CENTRAL MAINE

 POWERJuly 13, 2018

Mr. James R. Beyer
Maine Department of Environmental Protection
Division of Land Resources Regulation
106 Hogan Road
Bangor, ME 04401

Mr. John Perry
Environmental Review Coordinator
Maine Department of Inland Fisheries and Wildlife
284 State Street, 41 SHS
Augusta, Maine 04333-0041

RE: New England Clean Energy Connect Project CMP Response to MDIFW March 15, 2018 Environmental Review Comments

Dear Mr. Beyer and Mr. Perry:

Central Maine Power Company (CMP) is pleased to provide responses to the Maine Department of Inland Fisheries and Wildlife (MDIFW) March 15, 2018 review comments on the Site Location of Development Act (Site Law) and Natural Resources Protection Act (NRPA) permit applications submitted to the Maine Department of Environmental Protection (MDEP) by CMP on September 27, 2017, for the New England Clean Energy Connect (NECEC) project.

The MDIFW environmental permit application review letter included comments and requested additional information on the following items:

- \quad State-listed and special concern wildlife species
- Significant vernal pools
- Fisheries concerns

CMP met with MDIFW on June 4, 2018 to discuss each of these topics and has incorporated the results of those discussions in our response below.

State-listed and Special Concern Wildlife Species

As reiterated by MDIFW in its review comments, CMP acknowledges that it is likely that Statelisted Endangered, Threatened, or Special Concern Species are resident or transient in the Project area based on location, habitats present, and life history requirements of the individual species. Accordingly, CMP provides the following responses to MDIFW recommendations on the following species:

Northern Bog Lemming

CMP agrees to survey the approximately 1.5 miles of corridor identified by MDIFW that potentially contains habitat features which are suitable for northern bog lemming. The survey area is located south and west of Moose Mountain in Skinner Township. MDIFW provided
further guidance during the June 4, 2018 meeting with CMP and recommended that a preliminary survey be conducted in this area to identify suitable habitat conditions and, if potential habitat is identified, a more targeted and intensive survey in late summer or early fall be conducted. CMP is conducting the preliminary survey in July 2018 and will provide the results to MDIFW. In the event suitable habitat is identified, CMP will schedule intensive surveys for late summer or early fall and will notify MDIFW of survey dates to allow for agency participation, if requested. If presence/absence surveys are required, CMP will follow survey protocols provided by MDIFW and will collect fecal samples for DNA testing in the event scat characteristic of northern bog lemmings is found.

Brook Floater

MDIFW's review of the brook floater, a species of freshwater mussel, concluded that "because the applicant is not proposing any in-stream construction or new forest clearing within these mapped habitats, MDIFW does not anticipate new impacts to the Brook Floater as a result of project activities." Known populations of brook floater occur on both the Kennebec River in Anson and the West Branch of the Sheepscot River in Windsor. As such, MDIFW made the following recommendation:
"...on lands within 100 feet of the shores of both rivers, or the upland edge of contiguous wetlands, that are owned or controlled by the applicant, MDIFW recommends that Central Maine Power improve the riparian buffer integrity by allowing woody vegetation to regrow to the greatest height possible."

CMP's standard practice is to retain woody non-capable vegetation (i.e., vegetation not capable of growing into the conductor safety zone) to the extent practicable during initial clearing. Areas that were previously forested are allowed to naturally transition to early successional scrub-shrub habitat by allowing non-capable woody vegetation to grow during operation and maintenance of the transmission lines and associated corridor. No tree clearing will occur in or adjacent to the brook floater occurrences on the West Branch of the Sheepscot River. There is one property, near proposed structures 3027-11 and 3027-12 in which agricultural rights were retained, however in all other areas CMP will maintain a 100 foot buffer and allow woody noncapable vegetation up to ten feet in height to grow within this 100 foot buffer.

In the vicinity of the brook floater occurrence on the Kennebec River, there will be no tree clearing as there is currently agricultural use of this property. In this location, CMP's land does not extend to the river and until there is no longer an agricultural use, CMP intends to maintain the current conditions within the right-of-way. Any temporary or permanent impact associated with the Project will occur outside of the brook floater occurrence, as well as outside of lands within 100 feet of the river.

Roaring Brook Mayfly and Northern Spring Salamander

In its review of the project, MDIFW noted one known occurrence of the Roaring Brook Mayfly which intersects the Project in Johnson Mountain Township. The Project does not intersect any currently mapped occurrences of the Northern Spring Salamander, however given both of these species geographic range and similar habitat preferences, MDIFW has assumed presence of the Roaring Brook Mayfly and Northern Spring Salamander in areas between the Maine/Quebec border and Johnson Mountain Township. MDIFW recommended surveys be conducted for these species but also stated that CMP could forego the surveys if the MDIFW's
"Recommended Management Guidelines for Land Use in or Adjacent to Roaring Brook Mayfly and Northern Spring Salamander Habitat ("Guidelines")" were implemented. CMP has reviewed these guidelines in detail. Due to the safety, environmental, reliability, logistical, and cost implications of allowing taller vegetation to grow within the rights of way (ROW) (discussed in more detail below), CMP has concluded that it cannot retain a forested 250 -foot riparian management zone on all streams characteristic of the habitat for these species. Due to the size, scope, and linear nature of the project, it is unlikely that re-routing of the corridor would allow for the avoidance of streams containing suitable habitat for these species. As such, CMP proposed at its June 4 meeting with MDIFW to develop a Memorandum of Understanding (MOU) that would propose and incorporate best management practices (BMPs) and appropriate mitigation, if necessary, to avoid and minimize adverse impacts to these species. Additionally, CMP intends to conduct surveys during the recommended September time period, after which CMP will further evaluate the BMPs and mitigation measures developed as part of the MOU and will consult with MDIFW on whether any modifications to these BMPs and/or mitigation measures are warranted based on survey results. If required by MDIFW, CMP will develop an Incidental Take Plan applicable to the Roaring Brook Mayfly, a State Listed species.

Golden and Bald Eagles

As noted by MDIFW, eagles occur within the project area and are protected under the federal Bald Eagle and Golden Eagle Protection Act, as well as other federal laws. To avoid disturbance to breeding eagles, areas within 660 feet of an active nest (i.e., nests that contain chicks or eggs) will be avoided by construction activities until the chicks have fledged, unless otherwise authorized by the United States Fish and Wildlife Service (USFWS). CMP will coordinate with MDEP and USFWS and verify the locations of active nests by performing yearly surveys, during the recommended survey window, in areas where project construction is scheduled to occur during the nesting season.

In its review comments, MDIFW noted that the proposed upper Kennebec River transmission crossing is located within an area which likely serves as a movement corridor for north/south migrations of waterfowl. MDIFW recommended that markers/diverters be installed to reduce or prevent avian line collisions. CMP is proposing to install vividly colored aviation marker balls which will serve as visual deterrents to reduce or prevent avian collisions as depicted in the visual photo-simulations for the upper Kennebec River crossing submitted in CMP's Response to MDEP Information Request dated March 29, 2018. If required to do so by MDIFW, CMP will also install utility compatible markers specifically designed to reduce avian line collisions.

Additionally, CMP's proposed crossing will maintain a mature forested buffer on both sides of the river at widths of approximately 300 feet (southeast side) and 550 feet (northwest side). While these buffers are primarily for buffering the visual impact to users of the river, they will also provide perching opportunities for eagles.

