiedler, J.K., T.H. Henry, R.D. Tankersley, and C.P. Nicholson 2007. Results of Bat and Bird Mortality Monitoring at the Expanded Buffalo Mountain Windfarm, 2005 June 28, 2007. Prepared for Tennessee Valley Authority.



- Fortin, D., F. Liechti, and B. Bruderer. 1999. Variation in the nocturnal flight behaviour of migratory birds along the northwest coast of the Mediterranean Sea. Ibis 141:480–488.
- Gauthreaux, S.A., Jr. and J.W. Livingston. 2006. Monitoring bird migration with a fixed-beam radar and a thermal-imaging camera. Journal of Field Ornithology 77(3):319–328.
- Gauthreaux, S.A., Jr. 1991. The flight behavior of migrating birds in changing wind fields: radar and visual analyses. American Zoologist 31:187–204.
- Gauthreaux, S.A., Jr., and K.P. Able. 1970. Wind and the direction of nocturnal songbird migration. Nature 228:476–477.
- Gannon, W.L., R.E. Sherwin, and S. Haywood. 2003. On the importance of articulating assumptions when conducting acoustic studies of habitat use by bats. Wild. Soc. Bull. 31 (1):45–61.
- (GAO) Government Accountability Office. 2005. Wind Power: Impacts on wildlife and government responsibilities for regulating development and protecting wildlife. Report to congressional requesters, September 2005.
- Harmata, A., K. Podruzny, J. Zelenak, and M. Morrison. 1999. Using marine surveillance radar to study bird movements and impact assessment. Wildlife Society Bulletin 27(1):44–52.
- Hassler, S.S., R.R. Graber, and F.C. Bellrose. 1963. Fall migration and weather, a radar study. The Wilson Bulletin 75(1):56–77.

Hawk Migration Association of North America. 2007. http://www.hmana.org/forms.php

- Hawk Migration Association of North America. 2009. http://www.hmana.org/forms.php
- Hayes J. P. 1997. Temporal variation in activity of bats and the design of echolocationmonitoring studies. Journal of Mammalogy 78:514–24.
- Hayes, J.P. 2000. Assumptions and practical considerations in the design and interpretation of echolocation-monitoring studies. Acta Chiropterologica 2(2):225-236.
- Howe, R. W., W. Evans and A. T. Wolf. 2002. Effects of wind turbines on birds and bats in northeastern Wisconsin. Report to Wisconsin Public Service Corporation and Madison Gas and Electric Company.
- Jain, A., P. Kerlinger, R. Curry, and L. Slobodnik. 2007. Annual Report for the Maple Ridge Wind Power Project Postconstruction Bird and Bat Fatality Study – 2006 FINAL REPORT June 25, 2007. Prepared for PPM Energy and Horizon Energy and Technical Advisory Committee (TAC for the Maple Ridge Project Study).



- Jain, A., P. Kerlinger, R. Curry, L. Slobodnik. 2008. Annual Report for the Maple Ridge Wind Power Project Postconstruction Bird and Bat Fatality Study – 2007 (May 2, 2008).
- Jain, A., P. Kerlinger, R. Curry, L. Slobodnik, J. Quant and D. Pursell. 2009a. Annual Report for the Noble Bliss Windpark, LLC. Post Construction Bird and Bat Fatality Study – 2008. Prepared for Noble Environmental Power, LLC.
- Jain, A., P. Kerlinger, R. Curry, L. Slobodnik, J. Histed and J. Meacham. 2009b. Annual Report for the Noble Clinton Windpark, LLC. Postconstruction Bird and Bat Fatality Study – 2008. Prepared for Noble Environmental Power, LLC.
- Jain, A., P. Kerlinger, R. Curry, L. Slobodnik, A. Fuerst and C. Hansen. 2009c. Annual Report for the Noble Ellenburg Windpark, LLC. Postconstruction Bird and Bat Fatality Study – 2008. Prepared for Noble Environmental Power, LLC.
- Jain, A., P. Kerlinger, R. Curry, L. Slobodnik, and M. Lehman. 2009d. Annual Report for the Maple Ridge Wind Power Project. Post-construction Bird and Bat Fatality Study – 2008. Prepared for Iberdrola Renewables, Inc. and Horizon Energy.
- Johnson, G., W. Erickson, M. Strickland, M. Shepherd, S. Sarappo. 2002. Collision mortality of local and migrant birds at a large-scale wind-power development on Buffalo Ridge, Minnesota. Wildlife Society Bulletin 20: 879-887.
- Johnson, G. D., W. P. Erickson, M. D. Strickland, M. F. Shepherd, D. A. Shepherd and S. A. Sarappo. 2003. Mortality of bats at a large-scale wind power development at Buffalo Ridge, Minnesota. American Midland Naturalist 150:332-342.
- Kellogg, S (Ed.). 2007. Eastern Flyway Report: Eastern Continental Flyway. In Hawk Migration Studies (Vol. XXXIII, No. 1, pp.13). Hawk Migration Association of North America.
- Kerlinger, P. 1995. How Birds Migrate. Stackpole Books. Mechanicsburg, PA.
- Kerlinger, Paul. 1996. A Study of Hawk Migration at Green Mountain Power Corporation's Searsburg, Vermont, Wind Power Site: Autumn 1996. Prepared for the Vermont Public Service Board, Green Mountain Power, National Renewable Ener gy Laboratory, VERA.
- Kerlinger, P. 2002. An Assessment of the Impacts of Green Mountain Power Corporation's Wind Power Facility on Breeding and Migrating Birds in Searsburg, Vermont, July 1996 – July 1998. Prepared for the Vermont Department of Public Service Montpelier, Vermont.
- Kerlinger, P. 2006. Supplement to the Phase I Avian Risk Assessment and Breeding Bird Study for the Deerfield Wind Project, Bennington County, Vermont. Prepared for Deerfield Wind, LLC.



- Kerns, J. and P. Kerlinger. 2004. A study of bird and bat collision fatalities at the Mountaineer Wind Energy Center, Tucker County, West Virginia: Annual report for 2003. Report to FPL Energy and the MWEC Technical Review Committee.
- Koford, R., A. Jain, G. Zenner, and A. Hancock. 2005. Avian Mortality Associated with the Top of Iowa Wind Farm Progress Report 2004 February 2, 2005.
- Kunz, T.H., E.B. Arnett, W.P. Erickson, A.R. Hoar, G.D. Johnson, R.P. Larkin, M.D. Strickland, R.W. Thresher, and M.D. Tuttle. 2007a. Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Frontiers in Ecology and the Environment 5:315-324.
- Kunz, T.H., E.B. Arnett, B.P. Cooper, W.P. Erickson, R.P. Larkin, T. Mabee, M.L. Morrison, M.D. Strickland, and J.M. Szewczak. 2007b. Assessing impacts of wind-energy development on nocturnally active birds and bats: A guidance document. Journal of Wildlife Management 71:2449-2486.
- Larkin, R.P. 1991. Flight speeds observed with radar, a correction: slow "birds" are insects. Behavioral Ecology and Sociobiology. 29:221–224.
- Maine Department of Inland Fisheries and Wildlife. 2005. Maine's Comprehensive Wildlife Conservation Strategy. Augusta, Maine.
- McMahon, J. S. 1990. The biophysical regions of Maine: patterns in the landscape and vegetation. M.S. Thesis, Univ. of Maine, Orono. 120 pp.
- Mizrahi, D.S., R. Fogg, K.A. Peters, and P.A. Hodgetts. 2008. Assessing bird and bat migration patterns in the mid Atlantic Appalachian Mountain Region using marine radar. Unpublished report prepared by the New Jersey Audubon Society Department of Research and Monitoring.
- NatureServe Explorer at http://www.natureserve.org/explorer were updated to be current with NatureServe's central databases as of July 17, 2009.
- O'Farrell, M.J., and W.L. Gannon. 1999. A comparison of acoustic versus capture techniques for the inventory of bats. Journal of Mammalogy 80(1):24–30.
- O'Farrell, M.J., B.W. Miller, and W.L. Gannon. 1999. Qualitative identification of free-flying bats using the anabat detector. Journal of Mammalogy 80(1):11–23.
- Osborn, R.G., K.F. Higgins, R.E. Usgaard, C.D. Dieter, and R.D. Neiger. 2000. Bird mortality associated with wind turbines at the Buffalo Ridge Wind Resource Area, Manitoba. Am. Midle. Nat. 143: 41-52.
- Richardson, W.J. 1998. Bird migration and wind turbines: migration timing, flight behavior, and collision risk. Proceedings: National Avian-Wind Power Planning Meeting III,



sponsored by Avian Workgroup of the National Wind Coordinating Committee, June 2000.

- Richardson, W.J. 1972. Autumn migration and weather in eastern Canada: a radar study. American Birds 26(1):10–16.
- Sauer, J. R., J. E. Hines, and J. Fallon. 2003. The North American Breeding Bird Survey, Results and Analysis 1966 - 2002. Version 2003.1, USGS Patuxent Wildlife Research Center, Laurel, MD.
- Sielman, M., L. Sheriff, and T. Williams. 1981. Nocturnal Migration at Hawk Mountain, Pennsylvania. American Birds 35(6):906-909.
- Stantec Consulting (formerly Woodlot Alternatives). 2008. 2007 Spring, Summer, and Fall Post-construction Bird and Bat Mortality Study at the Mars Hill Wind Farm, Maine. Prepared for UPC Wind Management, LLC.
- Stantec Consulting. 2009. Post-construction Monitoring at the Mars Hill Wind Farm, Maine Year 2 - 2008. Prepared for First Wind Management, LLC.
- Tidhar, D. 2009. Post-Construction Wildlife Monitoring Study; Study Plan and Spring 2009 Interim Report. Lempster Wind Project, Sullivan County. New Hampshire. Prepared for Lempster Wind, LLC.
- Western EcoSystems Technology, Inc. (WEST). 2007. Avian and Bat Studies for the Proposed Cape Vincent Wind Power Project, Jefferson County, NY. Prepared for BP Alternative Energy North America.
- Whitfield, D.P. and M. Madders. 2006. A review of the impacts of wind farms on hen harriers (*Circus cyaneus*) and an estimation of collision avoidance rates. Natural Research, LTD, Natural Research Information Note 1 (Revised).
- Williams, T.C., J.M. Williams, P.G. Williams, and P. Stokstad. 2001. Bird Migration Through a Mountain Pass Studied with High Resolution Radar, Ceilometers, and Census. The Auk 118(2):389-403.
- Young, D. P., W. P. Erickson, R. E. Good, M. D. Strickland and G. D. Johnson. 2003. Avian and bat mortality associated with the initial phase of the Foote Creek Rim Windpower Project, Carbon County, Wyoming. Report to Pacificorp, Inc., Sea West Windpower, Inc. and Bureau of Land Management.
- Young, D. P., W. P. Erickson, K. Bay, S. Nomani and W. Tidhar. 2009. Mount Storm Winder Energy Facility, Phase 1 Post-Construction Avian and Bat Monitoring. July – October 2008. Prepared for NedPower Mount Storm, LLC.



# Appendix A

Radar Survey Data Tables


| Appendix A Table 1A. Survey dates, results, level of effort, and weather - Briggs Hill site Spring 2009 |                 |                     |                      |                    |                    |                    |                     |                                |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|-----------------|---------------------|----------------------|--------------------|--------------------|--------------------|---------------------|--------------------------------|--|--|--|--|
| Date                                                                                                    | Passage<br>rate | Flight<br>Direction | Flight<br>Height (m) | % below<br>130.5 m | Hours of<br>Survey | Temperature<br>(C) | Wind<br>Speed (m/s) | Wind<br>Direction<br>(degrees) |  |  |  |  |
| 29-Apr                                                                                                  | 324             | 40.469°             | 201                  | 37%                | 10                 | 4                  | 7                   | 282                            |  |  |  |  |
| 30-Apr                                                                                                  | 221             | 19.687°             | 451                  | 6%                 | 7                  | 6                  | 12                  | 180                            |  |  |  |  |
| 2-May                                                                                                   | 199             | 45.219°             | 322                  | 18%                | 10                 | 7                  | 7                   | 245                            |  |  |  |  |
| 3-May                                                                                                   | 357             | 35.304°             | 283                  | 13%                | 10                 | 9                  | 7                   | 237                            |  |  |  |  |
| 4-May                                                                                                   | 178             | 199.738°            | 226                  | 26%                | 9                  | 8                  | 9                   | 25                             |  |  |  |  |
| 5-May                                                                                                   | 10              | 250.939°            | 361                  | 5%                 | 9                  | 5                  | 6                   | 64                             |  |  |  |  |
| 6-May                                                                                                   | 297             | 32.055°             | 307                  | 13%                | 9                  | 8                  | 4                   | 191                            |  |  |  |  |
| 10-May                                                                                                  | 45              | 92.601°             | 163                  | 41%                | 10                 | 2                  | 12                  | 312                            |  |  |  |  |
| 11-May                                                                                                  | 440             | 68.612°             | 298                  | 31%                | 10                 | 6                  | 7                   | 343                            |  |  |  |  |
| 12-May                                                                                                  | 1037            | 55.882°             | 430                  | 22%                | 9                  | 9                  | 5                   | 310                            |  |  |  |  |
| 13-May                                                                                                  | 388             | 37.448°             | 407                  | 9%                 | 9                  | 7                  | 8                   | 183                            |  |  |  |  |
| 18-May                                                                                                  | 628             | 49.614°             | 115                  | 72%                | 9                  | 3                  | 6                   | 306                            |  |  |  |  |
| 19-May                                                                                                  | 1262            | 53.196°             | 267                  | 32%                | 9                  | 11                 | 7                   | 296                            |  |  |  |  |
| 20-May                                                                                                  | 848             | 38.093°             | 276                  | 29%                | 9                  | 16                 | 9                   | 257                            |  |  |  |  |
| 21-May                                                                                                  | 813             | 48.561°             | 288                  | 30%                | 9                  | 20                 | 11                  | 273                            |  |  |  |  |
| 22-May                                                                                                  | 1094            | 50.214°             | 284                  | 30%                | 9                  | 8                  | 8                   | 356                            |  |  |  |  |
| 23-May                                                                                                  | 389             | 51.264°             | 138                  | 60%                | 9                  | 8                  | 6                   | 205                            |  |  |  |  |
| 24-May                                                                                                  | 850             | 39.667°             | 278                  | 29%                | 9                  | 11                 | 5                   | 316                            |  |  |  |  |
| 26-May                                                                                                  | 453             | 34.716°             | 311                  | 22%                | 9                  | 8                  | 3                   | 147                            |  |  |  |  |
| 30-May                                                                                                  | 500             | 48.421°             | 375                  | 19%                | 9                  | 10                 | 7                   | 247                            |  |  |  |  |
| 31-May                                                                                                  | 97              | 46.564°             | 252                  | 39%                | 9                  | 1                  | 15                  | 294                            |  |  |  |  |
| Entire                                                                                                  |                 |                     |                      |                    |                    |                    |                     |                                |  |  |  |  |
| Season                                                                                                  | 496             | 47.443°             | 287                  | 26%                | 9                  | 8                  | 8                   |                                |  |  |  |  |



| Apper  | idix A Table 1  | B. Survey dat       | tes, results, le     | vel of effort, a   | nd weather -       | South Stewart      | Mtn site Spring     | <b>j 2009</b>                  |
|--------|-----------------|---------------------|----------------------|--------------------|--------------------|--------------------|---------------------|--------------------------------|
| Date   | Passage<br>rate | Flight<br>Direction | Flight<br>Height (m) | % below<br>130.5 m | Hours of<br>Survey | Temperature<br>(C) | Wind<br>Speed (m/s) | Wind<br>Direction<br>(degrees) |
| 29-Apr | 233             | 51                  | 168                  | 51%                | 9                  | 4                  | 7                   | 282                            |
| 3-May  | 421             | 38                  | 308                  | 14%                | 10                 | 9                  | 7                   | 237                            |
| 4-May  | 167             | 222                 | 282                  | 17%                | 10                 | 8                  | 9                   | 25                             |
| 5-May  | 21              | 290                 | 336                  | 17%                | 10                 | 5                  | 6                   | 64                             |
| 6-May  | 506             | 28                  | 308                  | 22%                | 8                  | 8                  | 4                   | 191                            |
| 7-May  | 32              | 65                  | 367                  | 6%                 | 10                 | 7                  | 5                   | 270                            |
| 10-May | 8               | 151                 | 252                  | 33%                | 7                  | 2                  | 12                  | 312                            |
| 11-May | 147             | 133                 | 374                  | 22%                | 9                  | 6                  | 7                   | 343                            |
| 12-May | 438             | 65                  | 514                  | 10%                | 9                  | 9                  | 5                   | 310                            |
| 13-May | 481             | 33                  | 420                  | 10%                | 9                  | 7                  | 8                   | 183                            |
| 18-May | 214             | 71                  | 221                  | 48%                | 6                  | 3                  | 6                   | 306                            |
| 19-May | 1103            | 60                  | 287                  | 29%                | 9                  | 11                 | 7                   | 296                            |
| 20-May | 1735            | 53                  | 316                  | 24%                | 8                  | 16                 | 9                   | 257                            |
| 21-May | 1482            | 60                  | 315                  | 33%                | 9                  | 20                 | 11                  | 273                            |
| 22-May | 280             | 77                  | 179                  | 55%                | 6                  | 8                  | 8                   | 356                            |
| 23-May | 1184            | 60                  | 279                  | 34%                | 8                  | 8                  | 6                   | 205                            |
| 24-May | 560             | 86                  | 229                  | 32%                | 6                  | 11                 | 5                   | 316                            |
| 25-May | 77              | 184                 | 255                  | 39%                | 9                  | 2                  | 9                   | 338                            |
| 26-May | 709             | 34                  | 434                  | 15%                | 9                  | 8                  | 3                   | 147                            |
| Entire |                 |                     |                      |                    |                    |                    |                     |                                |
| Season | 511             | 53                  | 314                  | 23%                | 8                  | 8                  | 7                   |                                |