Wood Turtle

MDIFW conducted a desktop habitat analysis and identified 16 streams that intersect or parallel the project footprint that have a high potential to be occupied by wood turtles, and recommended that each of these streams be buffered with a 300-foot riparian management zone. To avoid direct mortality, MDIFW also recommended "restricting all harvest and construction activity within the 16 mapped habitats to the time of year when wood turtles are
inactive and confined to the stream channel: specifically, October 15 to April 15. Where stream crossings are proposed, temporary bridges should be built prior to any motorized equipment crossing. Cleared openings within the mapped habitats should be allowed to regrow to high shrubs and other non-capable woody vegetation, rather than be maintained in a vegetative state that would require periodic mowing which can be lethal to wood turtles."

CMP has proposed within its Applications, that all stream crossings by heavy equipment will be performed through the installation of timber mat spans with no in-stream disturbances. Streams will not be forded by heavy equipment. The existing ROW, where Wood Turtle habitat has been identified, will not be widened and will only have limited clearing activities to accommodate the co-location of an additional line. Mowing will not be necessary, however limited vegetation removal may be required for the establishment of the temporary access roads. These areas will be allowed to revert to shrubby habitat following construction. CMP will comply with the recommended time of year restriction as it pertains to vegetation clearing. However, as discussed during CMP's June 4, 2018, meeting with MDIFW and consistent with correspondence received from Derek Yorks on June 5, 2018, CMP proposes the following measures to allow for transmission line construction activities to occur within the restricted time of year:

- Access roads and temporary structure preparation areas located within the 300 foot riparian management area will be installed during the time of year that wood turtles are inactive (October 15 to April 15).
- Silt fence will be installed within the 300 foot riparian management area to act as a barrier and reduce the potential for turtles to enter the construction area.
- On a daily basis, the work areas scheduled for construction activities will be inspected for the presence of wood turtles prior to heavy equipment operation.
- CMP will obtain a scientific collection permit, or similar, from MDIFW and will follow agency protocols for the relocation of turtles found within the work area.
- CMP will provide specific wood turtle training to contractor personnel prior to construction activities on this segment.

Great Blue Heron

CMP's proposal to conduct surveys for heron colonies prior to initial transmission line clearing remains unchanged. CMP will complete surveys for heron colonies within or immediately adjacent to (within 75 feet of) existing IWWH's within the NECEC Project, between April 20 and May 31 prior to each year of construction. Surveyors will perform surveys in both live and dead trees in uplands and wetlands within the survey area.

In addition to consulting with MDIFW in the event heron colonies are identified, CMP will restrict vegetation clearing to the time of year that nests are found to be inactive.

Bats

In its review, MDIFW stated that the project is not located near known hibernaculum or known maternity roosts, and that the agency does not anticipate significant impacts to any of the bat species as a result of the project. In addition, CMP intends to comply with the June 1 to July 31 time of year restriction for tree clearing recommended by the USFWS for the Northern LongEared Bat.

Significant Vernal Pools

As requested by MDIFW in their December 20, 2017 information request and reiterated in their March 15, 2018 review comments, CMP has updated the status of vernal pools where MDIFW's official determination differed from CMP's consultant's pre-application assessment. CMP has also calculated all impacts on an individual pool basis as requested in MDIFW's review comments. The updated table replaces Exhibit 7-5 of the Site Law application and contains the following information:

- Pool ID
- MDIFW pool status
- Segment and natural resource map each pool is found on
- Pool Area
- Buffer size within CMP-controlled Property
- Existing Impacts within the 250 foot buffer
- Direct and indirect (clearing) impacts to the pool depression
- Direct (pole/structure), temporary (access roads and work pads), and indirect (clearing) impacts to upland areas within the 250 foot buffer
- Direct (pole/structure), temporary (access roads and work pads), and indirect (clearing) impacts to wetland areas within the 250 foot buffer
- Permanent significant vernal pool habitat impacts: percent of existing impacts, percent of additional impacts (pole/structure), percent of total impacts
- Facility/activity type Impacts (e.g. Pole, Access roads, Work pad)

In addition, Exhibit 7-6 of the Site Law application has been revised to reflect MDIFW vernal pool status changes. Both Exhibit 7-5 and 7-6 are attached to this response.

CMP's project design avoids direct fill impacts within all significant and potentially significant vernal pool depressions and, to the extent practicable, within their 250 foot critical terrestrial habitats. The current project design requires 1,859 square feet of permanent fill in uplands within critical terrestrial habitat, and 110 square feet of permanent fill in wetlands located in critical terrestrial habitat. As the detailed engineering design progresses CMP will look for additional opportunities to reduce direct fill impacts within critical terrestrial habitat. Due to the nature of the project and its operational, safety, and reliability requirements, all capable species within the ROW will be removed during initial clearing, including those located within significant vernal pool critical terrestrial habitat.

As documented in CMP's application, there are no instances of direct fill impacts in significant vernal pool depressions. In addition, the project has been designed to avoid or minimize protected natural resource impacts to the greatest extent practicable, therefore any vernal pool status changes which were made as a result MDIFW's review, did not necessitate changes to the design. Updated natural resource maps of the entire project will be provided in August 2018 and again following the completion of detailed design. The revised natural resource map sets will properly reflect the status of each pool.

CMP is preparing a compensation plan that will address direct and indirect (i.e., forest conversion) impacts to significant vernal pool habitat. Consistent with correspondence received in April 2017 from former MDEP Division Director Mike Mullen, CMP will compensate for forest
conversion in significant vernal pool habitat at a rate of 60% of that required by MDEP Regulations Chapter 310 Wetlands and Waterbodies Protection Rules and the MDEP's In-Lieu Fee Compensation Program. The compensation plan will be provided to MDEP, as well as to the US Army Corps of Engineers, in a future submittal.

Regarding MDIFW's inquiry as to whether CMP has applied for permits by rule for vernal pool impacts, CMP has applied for Individual NRPA approval and Site Law approval. As such, NRPA permits by rule are not needed by the project.

Fisheries Concerns

Vegetation Management

In its review comments, MDIFW recommended adherence to their 2012 Recommended Performance Standards for Riparian Buffers in Overhead Utility ROW Projects ("2012
Performance Standards") and asked whether CMP had considered avoidance or minimization measures during the Project design, such as utilization of taller structures and closer spacing of taller poles that would reduce canopy disruption and allow much taller capable vegetation to grow.

CMP considers many factors in designing, constructing, and operating electric transmission line projects to avoid or minimize impacts on the environment. Once a transmission line route is chosen, the process of locating individual structures begins by selecting the most efficient and practicable locations. In order to optimize structure locations to the extent practicable, preliminary structure locations are then reviewed and refined based upon the following requirements, constraints, and considerations:

- Fixed placement of angle structures or dead-end structures
- Minimum required ground clearances
- Structure and conductor (wire) characteristics, i.e., structural capacity, maximum span length, and wire movement envelopes
- Topographic, landscape and other features (hills, valleys, roads, railroads, existing utilities, etc.)
- Protected and sensitive environmental resource locations (setbacks)
- Cultural resource locations
- Visual impacts
- Constructability and ability to maintain the infrastructure
- Project cost impacts

The locations of NECEC project structures is based on transmission line design at the 30\% (conceptual) level. This takes into consideration basic structure geometry and design assumptions, preliminary topographical survey data sufficient for conceptual design, and the above constraints. The combined effects of such constraints limit possible transmission line structure locations and thus require some structures to be located near or within protected natural resource areas.