| Appendix A Table 2A. Summary of passage rates by hour, night, and for entire season at Briggs Hill site. |                                                                                                 |                                                                                                            |      |      |          |           |           |          |      |     |      |        |       |     |  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------|------|----------|-----------|-----------|----------|------|-----|------|--------|-------|-----|--|
| Night of                                                                                                 |                                                                                                 | Passage Rate (targets/km/hr) by hour after sunset Entire Night   I 2 3 4 5 6 7 8 9 10 Mean Median Stdev St |      |      |          |           |           |          |      |     |      |        |       |     |  |
| Night of                                                                                                 | 1                                                                                               | 2                                                                                                          | 3    | 4    | 5        | 6         | 7         | 8        | 9    | 10  | Mean | Median | Stdev | SE  |  |
| 29-Apr                                                                                                   | 18                                                                                              | 69                                                                                                         | 304  | 450  | 480      | 536       | 525       | 354      | 286  | 223 | 324  | 329    | 182   | 61  |  |
| 30-Apr                                                                                                   | 225                                                                                             | 361                                                                                                        | 246  | 207  | 225      | 221       | 64        | N/A      | N/A  | N/A | 221  | 225    | 87    | 35  |  |
| 2-May                                                                                                    | 289                                                                                             | 100                                                                                                        | 175  | 230  | 318      | 317       | 198       | 193      | 146  | 21  | 199  | 196    | 95    | 32  |  |
| 3-May                                                                                                    | 282                                                                                             | 579                                                                                                        | 504  | 343  | 437      | 437       | 389       | 296      | 296  | 11  | 357  | 366    | 156   | 52  |  |
| 4-May                                                                                                    | 214                                                                                             | 264                                                                                                        | 244  | 240  | 261      | 146       | 124       | 64       | 43   | N/A | 178  | 214    | 86    | 30  |  |
| 5-May                                                                                                    | 11                                                                                              | 4                                                                                                          | 17   | 5    | 4        | 0         | 25        | 25       | 0    | N/A | 10   | 5      | 10    | 4   |  |
| 6-May                                                                                                    | 111                                                                                             | 186                                                                                                        | 300  | 357  | 313      | 475       | 497       | 296      | 136  | N/A | 297  | 300    | 136   | 48  |  |
| 10-May                                                                                                   | 4                                                                                               | 30                                                                                                         | 71   | 110  | 111      | 64        | 11        | N/A      | 5    | 0   | 45   | 30     | 45    | 16  |  |
| 11-May                                                                                                   | 89                                                                                              | 496                                                                                                        | 568  | 532  | 579      | 549       | 546       | 568      | 464  | 11  | 440  | 539    | 209   | 70  |  |
| 12-May                                                                                                   | 175                                                                                             | 925                                                                                                        | 1071 | 1396 | 1493     | 1282      | 1104      | 1132     | 750  | N/A | 1037 | 1104   | 395   | 140 |  |
| 13-May                                                                                                   | 236                                                                                             | 518                                                                                                        | 404  | 479  | 418      | 411       | 357       | 418      | 254  | N/A | 388  | 411    | 93    | 33  |  |
| 18-May                                                                                                   | 29                                                                                              | 525                                                                                                        | 546  | 857  | 1018     | 961       | 789       | 693      | 232  | N/A | 628  | 693    | 331   | 117 |  |
| 19-May                                                                                                   | 279                                                                                             | 1254                                                                                                       | 1007 | 1004 | 1589     | 1714      | 1757      | 1711     | 1043 | N/A | 1262 | 1254   | 488   | 173 |  |
| 20-May                                                                                                   | 157                                                                                             | 849                                                                                                        | 800  | 957  | 1189     | 1057      | 914       | 1186     | 525  | N/A | 848  | 914    | 331   | 117 |  |
| 21-May                                                                                                   | 171                                                                                             | 1071                                                                                                       | 943  | 900  | 1111     | 1046      | 971       | 864      | 236  | N/A | 813  | 943    | 355   | 125 |  |
| 22-May                                                                                                   | 296                                                                                             | 954                                                                                                        | 954  | 1079 | 1346     | 1582      | 1443      | 1507     | 689  | N/A | 1094 | 1079   | 423   | 150 |  |
| 23-May                                                                                                   | 29                                                                                              | 271                                                                                                        | 357  | 518  | 630      | 670       | 536       | 471      | 16   | N/A | 389  | 471    | 241   | 85  |  |
| 24-May                                                                                                   | 197                                                                                             | 891                                                                                                        | 939  | 1082 | 1264     | 844       | 956       | 1086     | 393  | N/A | 850  | 939    | 342   | 121 |  |
| 26-May                                                                                                   | 321                                                                                             | 629                                                                                                        | 671  | 618  | 514      | 425       | 446       | 375      | 81   | N/A | 453  | 446    | 184   | 65  |  |
| 30-May                                                                                                   | 282                                                                                             | 500                                                                                                        | 614  | 571  | 711      | 786       | 614       | 414      | 11   | N/A | 500  | 571    | 238   | 84  |  |
| 31-May                                                                                                   | 18                                                                                              | 164                                                                                                        | 171  | 14   | 118      | 186       | 118       | 82       | 5    | N/A | 97   | 118    | 71    | 25  |  |
| Entire Season                                                                                            | Entire Season   164   507   519   569   673   653   590   618   281   53   496   393   424   31 |                                                                                                            |      |      |          |           |           |          |      |     |      |        |       |     |  |
|                                                                                                          |                                                                                                 |                                                                                                            |      | N/   | A indica | ites no d | ata for t | hat hour |      |     |      |        |       |     |  |



| Appendix A Table 2B. Summary of passage rates by hour, night, and for entire season - South Stewart Mtn site. |      |      |         |          |          |          |           |         |     |     |      |          |       |     |
|---------------------------------------------------------------------------------------------------------------|------|------|---------|----------|----------|----------|-----------|---------|-----|-----|------|----------|-------|-----|
| Night of                                                                                                      |      | Pas  | sage Ra | te (targ | ets/km/l | hr) by h | our afte  | r sunse | t   |     |      | Entire N | ght   |     |
| Night of                                                                                                      | 1    | 2    | 3       | 4        | 5        | 6        | 7         | 8       | 9   | 10  | Mean | Median   | Stdev | SE  |
| 29-Apr                                                                                                        | 0    | 89   | 155     | 356      | 343      | 351      | 270       | 300     | 232 | N/A | 233  | 270      | 126   | 45  |
| 3-May                                                                                                         | 243  | 738  | 664     | 539      | 419      | 462      | 463       | 377     | 289 | 11  | 421  | 441      | 210   | 70  |
| 4-May                                                                                                         | 171  | 300  | 246     | 364      | 150      | 157      | 77        | 96      | 94  | 14  | 167  | 154      | 108   | 36  |
| 5-May                                                                                                         | 46   | 39   | 18      | 4        | 7        | 11       | 11        | 64      | 14  | 0   | 21   | 13       | 21    | 7   |
| 6-May                                                                                                         | 129  | 227  | 381     | 681      | 531      | 1461     | 418       | 218     | N/A | N/A | 506  | 400      | 426   | 161 |
| 7-May                                                                                                         | 21   | 11   | 21      | 14       | 21       | 27       | 21        | 57      | 114 | 7   | 32   | 21       | 32    | 11  |
| 10-May                                                                                                        | 4    | 4    | 4       | N/A      | 0        | 11       | 0         | N/A     | 32  | N/A | 8    | 4        | 11    | 5   |
| 11-May                                                                                                        | 13   | 113  | 236     | 157      | 159      | 167      | 211       | 167     | 104 | N/A | 147  | 159      | 65    | 23  |
| 12-May                                                                                                        | 46   | 514  | 596     | 604      | 544      | 400      | 400       | 467     | 368 | N/A | 438  | 467      | 170   | 60  |
| 13-May                                                                                                        | 507  | 796  | 661     | 532      | 521      | 404      | 375       | 339     | 193 | N/A | 481  | 507      | 179   | 63  |
| 18-May                                                                                                        | N/A  | N/A  | 182     | 143      | 396      | 254      | 164       | 146     | N/A | N/A | 214  | 173      | 103   | 46  |
| 19-May                                                                                                        | 514  | 1436 | 1569    | 1918     | 1371     | 1068     | 1046      | 670     | 339 | N/A | 1103 | 1068     | 523   | 185 |
| 20-May                                                                                                        | 421  | 1775 | 2264    | 2268     | 2132     | 1871     | 1268      | 1879    | N/A | N/A | 1735 | 1875     | 622   | 235 |
| 21-May                                                                                                        | 1100 | 1821 | 1929    | 2189     | 2146     | 1596     | 1311      | 1029    | 214 | N/A | 1482 | 1596     | 638   | 226 |
| 22-May                                                                                                        | N/A  | N/A  | 193     | 218      | 457      | 393      | 214       | 207     | N/A | N/A | 280  | 216      | 121   | 54  |
| 23-May                                                                                                        | N/A  | 1311 | 1251    | 1543     | 1538     | 1247     | 1152      | 893     | 536 | N/A | 1184 | 1249     | 225   | 85  |
| 24-May                                                                                                        | 218  | 736  | 550     | 529      | 604      | 725      | N/A       | N/A     | N/A | N/A | 560  | 577      | 189   | 84  |
| 25-May                                                                                                        | 25   | 182  | 193     | 82       | 100      | 54       | 32        | 26      | 0   | N/A | 77   | 54       | 70    | 25  |
| 26-May                                                                                                        | 561  | 1221 | 1504    | 1196     | 679      | 370      | 360       | 336     | 155 | N/A | 709  | 561      | 479   | 169 |
| Entire Season 251 666 664 741 638 580 433 428 192 8 511 336 578 46                                            |      |      |         |          |          |          |           |         |     |     |      |          |       |     |
|                                                                                                               |      |      |         | N/A      | indicate | s no dat | a for tha | t hour  |     |     |      |          |       |     |



| Appendix A Tat | ble 3A. Mean Nightly Fligh<br>Briggs Hill. | nt Direction from |
|----------------|--------------------------------------------|-------------------|
| Night of       | Mean Flight Direction                      | Circular Stdev    |
| 29-Apr         | 40.469°                                    | 34.064°           |
| 30-Apr         | 19.687°                                    | 31.699°           |
| 2-May          | 45.219°                                    | 42.603°           |
| 3-May          | 35.304°                                    | 32.346°           |
| 4-May          | 199.738°                                   | 51.776°           |
| 5-May          | 250.939°                                   | 38.526°           |
| 6-May          | 32.055°                                    | 44.064°           |
| 10-May         | 92.601°                                    | 45.203°           |
| 11-May         | 68.612°                                    | 44.826°           |
| 12-May         | 55.882°                                    | 28.011°           |
| 13-May         | 37.448°                                    | 39.733°           |
| 18-May         | 49.614°                                    | 30.811°           |
| 19-May         | 53.196°                                    | 37.15°            |
| 20-May         | 38.093°                                    | 43.047°           |
| 21-May         | 48.561°                                    | 27.029°           |
| 22-May         | 50.214°                                    | 38.473°           |
| 23-May         | 51.264°                                    | 27.349°           |
| 24-May         | 39.667°                                    | 34.082°           |
| 26-May         | 34.716°                                    | 44.037°           |
| 30-May         | 48.421°                                    | 33.914°           |
| 31-May         | 46.564°                                    | 36.095°           |
| Entire Season  | 47.443°                                    | 39.763°           |



| Appendix A Table 3B. Mean Nightly Flight Direction from<br>South Stewart Mtn. site |                         |                |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------|-------------------------|----------------|--|--|--|--|--|--|--|--|
| Night of                                                                           | South Stewart Mtn. site | Circular Stday |  |  |  |  |  |  |  |  |
|                                                                                    |                         |                |  |  |  |  |  |  |  |  |
| 29-Apr                                                                             | 51.367°                 | 24.104°        |  |  |  |  |  |  |  |  |
| 3-May                                                                              | 37.54°                  | 39.847°        |  |  |  |  |  |  |  |  |
| 4-May                                                                              | 222.197°                | 37.885°        |  |  |  |  |  |  |  |  |
| 5-May                                                                              | 290.413°                | 56.854°        |  |  |  |  |  |  |  |  |
| 6-May                                                                              | 27.765°                 | 38.06°         |  |  |  |  |  |  |  |  |
| 7-May                                                                              | 65.214°                 | 66.757°        |  |  |  |  |  |  |  |  |
| 10-May                                                                             | 150.854°                | 28.316°        |  |  |  |  |  |  |  |  |
| 11-May                                                                             | 132.933°                | 76.27°         |  |  |  |  |  |  |  |  |
| 12-May                                                                             | 64.549°                 | 37.557°        |  |  |  |  |  |  |  |  |
| 13-May                                                                             | 32.964°                 | 44.698°        |  |  |  |  |  |  |  |  |
| 18-May                                                                             | 70.987°                 | 42.594°        |  |  |  |  |  |  |  |  |
| 19-May                                                                             | 60.42°                  | 38.08°         |  |  |  |  |  |  |  |  |
| 20-May                                                                             | 53.127°                 | 32.76°         |  |  |  |  |  |  |  |  |
| 21-May                                                                             | 60.461°                 | 41.557°        |  |  |  |  |  |  |  |  |
| 22-May                                                                             | 77.38°                  | 50.779°        |  |  |  |  |  |  |  |  |
| 23-May                                                                             | 60.246°                 | 40.667°        |  |  |  |  |  |  |  |  |
| 24-May                                                                             | 86.487°                 | 106.944°       |  |  |  |  |  |  |  |  |
| 25-May                                                                             | 183.947°                | 83.204°        |  |  |  |  |  |  |  |  |
| 26-May                                                                             | 33.763°                 | 39.506°        |  |  |  |  |  |  |  |  |
| Entire Season                                                                      | 53.415°                 | 48.666°        |  |  |  |  |  |  |  |  |



| Appendix A    | Table   | 4A. S    | umma    | ry of r  | nean f | s by ho | bur, nig | ght, ar | nd for en | tire season | at Briggs | s Hill s      | site.       |        |                                     |
|---------------|---------|----------|---------|----------|--------|---------|----------|---------|-----------|-------------|-----------|---------------|-------------|--------|-------------------------------------|
|               |         | Меа      | an Flig | ht Hei   | ght (m | ) by h  | our aft  | ter sur | nset      |             |           | Entire Ni     | ight        |        | % of                                |
| Night of      | 1       | 2        | 3       | 4        | 5      | 6       | 7        | 8       | 9         | 10          | Mean      | Median        | STDV        | SE     | targets<br>below<br>130.5<br>meters |
| 29-Apr        | 226     | 221      | 205     | 191      | 184    | 234     | 190      | 220     | 212       | 122         | 201       | 209           | 32          | 10     | 37%                                 |
| 30-Apr        | 282     | 479      | 464     | 497      | 458    | 413     | 565      | N/A     | N/A       | N/A         | 451       | 464           | 88          | 33     | 6%                                  |
| 2-May         | 387     | 355      | 384     | 475      | 364    | 261     | 299      | 171     | 212       | 317         | 322       | 336           | 90          | 29     | 18%                                 |
| 3-May         | 253     | 312      | 348     | 337      | 350    | 305     | 313      | 206     | 198       | 208         | 283       | 309           | 61          | 19     | 13%                                 |
| 4-May         | 162     | 200      | 229     | 230      | 175    | 272     | 294      | 263     | 213       | N/A         | 226       | 229           | 44          | 15     | 26%                                 |
| 5-May         |         | -        |         | 500      | 227    |         | 256      | 461     |           | N/A         | 361       | 359           | 140         | 70     | 5%                                  |
| 6-May         | 222     | 246      | 262     | 333      | 441    | 333     | 286      | 330     |           | N/A         | 307       | 308           | 69          | 24     | 13%                                 |
| 10-May        | 81      | 241      | 213     | 43       | 236    |         |          |         |           | -           | 163       | 213           | 93          | 42     | 41%                                 |
| 11-May        | 210     | 373      | 446     | 310      | 214    | 332     | 289      | 214     | 293       | -           | 298       | 293           | 80          | 27     | 31%                                 |
| 12-May        | 223     | 443      | 502     | 460      | 444    | 480     | 412      | 445     | 460       | N/A         | 430       | 445           | 81          | 27     | 22%                                 |
| 13-May        | 299     | 488      | 454     | 444      | 416    | 397     | 379      | 385     | 404       | N/A         | 407       | 404           | 54          | 18     | 9%                                  |
| 18-May        | 174     | 125      | 131     | 79       | 76     | 101     | 96       | 86      | 169       | N/A         | 115       | 101           | 37          | 12     | 72%                                 |
| 19-May        | 206     | 315      | 278     | 364      | 321    | 220     | 216      | 234     | 252       | N/A         | 267       | 252           | 55          | 18     | 32%                                 |
| 20-May        | 262     | 323      | 308     | 277      | 270    | 250     | 270      | 246     |           | N/A         | 276       | 270           | 27          | 9      | 29%                                 |
| 21-May        | 266     | 317      | 347     | 278      | 311    | 248     | 209      | 189     | 425       | N/A         | 288       | 278           | 72          | 24     | 30%                                 |
| 22-May        | 216     | 289      | 290     | 372      | 301    | 258     | 249      | 304     | 279       | N/A         | 284       | 289           | 43          | 14     | 30%                                 |
| 23-May        | 177     | 179      | 122     | 105      | 133    | 119     | 121      | 144     |           | N/A         | 138       | 128           | 27          | 10     | 60%                                 |
| 24-May        | 242     | 324      | 324     | 284      | 284    | 288     | 257      | 253     | 245       | N/A         | 278       | 284           | 31          | 10     | 29%                                 |
| 26-May        | 217     | 211      | 214     | 235      | 313    | 400     | 431      | 407     | 368       | N/A         | 311       | 313           | 93          | 31     | 22%                                 |
| 30-May        | 275     | 384      | 442     | 364      | 338    | 379     | 402      | 364     | 429       | N/A         | 375       | 379           | 50          | 17     | 19%                                 |
| 31-May        | 384     | 166      | 169     |          | 184    | 202     | 216      | 179     | 512       | N/A         | 252       | 193           | 127         | 45     | 39%                                 |
| Entire Season | 238     | 300      | 307     | 309      | 288    | 289     | 287      | 268     | 311       | 215         | 287       | 277           | 107         | 8      | 26%                                 |
| i             | ndicate | es no ta | argets  | for that | t hour |         |          |         |           |             | N/A inc   | dicates no da | ata for tha | t hour |                                     |



| Appendix A Ta | able 4I | 3. Sun | nmarv  | of me    | ean flio | ght he     | ights  | by ho  | ur, nic | aht, an | nd for er | ntire seaso | on - Sou  | th Ste   | wart Mtn site. |
|---------------|---------|--------|--------|----------|----------|------------|--------|--------|---------|---------|-----------|-------------|-----------|----------|----------------|
|               |         | Mea    | n Flig | ht Hei   | ght (m   | ) by h     | our af | ter su | nset    |         |           | Entire N    | light     |          | % of targets   |
| Night of      |         |        |        |          |          | , <b>,</b> |        |        |         |         |           |             |           |          | below 130.5    |
|               | 1       | 2      | 3      | 4        | 5        | 6          | 7      | 8      | 9       | 10      | Mean      | Median      | STDV      | SE       | meters         |
| 29-Apr        | 171     | 204    | 260    | 124      | 173      | 165        | 136    | 102    | 151     | 195     | 168       | 168         | 45        | 14       | 51%            |
| 3-May         | 269     | 357    | 355    | 368      | 382      | 372        | 298    | 250    | 229     | 197     | 308       | 327         | 68        | 21       | 14%            |
| 4-May         | 203     | 341    | 375    | 282      | 248      | 315        | 292    | 360    | 287     | 120     | 282       | 289         | 77        | 24       | 17%            |
| 5-May         |         | 451    |        |          | 258      | 348        |        | 292    | 332     |         | 336       | 332         | 73        | 33       | 17%            |
| 6-May         | 263     | 210    | 237    | 346      | 431      | 354        | 256    | 370    | N/A     | N/A     | 308       | 304         | 77        | 27       | 22%            |
| 7-May         | 399     | 524    | 548    | 448      | 369      | 334        | 291    | 180    | 210     | N/A     | 367       | 369         | 128       | 43       | 6%             |
| 10-May        | N/A     |        | N/A    | 60       | 529      |            |        | N/A    | 167     | N/A     | 252       | 167         | 246       | 142      | 33%            |
| 11-May        | 308     | 476    | 578    | 334      | 406      | 256        | 428    | 401    | 183     | N/A     | 374       | 401         | 119       | 40       | 22%            |
| 12-May        | 231     | 452    | 587    | 593      | 562      | 593        | 477    | 578    | 555     | N/A     | 514       | 562         | 118       | 39       | 10%            |
| 13-May        | 356     | 465    | 481    | 453      | 419      | 407        | 381    | 394    | 419     | N/A     | 420       | 419         | 41        | 14       | 10%            |
| 18-May        | N/A     | 200    | 135    | 167      | 265      | 322        | 238    | N/A    | N/A     | N/A     | 221       | 219         | 68        | 28       | 48%            |
| 19-May        | 251     | 275    | 289    | 268      | 282      | 336        | 327    | 299    | 260     | N/A     | 287       | 282         | 29        | 10       | 29%            |
| 20-May        | 325     | 362    | 366    | 347      | 329      | 302        | 256    | 238    | N/A     | N/A     | 316       | 327         | 47        | 17       | 24%            |
| 21-May        | 305     | 365    | 325    | 316      | 343      | 298        | 266    | 296    | 324     | N/A     | 315       | 316         | 29        | 10       | 33%            |
| 22-May        | N/A     | 174    | 102    | 131      | 212      | 203        | 254    | N/A    | N/A     | N/A     | 179       | 189         | 56        | 23       | 55%            |
| 23-May        | N/A     | 218    | 306    | 253      | 274      | 312        | 287    | 270    | 315     | N/A     | 279       | 280         | 33        | 12       | 34%            |
| 24-May        | 252     | 307    | 213    | 209      | 207      | 186        | N/A    | N/A    | N/A     | N/A     | 229       | 211         | 44        | 18       | 32%            |
| 25-May        | 523     | 265    | 215    | 193      | 119      | 195        | 351    | 252    | 180     | N/A     | 255       | 215         | 120       | 40       | 39%            |
| 26-May        | 293     | 318    | 296    | 310      | 507      | 617        | 560    | 458    | 548     | N/A     | 434       | 458         | 130       | 43       | 15%            |
| Entire Season | 296     | 331    | 333    | 289      | 332      | 329        | 319    | 316    | 297     | 171     | 314       | 299         | 119       | 10       | 23%            |
|               | indicat | tes no | target | s for th | nat hou  | ur         |        |        |         |         | N/A ir    | ndicates no | o data fo | r that h | our            |



|      | Appendix A Table 5                   | 5. Summary                       | of available                    | avian spring rada                     | r survey resi                           | ults conducte                           | ed at propose                  | ed (pre-con                        | struction) U                                                  | S wind power facilities in eastern US, using X-band                                                                                                   |
|------|--------------------------------------|----------------------------------|---------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------|------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year | Project Site                         | Number<br>of<br>Survey<br>Nights | Number<br>of<br>Survey<br>Hours | Landscape                             | Average<br>Passage<br>Rate<br>(t/km/hr) | Range in<br>Nightly<br>Passage<br>Rates | Average<br>Flight<br>Direction | Average<br>Flight<br>Height<br>(m) | (Turbine<br>Ht)<br>%<br>Targets<br>Below<br>Turbine<br>Height | Ci                                                                                                                                                    |
| 2005 | Ellenberg, Clinton Cty,<br>NY        | 40                               | n/a                             | Great Lakes<br>plain/ADK<br>foothills | 110                                     | n/a                                     | 30                             | 338                                | (125 m)<br>20%                                                | New York Department of Conservation [Internet]<br>Proposed Wind Sites in New York. Albany, NY: N<br>Available at http://www.dec.ny.gov/docs/wildlife_ |
| 2005 | Sheldon, Wyoming<br>Cty, NY          | 38                               | 272                             | Agricultural plateau                  | 112                                     | 6-558                                   | 25                             | 422                                | (120 m)<br>6%                                                 | Woodlot Alternatives, Inc. 2006. A Spring 2005<br>High Sheldon Wind Project in Sheldon, New Yor                                                       |
| 2005 | Munnsville, Madison<br>Cty, NY       | 41                               | 388                             | Agricultural plateau                  | 160                                     | 6-1065                                  | 31                             | 291                                | (118 m)<br>25%                                                | Woodlot Alternatives, Inc. 2005. A Spring 2005<br>Migration at the Proposed Munnsville Wind Proje<br>NY Wind, LLC.                                    |
| 2005 | Sheffield, Caledonia<br>Cty, VT      | 20                               | 180                             | Forested ridge                        | 166                                     | 12-440                                  | 40                             | 552                                | (125 m)<br>6%                                                 | Woodlot Alternatives, Inc. 2006. Avian and Bat I<br>Proposed Sheffield Wind Power Project in Sheffi<br>Management, LLC.                               |
| 2005 | Stamford, Delaware<br>Cty, NY        | 35                               | 301                             | Forested ridge                        | 210                                     | 10-785                                  | 46                             | 431                                | (110 m)<br>8%                                                 | Woodlot Alternatives, Inc. 2007. A Spring and Fa<br>Migration at the Proposed Moresville Energy Cer<br>for Invenergy, LLC. Rockville, MD.             |
| 2005 | Churubusco, Clinton<br>Cty, NY       | 39                               | 310                             | Great Lakes<br>plain/ADK<br>foothills | 254                                     | 3-728                                   | 40                             | 422                                | (120 m)<br>11%                                                | Woodlot Alternatives, Inc. 2005. A Spring Rada<br>Migration at the Proposed Marble River Wind Pro<br>for AES Corporation.                             |
| 2005 | Prattsburgh, Steuben<br>Cty, NY      | 20                               | 183                             | Agricultural plateau                  | 277                                     | 70-621                                  | 22                             | 370                                | (125 m)<br>16%                                                | Woodlot Alternatives, Inc. 2005. A Spring 2005<br>Migration at the Proposed Windfarm Prattsburgh<br>UPC Wind Management, LLC.                         |
| 2005 | Deerfield, Bennington<br>Cty, VT     | 20                               | 183                             | Forested ridge                        | 404                                     | 74-973                                  | 69                             | 523                                | (100 m)<br>4%                                                 | Woodlot Alternatives, Inc. 2005. Spring 2005 Bi<br>Deerfield Wind Project in Searsburg and Readsb                                                     |
| 2005 | Jordanville, Herkimer<br>Cty, NY     | 40                               | 364                             | Agricultural plateau                  | 409                                     | 26-1410                                 | 40                             | 371                                | (125 m)<br>21%                                                | Woodlot Alternatives, Inc. 2005. A Spring 2005<br>Migration at the Proposed Jordanville Wind Proje<br>Community Energy, Inc.                          |
| 2005 | Franklin, Pendleton<br>Cty, NY       | 21                               | 204                             | Forested ridge                        | 457                                     | 34-1240                                 | 53                             | 492                                | (125 m)<br>11%                                                | Woodlot Alternatives, Inc. 2005. A Spring 2005<br>Migration at the Proposed Liberty Gap Wind Proj<br>Wind Force, LLC.                                 |
| 2005 | Clayton, Jefferson Cty,<br>NY        | 36                               | 303                             | Agricultural plateau                  | 460                                     | 71-1769                                 | 30                             | 443                                | (150 m)<br>14%                                                | Woodlot Alternatives, Inc. 2005. A Spring 2005<br>Migration at the Proposed Clayton Wind Project<br>Renewable.                                        |
| 2005 | Dans Mountain, MD                    | 23                               | 189                             | Forested ridge                        | 493                                     | 63-1388                                 | 38                             | 541                                | (125 m)<br>15%                                                | Woodlot Alternatives, Inc. 2005. A Spring 2005<br>Migration at the Proposed Dan's Mountain Wind<br>Wind Force.                                        |
| 2005 | Fairfield, Herkimer Cty,<br>NY       | 40                               | 369                             | Agricultural plateau                  | 509                                     | 80-1175                                 | 44                             | 419                                | (145 m)<br>16% <sup>1</sup>                                   | Woodlot Alternatives, Inc. 2005. A Spring 2005<br>Proposed Top Notch Wind Project in Fairfield, No                                                    |
| 2006 | Kibby, Franklin Cty,<br>ME (Range 1) | 10                               | 80                              | Forested ridge                        | 197                                     | 6-471                                   | 50                             | 412                                | (120 m)<br>22%                                                | Woodlot Alternatives, Inc. 2006. A Spring 2006<br>Kibby Wind Power Project in Kibby and Skinner<br>Maine.                                             |
| 2006 | Deerfield, Bennington<br>Cty, VT     | 26                               | 236                             | Forested ridge                        | 263                                     | 5-934                                   | 58                             | 435                                | (100 m)<br>11%                                                | Woodlot Alternatives, Inc. 2006. Spring 2006 Bir<br>Deerfield Wind Project in Searsburg and Readst                                                    |

d mobile radar systems (2004-present)

#### itation

I. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. \_pdf/radarwindsum.pdf

Radar Survey of Bird Migration at the Proposed k. Prepared for Invenergy.

Radar, Visual, and Acoustic Survey of Bird and Bat ect in Munnsville, New York. Prepared for AES-EHN

Information Summary and Risk Assessment for the ield, Vermont. Prepared for UPC Wind

all 2005 Radar and Acoustic Survey of Bird nter in Stamford and Roxbury, New York. Prepared

ar, Visual, and Acoustic Survey of Bird and Bat oject in Clinton and Ellenburg, New York. Prepared

Radar, Visual, and Acoustic Survey of Bird and Bat Project in Prattsburgh, New York. Prepared for

ird and Bat Migration Surveys at the Proposed poro, Vermont. Prepared for PPM Energy, Inc.

Radar and Acoustic Survey of Bird and Bat ect in Jordanville, New York. Prepared for

Radar and Acoustic Survey of Bird and Bat ject in Franklin, West Virginia. Prepared for US

Radar, Visual, and Acoustic Survey of Bird and Bat in Clayton, New York. Prepared for PPM Atlantic

Radar, Visual, and Acoustic Survey of Bird and Bat Project in Frostburg, Maryland. Prepared for US

5 Radar Survey of Bird and Bat Migration at the ew York. Prepared for PPM Atlantic Renewable.

Survey of Bird and Bat Migration at the Proposed Townships, Maine. Prepared for TransCanada

rd and Bat Migration Surveys at the Proposed poro, Vermont. Prepared for PPM Energy, Inc.



|      | Appendix A Table 5                    | 5. Summary                       | of available                    | avian spring rada       | r survey resu                           | ults conducte                           | ed at propose                  | ed (pre-con                        | struction) U                                                  | S wind power facilities in eastern US, using X-band                                                                                                               |
|------|---------------------------------------|----------------------------------|---------------------------------|-------------------------|-----------------------------------------|-----------------------------------------|--------------------------------|------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year | Project Site                          | Number<br>of<br>Survey<br>Nights | Number<br>of<br>Survey<br>Hours | Landscape               | Average<br>Passage<br>Rate<br>(t/km/hr) | Range in<br>Nightly<br>Passage<br>Rates | Average<br>Flight<br>Direction | Average<br>Flight<br>Height<br>(m) | (Turbine<br>Ht)<br>%<br>Targets<br>Below<br>Turbine<br>Height | Cit                                                                                                                                                               |
| 2006 | Centerville, Allegany<br>Cty, NY      | 42                               | n/a                             | Agricultural<br>plateau | 290                                     | 25-1140                                 | 22                             | 351                                | (125 m)<br>16%                                                | Mabee, T.J., J.H. Plissner, and B.A. Cooper. 2000<br>Bat Migration at the Proposed Centerville and We<br>Report prepared for Ecology and Environment, LI<br>2006. |
| 2006 | Wethersfield, Wyoming<br>Cty, NY      | 44                               | n/a                             | Agricultural<br>plateau | 324                                     | 41-907                                  | 12                             | 355                                | (125 m)<br>19%                                                | Mabee, T.J., J.H. Plissner, and B.A. Cooper. 2000<br>Bat Migration at the Proposed Centerville and We<br>Report prepared for Ecology and Environment, LI<br>2006. |
| 2006 | Mars Hill, Aroostook<br>Cty, ME       | 15                               | 85                              | Forested ridge          | 338                                     | 76-674                                  | 58                             | 384                                | (120 m)<br>14%                                                | Woodlot Alternatives, Inc. 2006. A Spring 2006 R<br>Migration at the Mars Hill Wind Farm in Mars Hill,                                                            |
| 2006 | Chateaugay, Franklin<br>Cty, NY       | 35                               | 300                             | Agricultural plateau    | 360                                     | 54-892                                  | 48                             | 409                                | (120 m)<br>18%                                                | Woodlot Alternatives, Inc. 2006. Spring 2006 Rad<br>Windpark in Chateaugay, New York. Prepared for<br>LLC.                                                        |
| 2006 | Howard, Steuben Cty,<br>NY            | 42                               | 440                             | Agricultural plateau    | 440                                     | 35-2270                                 | 27                             | 426                                | (125 m)<br>13%                                                | Woodlot Alternatives, Inc. 2006. A Spring 2006 S<br>Howard Wind Power Project in Howard, New Yor                                                                  |
| 2006 | Kibby, Franklin Cty,<br>ME (Valley)   | 2                                | 14                              | Forested ridge          | 443                                     | 45-1242                                 | 61                             | 334                                | (120 m)<br>n/a                                                | Woodlot Alternatives, Inc. 2006. A Spring 2006 S<br>Kibby Wind Power Project in Kibby and Skinner T<br>Maine.                                                     |
| 2006 | Kibby, Franklin Cty,<br>ME (Mountain) | 6                                | 33                              | Forested ridge          | 456                                     | 88-1500                                 | 67                             | 368                                | (120 m)<br>14%                                                | Woodlot Alternatives, Inc. 2006. A Spring 2006 S<br>Kibby Wind Power Project in Kibby and Skinner T<br>Maine.                                                     |
| 2006 | Kibby, Franklin Cty,<br>ME (Range 2)  | 7                                | 57                              | Forested ridge          | 512                                     | 18-757                                  | 86                             | 378                                | (120 m)<br>25%                                                | Woodlot Alternatives, Inc. 2006. A Spring 2006 S<br>Kibby Wind Power Project in Kibby and Skinner T<br>Maine.                                                     |
| 2007 | Stetson, Washington<br>Cty, ME        | 21                               | 138                             | Forested ridge          | 147                                     | 3-434                                   | 55                             | 210                                | (120 m)<br>22%                                                | Woodlot Alternatives, Inc. 2007. A Spring 2007 S<br>Wind Project, Washington County, Maine. Prepa                                                                 |
| 2007 | Cape Vincent,<br>Jefferson Cty, NY    | 50                               | 300                             | Great Lakes<br>plain    | 166                                     | n/a                                     | 34                             | 441                                | (125 m)<br>14%                                                | Western EcoSystems Technology, Inc. (WEST).<br>Cape Vincent Wind Power Project, Jefferson Cou<br>America.                                                         |
| 2007 | New Grange,<br>Chautauqua Cty, NY     | 41                               | n/a                             | Great Lakes<br>plain    | 175                                     | n/a                                     | 18                             | 450                                | (125 m)<br>13%                                                | New York Department of Conservation [Internet].<br>Proposed Wind Sites in New York. Albany, NY: N<br>Available at http://www.dec.ny.gov/docs/wildlife_r           |
| 2007 | Laurel Mountain,<br>Barbour Cty, WV   | 20                               | 197                             | Forested ridge          | 277                                     | 13-646                                  | 27                             | 533                                | (130 m)<br>3%                                                 | Stantec Consulting Services Inc. 2007. A Spring 2<br>and Bat Migration at the Proposed Laurel Mounta<br>Prepared for AES Laurel Mountain, LLC.                    |
| 2007 | Errol, Coos County,<br>NH             | 30                               | 212                             | Forested ridge          | 342                                     | 2 to 870                                | 76                             | 332                                | (125 m)<br>14%                                                | Stantec Consulting Inc. 2007. Spring 2007 Rada<br>Migration at the Proposed Windpark in Coos Cou<br>LLC. Prepared for Granite Reliable Power, LLC.                |
| 2007 | Villenova, Chautauqua<br>Cty, NY      | 40                               | n/a                             | Great Lakes<br>plain    | 419                                     | 22-1190                                 | 10                             | 493                                | (120 m)<br>3%                                                 | Stantec Consulting Services Inc. 2008. A Spring 2<br>and Bat Migration at the Proposed Ball Hill Windp<br>Prepared for Noble Environmental Power, LLC ar          |

### I mobile radar systems (2004-present)

#### tation

6a. A Radar and Visual Study of Nocturnal Bird and ethersfield Windparks, New York, Spring 2006. LC and Noble Environmental Power, LLC. July

6a. A Radar and Visual Study of Nocturnal Bird and ethersfield Windparks, New York, Spring 2006. LC and Noble Environmental Power, LLC. July

Radar, Visual, and Acoustic Survey of Bird , Maine. Prepared for Evergreen Windpower, LLC.

dar Surveys at the Proposed Chateaugay r Ecology and Environment, Inc. and Noble Power,

Survey of Bird and Bat Migration at the Proposed rk. Prepared for Everpower Global.