Modifying the project alignment or relocating structures to avoid all impacts is not possible because doing so would affect adjacent transmission line structures and/or other transmission line structures throughout the ROW. For example, moving one or more structures or shifting the alignment may necessitate or result in the relocation of other structures into protected or
sensitive natural resource areas in other locations. Such relocation may also increase the number of structures and/or necessitate taller structures to meet required setback distances and line clearances, which may increase the visual impact of the project. Similarly, larger numbers of taller structures to minimize canopy disruption would potentially result in additional ground disturbance and direct impacts to protected natural resource areas, as well as additional visual/aesthetic impacts.

CMP removes capable species from its ROWs and maintains them in a persistent, earlysuccessional scrub-shrub and herbaceous cover type. To minimize environmental impacts CMP does not maintain permanent access roads within its ROWs. CMP cannot accommodate MDIFW's recommendation that vegetation be allowed to grow to greater heights in riparian areas or should be "feathered" in certain areas of the transmission line ROW, as recommended in the 2012 Performance Standards. From a vegetation management perspective, allowing taller capable vegetation to grow, except in locations where topography allows (e.g., steep ravines), would result in the following negative safety, environmental impact, reliability and cost outcomes:

Safety

- Removal of taller and larger vegetation during maintenance cycles would require more mechanical work.
- Cutting trees is inherently safer when done on the ground than when in a tree or in a bucket.
- Climbing trees or cutting trees from buckets would place workers in closer proximity to energized conductors.
- Hand felling of larger capable species within riparian areas would be dangerous to workers on the ground, especially when seeking to fell trees in a desired direction away from the resource.

Environmental

- Heavy equipment (bucket trucks, skidders, excavators, and timber forwarders etc.) would increase vegetation damage and soil compaction.
- Deployment of timber mats, while these reduce soil compaction, would also require heavy equipment, increasing the number of trips up and down the ROW and potentially increasing ground and sensitive/protected natural resource disturbance.
- Cable skidding increased amounts and larger pieces of slash, associated with taller vegetation, out of the riparian buffers to comply with the Maine Slash Law would create additional ground disturbance and impacts to vegetation within the riparian area.
- Heavy equipment operation would increase the potential and likelihood of spills of fuel, oil, and hydraulic fluids.
- Allowing taller vegetation to grow through the placement of taller and/or closer spaced poles would create additional visual/aesthetic impacts and potentially more direct fill in protected natural resource areas

Reliability

- Allowing taller capable vegetation to grow within a 100 -foot riparian area would effectively render large portions of CMPs rights of ways inaccessible to operations and emergency response personnel.
- Accurately measuring or estimating the heights of individual trees, and their distance from energized conductors, would be difficult in dense growth, increasing safety hazards associated with minimum approach distance from the transmission line and potentially resulting in line outages from tree growth into conductors.
- Topping of taller trees would risk transmission line reliability by encouraging rapid regrowth or coppicing, potentially resulting in encroachment into the conductor safety zone.

Cost

- The management (i.e., topping and/or removal) of taller capable vegetation in riparian areas would be very costly. CMP estimates the cost would be $\$ 30,000$ /acre compared to $\$ 200 /$ acre using current practices.

Coldwater Fisheries

As MDIFW noted, "many of the streams in the new 53.5-mile long transmission corridor Project area are characterized as intermittent, and likely first-order streams. In the description of the streams in the NECEC Waterbody Table (Exhibit 7-7), the notation for brook trout under streams designated as intermittent, is " N / A "." In this Exhibit, the " N / A " designation refers to "Not Available." MDIFW provided the Brook Trout GIS shapefile to CMP on July 12, 2017 and when overlaid with CMP's field-delineated resources, many resources field surveyed within the Project area did not have a decisive designation, Yes or No. The Application assumes that in those cases where a designation was "not available," those streams were not surveyed for Brook Trout by the resource agency. The stream type, intermittent or perennial, was determined by the field surveyors and as recorded on the data forms. Exhibit 7-7 identifies both perennial and intermittent streams in which Brook Trout habitat was surveyed by MDIFW. CMP did not make a qualitative determination for Brook Trout habitat either during the field survey effort or as a desktop analysis but relied on the geospatial information provided by MDFIW based on field research. Regardless, CMP proposes to construct the project in a manner that protects the biological integrity of all streams within the project area.

The MDIFW stated that CMP's proposed 25 foot riparian buffer will not be adequate for the protection of water temperatures, water quality, and inputs of coarse woody debris necessary to support conditions required by brook trout and other aquatic life. To the contrary, a study by Gleason (2008) ${ }^{1}$ on the impacts of powerline ROWs on forested stream habitat found that despite the open canopy condition water temperatures were slightly lower than in off-ROW areas and that none of the water quality parameters were significantly different between the on-ROW and off-ROW study areas. Gleason's study also found no correlation between percent canopy cover and mean percentage of fines and found no significant difference in the Benthic Index of Biotic Integrity scores between on-ROW and upstream areas. Similarly, a study

[^0]conducted by Peterson (1993) ${ }^{2}$ on the effects of electric transmission line ROWs on trout in forested headwater streams in upstate New York found that stream reaches in electric transmission ROWs were exposed to more light, had denser stream bank vegetation, were deeper and narrower, and had a greater area composed of pools. Peterson's study found that trout were more abundant in stream reaches within ROWs and concluded that the increase in incident sunshine resulted in a denser forb and shrub root mass which further stabilized stream banks, resulting in less stream bank erosion, deeper channels, and higher populations of trout. Peterson concluded that electric transmission ROWs need not constitute an adverse effect on headwater trout population densities in forested basins.

Nevertheless, in consideration of the MDIFW's concerns for impacts to coldwater fisheries and stream dependent species of concern, CMP will modify the NECEC Construction Vegetation Clearing Plan and Vegetation Management Plan (Exhibits 10-1 and 10-2, respectively) to include the following requirements:
"Riparian natural buffers (or "riparian buffers) must be retained within 100 feet of all perennial streams within the greenfield (Segment 1) portion of the Project, outstanding river segments, or rivers, streams, or brooks containing Threatened or Endangered species unless the department determines that the functions and values of the riparian buffer will not be impacted by the removal of vegetation and approves an alternative minimum buffer. A "riparian buffer" is a buffer on a stream, river, or brook. In no case may the riparian buffer be reduced to less than 25 feet. The riparian buffer is measured horizontally from the top of the stream bank.

CMP believes that extending the buffer to 100 feet for those streams which meet the above criteria will adequately protect coldwater fisheries. Protection of coldwater dependent species within the greenfield portion is a priority to both the resource agencies and CMP, as it is largely undeveloped timber harvested land in an area of the state known for its coldwater fishery resources.

For streams in areas where the new transmission line will be co-located within existing rights-of-ways, CMP proposes to maintain a 25 foot buffer, unless meeting any of the above criteria, since the corridor is currently being maintained in an early successional state according to the guidelines set forth in CMP's Vegetation Management Plan (Exhibit 10-2), and the effect of the additional clearing (typically less than 75 feet) to accommodate the new line has been minimized.