Survey of Bird and Bat Migration at the Proposed Fownships, Maine. Prepared for TransCanada

Survey of Bird and Bat Migration at the Proposed Foundation for TransCanada

Survey of Bird and Bat Migration at the Proposed Foundation for TransCanada

Survey of Bird and Bat Migration at the Stetson ared for Evergreen Wind V, LLC.

2007. Avian and Bat Studies for the Proposed unty, NY. Prepared for BP Alternative Energy North

c2008. Publicly Available Radar Results for IYDEC; [updated May 2008; cited June 2009]. pdf/radarwindsum.pdf

2007 Radar, Visual, and Acoustic Survey of Bird ain Wind Energy Project near Elkins, West Virginia.

ar, Visual, and Acoustic Survey of Bird and Bat Inty, New Hampshire by Granite Reliable Power,

2007 Radar, Visual, and Acoustic Survey of Bird bark in Villenova and Hanover, New York. nd Ecology and Environment.



|      | Appendix A Table 5               | 5. Summary                       | of available                    | avian spring radai    | survey resu                             | Its conducte                            | ed at propose                  | ed (pre-con                        | struction) US                                                 | S wind power facilities in eastern US, using X-band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|----------------------------------|----------------------------------|---------------------------------|-----------------------|-----------------------------------------|-----------------------------------------|--------------------------------|------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year | Project Site                     | Number<br>of<br>Survey<br>Nights | Number<br>of<br>Survey<br>Hours | Landscape             | Average<br>Passage<br>Rate<br>(t/km/hr) | Range in<br>Nightly<br>Passage<br>Rates | Average<br>Flight<br>Direction | Average<br>Flight<br>Height<br>(m) | (Turbine<br>Ht)<br>%<br>Targets<br>Below<br>Turbine<br>Height | Cit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2007 | Roxbury, Oxford Cty,<br>ME       | 20                               | n/a                             | Forested ridge        | 539                                     | 137-1256                                | 52                             | 312                                | (130)<br>18%                                                  | Woodlot Alternatives, Inc. 2007. A Spring 2007 S<br>Wind Project, Roxbury, Maine. Prepared for Rox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2007 | Lempster, Sullivan Cty,<br>NH    | 30                               | 277                             | Forested ridge        | 542                                     | 49-1094                                 | 49                             | 358                                | (125 m)<br>18%                                                | Woodlot Alternatives, Inc. 2007.A Spring 2007 So<br>and Bicknell's Thrush at the Proposed Lempster M<br>Hampshire. Prepared for Lempster Wind, LLC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2008 | Lincoln, Penobscot<br>Cty, ME    | 20                               | 189                             | Forested ridge        | 247                                     | 40-766                                  | 75                             | 316                                | (120 m)<br>13%                                                | Stantec Consulting Services Inc. 2008.A Spring 2<br>Rollins Wind Project, Washington County, Maine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2008 | Allegany, Cattaraugus<br>Cty, NY | 30                               | 275                             | Forested ridge        | 268                                     | 53-755                                  | 18                             | 316                                | (150 m)<br>19%                                                | New York Department of Conservation [Internet].<br>Proposed Wind Sites in New York. Albany, NY: N<br>Available at http://www.dec.ny.gov/docs/wildlife_p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2008 | Oakfield, Penobscot<br>Cty, ME   | 20                               | 194                             | Forested ridge        | 498                                     | 132-899                                 | 33                             | 276                                | (120 m)<br>21%                                                | Stantec Consulting Services Inc. 2008.A Spring 2<br>Oakfield Wind Project, Washington County, Maine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2008 | Hounsfield, Jefferson<br>Cty, NY | 42                               | 379                             | Great Lakes<br>island | 624                                     | 74-1630                                 | 51                             | 319                                | (125 m)<br>19%                                                | Stantec Consulting Services Inc. 2008. A Spring Wind Project, New York. Prepared for American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2008 | New Creek, Grant Cty,<br>WV      | 20                               | n/a                             | Forested ridge        | 1020                                    | 289-2610                                | 30                             | 354                                | (130 m)<br>13%                                                | Stantec Consulting Services Inc. 2008. A Spring Wind Project, West Virginia. Prepared for AES Net Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structure Structur |

Note:

<sup>1</sup> The percent targets below turbine height can be found in the addendum to the report "Effect of Top Notch (now Hardscrabble) Wind Project revision to turbine layout and model changes on the spring and fall 2005 nocturnal radar survey reports." Prepared August 26, 2009, by Stantec Consulting Services Inc.

## I mobile radar systems (2004-present)

### tation

Survey of Bird and Bat Migration at the Record Hill bury Hill Wind LLC.

Survey of Nocturnal Bird Migration,Breeding Birds, Mountain Wind Power Project Lempster, New

2008 Survey of Bird and Bat Migration at the . Prepared for Evergreen Wind, LLC.

. c2008. Publicly Available Radar Results for NYDEC; [updated May 2008; cited June 2009]. pdf/radarwindsum.pdf

2008 Survey of Bird and Bat Migration at the ne. Prepared for Evergreen Wind, LLC.

2008 Survey of Bird Migration at the Hounsfield Consulting Professionals of New York, PLLC.

2008 Survey of Bird Migration at the New Creek ew Creek, LLC.



# **Appendix B**

Publicly Available Bat Survey Results



|      |                        | Appendix I                          | 3 Table 1.     | Summary       | of available       | spring b | oat deteo       | ctor surve            | eys (resi | ults reported for individual detectors)                                                                                                                                                                                                                          |
|------|------------------------|-------------------------------------|----------------|---------------|--------------------|----------|-----------------|-----------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Year | Project                | Project<br>Location                 | Habitat        | Height<br>(m) | Detector<br>Nights | Start    | End             | Calls                 | Rate      | Reference                                                                                                                                                                                                                                                        |
| 2006 | Lempster               | Lempster,<br>Sullivan Cty, NH       | forest<br>edge | 5             | Tree or lov        | 4/5      | detecto<br>6/12 | <b>rs (10 m</b><br>16 | 0.8       | W)<br>Woodlot Alternatives, Inc. 2006. Summary of spring 2006 Lempster<br>bat survey. Memorandum to Jeff Keeler (CEI) from Bob Roy<br>(Woodlot Alternatives, Inc.) dated July 26, 2006.                                                                          |
| 2006 | Howard                 | Howard, Steuben<br>Cty, NY          | field          | 8             | 35                 | 4/15     | 6/3             | 29                    | 0.8       | Woodlot Alternatives, Inc. 2006. A Spring 2006 Survey of Bird and<br>Bat Migration at the Proposed Howard Wind Power Project in<br>Howard, New York, Prepared for Everpower Global.                                                                              |
| 2005 | Sheffield              | Sheffield,<br>Caledonia Cty,<br>VT  | forest<br>edge | 10            | 4                  | 5/12     | 5/29            | 0                     | 0         | Woodlot Alternatives, Inc. 2006. Avian and Bat Information<br>Summary and Risk Assessment for the Proposed Sheffield Wind<br>Power Project in Sheffield, Vermont. Prepared for UPC Wind<br>Management, LLC.                                                      |
| 2006 | Sheffield              | Sheffield,<br>Caledonia Cty,<br>VT  | forest<br>edge | 8             | 38                 | 4/24     | 6/13            | 840                   | 22.1      | Woodlot Alternatives, Inc. 2006. Avian and Bat Information<br>Summary and Risk Assessment for the Proposed Sheffield Wind<br>Power Project in Sheffield, Vermont. Prepared for UPC Wind<br>Management, LLC.                                                      |
| 2006 | Sheffield              | Sheffield,<br>Caledonia Cty,<br>VT  | forest<br>edge | 9             | 37                 | 4/24     | 6/13            | 90                    | 2.4       | Woodlot Alternatives, Inc. 2006. Avian and Bat Information<br>Summary and Risk Assessment for the Proposed Sheffield Wind<br>Power Project in Sheffield, Vermont. Prepared for UPC Wind<br>Management, LLC.                                                      |
| 2006 | Sheffield              | Sheffield,<br>Caledonia Cty,<br>VT  | forest<br>edge | 8             | 34                 | 4/24     | 6/13            | 178                   | 5.2       | Woodlot Alternatives, Inc. 2006. Avian and Bat Information<br>Summary and Risk Assessment for the Proposed Sheffield Wind<br>Power Project in Sheffield, Vermont. Prepared for UPC Wind<br>Management, LLC.                                                      |
| 2006 | Deerfield              | Deerfield,<br>Bennington Cty,<br>VT | forest<br>edge | 2             | 37                 | 4/14     | 6/11            | 4                     | 0.1       | Woodlot Alternatives, Inc. 2006. Spring 2006 Bird and Bat Migration<br>Surveys at the Proposed Deerfield Wind Project in Searsburg and<br>Readsboro, Vermont. Prepared for PPM Energy, Inc.                                                                      |
| 2008 | Rollins                | Rollins,<br>Penobscot Cty,<br>ME    | forest<br>edge | 3             | 21                 | 4/23     | 5/22            | 34                    | 1.6       | Stantec Consulting Inc. 2008. Spring 2008 Bird and Bat Migration<br>Survey Report: Visual, Radar and Acoustic Bat Surveys for the<br>Rollins Wind Project. Prepared for FirstWind Management, LLC.                                                               |
| 2008 | Rollins                | Rollins,<br>Penobscot Cty,<br>ME    | forest<br>edge | 3             | 29                 | 4/23     | 5/22            | 16                    | 0.6       | Stantec Consulting Inc. 2008. Spring 2008 Bird and Bat Migration<br>Survey Report: Visual, Radar and Acoustic Bat Surveys for the<br>Rollins Wind Project. Prepared for FirstWind Management, LLC.                                                               |
|      |                        | Rollins,                            | forest         | -             |                    | Met to   | wer det         | ectors                |           | Stantec Consulting Inc. 2008. Spring 2008 Bird and Bat Migration                                                                                                                                                                                                 |
| 2008 | Rollins                | Penobscot Cty,<br>ME<br>Rollins,    | edge           | 40            | 52                 | 4/23     | 6/14            | 29                    | 0.6       | Survey Report: Visual, Radar and Acoustic Bat Surveys for the<br>Rollins Wind Project. Prepared for FirstWind Management, LLC.<br>Stantec Consulting Inc. 2008. Spring 2008 Bird and Bat Migration                                                               |
| 2008 | Rollins                | Penobscot Cty,<br>ME<br>Rollins     | edge           | 20            | 23                 | 4/23     | 6/14            | 40                    | 1.7       | Survey Report: Visual, Radar and Acoustic Bat Surveys for the<br>Rollins Wind Project. Prepared for FirstWind Management, LLC.                                                                                                                                   |
| 2008 | Rollins                | Penobscot Cty,<br>ME                | forest<br>edge | 40            | 23                 | 5/22     | 6/14            | 3                     | 0.1       | Stantee Consulting Inc. 2008. Spring 2008 Bird and Bat Migration<br>Survey Report: Visual, Radar and Acoustic Bat Surveys for the<br>Rollins Wind Project. Prepared for FirstWind Management, LLC.                                                               |
| 2008 | Rollins                | Penobscot Cty,<br>ME                | forest<br>edge | 20            | 23                 | 5/22     | 6/14            | 3                     | 0.1       | Stantec Consulting Inc. 2006. Splitting 2008 Bird and Bat Migration<br>Survey Report: Visual, Radar and Acoustic Bat Surveys for the<br>Rollins Wind Project. Prepared for FirstWind Management, LLC.                                                            |
| 2008 | Rollins                | Rollins,<br>Penobscot Cty,<br>ME    | forest<br>edge | 40            | 53                 | 4/22     | 6/14            | 166                   | 3.1       | Stantec Consulting Inc. 2008. Spring 2008 Bird and Bat Migration<br>Survey Report: Visual, Radar and Acoustic Bat Surveys for the<br>Rollins Wind Project. Prepared for FirstWind Management, LLC.                                                               |
| 2008 | Rollins                | Rollins,<br>Penobscot Cty,<br>ME    | forest<br>edge | 20            | 53                 | 4/22     | 6/14            | 106                   | 2.0       | Stantec Consulting Inc. 2008. Spring 2008 Bird and Bat Migration<br>Survey Report: Visual, Radar and Acoustic Bat Surveys for the<br>Rollins Wind Project. Prepared for FirstWind Management, LLC.                                                               |
| 2007 | Ball Hill              | Villenova,<br>Chautauqua Cty,<br>NY | field          | 40            | 32                 | 3/28     | 5/30            | 4                     | 0.1       | Stantec Consulting Inc. 2007. A Spring 2007 Radar, Visual, and<br>Acoustic Survey of Bird and Bat Migration at the Proposed Ball Hill<br>Windpark in Villenova and Hanover, NY. Prepared for Nobel<br>Environmental Power, LLC and Ecology and Environment, Inc. |
| 2007 | Ball Hill              | Villenova,<br>Chautauqua Cty,<br>NY | field          | 20            | 54                 | 3/28     | 5/30            | 74                    | 1.4       | Stantec Consulting Inc. 2007. A Spring 2007 Radar, Visual, and<br>Acoustic Survey of Bird and Bat Migration at the Proposed Ball Hill<br>Windpark in Villenova and Hanover, NY. Prepared for Nobel<br>Environmental Power, LLC and Ecology and Environment, Inc. |
| 2007 | Stetson                | Stetson,<br>Penobscot Cty,<br>ME    | forest<br>edge | 30            | 47                 | 4/24     | 6/18            | 52                    | 1.1       | Woodlot Alternatives, Inc. 2007. A Spring 2007 Survey of Bird and<br>Bat Migration at the Stetson Wind Project, Washington County,<br>Maine. Prepared for Evergreen Wind V, LLC.                                                                                 |
| 2007 | Stetson                | Stetson,<br>Penobscot Cty,<br>ME    | forest<br>edge | 30            | 56                 | 4/24     | 6/18            | 235                   | 4.2       | Woodlot Alternatives, Inc. 2007. A Spring 2007 Survey of Bird and<br>Bat Migration at the Stetson Wind Project, Washington County,<br>Maine. Prepared for Evergreen Wind V, LLC.                                                                                 |
| 2007 | Stetson                | Stetson,<br>Penobscot Cty,<br>ME    | forest<br>edge | 30            | 56                 | 4/24     | 6/18            | 36                    | 0.6       | Woodlot Alternatives, Inc. 2007. A Spring 2007 Survey of Bird and<br>Bat Migration at the Stetson Wind Project, Washington County,<br>Maine. Prepared for Evergreen Wind V, LLC.                                                                                 |
| 2006 | Kibby                  | Kibby, Franklin<br>Cty, ME          | forest<br>edge | 50            | 14                 | 5/4      | 6/19            | 0                     | 0         | Woodlot Alternatives, Inc. 2006. A Spring 2006 Survey of Bird and<br>Bat Migration at the Proposed Kibby Wind Power Project in Kibby<br>and Skinner Townships, Maine. Prepared for TransCanada Maine<br>Wind Development, Inc.                                   |
| 2006 | Kibby                  | Kibby, Franklin<br>Cty, ME          | forest<br>edge | 50            | 24                 | 5/4      | 6/19            | 0                     | 0         | Woodlot Alternatives, Inc. 2006. A Spring 2006 Survey of Bird and<br>Bat Migration at the Proposed Kibby Wind Power Project in Kibby<br>and Skinner Townships, Maine. Prepared for TransCanada Maine<br>Wind Development, Inc.                                   |
| 2006 | Kibby                  | Kibby, Franklin<br>Cty, ME          | forest<br>edge | 20            | 35                 | 5/4      | 6/19            | 31                    | 0.7       | Woodlot Alternatives, Inc. 2006. A Spring 2006 Survey of Bird and<br>Bat Migration at the Proposed Kibby Wind Power Project in Kibby<br>and Skinner Townships, Maine. Prepared for TransCanada Maine<br>Wind Development, Inc.                                   |
| 2006 | Kibby                  | Kibby, Franklin<br>Cty, ME          | forest<br>edge | 50            | 35                 | 5/4      | 6/19            | 0                     | 0         | Woodlot Alternatives, Inc. 2006. A Spring 2006 Survey of Bird and<br>Bat Migration at the Proposed Kibby Wind Power Project in Kibby<br>and Skinner Townships, Maine. Prepared for TransCanada Maine<br>Wind Development, Inc.                                   |
| 2006 | Lempster               | Lempster,<br>Sullivan Cty, NH       | forest<br>edge | 40            | 60                 | 4/5      | 6/12            | 7                     | 0.1       | Woodlot Alternatives, Inc. 2006. Summary of spring 2006 Lempster<br>bat survey. Memorandum to Jeff Keeler (CEI) from Bob Roy<br>(Woodlot Alternatives, Inc.) dated July 26, 2006.                                                                                |
| 2006 | Lempster               | Lempster,<br>Sullivan Cty, NH       | forest<br>edge | 20            | 50                 | 4/5      | 6/12            | 3                     | 0.1       | Woodlot Alternatives, Inc. 2006. Summary of spring 2006 Lempster<br>bat survey. Memorandum to Jeff Keeler (CEI) from Bob Roy<br>(Woodlot Alternatives, Inc.) dated July 26, 2006.                                                                                |
| 2005 | Cohocton/Dutch<br>Hill | Cohocton,<br>Steuben Cty, NY        | field          | 30            | 29                 | 5/2      | 5/30            | 21                    | 0.7       | Woodlot Alternatives, Inc. 2006. Avian and Bat Information Summary<br>and Risk Assessment for the Proposed Cohocton Wind Power<br>Project in Cohocton, New York. Prepared for UPC Wind<br>Management, LLC                                                        |
| 2005 | High Sheldon           | Sheldon,<br>Wyoming Cty,<br>NY      | field          | 30            | 36                 | 4/21     | 5/30            | 6                     | 0.2       | Woodlot Alternatives, Inc. 2006. A Spring 2005 Radar Survey of<br>Bird Migration at the Proposed High Sheldon Wind Project in<br>Sheldon, New York. Prepared for Invenergy.                                                                                      |
| 2005 | Jordanville            | Jordanville,<br>Herkimer Cty, NY    | field          | 30            | 29                 | 4/14     | 5/13            | 15                    | 0.5       | Woodlot Alternatives, Inc. 2005. A Spring 2005 Radar and Acoustic Survey of Bird and Bat Migration at the Proposed Jordanville Wind Project in Jordanville, New York. Prepared for Community Energy, Inc.                                                        |
| 2005 | Marble River           | Churubusco,<br>Clinton Cty, NY      | field          | 30            | 46                 | 4/14     | 5/30            | 12                    | 0.3       | Woodlot Alternatives, Inc. 2005. A Spring Radar, Visual, and<br>Acoustic Survey of Bird and Bat Migration at the Proposed Marble<br>River Wind Project in Clinton and Ellenburg, New York. Prepared for<br>AES Corporation.                                      |



|      | Appendix B Table 1. Summary of available spring bat detector surveys (results reported for individual detectors) |                                     |                |               |                    |       |      |       |      |                                                                                                                                                                                                                                                    |  |  |  |  |
|------|------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------|---------------|--------------------|-------|------|-------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Year | Project                                                                                                          | Project<br>Location                 | Habitat        | Height<br>(m) | Detector<br>Nights | Start | End  | Calls | Rate | Reference                                                                                                                                                                                                                                          |  |  |  |  |
| 2005 | Prattsburgh                                                                                                      | Prattsburgh,<br>Steuben Cty , NY    | field          | 30            | 17                 | 4/15  | 5/10 | 8     | 0.5  | Woodlot Alternatives, Inc. 2005. A Spring 2005 Radar, Visual, and<br>Acoustic Survey of Bird and Bat Migration at the Proposed Windfarm<br>Prattsburgh Project in Prattsburgh, New York. Prepared for UPC<br>Wind Management, LLC.                 |  |  |  |  |
| 2005 | Prattsburgh                                                                                                      | Prattsburgh,<br>Steuben Cty , NY    | field          | 15            | 20                 | 4/11  | 5/30 | 8     | 0.4  | Woodlot Alternatives, Inc. 2005. A Spring 2005 Radar, Visual, and<br>Acoustic Survey of Bird and Bat Migration at the Proposed Windfarm<br>Prattsburgh Project in Prattsburgh, New York. Prepared for UPC<br>Wind Management, LLC.                 |  |  |  |  |
| 2006 | Chateaugay                                                                                                       | Chateaugay,<br>Franklin Cty, NY     | field          | 40            | 54                 | 4/16  | 6/8  | 117   | 2.2  | Woodlot Alternatives, Inc. 2006. Spring 2006 Bat Surveys at the Proposed Brandon and Chateaugay Wind Farms in Northern New York. Prepared for Nobel Environmental Power, LLC and Ecology & Environment, Inc.                                       |  |  |  |  |
| 2006 | Chateaugay                                                                                                       | Chateaugay,<br>Franklin Cty, NY     | field          | 20            | 54                 | 4/16  | 6/8  | 103   | 1.9  | Woodlot Alternatives, Inc. 2006. Spring 2006 Bat Surveys at the<br>Proposed Brandon and Chateaugay Wind Farms in Northern New<br>York. Prepared for Nobel Environmental Power, LLC and Ecology &<br>Environment, Inc.                              |  |  |  |  |
| 2006 | Brandon                                                                                                          | Brandon,<br>Franklin Cty, NY        | field          | 15            | 38                 | 4/7   | 6/4  | 848   | 22   | Woodlot Alternatives, Inc. 2006. Spring 2006 Bat Surveys at the<br>Proposed Brandon and Chateaugay Wind Farms in Northern New<br>York. Prepared for Nobel Environmental Power, LLC and Ecology &<br>Environment, Inc.                              |  |  |  |  |
| 2006 | Brandon                                                                                                          | Brandon,<br>Franklin Cty, NY        | field          | 30            | 36                 | 4/7   | 6/4  | 114   | 3.2  | Woodlot Alternatives, Inc. 2006. Spring 2006 Bat Surveys at the<br>Proposed Brandon and Chateaugay Wind Farms in Northern New<br>York. Prepared for Nobel Environmental Power, LLC and Ecology &<br>Environment, Inc.                              |  |  |  |  |
| 2006 | Howard                                                                                                           | Howard, Steuben<br>Cty, NY          | field          | 50            | 36                 | 4/15  | 6/4  | 5     | 0.1  | Woodlot Alternatives, Inc. 2006. A Spring 2006 Survey of Bird and<br>Bat Migration at the Proposed Howard Wind Power Project in<br>Howard, New York. Prepared for Everpower Global.                                                                |  |  |  |  |
| 2006 | Howard                                                                                                           | Howard, Steuben<br>Cty, NY          | field          | 20            | 45                 | 4/15  | 6/7  | 16    | 0.4  | Woodlot Alternatives, Inc. 2006. A Spring 2006 Survey of Bird and<br>Bat Migration at the Proposed Howard Wind Power Project in<br>Howard, New York. Prepared for Everpower Global.                                                                |  |  |  |  |
| 2005 | Horse Creek                                                                                                      | Clayton,<br>Jefferson Cty,<br>NY    | forest<br>edge | 20            | 42                 | 4/20  | 5/31 | 55    | 1.3  | Woodlot Alternatives, Inc. 2005. A Spring 2005 Radar, Visual, and<br>Acoustic Survey of Bird and Bat Migration at the Proposed Clayton<br>Wind Project in Clayton, New York. Prepared for PPM Atlantic<br>Renewable.                               |  |  |  |  |
| 2005 | Horse Creek                                                                                                      | Clayton,<br>Jefferson Cty,<br>NY    | forest<br>edge | 15            | 36                 | 4/20  | 5/31 | 12    | 0.3  | Woodlot Alternatives, Inc. 2005. A Spring 2005 Radar, Visual, and<br>Acoustic Survey of Bird and Bat Migration at the Proposed Clayton<br>Wind Project in Clayton, New York. Prepared for PPM Atlantic<br>Renewable.                               |  |  |  |  |
| 2005 | Moresville                                                                                                       | Stamford,<br>Delaware Cty,<br>NY    | forest<br>edge | 30            | 27                 | 4/12  | 5/8  | 8     | 0.3  | Woodlot. 2007. A Spring and Fall 2005 Radar and Acoustic Survey<br>of Bird Migration at the Proposed Moresville Energy Center in<br>Stamford and Roxbury, New York. Prepared for Invenergy, LLC.<br>Rockville, MD.                                 |  |  |  |  |
| 2005 | Deerfield                                                                                                        | Deerfield,<br>Bennington Cty,<br>VT | forest<br>edge | 15            | 40                 | 4/19  | 6/15 | 4     | 0.1  | Woodlot Alternatives, Inc. 2005. A Spring 2005 Radar, Visual, and<br>Acoustic Survey of Bird and Bat Migration at the Proposed Deerfield<br>Wind Project in Searsburg and Readsboro, Vermont. Prepared for<br>PPM Energy/Deerfield Wind, LLC.      |  |  |  |  |
| 2005 | Sheffield                                                                                                        | Sheffield,<br>Caledonia Cty,<br>VT  | forest<br>edge | 20            | 31                 | 5/1   | 5/31 | 6     | 0.2  | Woodlot Alternatives, Inc. 2006. Avian and Bat Information<br>Summary and Risk Assessment for the Proposed Sheffield Wind<br>Power Project in Sheffield, Vermont. Prepared for UPC Wind<br>Management, LLC.                                        |  |  |  |  |
| 2006 | Deerfield                                                                                                        | Deerfield,<br>Bennington Cty,<br>VT | forest<br>edge | 35            | 60                 | 4/14  | 6/13 | 4     | 0.1  | Woodlot Alternatives, Inc. 2006. Spring 2006 Bird and Bat Migration<br>Surveys at the Proposed Deerfield Wind Project in Searsburg and<br>Readsboro, Vermont. Prepared for PPM Energy, Inc.                                                        |  |  |  |  |
| 2006 | Deerfield                                                                                                        | Deerfield,<br>Bennington Cty,<br>VT | forest<br>edge | 15            | 47                 | 4/14  | 5/31 | 0     | 0    | Woodlot Alternatives, Inc. 2006. Spring 2006 Bird and Bat Migration<br>Surveys at the Proposed Deerfield Wind Project in Searsburg and<br>Readsboro, Vermont. Prepared for PPM Energy, Inc.                                                        |  |  |  |  |
| 2006 | Deerfield                                                                                                        | Deerfield,<br>Bennington Cty,<br>VT | forest<br>edge | 30            | 29                 | 4/14  | 5/20 | 0     | 0    | Woodlot Alternatives, Inc. 2006. Spring 2006 Bird and Bat Migration<br>Surveys at the Proposed Deerfield Wind Project in Searsburg and<br>Readsboro, Vermont. Prepared for PPM Energy, Inc.                                                        |  |  |  |  |
| 2006 | Deerfield                                                                                                        | Deerfield,<br>Bennington Cty,<br>VT | forest<br>edge | 15            | 21                 | 4/14  | 5/16 | 7     | 0.3  | Woodlot Alternatives, Inc. 2006. Spring 2006 Bird and Bat Migration<br>Surveys at the Proposed Deerfield Wind Project in Searsburg and<br>Readsboro, Vermont. Prepared for PPM Energy, Inc.                                                        |  |  |  |  |
| 2006 | Sheffield                                                                                                        | Sheffield,<br>Caledonia Cty,<br>VT  | forest<br>edge | 31            | 36                 | 4/24  | 6/13 | 5     | 0.14 | Summary and Risk Assessment for the Proposed Sheffield Wind<br>Power Project in Sheffield, Vermont. Prepared for UPC Wind<br>Management, LLC.                                                                                                      |  |  |  |  |
| 2005 | Liberty Gap                                                                                                      | Franklin,<br>Pendleton Cty,<br>WV   | forest<br>edge | 30            | 21                 | 4/17  | 6/7  | 2     | 0.1  | Survey of Bird and Bat Migration at the Proposed Liberty Gap Wind<br>Project in Franklin, West Virginia. Prepared for US Wind Force, LLC.                                                                                                          |  |  |  |  |
| 2005 | Liberty Gap                                                                                                      | Franklin,<br>Pendleton Cty,<br>WV   | forest<br>edge | 15            | 21                 | 4/17  | 6/7  | 19    | 0.9  | Woodlot Alternatives, Inc. 2005. A Spring 2005 Radar and Acoustic<br>Survey of Bird and Bat Migration at the Proposed Liberty Gap Wind<br>Project in Franklin, West Virginia. Prepared for US Wind Force, LLC.                                     |  |  |  |  |
| 2006 | Wethersfield                                                                                                     | Wethersfield,<br>Wyoming Cty,<br>NY | field          | 21            | 63                 | 4/6   | 6/7  | 60    | 1.0  | Migration at the Proposed Centerville and Wethersfield Windparks in<br>Centerville and Wethersfield, New York. Prepared for Ecology and<br>Environment, Inc. and Noble Power, LLC.                                                                 |  |  |  |  |
| 2006 | Wethersfield                                                                                                     | Wethersfield,<br>Wyoming Cty,<br>NY | field          | 10            | 63                 | 4/6   | 6/7  | 132   | 2.1  | Woodlof Alternatives, Inc. 2006. A Spring 2006 Survey of Bat<br>Migration at the Proposed Centerville and Wethersfield Windparks in<br>Centerville and Wethersfield, New York. Prepared for Ecology and<br>Environment, Inc. and Noble Power, LLC. |  |  |  |  |
| 2006 | Centerville                                                                                                      | Centerville,<br>Allegany Cty, NY    | field          | 25            | 63                 | 4/6   | 6/8  | 139   | 2.2  | Woodlot Alternatives, Inc. 2006. A Spring 2006 Survey of Bat<br>Migration at the Proposed Centerville and Wethersfield Windparks in<br>Centerville and Wethersfield, New York. Prepared for Ecology and<br>Environment, Inc. and Noble Power, LLC  |  |  |  |  |
| 2006 | Centerville                                                                                                      | Centerville,<br>Allegany Cty, NY    | field          | 10            | 63                 | 4/6   | 6/8  | 131   | 2.1  | vvoodlot Alternatives, Inc. 2006. A Spring 2006 Survey of Bat<br>Migration at the Proposed Centerville and Wethersfield Windparks in<br>Centerville and Wethersfield, New York. Prepared for Ecology and<br>Environment, Inc. and Noble Power, LLC |  |  |  |  |
| 2007 | Coos                                                                                                             | Coos Cty, NH                        | forest<br>edge | 50            | 37                 | 4/26  | 6/1  | 8     | 0.2  | Stantec Consulting Inc. 2007. Spring 2007 Radar, Visual, and<br>Acoustic Survey of Bird and Bat Migration at the Proposed Windpark<br>in Coos County, New Hampshire by Granite Reliable Power, LLC.<br>Prepared for Granite Reliable Power, LLC.   |  |  |  |  |
| 2007 | Coos                                                                                                             | Coos Cty, NH                        | forest<br>edge | 20            | 19                 | 4/30  | 6/1  | 5     | 0.3  | Stantec Consulting Inc. 2007. Spring 2007 Radar, Visual, and<br>Acoustic Survey of Bird and Bat Migration at the Proposed Windpark<br>in Coos County, New Hampshire by Granite Reliable Power, LLC.<br>Prepared for Granite Reliable Power, LLC.   |  |  |  |  |
| 2007 | Coos                                                                                                             | Coos Cty, NH                        | forest<br>edge | 30            | 35                 | 4/28  | 6/1  | 8     | 0.2  | Stantec Consulting Inc. 2007. Spring 2007 Radar, Visual, and<br>Acoustic Survey of Bird and Bat Migration at the Proposed Windpark<br>in Coos County, New Hampshire by Granite Reliable Power, LLC.<br>Prepared for Granite Reliable Power, LLC.   |  |  |  |  |
| 2007 | Coos                                                                                                             | Coos Cty, NH                        | forest<br>edge | 15            | 35                 | 4/28  | 6/1  | 12    | 0.3  | Stantec Consulting Inc. 2007. Spring 2007 Radar, Visual, and<br>Acoustic Survey of Bird and Bat Migration at the Proposed Windpark<br>in Coos County, New Hampshire by Granite Reliable Power, LLC.<br>Prepared for Granite Reliable Power, LLC.   |  |  |  |  |