Streams with 100 foot riparian buffers will have unique flagging prior to clearing and will be maintained throughout construction. CMP will allow non-capable vegetation within this 100 foot riparian buffer to grow to 10 feet in height including within the wire zone, i.e., the area within 15 feet horizontally of any conductor. Herbicides will be prohibited within the 100 foot riparian buffer, and all refueling/maintenance of equipment will be excluded from the buffer unless it occurs on an existing paved road or if secondary containment is used with oversight

[^1]from an environmental inspector. Initial tree clearing will be performed during frozen ground conditions whenever practicable, and if not practicable, the recommendations of the environmental inspector will be followed regarding the appropriate techniques to minimize disturbance such as the use of selectively placed travel lanes within the 100 foot riparian buffer. CMP will not place any transmission line structures within the 100 foot riparian buffer, unless specifically authorized by the MDEP and accompanied by a site specific erosion control plan. No structures will be placed within 25 feet of any stream regardless of its classification.

In addition, CMP proposes to utilize the "lop and drop" method of tree felling in coordination with MDIFW to contribute coarse woody debris where needed to support conditions required by brook trout and other aquatic life, which will be further detailed and defined in the NECEC Compensation Plan.

If existing culverts need to be modified or replaced for construction of the Project, they will be replaced by CMP with appropriately-sized and constructed/placed structures. All stream crossings used for the project will be open bottomed and will be sized to span a minimum of 1.2 times the bank full width. In the event any permanent stream crossings require replacement, CMP will seek agency review and approval prior to installation. CMP intends to work with conservation groups on culvert replacements in the Segment 1 (greenfield) portion of the project area to compensate for fisheries impacts and will elaborate on this proposal in the NECEC Compensation Plan, to be submitted to MDEP in a future submittal. As currently proposed, the Project does not anticipate any instream work, however if in-stream work becomes necessary and is permitted by MDEP and the USACE, CMP will comply with the July 15 to September 15 allowable work window, as recommended by MDIFW for protection of coldwater fisheries.

CMP appreciates the MDIFW's thorough review of this project. If you have any questions regarding this response, please give call or email (207) 629-9717; gerry.mirabile@cmpco.com).

Sincerely,

Gerry J. Mirabile
Manager - Environmental Projects
Environmental Permitting
AVANGRID Networks, Inc.

Enclosures

cc: Bob Stratton, MDIFW; Jay Clement, USACE; Samantha Horn, LUPC; Bill Hinkel, LUPC; Naomi Kirk-Lawlor, LUPC; Christopher Lawrence, USDOE; Melissa Pauley, USDOE; Bernardo Escudero, CMP; Mark Goodwin, Burns \& McDonnell; Matt Manahan, Pierce Atwood; Jared does Rosiers, Pierce Atwood
File: New England Clean Energy Connect

Exhibit 7-5 NECEC Significant Vernal Pool Habitat Impact Summary

Pool Determination Status ${ }^{1}$	Pool ID	$\underset{\#}{\text { Segment }}$	$\left\|\begin{array}{c} \text { NR Map } \\ \# \end{array}\right\|$	$\begin{array}{\|c} \text { Pool Size } \\ \text { (sq ft) } \end{array}$	Buffer Size Within CMP Controlled Property (sq ft)	Existing Impacts within 250 ft Buffer (sq ft)	Impacts to Pool Depression		Impacts to Upland Areas within 250 ft Buffer			Impacts to Wetlands within 250 ft Buffer			Permanent SVPH Impacts ${ }^{2}$			Facility/Activity Type Impacting
							Pool Direct Impacts (sq ft)	Pool Clearing Impacts (sq ft)	Direct Impacts (sq ft)	Temporary Impacts (sq ft)	Clearing Impacts (sq ft)	$\begin{array}{\|c\|} \text { Direct } \\ \text { Impacts (sq } \\ \mathrm{ft}) \end{array}$	Temporary Impacts (sq $\mathrm{ft})$	Clearing Impacts (sq ft)	\% Existing Impacts to SVPH	\% Additional Impacts to SVPH	\% Total Impacts to SVPH	
SVP (IFW)	$11-1^{3}$	1	27	24	0	0	0	0	0	0	0	0	0	0	0\%	0\%	0\%	None
SVP (IFW)	101-02	3	225	309	121,707	11,347	0	0	40	3,842	25,503	0	954	2,126	9\%	23\%	32\%	Access Road, Pole, Work Pad
SVP (IFW)	101-03	3	225	22,982	233,505	68,971	0	7,569	40	16,115	36,567	0	1,691	2,126	30\%	20\%	50\%	Access Road, Pole, Work Pad
SVP (IFW)	102-02	3	226	649	156,235	78,767	0	0	40	6,482	19,509	0	6,143	11,554	50\%	20\%	70\%	Access Road, Pole, Work Pad
SVP (IFW)	102-03	3	226	4,370	154,626	83,021	0	0	40	6,407	16,275	0	7,189	9,817	54\%	17\%	71\%	Access Road, Pole, Work Pad
SVP (IFW)	104-02	3	230	4,173	195,000	56,971	0	420	40	14,360	41,197	0	1,278	3,945	29\%	23\%	52\%	Access Road, Pole, Work Pad
PSVP (IFW)	111-03	3	245, 246	2,381	196,738	55,087	0	0	40	5,487	37,965	0	0	0	28\%	19\%	47\%	Access Road, Pole, Work Pad
SVP (IFW)	111-04	3	246	3,388	189,343	59,309	0	0	40	11,094	36,225	0	0	0	31\%	19\%	50\%	Access Road, Pole, Work Pad
SVP (IFW)	116-04	3	257	15,369	270,388	96,558	0	11,270	0	6,483	41,488	0	7,197	1,883	36\%	20\%	56\%	Access Road
PSVP (IFW)	117-02	3	258	10,517	191,490	0	0	0	0	0	508	0	7,660	51,324	0\%	27\%	27\%	$\begin{array}{\|c\|} \hline \text { Access Road, Work } \\ \text { Pad } \end{array}$
SVP (IFW)	118-02	3	261	1,791	146,960	77,676	0	0	0	10,652	25,619	0	0	0	53\%	17\%	70\%	Access Road
SVP (IFW)	118-03	3	262	2,072	146,951	36,863	0	0	0	7,885	39,190	0	0	0	25\%	27\%	52\%	Access Road
PSVP (IFW)	119-02	3	264	1,459	141,640	78,993	0	0	0	8,880	11,201	0	0	0	56\%	8\%	64\%	Access Road
SVP (IFW)	119-03	3	264	1,803	168,802	63,314	0	1	0	10,261	37,758	0	438	4,894	38\%	25\%	63\%	Access Road
SVP (IFW)	125-01	3	276	2,038	192,210	121,080	0	0	0	12,740	37,201	0	0	0	63\%	19\%	82\%	Access Road
SVP (IFW)	130-08	3	288	18,626	266,995	128,299	0	12,466	40	10,029	30,376	0	9,130	13,768	48\%	21\%	69\%	Access Road, Pole, Work Pad
SVP (IFW)	135-03	3	298, 299	13,353	214,629	108,922	0	4,539	160	14,032	39,669	0	1,304	876	51\%	21\%	72\%	Access Road, Pole, Work Pad
SVP (IFW)	135-05	3	299	1,519	189,881	70,359	0	1,519	0	2,044	21,069	40	7,606	19,648	37\%	22\%	59\%	Access Road, Pole, Work Pad
SVP (IFW)	136-01	3	301	35,243	278,177	110,148	0	7,215	0	15,423	41,149	0	184	15,866	40\%	23\%	63\%	Access Road
SVP (IFW)	136-02	3	301, 302	3,957	218,616	115,951	0	0	0	10,042	39,886	0	2,116	3,250	53\%	20\%	73\%	$\begin{gathered} \hline \text { Access Road, Work } \\ \text { Pad } \end{gathered}$
SVP (IFW)	136-04	3	302	4,345	154,445	120,445	0	0	0	8,392	19,949	0	1,618	5,918	78\%	17\%	95\%	$\begin{gathered} \hline \text { Access Road, Work } \\ \text { Pad } \end{gathered}$
SVP (IFW)	137-06	3	304	1,554	140,683	45,184	0	0	40	13,039	36,248	0	0	1,255	32\%	27\%	59\%	Access Road, Pole, Work Pad
PSVP (ID)	140-02	3	309, 310	1,026	181,139	82,946	0	1,026	0	8,186	34,960	0	559	4,869	46\%	23\%	69\%	Access Road
SVP (IFW)	140-04	3	311	16,947	229,951	108,917	0	3,977	40	16,468	38,884	0	19	6,021	47\%	21\%	68\%	Access Road, Pole, Work Pad
SVP (IFW)	143-03	3	317	1,657	177,699	79,971	0	500	0	10,213	32,201	0	719	9,739	45\%	24\%	69\%	Access Road
PSVP (ID)	144-02	3	320	28	170,194	108,188	0	0	0	9,482	33,473	0	0	36	64\%	20\%	84\%	Access Road