# Appendix C

Breeding Bird Survey Data Tables



| Appendix C Table 1. Total numb     | per of species and individuals de | etected, and | d distance fro | m observer   | at 35 point o | count locations |
|------------------------------------|-----------------------------------|--------------|----------------|--------------|---------------|-----------------|
| Common name                        | Scientific name                   | 0-50<br>m    | 50-100 m       | > 100 m      | Flyovers      | Grand Total     |
| alder flycatcher                   | Empidonax alnorum                 | 8            | 4              | 1            |               | 13              |
| American crow                      | Corvus brachyrhynchos             |              |                | 1            |               | 1               |
| American goldfinch                 | Carduelis tristis                 | 4            |                |              | 6             | 10              |
| American redstart                  | Setophaga ruticilla               | 16           | 9              |              |               | 25              |
| American robin                     | Turdus migratorius                | 3            | 2              | 1            |               | 6               |
| black-and-white warbler            | Mniotilta varia                   | 25           | 4              |              |               | 29              |
| bay-breasted warbler               | Dendroica castanea                | 13           | 3              |              |               | 16              |
| black-capped chickadee             | Poecile atricanilla               | 4            | 1              |              |               | 5               |
| blue beaded vireo                  | Vireo solitarius                  | <u> </u>     | 5              | 1            |               | 15              |
| blackburnian warbler               | Dendroica fusca                   | 22           | <u> </u>       | 1            |               | 26              |
|                                    |                                   | 5            | 4              | 2            | F             | 20              |
| blockpoll worklor                  | Cyanocilla cristala               | 11           | 1              | 3            | 5             | 14              |
|                                    |                                   |              | 9              |              |               | 20              |
|                                    |                                   | 9            |                |              |               | 9               |
| brown creeper                      | Certhia americana                 | 1            |                |              |               | 1               |
| black-throated blue warbler        | Dendroica caerulescens            | 40           | 30             | 3            |               | 73              |
| black-throated green warbler       | Dendroica virens                  | 8            | 12             | 5            |               | 25              |
| Canada warbler                     | Wilsonia canadensis               | 4            |                |              |               | 4               |
| cedar waxwing                      | Bombycilla cedrorum               | 7            |                |              | 8             | 15              |
| common raven                       | Corvus corax                      |              |                |              | 6             | 6               |
| common yellowthroat                | Geothlypis trichas                | 34           | 24             | 3            | 1             | 62              |
| chestnut-sided warbler             | Dendroica pensylvanica            | 46           | 25             | 4            |               | 75              |
| dark-eyed junco                    | Junco hyemalis                    | 38           | 25             | 4            |               | 67              |
| eastern wood-pewee                 | Contopus virens                   |              |                | 2            |               | 2               |
| golden-crowned kinglet             | Regulus satrapa                   | 26           | 11             |              |               | 37              |
| hairy woodpecker                   | Picoides villosus                 | 3            | 2              |              | 1             | 6               |
| hermit thrush                      | Catharus guttatus                 | 11           | 32             | 7            |               | 50              |
| least flycatcher                   | Empidonax minimus                 | 1            |                |              |               | 1               |
| magnolia warbler                   | ,<br>Dendroica magnolia           | 28           | 9              |              | 1             | 38              |
| mourning dove                      | Zenaida macroura                  | 1            |                | 1            |               | 2               |
| mourning warbler                   | Oporornis philadelphia            | 7            | 4              |              |               | 11              |
| Nashville warbler                  | Vermivora ruficanilla             | 27           | 22             | 1            |               | 50              |
| northern flicker                   | Colantes auratus                  | 1            | 1              | 1            | 1             | 4               |
| northern parula                    | Parula americana                  |              | 1              |              |               | 1               |
| olive-sided flycatcher             |                                   |              | •              | 1            |               | 1               |
| ovenhird                           |                                   | 10           | 12             | 5            |               | 27              |
| purple finch                       |                                   | 2            | 12             | 1            |               | 3               |
| roso broasted grosboak             | Repuetieus ludevisionus           | 2            | 7              | 2            |               | 12              |
| rod broasted puthotob              | Sitte considencia                 | 0            | - /<br>        | 2            |               | 12              |
| ruby growpod kinglet               |                                   | 0            | 5              |              |               | 13              |
|                                    |                                   | 2            | 10             | 4            |               | 2               |
| red-eyed vireo                     | Vireo olivaceus                   | 9            | 12             | 1            | 0             | 22              |
|                                    | Buteo jamaicensis                 |              |                | 1            | 3             | 4               |
| ruffed grouse                      | Bonasa umbellus                   | 1            | 1              | 1            |               | 3               |
| scarlet tanager                    | Piranga olivacea                  |              | 1              |              |               | 1               |
| sharp-shinned hawk                 | Accipiter striatus                |              | -              |              | 1             | 1               |
| Swainson's thrush                  | Catharus ustulatus                | 3            | 2              |              |               | 5               |
| Tennessee warbler                  | Vermivora peregrina               | 2            | 1              |              |               | 3               |
| unidentified duck                  | n/a                               |              |                |              | 2             | 2               |
| unidentified woodpecker            | n/a                               |              | 1              |              |               | 1               |
| winter wren                        | Troglodytes troglodytes           | 14           | 34             | 5            |               | 53              |
| white-throated sparrow             | Zonotrichia albicollis            | 45           | 62             | 21           | 1             | 129             |
| yellow-bellied flycatcher          | Empidonax flaviventris            | 2            | 2              |              |               | 4               |
| yellow-bellied sapsucker           | Sphyrapicus varius                | 1            | 1              |              |               | 2               |
| yellow-rumped warbler              | Dendroica coronata                | 38           | 9              | 1            | 1             | 49              |
| yellow warbler                     | Dendroica petechia                | 1            | 1              |              |               | 1               |
| Total birds observed               |                                   | 553          | 390            | 77           | 37            | 1057            |
| *Numbers largely represent singing | males but also include male an    | id some fer  | nale individua | als that wer | e visually de | tected.         |



| Appendix C Table 2. Species detected<br>incidentally between point count survey<br>locations |
|----------------------------------------------------------------------------------------------|
| American kestrel                                                                             |
| American redstart                                                                            |
| American robin                                                                               |
| American woodcock                                                                            |
| black-and-white warbler                                                                      |
| blue-headed vireo                                                                            |
| blackburnian warbler                                                                         |
| black-throated blue warbler                                                                  |
| black-throated green warbler                                                                 |
| common yellowthroat                                                                          |
| chestnut-sided warbler                                                                       |
| dark-eyed junco                                                                              |
| eastern phoebe                                                                               |
| least flycatcher                                                                             |
| magnolia warbler                                                                             |
| mourning dove                                                                                |
| Nashville warbler                                                                            |
| Northern parula                                                                              |
| olive-sided flycatcher                                                                       |
| ovenbird                                                                                     |
| rose-breasted grosbeak                                                                       |
| ruffed grouse                                                                                |
| scarlet tanager                                                                              |
| winter wren                                                                                  |
| white-throated sparrow                                                                       |
| yellow-bellied sapsucker                                                                     |
| yellow-rumped warbler                                                                        |



| Appendix C Table 3. Total numbe deciduous fore | r of observ<br>st point co | vations, relative ab<br>ount locations durir | undance, and free      | quency of<br>eriods - S | species at conifero<br>Spring 2009 | us forest and          |
|------------------------------------------------|----------------------------|----------------------------------------------|------------------------|-------------------------|------------------------------------|------------------------|
|                                                | C                          | oniferous forest (                           | 16 points)             |                         | Deciduous forest (                 | 9 points)              |
| Species                                        | Total <sup>a</sup>         | Relative<br>abundance <sup>b</sup>           | Frequency <sup>c</sup> | Total <sup>ª</sup>      | Relative<br>abundance <sup>b</sup> | Frequency <sup>c</sup> |
| alder flycatcher                               |                            | 0.00                                         | 0                      | 5                       | 0.19                               | 33                     |
| American goldfinch                             |                            | 0.00                                         | 0                      | 1                       | 0.04                               | 11                     |
| American redstart                              |                            | 0.00                                         | 0                      | 15                      | 0.56                               | 67                     |
| American robin                                 | 1                          | 0.02                                         | 6                      | 4                       | 0.15                               | 33                     |
| bay-breasted warbler                           | 12                         | 0.25                                         | 56                     |                         | 0.00                               | 0                      |
| black-and-white warbler                        | 2                          | 0.04                                         | 13                     | 13                      | 0.48                               | /8                     |
| blackburnian warbler                           | 18                         | 0.38                                         | /5                     | 2                       | 0.07                               | 11                     |
| black-capped chickadee                         | 2                          | 0.04                                         | 13                     | 1                       | 0.04                               | 11                     |
| blackpoll warbler                              | 16                         | 0.33                                         | 50                     | 20                      | 0.00                               | 0                      |
| black-throated blue warbler                    | 18                         | 0.38                                         | 03                     | 20                      | 0.96                               | 100                    |
| black-tilloaled green warbler                  | 2<br>2                     | 0.10                                         | 20                     | 2<br>1                  | 0.07                               | 11                     |
| blue baadad viraa                              | 2                          | 0.04                                         | 13                     | 1                       | 0.04                               | 11                     |
| bide-fielded vileo                             | 7                          | 0.15                                         | 25                     | 4                       | 0.15                               | 44                     |
| brown creeper                                  | 9                          | 0.19                                         | 20                     |                         | 0.00                               | 0                      |
| Capada warbler                                 | 1                          | 0.02                                         | 0                      | 3                       | 0.00                               | 22                     |
| cedar waxwing                                  |                            | 0.00                                         | 0                      | 6                       | 0.22                               | 22                     |
| chestnut-sided warbler                         | 7                          | 0.00                                         | 25                     | 31                      | 1 15                               | 100                    |
| common vellowthroat                            | 2                          | 0.04                                         | 13                     | 25                      | 0.93                               | 89                     |
| dark-eved junco                                | 28                         | 0.58                                         | 94                     | 9                       | 0.33                               | 44                     |
| aolden-crowned kinglet                         | 32                         | 0.67                                         | 88                     | Ŭ                       | 0.00                               | 0                      |
| hairy woodpecker                               | 1                          | 0.02                                         | 6                      | 2                       | 0.07                               | 22                     |
| hermit thrush                                  | 11                         | 0.23                                         | 50                     | 20                      | 0.74                               | 89                     |
| least flycatcher                               |                            | 0.00                                         | 0                      | 1                       | 0.04                               | 11                     |
| magnolia warbler                               | 24                         | 0.50                                         | 69                     | 4                       | 0.15                               | 44                     |
| mourning dove                                  |                            | 0.00                                         | 0                      |                         | 0.00                               | 0                      |
| mourning warbler                               |                            | 0.00                                         | 0                      | 10                      | 0.37                               | 33                     |
| Nashville warbler                              | 42                         | 0.88                                         | 88                     | 1                       | 0.04                               | 11                     |
| northern flicker                               |                            | 0.00                                         | 0                      | 1                       | 0.04                               | 11                     |
| northern parula                                |                            | 0.00                                         | 0                      | 1                       | 0.04                               | 11                     |
| ovenbird                                       | 2                          | 0.04                                         | 13                     | 15                      | 0.56                               | 89                     |
| purple finch                                   | 2                          | 0.04                                         | 13                     |                         | 0.00                               | 0                      |
| red-breasted nuthatch                          | 10                         | 0.21                                         | 50                     |                         | 0.00                               | 0                      |
| red-eyed vireo                                 | 2                          | 0.04                                         | 6                      | 13                      | 0.48                               | 78                     |
| rose-breasted grosbeak                         |                            | 0.00                                         | 0                      | 10                      | 0.37                               | 78                     |
| ruby-crowned kinglet                           |                            | 0.00                                         | 0                      |                         | 0.00                               | 0                      |
| ruffed grouse                                  |                            | 0.00                                         | 0                      | 2                       | 0.07                               | 22                     |
| scarlet tanager                                |                            | 0.00                                         | 0                      |                         | 0.00                               | 0                      |
| Swainson's thrush                              | 3                          | 0.06                                         | 19                     | 2                       | 0.07                               | 22                     |
| Tennessee warbler                              | 3                          | 0.06                                         | 13                     |                         | 0.00                               | 0                      |
| unidentified woodpecker                        | 1                          | 0.02                                         | 6                      |                         | 0.00                               | 0                      |
| white-throated sparrow                         | 26                         | 0.54                                         | 75                     | 33                      | 1.22                               | 100                    |
| winter wren                                    | 27                         | 0.56                                         | 69                     | 7                       | 0.26                               | 44                     |
| yellow-bellied flycatcher                      | 4                          | 0.08                                         | 25                     |                         | 0.00                               | 0                      |
| yellow-bellied sapsucker                       |                            | 0.02                                         | 6                      | 1                       | 0.04                               | 11                     |
| yellow-rumped warbler                          | 34                         | 0.71                                         | 88                     | 3                       | 0.11                               | 22                     |
| yellow wardler                                 | 255                        | 0.00                                         | U                      | 1<br>075                | 0.04                               | 11                     |
| I otal Diras observed                          | 300                        |                                              |                        | 2/5                     |                                    |                        |
|                                                | 1.40                       |                                              |                        | 10.19                   |                                    |                        |
| Shannon Diversity Index                        | 32<br>2 0F                 |                                              |                        | 34<br>2 00              |                                    |                        |
| a Total number of individuals detected         | (mainly ci                 | naina malas also                             | I<br>males and female  | s that wo               | e visually observed                | )                      |
| b Mean number of hirds observed                | And Ing SI                 | nging males, also                            |                        |                         | S visually upserveu                | · ·                    |
| c Percentage of survey points at which         | the speci                  | as was observed                              |                        |                         |                                    |                        |
| to renderinage of survey points at which       | The speci                  | es was upserved.                             |                        |                         |                                    |                        |



|                              |                    | lixed forest (7                    | nointe)                | Pagar              | orating cloare                     | ut (2 nointe) |
|------------------------------|--------------------|------------------------------------|------------------------|--------------------|------------------------------------|---------------|
|                              |                    | inted lorest (7                    |                        | Kegei              |                                    |               |
| Species                      | Total <sup>a</sup> | Relative<br>abundance <sup>b</sup> | Frequency <sup>c</sup> | Total <sup>a</sup> | Relative<br>abundance <sup>b</sup> | Frequency     |
| alder flycatcher             | 4                  | 0.19                               | 14                     | 3                  | 0.33                               | 67            |
| American goldfinch           | 3                  | 0.14                               | 14                     |                    | 0.00                               | 0             |
| American redstart            | 7                  | 0.33                               | 57                     | 3                  | 0.33                               | 67            |
| American robin               |                    | 0.00                               | 0                      |                    | 0.00                               | 0             |
| bay-breasted warbler         | 4                  | 0.19                               | 29                     |                    | 0.00                               | 0             |
| black-and-white warbler      | 8                  | 0.38                               | 86                     | 6                  | 0.67                               | 100           |
| blackburnian warbler         | 6                  | 0.29                               | 43                     |                    | 0.00                               | 0             |
| black-capped chickadee       | 2                  | 0.10                               | 14                     |                    | 0.00                               | 0             |
| blackpoll warbler            | 4                  | 0.19                               | 29                     |                    | 0.00                               | 0             |
| black-throated blue warbler  | 19                 | 0.90                               | 71                     | 7                  | 0.78                               | 67            |
| black-throated green warbler | 13                 | 0.62                               | 71                     |                    | 0.00                               | 0             |
| blue iav                     | 3                  | 0.14                               | 29                     |                    | 0.00                               | 0             |
| blue-headed vireo            | 3                  | 0.14                               | 43                     |                    | 0.00                               | 0             |
| boreal chickadee             |                    | 0.00                               | 0                      |                    | 0.00                               | 0<br>0        |
| brown creeper                |                    | 0.00                               | 0                      |                    | 0.00                               | 0             |
| Canada warbler               | 1                  | 0.05                               | 14                     |                    | 0.00                               | 0             |
| cedar waxwing                | 1                  | 0.05                               | 14                     |                    | 0.00                               | 0             |
| chestnut-sided warbler       | 21                 | 1.00                               | 71                     | 12                 | 1.33                               | 100           |
| common vellowthroat          | 16                 | 0.76                               | 57                     | 15                 | 1.60                               | 100           |
| dark-eved junco              | 10                 | 0.70                               | 100                    | 7                  | 0.78                               | 67            |
| alden-crowned kinglet        | 13                 | 0.30                               | 29                     | 1                  | 0.70                               | 33            |
| bairy woodpecker             |                    | 0.15                               | 0                      | 2                  | 0.11                               | 33            |
| hermit thrush                | 0                  | 0.00                               | 57                     | 2                  | 0.22                               | 33            |
|                              | 3                  | 0.43                               | 0                      | 5                  | 0.55                               | 0             |
|                              | 5                  | 0.00                               | 71                     | 1                  | 0.00                               | 67            |
|                              | 1                  | 0.24                               | 14                     | 4                  | 0.44                               | 07            |
| mourning dove                | I                  | 0.05                               | 14                     |                    | 0.00                               | 0             |
| mourning warbler             |                    | 0.00                               | 0                      | 1                  | 0.11                               | 33            |
| Nashville warbler            | 6                  | 0.29                               | 57                     |                    | 0.00                               | 0             |
| northern flicker             | 1                  | 0.05                               | 14                     |                    | 0.00                               | 0             |
| northern parula              |                    | 0.00                               | 0                      |                    | 0.00                               | 0             |
| ovenbird                     | 4                  | 0.19                               | 29                     | 1                  | 0.11                               | 33            |
| purple finch                 |                    | 0.00                               | 0                      |                    | 0.00                               | 0             |
| red-breasted nuthatch        | 3                  | 0.14                               | 29                     |                    | 0.00                               | 67            |
| red-eyed vireo               | 3                  | 0.14                               | 14                     | 3                  | 0.33                               | 67            |
| rose-breasted grosbeak       |                    | 0.00                               | 0                      |                    | 0.00                               | 0             |
| ruby-crowned kinglet         | 2                  | 0.10                               | 29                     |                    | 0.00                               | 0             |
| ruffed grouse                |                    | 0.00                               | 0                      |                    | 0.00                               | 0             |
| scarlet tanager              |                    | 0.00                               | 0                      | 1                  | 0.11                               | 33            |
| Swainson's thrush            |                    | 0.00                               | 0                      |                    | 0.00                               | 0             |
| Tennessee warbler            |                    | 0.00                               | 0                      |                    | 0.00                               | 0             |
| unidentified woodpecker      |                    | 0.00                               | 0                      |                    | 0.00                               | 0             |
| white-throated sparrow       | 32                 | 1.52                               | 100                    | 16                 | 1.78                               | 100           |
| winter wren                  | 10                 | 0.48                               | 71                     | 4                  | 0.44                               | 67            |
| yellow-bellied flycatcher    |                    | 0.00                               | 0                      |                    | 0.00                               | 0             |
| yellow-bellied sapsucker     |                    | 0.00                               | 0                      |                    | 0.00                               | 0             |
| yellow-rumped warbler        | 9                  | 0.43                               | 86                     | 1                  | 0.11                               | 33            |
| yellow warbler               |                    | 0.00                               | 0                      |                    | 0.00                               | 0             |
| Total birds observed         | 223                |                                    |                        | 90                 |                                    |               |
| Relative abundance           | 10.62              |                                    | 1                      | 10.00              |                                    |               |
|                              | -                  |                                    | 1                      |                    |                                    |               |

| Shannon Diversity much                                                                                  | 3.01                                                             |                  |                 | 2.52 |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------|-----------------|------|--|--|--|--|--|--|--|
| a Total number of individuals detected (mainly singing males, also males and females that were visually |                                                                  |                  |                 |      |  |  |  |  |  |  |  |
|                                                                                                         |                                                                  | observe          | ed).            |      |  |  |  |  |  |  |  |
|                                                                                                         | bΝ                                                               | lean number of l | oirds observed. |      |  |  |  |  |  |  |  |
| c Percenta                                                                                              | c Percentage of survey points at which the species was observed. |                  |                 |      |  |  |  |  |  |  |  |
|                                                                                                         |                                                                  |                  |                 |      |  |  |  |  |  |  |  |



## Appendix D

Raptor Survey Data Tables



|        | Appendix D Table 1. Daily totals of raptor species observed at Highland Spring 2009 |           |          |           |           |           |           |           |          |          |           |           |           |           |           |           |             |
|--------|-------------------------------------------------------------------------------------|-----------|----------|-----------|-----------|-----------|-----------|-----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|
| Site   | Species                                                                             | 3/25/2009 | 4/1/2009 | 4/10/2009 | 4/19/2009 | 4/20/2009 | 4/29/2009 | 4/30/2009 | 5/5/2009 | 5/8/2009 | 5/11/2009 | 5/12/2009 | 5/13/2009 | 5/15/2009 | 5/18/2009 | 5/19/2009 | Grand Total |
| Briggs | bald eagle                                                                          |           |          |           |           |           | 1         |           |          | 1        |           |           |           |           |           | 2         | 4           |
|        | broad-winged hawk                                                                   |           |          |           |           |           |           |           | 2        |          |           | 1         |           | 1         |           | 1         | 5           |
|        | northern goshawk                                                                    |           |          |           |           |           |           |           |          |          |           |           | 1         |           |           | 1         | 2           |
|        | northern harrier                                                                    |           |          |           |           |           |           | 1         |          |          |           |           |           |           |           |           | 1           |
|        | red-tailed hawk                                                                     |           |          |           |           |           | 1         | 1         | 2        | 3        |           | 3         |           | 1         |           | 3         | 14          |
|        | sharp-shinned hawk                                                                  |           |          |           |           |           |           |           | 1        |          |           |           |           |           |           |           | 1           |
|        | turkey vulture                                                                      |           |          |           |           |           | 6         | 10        | 5        | 10       |           | 12        | 3         | 8         |           | 21        | 75          |
|        | unidentified buteo                                                                  |           |          |           |           |           | 1         |           |          |          |           |           |           | 1         |           |           | 2           |
|        | unidentified raptor                                                                 |           |          |           |           |           |           |           |          | 1        |           |           |           |           |           | 2         | 3           |
|        | Total birds observed                                                                |           |          |           |           |           | 9         | 12        | 10       | 15       |           | 16        | 4         | 11        |           | 30        | 107         |
| Witham | bald eagle                                                                          | 1         | 1        |           |           |           |           |           |          |          | 1         | 1         |           | 1         |           |           | 5           |
|        | broad-winged hawk                                                                   |           |          |           |           | 3         |           |           |          |          | 5         | 1         |           | 1         |           |           | 10          |
|        | Cooper's hawk                                                                       |           |          | 1         |           |           |           | 1         |          |          |           |           |           |           |           |           | 2           |
|        | northern goshawk                                                                    |           |          |           |           |           |           |           |          |          |           |           |           | 1         |           |           | 1           |
|        | osprey                                                                              |           |          |           | 1         | 3         |           |           |          |          |           | 1         |           |           |           |           | 5           |
|        | peregrine falcon                                                                    |           |          | 1         |           |           |           |           |          |          |           |           |           |           |           |           | 1           |
|        | red-tailed hawk                                                                     | 2         | 7        | 5         | 3         | 4         |           | 3         |          |          | 6         | 4         | 10        | 2         |           |           | 46          |
|        | sharp-shinned hawk                                                                  |           |          | 2         | 5         | 4         |           |           |          |          |           | 3         | 1         |           |           |           | 15          |
|        | turkey vulture                                                                      |           |          | 3         | 11        | 3         |           | 18        |          |          | 2         | 6         | 6         | 4         | 4         |           | 57          |
|        | unidentified buteo                                                                  |           |          |           |           | 1         |           | 1         |          |          |           |           |           |           |           |           | 2           |
|        | unidentified raptor                                                                 | 3         |          | 1         | 1         |           |           |           |          |          | 2         | 1         |           | 1         |           |           | 9           |
|        | Total birds observed                                                                | 6         | 8        | 13        | 21        | 18        |           | 23        |          |          | 16        | 17        | 17        | 10        | 4         |           | 153         |
|        | Project Total                                                                       | 6         | 8        | 13        | 21        | 18        | 9         | 35        | 10       | 15       | 16        | 33        | 21        | 21        | 4         | 30        | 260         |



|        | Appendix D Table 2. Hourly summary of raptor observations at Highland Spring 2009 |       |       |            |             |             |            |       |       |       |       |  |  |  |
|--------|-----------------------------------------------------------------------------------|-------|-------|------------|-------------|-------------|------------|-------|-------|-------|-------|--|--|--|
|        |                                                                                   | 7:00- | 8:00- |            |             |             |            | 1:00- | 2:00- | 3:00- |       |  |  |  |
| Site   | Species                                                                           | 8:00  | 9:00  | 9:00-10:00 | 10:00-11:00 | 11:00-12:00 | 12:00-1:00 | 2:00  | 3:00  | 4:00  | TOTAL |  |  |  |
| Briggs | bald eagle                                                                        |       |       | 1          |             | 3           |            |       |       |       | 4     |  |  |  |
|        | broad-winged hawk                                                                 |       |       | 1          |             | 1           | 2          | 1     |       |       | 5     |  |  |  |
|        | northern goshawk                                                                  |       |       | 1          |             |             | 1          |       |       |       | 2     |  |  |  |
|        | northern harrier                                                                  |       |       | 1          |             |             |            |       |       |       | 1     |  |  |  |
|        | red-tailed hawk                                                                   |       |       |            | 3           | 2           | 5          |       | 3     | 1     | 14    |  |  |  |
|        | sharp-shinned hawk                                                                |       |       |            |             |             |            |       | 1     |       | 1     |  |  |  |
|        | turkey vulture                                                                    |       |       | 3          | 8           | 10          | 15         | 5     | 9     | 25    | 75    |  |  |  |
|        | unidentified buteo                                                                |       |       | 1          |             |             |            |       |       | 1     | 2     |  |  |  |
|        | unidentified raptor                                                               |       |       |            |             | 2           | 1          |       |       |       | 3     |  |  |  |
|        | TOTAL                                                                             |       |       | 8          | 11          | 18          | 24         | 6     | 13    | 27    | 107   |  |  |  |
| Witham | bald eagle                                                                        |       |       |            |             | 2           | 1          |       | 2     |       | 5     |  |  |  |
|        | broad-winged hawk                                                                 |       |       |            | 2           | 4           | 1          | 1     |       | 2     | 10    |  |  |  |
|        | Cooper's hawk                                                                     |       |       |            |             |             |            |       | 2     |       | 2     |  |  |  |
|        | northern goshawk                                                                  |       |       |            |             | 1           |            |       |       |       | 1     |  |  |  |
|        | osprey                                                                            |       |       |            | 2           | 1           | 1          | 1     |       |       | 5     |  |  |  |
|        | peregrine falcon                                                                  |       |       |            | 1           |             |            |       |       |       | 1     |  |  |  |
|        | red-tailed hawk                                                                   |       |       | 2          | 3           | 4           | 13         | 11    | 5     | 8     | 46    |  |  |  |
|        | sharp-shinned hawk                                                                |       | 1     | 3          | 3           | 3           | 2          | 2     | 1     |       | 15    |  |  |  |
|        | turkey vulture                                                                    |       |       | 1          | 6           | 25          | 12         | 4     | 5     | 4     | 57    |  |  |  |
|        | unidentified buteo                                                                |       |       | 1          |             |             |            |       | 1     |       | 2     |  |  |  |
|        | unidentified raptor                                                               | 1     |       |            | 1           | 2           | 1          | 1     | 2     | 1     | 9     |  |  |  |
|        | TOTAL                                                                             | 1     | 1     | 7          | 18          | 42          | 31         | 20    | 18    | 15    | 153   |  |  |  |
|        | Project Total                                                                     | 1     | 1     | 15         | 29          | 60          | 55         | 26    | 31    | 42    | 260   |  |  |  |



| Appendix D Table 3. Num in proposed turbine are | ber of individuals of specie<br>as (flight positions A1, A2, | es observed within Project<br>A3, B) above or below 13 | boundary<br>0.5 m |
|-------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|-------------------|
|                                                 | WITHAM                                                       |                                                        |                   |
| Species                                         | 130.5 m or greater                                           | below 130.5 m                                          | TOTAL             |
| bald eagle                                      |                                                              | 3                                                      | 3                 |
| broad-winged hawk                               | 4                                                            | 5                                                      | 9                 |
| Cooper's hawk                                   | 2                                                            |                                                        | 2                 |
| northern goshawk                                |                                                              | 1                                                      | 1                 |
| osprey                                          | 4                                                            | 1                                                      | 5                 |
| peregrine falcon                                |                                                              | 1                                                      | 1                 |
| red-tailed hawk                                 | 11                                                           | 33                                                     | 44                |
| sharp-shinned hawk                              | 1                                                            | 14                                                     | 15                |
| turkey vulture                                  | 5                                                            | 52                                                     | 57                |
| unidentified buteo                              | 1                                                            |                                                        | 1                 |
| unidentified raptor                             | 1                                                            | 6                                                      | 7                 |
| TOTAL                                           | 29                                                           | 116                                                    | 145               |
|                                                 | BRIGGS                                                       |                                                        |                   |
| Species                                         | 130.5 m or greater                                           | less than 130.5 m                                      | TOTAL             |
| bald eagle                                      |                                                              | 4                                                      | 4                 |
| broad-winged hawk                               |                                                              | 5                                                      | 5                 |
| northern goshawk                                |                                                              | 2                                                      | 2                 |
| northern harrier                                |                                                              | 1                                                      | 1                 |
| red-tailed hawk                                 | 2                                                            | 7                                                      | 9                 |
| sharp-shinned hawk                              |                                                              | 1                                                      | 1                 |
| turkey vulture                                  | 11                                                           | 57                                                     | 68                |
| unidentified buteo                              |                                                              | 1                                                      | 1                 |
| TOTAL                                           | 13                                                           | 78                                                     | 91                |



|                  | Appendix D Table 4. Summary of Regional Spring 2009 (February to May) Migration Surveys* |                      |    |     |     |    |     |     |    |    |    |     |     |    |    |     |    |    |    |    |    |    |    |    |    |    |    |       |                |
|------------------|------------------------------------------------------------------------------------------|----------------------|----|-----|-----|----|-----|-----|----|----|----|-----|-----|----|----|-----|----|----|----|----|----|----|----|----|----|----|----|-------|----------------|
| Site<br>Number** | Location                                                                                 | Observation<br>Hours | BV | тν  | os  | BE | NH  | SS  | СН | NG | RS | BW  | RT  | RL | GE | AK  | ML | PG | sw | мк | EK | SK | UR | UB | UA | UF | UE | TOTAL | BIRDS/<br>Hour |
| 1                | Highland Wind Farm; Highland, ME                                                         | 139                  | 0  | 132 | 5   | 9  | 1   | 16  | 2  | 3  | 0  | 15  | 60  | 0  | 0  | 0   | 0  | 1  | 0  | 0  | 0  | 0  | 12 | 4  | 0  | 0  | 0  | 260   | 1.87           |
| 2                | Barre Falls; Barre, MA                                                                   | 118.25               | 0  | 64  | 66  | 19 | 14  | 100 | 10 | 1  | 11 | 593 | 78  | 0  | 0  | 67  | 2  | 1  | 0  | 0  | 0  | 0  | 8  | 0  | 0  | 0  | 0  | 1034  | 8.74           |
| 3                | Poquonock; Poquonock, CT                                                                 | 378                  | 15 | 242 | 75  | 22 | 15  | 111 | 35 | 2  | 36 | 634 | 172 | 1  | 2  | 30  | 6  | 3  | 0  | 1  | 0  | 0  | 23 | 2  | 1  | 1  | 0  | 1429  | 3.78           |
| 4                | Plum Island; Newburyport, MA                                                             | 136.25               | 0  | 44  | 35  | 5  | 121 | 141 | 18 | 0  | 0  | 1   | 5   | 4  | 0  | 672 | 79 | 21 | 0  | 0  | 1  | 0  | 3  | 0  | 2  | 2  | 0  | 1154  | 8.47           |
| 5                | Pilgrim Heights, North Truro, MA                                                         | 304                  | 1  | 703 | 94  | 13 | 20  | 353 | 63 | 2  | 22 | 137 | 81  | 2  | 0  | 404 | 42 | 10 | 0  | 0  | 0  | 0  | 0  | 1  | 3  | 3  | 0  | 1954  | 6.43           |
| 6                | Bradbury Mt. State Park, Pownal, ME                                                      | 442.75               | 1  | 280 | 321 | 46 | 114 | 747 | 56 | 6  | 92 | ### | 273 | 0  | 1  | 394 | 68 | 6  | 1  | 0  | 0  | 1  | 21 | 22 | 12 | 0  | 2  | 4116  | 9.30           |
| * Data obtain    | ned from HMANA 2009.                                                                     |                      |    |     |     |    |     |     |    |    |    |     |     |    |    |     |    |    |    |    |    |    |    |    |    |    |    |       |                |
| ** See map to    | ** See map to right for site location.                                                   |                      |    |     |     |    |     |     |    |    |    |     |     |    |    |     |    |    |    |    |    |    |    |    |    |    |    |       |                |



| Appendix D Table 5. Summary of available spring raptor data at proposed wind sites in the East 1999-2008 |                                          |                               |                        |                         |                             |                             |                                             |                                                                |                                                                                                                                                                                                                                                                  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|------------------------|-------------------------|-----------------------------|-----------------------------|---------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Project Site                                                                                             | Landscape                                | Survey<br>Period              | # of<br>Survey<br>Days | # of<br>Survey<br>Hours | Total #<br>Observed         | # of<br>Species<br>Observed | Seasonal<br>Passage<br>Rate<br>(raptors/hr) | (Turbine<br>Ht) and %<br>Raptors<br>Below<br>Turbine<br>Height | Full citation                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                          |                                          |                               |                        |                         |                             | Spring 199                  | 99                                          |                                                                |                                                                                                                                                                                                                                                                  |  |  |  |  |
| Wethersfield,<br>Wyoming Cty, NY                                                                         | Agricultural<br>plateau                  | April<br>20 -<br>May 24       | 24                     | 97                      | 348                         | 12                          | 3.6                                         | n/a (23 m<br>mean<br>flight<br>height)                         | Cooper, B.A., and T.J. Mabee. 1999. Bird migration<br>near proposed wind turbine sites at Wethersfield and<br>Harrisburg, New York. Unpublished report prepared<br>for Niagara–Mohawk Power Corporation, Syracuse,<br>NY, by ABR, Inc., Forest Grove, OR. 46 pp. |  |  |  |  |
|                                                                                                          |                                          |                               |                        |                         |                             | Spring 200                  | )3                                          |                                                                |                                                                                                                                                                                                                                                                  |  |  |  |  |
| Westfield<br>Chautauqua Cty,<br>NY                                                                       | Great<br>Lakes<br>Shore                  | April<br>16 -<br>May 15       | 50                     | 100.7                   | 2,578                       | 17                          | 25.6                                        | n/a (278<br>m mean<br>flight<br>height)                        | Cooper, B.A., A.A. Stickney, J.J. Mabee. 2004. A<br>visual and radar study of 2003 spring bird migration at<br>the proposed Chautauqua wind energy facility, New<br>York. 2004. Final Report prepared by ABR Inc.<br>Chautauqua Windpower LLC.                   |  |  |  |  |
|                                                                                                          |                                          |                               |                        |                         |                             | Spring 200                  | )5                                          |                                                                |                                                                                                                                                                                                                                                                  |  |  |  |  |
| Churubusco,<br>Clinton Cty, NY                                                                           | Great<br>Lakes<br>plain/ADK<br>foothills | Spring<br>2005                | 10                     | 60                      | 170                         | 11                          | 2.83                                        | (120 m)<br>69%                                                 | Woodlot Alternatives, Inc. 2005b. A Spring Radar,<br>Visual, and Acoustic Survey of Bird and Bat Migration<br>at the Proposed Marble River Wind Project in Clinton<br>and Ellenburg, New York. Prepared for AES<br>Corporation.                                  |  |  |  |  |
| Clinton/Ellenburg,<br>Clinton Cty, NY                                                                    | Great<br>Lakes<br>plain/ADK<br>foothills | April<br>18 to<br>April<br>20 | 3                      | 21                      | (2 non-<br>migrant<br>BWHA) | 1                           | 0.1***                                      | n/a                                                            | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008.             |  |  |  |  |
| Dairy Hills,<br>Clinton Cty, NY                                                                          | Great<br>Lakes<br>Shore                  | April<br>15 to<br>April<br>26 | 5                      | 20                      | 50                          | 6                           | 2.5                                         | 125 m<br>(94.7%)*                                              | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008.             |  |  |  |  |
| Altona, Clinton<br>Cty, NY                                                                               | Great<br>Lakes<br>plain/ADK<br>foothills | May 5<br>to May<br>6          | 3                      | 21                      | (4 non-<br>migrant<br>TUVU) | 1                           | 0.19***                                     | n/a                                                            | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008.             |  |  |  |  |