Pool Determination Status ${ }^{1}$	Pool ID	$\underset{\#}{\text { Segment }}$	$\left\|\begin{array}{c} \text { NR Map } \\ \# \end{array}\right\|$	Pool Size (sq ft)	Buffer Size Within CMP Controlled Property (sq ft)	Existing Impacts within 250 ft Buffer (sq $\mathrm{ft})$	Impacts to Pool Depression		Impacts to Upland Areas within 250 ft Buffer			Impacts to Wetlands within 250 ft Buffer			Permanent SVPH Impacts ${ }^{2}$			Facility/Activity Type Impacting
							Pool Direct Impacts (sq ft)	Pool Clearing Impacts (sq ft)	Direct Impacts (sq ft)	Temporary Impacts (sq ft)	Clearing Impacts (sq ft)	$\begin{array}{\|c} \text { Direct } \\ \text { Impacts (sq } \\ \mathrm{ft}) \end{array}$	Temporary Impacts (sq $\mathrm{ft})$	Clearing Impacts (sq ft)	\% Existing Impacts to SVPH	\% Additional Impacts to SVPH	\% Total Impacts to SVPH	
SVP (ID)	147-08	4	326	3,363	179,528	169,564	0	0	60	15,877	0	0	0	0	94\%	0\%	94\%	Access Road, Pole, Work Pad
SVP (ID)	148-06	4	328	7,831	193,560	157,852	0	0	60	21,636	0	0	0	0	82\%	0\%	82\%	Access Road, Pole, Work Pad
SVP (IFW)	15-1 ${ }^{3}$	1	35	676	90,543	0	0	0	0	9,717	70,234	0	0	0	0\%	78\%	78\%	Access Road
PSVP (ID)	158-01	4	349, 350	7,414	235,544	229,484	0	0	90	16,058	0	30	10,034	0	97\%	0\%	97\%	Access Road, Pole, Work Pad
SVP (IFW)	161-11	4	356	403	162,882	162,393	0	0	90	19,951	0	0	0	0	100\%	0\%	100\%	Access Road, Pole, Work Pad
SVP (ID)	161-12	4	356,357	28	134,136	133,608	0	0	120	13,472	0	0	0	0	100\%	0\%	100\%	Access Road, Pole, Work Pad
SVP (IFW)	162-01	5	N/A	6,050	221,261	0	0	0	0	0	0	0	0	0	0\%	0\%	0\%	None
SVP (IFW)	169-01	5	401	1,560	162,958	161,757	0	0	120	12,607	0	0	299	0	99\%	0\%	99\%	Access Road, Pole, Work Pad
PSVP (IFW)	174-06	5	390	6,302	166,613	166,129	0	0	120	10,335	0	0	878	0	100\%	0\%	100\%	Access Road, Pole, Work Pad
SVP (IFW)	188-03	5	359,360	5,730	208,336	146,174	0	0	0	11,574	0	0	1,039	0	70\%	0\%	70\%	Access Road
PSVP (IFW)	40-5	1	91	5,552	177,274	0	0	2,325	0	2,810	71,273	40	4,067	15,934	0\%	51\%	51\%	Access Road, Pole, Work Pad
PSVP (IFW)	40-6	1	91	4,137	151,489	0	0	0	0	1,893	53,460	0	2,813	13,689	0\%	44\%	44\%	Access Road, Work Pad
SVP (IFW)	$41-2^{3}$	1	92	2,587	22,623	0	0	0	0	3,442	22,623	0	0	0	0\%	100\%	100\%	Access Road
SVP (IFW)	$43-2^{3}$	1	98	1,956	85,543	0	0	0	0	4,513	14,162	0	0	0	0\%	17\%	17\%	Access Road
SVP (IFW)	$46-2^{3}$	1	101	13,880	23,069	0	0	0	0	0	0	0	0	0	0\%	0\%	0\%	None
SVP (IFW)	$48-4^{3}$	1	105	454	77,895	0	0	0	0	8,184	65,630	0	0	0	0\%	84\%	84\%	Access Road
SVP (IFW)	49-10 ${ }^{3}$	1	107	798	90,646	0	0	0	40	9,063	60,938	0	1,643	9,492	0\%	78\%	78\%	Access Road, Pole, Work Pad
PSVP (IFW)	49-12 ${ }^{3}$	1	107	5,162	100,398	0	0	0	0	0	24,033	0	0	512	0\%	24\%	24\%	None
SVP (IFW)	72-102	2	159	141	144,725	58,513	0	0	0	9,730	35,445	0	0	1,791	40\%	26\%	66\%	Access Road
SVP (IFW)	75-101	3	167	188	200,279	56,447	0	5	160	10,607	22,321	0	0	16,456	28\%	19\%	47\%	Access Road, Pole, Work Pad
SVP (IFW)	75-102	3	167	448	192,893	46,524	0	0	160	10,743	24,813	0	0	12,868	24\%	20\%	44\%	Access Road, Pole, Work Pad
SVP (IFW)	$80-01^{3}$	3	178	1,810	63,827	0	0	0	0	0	3,771	0	0	104	0\%	6\%	6\%	None
SVP (IFW)	80-03	3	177	4,547	244,085	91,675	0	3,628	40	18,390	30,775	0	512	9,395	38\%	18\%	56\%	Access Road, Pole, Work Pad
PSVP (IFW)	81-05	3	180	1,079	139,673	72,832	0	0	40	13,595	15,905	0	0	0	52\%	11\%	63\%	Access Road, Pole, Work Pad
SVP (IFW)	83-02	3	183	14,556	238,739	57,517	0	0	0	921	29,985	0	2,041	13,160	24\%	18\%	42\%	$\begin{array}{\|c\|} \hline \text { Access Road, Work } \\ \text { Pad } \end{array}$
SVP (IFW)	83-03	3	183	561	191,617	45,740	0	0	40	11,440	16,772	0	559	20,170	24\%	19\%	43\%	Access Road, Pole, Work Pad
SVP (IFW)	83-04	3	183	6,104	174,599	127,822	0	0	0	11,716	32,216	0	0	2,115	73\%	20\%	93\%	Access Road