| Appendix D Table 5. Summary of available spring raptor data at proposed wind sites in the East 1999-2008 |                                          |                               |                        |                         |                     |                             |                                             |                                                                |                                                                                                                                                                                                                                                      |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|------------------------|-------------------------|---------------------|-----------------------------|---------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Project Site                                                                                             | Landscape                                | Survey<br>Period              | # of<br>Survey<br>Days | # of<br>Survey<br>Hours | Total #<br>Observed | # of<br>Species<br>Observed | Seasonal<br>Passage<br>Rate<br>(raptors/hr) | (Turbine<br>Ht) and %<br>Raptors<br>Below<br>Turbine<br>Height | Full citation                                                                                                                                                                                                                                        |  |  |  |  |
| Bliss Wind Park,<br>Eagle, Wyoming<br>Cty, NY                                                            | Agricultural<br>and<br>wooded<br>plateau | April<br>21, 26,<br>28        | 3                      | 21                      | 19                  | 3                           | 0.9                                         | n/a                                                            | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008. |  |  |  |  |
| Alabama,<br>Genesee Cty, NY                                                                              | Great<br>Lakes<br>plain/ADK<br>foothills | April<br>16-<br>April<br>29   | 5                      | 20                      | 177                 | 8                           | 9                                           | (125 m)<br>84.5%*                                              | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008. |  |  |  |  |
| High Sheldon,<br>Wyoming Cty, NY                                                                         | Agricultural<br>and<br>wooded<br>plateau | April 2<br>to May<br>14       | 7                      | 37                      | 119                 | 7                           | 3.2                                         | n/a                                                            | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008. |  |  |  |  |
| Wethersfield,<br>Wyoming Cty, NY                                                                         | Agricultural<br>and<br>wooded<br>plateau | April<br>22 to<br>April<br>29 | 3                      | 21                      | 5                   | 3                           | 0.1                                         | n/a                                                            | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008. |  |  |  |  |
| New Grange,<br>Chautauqua Cty,<br>NY                                                                     | Great<br>Lakes<br>plain/ADK<br>foothills | April<br>16 to<br>May         | 5                      | 20                      | 55                  | 8                           | 4.37                                        | n/a                                                            | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008. |  |  |  |  |
| Stockton,<br>Chautauqua Cty,<br>NY                                                                       | Great<br>Lakes<br>plain/ADK<br>foothills | April<br>16 to<br>May 15      | 5                      | 20                      | 122                 | 8                           | 4.65                                        | n/a                                                            | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008. |  |  |  |  |
| Clayton,<br>Jefferson Cty, NY                                                                            | Agricultural<br>plateau                  | March<br>30 -<br>May 7        | 10                     | 58                      | 700                 | 14                          | 12.1                                        | (150 m)<br>61%                                                 | Woodlot Alternatives, Inc. 2005a. A Spring 2005<br>Radar, Visual, and Acoustic Survey of Bird and Bat<br>Migration at the Proposed Clayton Wind Project in<br>Clayton, New York. Prepared for PPM Atlantic                                           |  |  |  |  |



| Appendix D Table 5. Summary of available spring raptor data at proposed wind sites in the East 1999-2008 |                         |                           |                        |                         |                     |                                    |                                             |                                                                |                                                                                                                                                                                                                                                      |  |
|----------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|------------------------|-------------------------|---------------------|------------------------------------|---------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Project Site                                                                                             | Landscape               | Survey<br>Period          | # of<br>Survey<br>Days | # of<br>Survey<br>Hours | Total #<br>Observed | # of<br>Species<br>Observed        | Seasonal<br>Passage<br>Rate<br>(raptors/hr) | (Turbine<br>Ht) and %<br>Raptors<br>Below<br>Turbine<br>Height | Full citation                                                                                                                                                                                                                                        |  |
|                                                                                                          |                         |                           |                        |                         |                     |                                    |                                             |                                                                | Renewable.                                                                                                                                                                                                                                           |  |
| Prattsburgh,<br>Steuben Cty, NY                                                                          | Agricultural<br>plateau | Spring<br>2005            | 10                     | 60                      | 314                 | 15                                 | 5.23                                        | (125 m)<br>83%                                                 | Woodlot Alternatives, Inc. 2005c. A Spring 2005<br>Radar, Visual, and Acoustic Survey of Bird and Bat<br>Migration at the Proposed Windfarm Prattsburgh<br>Project in Prattsburgh, New York. Prepared for UPC<br>Wind Management, LLC.               |  |
| Cohocton,<br>Steuben Cty, NY                                                                             | Agricultural<br>plateau | Spring<br>2005            | 10                     | 60                      | 164                 | 11                                 | 2.73                                        | (125 m)<br>77%                                                 | Woodlot Alternatives, Inc. 2005. Avian and Bat<br>Information Summary and Risk Assessment for the<br>Proposed Cohocton Wind Power Project in Cohocton,<br>New York. Prepared for UPC Wind Management,<br>LLC.                                        |  |
| Munnsville,<br>Madison Cty, NY                                                                           | Agricultural<br>plateau | April 5<br>to May<br>16   | 10                     | 60                      | 375                 | 12                                 | 6.25                                        | (118 m)<br>78%                                                 | Woodlot Alternatives, Inc. 2005d. A Spring 2005<br>Radar, Visual, and Acoustic Survey of Bird and Bat<br>Migration at the Proposed Munnsville Wind Project in<br>Munnsville, New York. Prepared for AES-EHN NY<br>Wind, LLC.                         |  |
| Moresville,<br>Delaware<br>County, NY                                                                    | Forested<br>ridge       | March<br>28 to<br>May 10  | 8                      | 45                      | 170                 | 6                                  | 3.8                                         | n/a                                                            | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008. |  |
| Sheffield,<br>Caledonia Cty,<br>VT                                                                       | Forested<br>ridge       | April to<br>May           | 10                     | 60                      | 98                  | 10                                 | 1.63                                        | (125 m)<br>69%                                                 | Woodlot Alternatives, Inc. 2006b. Avian and Bat<br>Information Summary and Risk Assessment for the<br>Proposed Sheffield Wind Power Project in Sheffield,<br>Vermont. Prepared for UPC Wind Management, LLC.                                         |  |
| Deerfield,<br>Bennington Cty,<br>VT (Existing<br>facility)                                               | Forested<br>ridge       | April 9<br>to April<br>29 | 7                      | 42                      | 44                  | 11 (for<br>both sites<br>combined) | 1.05                                        | (125 m)<br>83% (at<br>both sites<br>combined)                  | Woodlot Alternatives, Inc. 2005e. A Spring 2005<br>Radar, Visual, and Acoustic Survey of Bird and Bat<br>Migration at the Proposed Deerfield Wind Project in<br>Searsburg and Readsboro, Vermont. Prepared for<br>PPM Energy/Deerfield Wind, LLC.    |  |
| Deerfield,<br>Bennington Cty,<br>VT (Western<br>expansion)                                               | Forested ridge          | April 9<br>to April<br>29 | 7                      | 42                      | 38                  | 11 (for<br>both sites<br>combined) | 0.9                                         | (125 m)<br>83% (at<br>both sites<br>combined)                  | Woodlot Alternatives, Inc. 2005e. A Spring 2005<br>Radar, Visual, and Acoustic Survey of Bird and Bat<br>Migration at the Proposed Deerfield Wind Project in<br>Searsburg and Readsboro, Vermont. Prepared for<br>PPM Energy/Deerfield Wind, LLC.    |  |



| Appendix D Table 5. Summary of available spring raptor data at proposed wind sites in the East 1999-2008 |                                          |                               |                        |                         |                     |                             |                                             |                                                                |                                                                                                                                                                                                                                                      |  |  |
|----------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|------------------------|-------------------------|---------------------|-----------------------------|---------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Project Site                                                                                             | Landscape                                | Survey<br>Period              | # of<br>Survey<br>Days | # of<br>Survey<br>Hours | Total #<br>Observed | # of<br>Species<br>Observed | Seasonal<br>Passage<br>Rate<br>(raptors/hr) | (Turbine<br>Ht) and %<br>Raptors<br>Below<br>Turbine<br>Height | Full citation                                                                                                                                                                                                                                        |  |  |
| Spring 2006                                                                                              |                                          |                               |                        |                         |                     |                             |                                             |                                                                |                                                                                                                                                                                                                                                      |  |  |
| Mars Hill,<br>Aroostook Cty,<br>ME                                                                       | Forested<br>ridge                        | April<br>12 to<br>May 18      | 10                     | 60.25                   | 64                  | 9                           | 1.06                                        | (120 m)<br>48%                                                 | Woodlot Alternatives, Inc. 2006c. A Spring 2006<br>Radar, Visual, and Acoustic Survey of Bird Migration<br>at the Mars Hill Wind Farm in Mars Hill, Maine.<br>Prepared for Evergreen Windpower, LLC.                                                 |  |  |
| Lempster,<br>Sullivan County,<br>NH                                                                      | Forested<br>ridge                        | Spring<br>2006                | 10                     | 78                      | 102                 | n/a                         | 1.3                                         | 125 m<br>(18%)                                                 | Woodlot Alternatives, Inc. 2007a. A Spring 2007<br>Survey of Nocturnal Bird Migration,Breeding Birds,<br>and Bicknell's Thrush at the Proposed Lempster<br>Mountain Wind Power Project Lempster, New<br>Hampshire. Prepared for Lempster Wind, LLC.  |  |  |
| Howard, Steuben<br>Cty, NY                                                                               | Agricultural plateau                     | April 3<br>to May<br>19       | 9                      | 52.5                    | 260                 | 11                          | 4.95                                        | (125 m)<br>64%                                                 | Woodlot Alternatives, Inc. 2006d. A Spring 2006<br>Survey of Bird and Bat Migration at the Proposed<br>Howard Wind Power Project in Howard, New York.<br>Prepared for Everpower Global.                                                              |  |  |
| Chateaugay,<br>Franklin Cty, NY                                                                          | Great<br>Lakes<br>plain/ADK<br>foothills | April<br>19 to<br>April<br>28 | 3                      | 21                      | 47                  | 12                          | 1.9                                         | (121 m)<br>3%                                                  | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008. |  |  |
| St. Lawrence,<br>Jefferson Cty, NY                                                                       | Great<br>Lakes<br>Shore                  | April<br>14 to<br>May 12      | 4                      | 12                      | 91                  | 8                           | 7.5                                         | (125 m)<br>81%**                                               | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008. |  |  |
| Cape Vincent,<br>Jefferson Cty, NY                                                                       | Great<br>Lakes<br>Shore                  | April<br>14 to<br>May 12      | 4                      | 12                      | 79                  | 10                          | 6.5                                         | (125 m)<br>72%                                                 | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008. |  |  |
| Stockton,<br>Chautauqua Cty,<br>NY                                                                       | Great<br>Lakes<br>plain/ADK<br>foothills | n/a                           | n/a                    | n/a                     | n/a                 | n/a                         | 4.65                                        | n/a                                                            | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008. |  |  |
| Spring 2007                                                                                              |                                          |                               |                        |                         |                     |                             |                                             |                                                                |                                                                                                                                                                                                                                                      |  |  |



| Appendix D Table 5. Summary of available spring raptor data at proposed wind sites in the East 1999-2008 |                                          |                          |                        |                         |                     |                             |                                             |                                                                |                                                                                                                                                                                                                                                          |  |  |
|----------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------|------------------------|-------------------------|---------------------|-----------------------------|---------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Project Site                                                                                             | Landscape                                | Survey<br>Period         | # of<br>Survey<br>Days | # of<br>Survey<br>Hours | Total #<br>Observed | # of<br>Species<br>Observed | Seasonal<br>Passage<br>Rate<br>(raptors/hr) | (Turbine<br>Ht) and %<br>Raptors<br>Below<br>Turbine<br>Height | Full citation                                                                                                                                                                                                                                            |  |  |
| St Lawrence,<br>Jefferson Cty, NY                                                                        | Great<br>Lakes<br>Shore                  | March<br>21 to<br>May 1  | 7                      | 21                      | 232                 | 8                           | 15.4                                        | (125 m)<br>81%**                                               | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008.     |  |  |
| Cape Vincent,<br>Jefferson Cty, NY                                                                       | Great<br>Lakes<br>Shore                  | March<br>21 to<br>May 1  | 7                      | 21                      | 205                 | 9                           | 9.8                                         | (125 m)<br>72%                                                 | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008.     |  |  |
| New Grange,<br>Chautauqua Cty,<br>NY                                                                     | Great<br>Lakes<br>plain/ADK<br>foothills | April<br>26 to<br>May 22 | 5                      | n/a                     | n/a                 | n/a                         | 4.37                                        | n/a                                                            | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008.     |  |  |
| Jericho Rise,<br>Franklin Cty, NY                                                                        | Great<br>Lakes<br>plain/ADK<br>foothills | April 4<br>to May<br>28  | 8                      | 32                      | 112                 | 10                          | 3                                           | (125 m)<br>74.6%                                               | New York State Department of Environmental<br>Conservation. 2008. Publicly Available Raptor<br>Migration Data for Proposed Wind Sites in NYS.<br>Available at<br>http://www.dec.ny.gov/docs/wildlife_pdf/raptorwinsum.<br>Accessed November 7, 2008.     |  |  |
| Stetson,<br>Penobscot Cty,<br>ME                                                                         | Forested<br>ridge                        | April<br>26 to<br>May 4  | 9                      | 59                      | 34                  | 10                          | 0.6                                         | (125 m)<br>65%                                                 | Woodlot Alternatives, Inc. 2007b. A Spring 2007<br>Survey of Bird and Bat Migration at the Stetson Wind<br>Project, Washington County, Maine. Prepared for<br>Evergreen Wind V, LLC.                                                                     |  |  |
| Laurel Mountain,<br>Preston Cty, WV                                                                      | Forested<br>ridge                        | March<br>30 to<br>May 17 | 10                     | 63.75                   | 266                 | 12                          | 4.17                                        | (125 m)<br>55%                                                 | Stantec Consulting. 2008b. A Spring 2007 Radar,<br>Visual, and Acoustic Survey of Bird and Bat Migration<br>at the Proposed Laurel Mountain Wind Energy Project<br>near Elkins, West Virginia – November 2007.<br>Prepared for AES Laurel Mountain, LLC. |  |  |
| Spring 2008                                                                                              |                                          |                          |                        |                         |                     |                             |                                             |                                                                |                                                                                                                                                                                                                                                          |  |  |
| Oakfield,<br>Aroostock Cty,<br>ME                                                                        | Agricultural<br>plateau                  | April<br>25-<br>May 30   | 12                     | 79                      | 58                  | 9                           | 0.7                                         | (120 m)<br>80%                                                 | Stantec Consulting. 2008c. Spring and Summer<br>2008 Bird and Bat Migration Survey Report Visual,<br>Radar, and Acoustic Bat Surveys for the Oakfield<br>Wind Project in Oakfield, Maine. Prepared for First<br>Wind Management, LLC.                    |  |  |



| Appendix D Table 5. Summary of available spring raptor data at proposed wind sites in the East 1999-2008            |                   |                          |                                        |                         |                     |                             |                                             |                                                                |                                                                                                                                                                                                                                      |  |
|---------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|----------------------------------------|-------------------------|---------------------|-----------------------------|---------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Project Site                                                                                                        | Landscape         | Survey<br>Period         | # of<br>Survey<br>Days                 | # of<br>Survey<br>Hours | Total #<br>Observed | # of<br>Species<br>Observed | Seasonal<br>Passage<br>Rate<br>(raptors/hr) | (Turbine<br>Ht) and %<br>Raptors<br>Below<br>Turbine<br>Height | Full citation                                                                                                                                                                                                                        |  |
| Roxbury, Oxford<br>Cty, ME                                                                                          | Forested<br>ridge | March<br>11 to<br>May 27 | 15                                     | 97                      | 118                 | 12                          | 1.2                                         | n/a                                                            | Stantec Consulting. 2008d. Spring 2008 Bird and<br>Bat Migration Survey Report Breeding Bird, Raptor,<br>and Acoustic Bat Surveys for the Record Hill Wind<br>Project Roxbury, Maine. Prepared for Record Hill<br>Wind, LLC.         |  |
| Lincoln,<br>Penobscot Cty,<br>ME                                                                                    | Forested ridge    | April 3<br>to June<br>3  | 15                                     | 108                     | 122                 | 12                          | 1.1                                         | (125 m)<br>76%                                                 | Stantec Consulting. 2008e. Spring 2008 Bird and<br>Bat Migration Survey Report Visual, Radar, and<br>Acoustic Bat Surveys for the Rollins Wind Project.<br>Prepared for First Wind Management, LLC.                                  |  |
| Greenland, Grant<br>Cty, WV                                                                                         | Forested<br>ridge | March<br>21 to<br>May 14 | 10                                     | 68                      | 212                 | 9                           | 3.12                                        | (125 m)<br>68%                                                 | Stantec Consulting. 2008f. Spring, Summer, and Fall<br>2008 Bird and Bat Migration Survey Report Visual,<br>Radar, and Acoustic Bat Surveys for the New Creek<br>Mountain Project West Virginia. Prepared for AES<br>New Creek, LLC. |  |
| Highland, Maine                                                                                                     | Forested<br>ridge | March<br>25 to<br>May 19 | 12 days<br>Witham,<br>8 days<br>Briggs | 139                     | 260                 | 12                          | 1.87                                        | (130.5 m)<br>Whitham<br>80 %,<br>Briggs<br>86%                 | this report                                                                                                                                                                                                                          |  |
| *Calculated for spring and fall combined.                                                                           |                   |                          |                                        |                         |                     |                             |                                             |                                                                |                                                                                                                                                                                                                                      |  |
| **Calculated for spring and fall 2006 and 2007<br>combined.                                                         |                   |                          |                                        |                         |                     |                             |                                             |                                                                |                                                                                                                                                                                                                                      |  |
| ***Non-migrants were not included in seasonal passage rates in NYSDEC 2008 table but were included in passage rates |                   |                          |                                        |                         |                     |                             |                                             |                                                                |                                                                                                                                                                                                                                      |  |