Pool Determination Status ${ }^{1}$	Pool ID	$\underset{\#}{\text { Segment }}$	$\begin{gathered} \text { NR Map } \\ \# \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Pool Size } \\ \text { (sq ft) } \end{gathered}\right.$	Buffer Size Within CMP Controlled Property (sq ft)	Existing Impacts within 250 ft Buffer (sq $\mathrm{ft})$	Impacts to Pool Depression		Impacts to Upland Areas within 250 ft Buffer			Impacts to Wetlands within 250 ft Buffer			Permanent SVPH Impacts ${ }^{2}$			Facility/Activity Type Impacting
							Pool Direct Impacts (sq ft)	Pool Clearing Impacts (sq ft)	Direct Impacts (sq ft)	Temporary Impacts (sq ft)	Clearing Impacts (sq ft)	$\begin{array}{\|c} \text { Direct } \\ \text { Impacts (sq } \\ \mathrm{ft}) \end{array}$	Temporary Impacts (sq ft)	Clearing Impacts (sq ft)	\% Existing Impacts to SVPH	\% Additional Impacts to SVPH	\% Total Impacts to SVPH	
SVP (IFW)	85-01	3	189	2,989	159,107	12,402	0	0	40	10,024	33,297	0	0	73	8\%	21\%	29\%	Access Road, Pole, Work Pad
SVP (IFW)	86-04	3	191	16,971	333,918	105,897	0	10,356	40	9,301	25,965	0	8,596	21,281	32\%	17\%	49\%	Access Road, Pole, Work Pad
SVP (IFW)	86-05	3	191	7,062	180,173	40,096	0	0	40	5,698	20,063	0	1,145	5,871	22\%	14\%	36\%	Access Road, Pole, Work Pad
SVP (IFW)	86-09	3	190	6,618	167,747	19,759	0	0	0	1,011	35,201	0	0	385	12\%	21\%	33\%	Work Pad
SVP (IFW)	92-01	3	203	2,341	244,688	81,941	0	2,095	0	10,800	40,521	0	0	181	33\%	17\%	50\%	Access Road
PSVP (IFW)	LT-3	1	11, 12	2,925	163,378	0	0	2,925	40	16,324	79,227	0	842	6,541	0\%	54\%	54\%	Access Road, Pole, Work Pad

${ }^{1}$ (IFW)= Status was determined by MDIFW, provided in correspondence on 12/20/17. (ID)= Status was determined previously by MDIFW under the MPRP Project.
${ }^{2}$ Percent Total Impact reflects the area impacted (i.e., permanent fill, temporary fill, and forest conversion) within the 250 foot Significant Vernal Pool Habitat, excluding overlapping impact types,
${ }^{3}$ Pool depession is located outside of CMP-controlled land, however, the buffer extends onto CMP-controlled land.

Impacts to Pool Depression		Impacts to Upland Areas within 250 ft Buffer		Impacts to Wetlands within 250 ft Buffer			
Pool Direct Impacts	Pool Clearing Impacts	Upland Direct Impacts	Upland Temp Impacts	Upland Clearing Impacts	Wetland Direct Impacts	Wetland Temporary Impacts	Wetland Clearing Impacts
0	71838	1859	539469	1602701	110	90276	318935

Exhibit 7－6 Non Significant State and Federal Jurisdictional Vernal Pools（Revised 7／13／18）																												
vp＿10	segnent	NeM ${ }^{\text {a }}$	Exstins Conditions in Vemal Pool Habiat（750）				Proosed A Activiti i vemal Pool habitat（550）					Proposed Post．COnstruction Condition in vemal Pool thabitat（750）			Existing Sonditions in vemal Pool					Proposed Activtri ivemal Pool Deperesion and 100 E Eveloloe						Proposed Post－Construction Conditions in Vernal		
					Existing Forested $(\mathrm{sq} \mathrm{ft})$	Existing Percent Forested	$\begin{gathered} \text { Proposed } \\ \text { Wetland } \\ \text { Clearing (sq } \mathrm{ft} \text {) } \end{gathered}$					led 159	$\underbrace{}_{\substack{\text { Proposed Non－} \\ \text { foeseded（sati）}}}$			Total Habitat Area（sq $\mathrm{ft})($ depression and envelope）	（Non foested		distin Perent	$\begin{gathered} \text { Proposed } \\ \text { Wetland } \\ \text { Clearing (sq } \mathrm{ft} \text {) } \end{gathered}$		$\begin{array}{c\|} \text { Total Proposed } \\ \text { Forest Clearing } \\ (\mathrm{sq} \mathrm{ft}) \end{array}$					$\begin{array}{\|c} \text { Proposed Non- } \\ \text { Forested } \\ \text { Conditions }(\mathrm{sq} \mathrm{ft}) \end{array}$	
$\frac{119.07}{10.08}$	${ }_{3}$	${ }_{\text {264，265 }}^{205}$		${ }^{237.580}$	$\frac{1,788236}{}$	$\frac{889 \%}{88 \%}$	6，299		${ }_{\text {118，}}^{1188}$	$\frac{6.0 \%}{6.2 \%}$	${ }_{40}^{40}$		${ }_{\substack{356.178 \\ 300136}}^{\substack{\text { and }}}$	$\frac{81.96}{8.10 \%}$	${ }^{874}$		${ }_{\text {cher }}^{31,173}$	$\xrightarrow{27.850}$		0	${ }^{236}$	0	$\frac{0.0 \%}{0.0 \%}$	\bigcirc	\bigcirc	${ }_{\text {27，}}^{\text {27，50 }}$	$\frac{31.173}{\substack{2.802}}$	$\frac{472 \%}{42.2 \%}$
	${ }^{3}$	${ }^{265}$		${ }_{\text {216，7，00 }}^{25,142}$			－ 6.29	（106，288		¢	40 80 80	（1，	329，1．36 08503	$\frac{81989}{7788}$	${ }_{\substack{312 \\ 434}}$		${ }^{24.496}$				${ }_{\substack{2,366 \\ 1294}}^{\text {1294 }}$		－$\frac{9.3 \%}{34.9 \%}$	\bigcirc			${ }_{\substack{2.092 \\ 1.581}}^{\text {1，}}$	$\frac{26.28}{\substack{\text { 2．58 }}}$
${ }^{12.2}$	1	${ }^{29}$	${ }_{\text {1，} 1,872,985}$	8，9，047	${ }_{1}^{1,788,49}$	95．1\％	，	${ }^{2010,847}$	${ }_{\text {214，188 }}^{\text {21，}}$	${ }_{\text {din\％}}^{\text {dir }}$	${ }_{8}$	， 1.524 .661	${ }^{\text {a03，235 }}$				5.415	${ }_{34,355}$		0	（12，941	come		\bigcirc	0		－14，31	¢
${ }^{12.3}$	$\frac{1}{1}$	${ }_{\substack{30 \\ 20}}^{\substack{30}}$	${ }_{\text {L }}^{1,7,7,536}$	${ }^{2284,37}{ }^{24234}$	${ }_{\text {L }}^{1,490,139} 1$			84，377 10624 106	${ }_{\text {l }}^{\text {126，946 }} 1$		约	（1，			${ }_{8}^{8}$	$\underbrace{\text { 32，}}_{\substack{32437 \\ \hline 2237}}$	${ }^{27}$			${ }_{84}^{\circ}$	${ }_{4}^{961}$	${ }_{\substack{961 \\ 495 \\ 4 \\ \hline \\ \hline}}$		！	\bigcirc	31，476 4.58 18		－97，0\％ 14.08
${ }^{122.4}$	${ }_{3}^{1}$	${ }_{2}^{266}$	${ }_{\text {L }}^{1,7,7,0,033}$	${ }^{1.091010}$	${ }_{6} 690,024$	${ }_{38,7 \%}$	$\stackrel{\text { 25，190 }}{ }$	${ }_{38,400}$	－6，591		${ }_{80} 8$	${ }_{62643}$	1，154，6，00	${ }_{\text {35，2\％}}$	${ }^{28}$	33，24 124	1.948		50．68\％	0	0	0	0．0\％	0	0	${ }_{10,886}$	${ }_{16,48}^{12,48}$	
（120．02	${ }_{3}^{3}$	${ }_{\substack{266 \\ 266}}$	¢		（inc．			（in34,729 38,100			${ }_{40}^{40}$			${ }_{\text {che }}^{41.85 \%}$	－ $\begin{array}{r}28 \\ 28 \\ \hline 8\end{array}$	33,29 3,294 3，24		2，833 ${ }_{\text {c }}^{65}$	－	\％	！	！	－0．0\％	\bigcirc	！	${ }_{\text {2，} 283}^{65}$	（i，30,41 3,229	
${ }^{212.01}$	${ }^{3}$	${ }^{267}$	${ }_{\text {1，70，}, 516}$	$1.2090,06$	581,49	325\％	0	0	0	0．0\％	${ }_{80}$	581,49	${ }_{\text {1，200，066 }}$	${ }_{325 \%}$	${ }_{78}$	${ }^{34,600}$	26,73	${ }^{7,807}$	${ }^{22.68}$	0	0	0	0．0\％	0	0	${ }^{1,887}$	${ }_{26,93}$	${ }_{2268}$
${ }_{\text {12102 }}^{121202}$	${ }_{3}^{3}$	${ }^{268}$	${ }_{\text {L1，971，} 63}$		${ }_{\text {1，165，411 }}$	60.88	0	\bigcirc	\bigcirc	0．0\％\％	迷	，	－ 52222					${ }_{\text {12，}}^{12,63}$	${ }^{23,7 \% \%}$	0								
	${ }_{3}^{3}$	${ }_{272}^{27273}$	${ }_{\text {L }}^{1,7,70,0,54}$				5， 5	－3，24I 18809			40 40 40	${ }_{\substack{1,488,729}}^{\text {90，}}$		${ }_{\substack{50.88 \% \\ 60.48}}$	\％ 8 78 8	3，2， 3，600 3，60	16,393 20.023			10，689	${ }_{\substack{2,128 \\ 0}}^{\substack{\text { a }}}$	12.87	隹	O	${ }_{40}$	${ }^{\text {4，} 4.557}$	$\begin{array}{r}\text { 2，} 2,063 \\ 20.038 \\ \hline\end{array}$	
${ }^{123.03}$	3	${ }^{273}$	${ }^{1,927, \text { ，55 }}$	${ }^{740,0,62}$	${ }_{\text {L }}^{1,188,7,73}$	${ }^{613 \%}$	0	5.403	${ }_{5}^{5,403}$	${ }^{0.3 \%}$	${ }_{80}$	${ }_{\text {L，176，} 3 \text { ，}}$	${ }_{751,466}$		．${ }_{\text {L }}^{1.95}$		${ }_{\text {L4，54 }}^{\text {54，}}$	$\stackrel{0}{0}$	－0．0\％	\bigcirc	0	0	－0．0\％	0	\bigcirc	0		－0．0\％
$\frac{12045}{123.05}$	${ }^{3}$	${ }^{273}$	${ }_{\text {L }}^{1,7,78,0,035}$			${ }_{5}^{53,28 \%}$	${ }_{3}^{31,315}$			$\stackrel{\text { 22\％}}{2.28}$	${ }_{80}^{80}$			510\％	$\stackrel{28}{28}$	3，9，94 3,24	${ }_{\text {3，3，96 }}$	． 198	20．6\％	S	0	5.19	－	0	0	${ }_{\text {c }}^{4.98}$	33，086 3,096	$\stackrel{12.0 \%}{0.68}$
$\frac{12401}{12402}$	${ }^{3}$	${ }^{274}$	（1，78，033	${ }_{\text {2，1414，799 }}^{12725}$				$\underset{\substack{23.077 \\ 8.021}}{\substack{\text { and }}}$			40 200				－${ }_{28}^{28}$			$\stackrel{0}{1,23}$	－	$\stackrel{0}{15}$	\bigcirc	$\stackrel{0}{15}$	－	\bigcirc	\bigcirc	$\stackrel{0}{1,218}$		－
${ }^{12403}$	3	${ }^{275}$	${ }^{1,781,032}$	576,151	${ }_{\text {1，204，881 }}$	66778	${ }_{45,410}$	${ }_{123}^{1230}$	57，710	${ }^{3,2 \%}$	${ }^{199}$	${ }_{\text {1，47，7171 }}$	${ }_{63,881}$	644\％	${ }^{28}$	${ }^{33,24}$	${ }_{32,516}$	${ }_{7} 78$	${ }^{23 \%}$	0		0	0．0\％	0	0	${ }_{78}$	${ }_{32516}$	${ }_{\text {L }}^{23 \%}$
${ }^{12404}$	${ }_{3}^{3}$	${ }^{275}$	${ }^{1.790,515}$		${ }^{1.219,945}$	${ }_{\substack{6818 \\ 7728}}^{\substack{\text { che }}}$	${ }^{47,997}{ }^{2433}$				－			$\frac{6478 \%}{12208}$	78 881 89		${ }_{21,952}$	${ }_{\substack{12.688 \\ 46431}}^{\text {4，}}$		${ }_{\substack{1,885 \\ 879}}^{\text {cis }}$	${ }_{\substack{1.213 \\ 6.895}}^{\text {a }}$	$\underset{\substack{2,999 \\ 274}}{ }$		\bigcirc	\bigcirc		${ }_{\substack{24,51 \\ 7774}}$	
12406	${ }^{3}$	275，276	${ }^{2,142,745}$	545,407	${ }^{1.597238}$			${ }^{86223}$	${ }^{112887}$		${ }_{80}$	${ }_{\text {1．484，4，5 }}$	688，200	693%	${ }_{10,286}$	${ }_{0}^{09881}$	18,990	${ }_{4}^{41,891}$	46．1\％	${ }_{\text {15，988 }}$	${ }^{13,018}$	28.056	30．9\％	0	${ }_{40}$		7，046	
（12407	${ }^{3}$	${ }^{276}$						${ }_{\substack{\text { 92，2121 } \\ 1135050}}$	${ }^{\text {109，601 }} 17$	${ }_{\text {¢ }}^{5.18 \%}$	¢			${ }_{\text {chas }}^{64.58}$	cosis	－	${ }_{\substack{3,292 \\ 50204 \\ \hline \\ \hline}}$			0	${ }_{4}^{401}$	${ }_{40}^{00}$		O	0			
${ }^{13502}$	${ }_{3}^{3}$	${ }^{276}$	${ }^{1,7,70,514}$	${ }_{502988}$		${ }^{7199 \%}$	${ }^{2.024}$	${ }^{1099883}$	${ }^{111,908}$	${ }_{6}^{6.3 \%}$	${ }_{80}^{80}$	${ }_{\text {L，} 1,175,688}$	${ }_{6}^{614846}$	${ }^{65,7 \%}$	${ }^{78}$	${ }^{34,600}$	29，20	${ }_{\substack{\text { 5，333 } \\ \text { ，} \\ \hline 15}}$		0	$\stackrel{2.919}{2,19}$	${ }_{2,919}^{2,919}$	${ }_{8}^{8.48 \%}$		0	${ }_{2,413}^{2,48}$	${ }_{32,187}^{32,18}$	20\％
（1203	${ }_{3}^{3}$	${ }_{\text {276，} 277}^{27}$	${ }^{\text {L，8023，38 }}$	${ }^{\text {343，0，066 }}$		${ }_{\text {\％}}^{1729 \%}$	${ }_{\substack{4.312 \\ 6.231}}$	109，047 113,43	${ }_{\text {113，}}^{113,59}$		40 80 80		${ }_{\substack{465,2076}}^{46216}$		${ }_{1}^{1,177}$		${ }_{\substack{1.174 \\ 11,64}}^{\text {He，}}$	${ }_{\substack{3,111 \\ 41,37}}^{\substack{\text { 3，}}}$		（1，966	－			：	\bigcirc	－20，933 10,986	（1，333	
${ }^{126.60}$	3	${ }^{279}$	${ }^{2,001,402}$	${ }^{535.666}$	${ }_{\text {1，464，735 }}$	${ }^{73.28}$	${ }_{\text {15，933 }}$	${ }_{96,375}^{9}$	${ }^{11228588}$	${ }_{5}^{5.5 \%}$	${ }_{40}^{40}$	${ }_{\text {L }}^{1.352,367}$	${ }_{649095}^{60,5}$	67.68	${ }_{5}^{5,074}$		${ }_{9,132}$	${ }_{\text {ckes }}^{58,95}$	${ }_{86,5 \%}^{88 \%}$	$\stackrel{\text { 2，341 }}{\text { 2，}}$	${ }_{\text {1，5922 }}^{120}$	${ }_{\text {16，933 }}^{12,}$	${ }^{25.0 \%}$	0	\bigcirc	${ }_{41,62}^{40,62}$	${ }_{20,065}^{26,}$	${ }_{6}^{61.58}$
（1202	${ }^{3}$	${ }_{\text {279，}}^{2780}$				50．0\％		－${ }_{\text {118，466 }}^{1959}$	${ }^{127,242} 10.533^{\text {12，}}$		160 160 160	1,189888 789,780						¢		（	$\stackrel{\text { 25，4？}}{\substack{1 \\ 0}}$	${ }^{28,76}$		\bigcirc		¢	（114，59	
${ }^{126.69}$	3 3 3	280 280 280	${ }_{\text {L }}^{1.883,765}$		${ }_{\text {9659，99 }}^{\text {9060 }}$				${ }_{\text {10，}}^{10,55}$		80 80			$\underbrace{}_{\substack{46.48 \\ 46.78}}$	${ }_{\substack{411 \\ 2097}}^{\substack{\text { 20，}}}$		${ }_{\substack{16,537 \\ 4.567}}$	$\underbrace{\substack{\text { a }}}_{\substack{24,170 \\ 5,78}}$		${ }_{3}^{3,276}$	${ }_{\text {L }}^{1.67}$	4，9，93	${ }_{\text {12，}}^{12.28}$	！	\bigcirc	（19，174	21，480 4.568	$\frac{4728}{\substack{4728}}$
$\frac{127701}{127.02}$	${ }^{3}$	${ }_{281}^{280}$		${ }^{\frac{557,94}{76,985}}$		${ }_{\text {4．6．6\％}}$	＋12，	${ }^{5,7,422} 4$	${ }_{\substack{\text { 98，} 2,34 \\ 98}}$	${ }_{\text {c．} 5.56}$	${ }_{80}$			${ }_{\text {Lin }}^{46.78}$	，	4，4，60 3,60	${ }_{32,46}$		63\％	0	${ }_{0}$	${ }_{0}$	－0．0\％	0	0	${ }^{\frac{5}{2,1,65}}$	452，086 3246	$\underset{\substack{112 \% \\ 6.36 \%}}{ }$
${ }^{12703}$	${ }^{3}$	－ 28228	${ }^{1,781,033}$	${ }^{\text {932，747 }}$		${ }^{47368}$	${ }^{12,941}$	${ }^{40,598}$	${ }^{113,505}$		${ }_{40}^{40}$	${ }^{799,747}$	${ }^{1.051,1287}$	41．0\％	${ }_{28}^{28}$	－ 33,294	${ }^{23,5}$		${ }_{\text {2936\％}}^{293}$	5	${ }^{7} 4$	6.688	${ }^{20.088}$		${ }_{40}$			
${ }^{122809}$	${ }_{3}^{3}$	${ }^{283}$	${ }_{\text {1，7，0，514 }}$			${ }_{4}^{4208}$	－ 10,083	${ }^{202347}$	${ }^{\text {¢12，065 }}$	（i．	40 80 80	${ }^{12921,189}$	${ }_{\text {1，069，35 }}$	$4.80{ }^{4.38}$	${ }_{78}$	37，68 3，600	34，039 3,539			${ }_{880}^{880}$	0	880	（0．0．0．	！	0	$\begin{array}{r}2,764 \\ \hline 22 \\ \hline 22 \\ \hline\end{array}$	34，039 3,379	－
${ }^{128.02}$	3^{3}	${ }^{223}$	${ }_{\text {L，} 1,84,485}$	1，014，085	800，200	44.18	8.680	17，988	${ }^{26,558}$	1．5\％\％	${ }_{80}$	${ }_{77,642}$		${ }_{42.2 \%}$	${ }^{312}$	${ }_{37,91}^{3}$	${ }_{33,57}$	${ }_{4}^{4.049}$	${ }^{11.6 \%}$	${ }^{3,907}$	0	${ }_{\substack{3.009 \\ \hline 1.098}}$	${ }_{\text {10，}}^{10.3 \%}$	0	\bigcirc	${ }_{\text {L988 }}^{4.48}$	${ }^{37,94}$	
\％	${ }^{3}$	${ }_{284}^{284}$		${ }^{\text {L }}$		${ }^{\text {4 }}$	8，${ }^{8.30}$	（10．57		$\stackrel{10 \%}{0.0 \%}$	$\substack{80 \\ 80 \\ \hline \\ \hline}$			${ }_{\text {a }}^{40.368}$	\％，48，				\％	\％，99	4,59		\％	0		$\stackrel{\text { 22，08 }}{0}$	3．4．600 3	－
\％ 128.85	${ }_{3}^{3}$	${ }_{\text {cki }}^{284}$		${ }^{668.388}$		${ }_{\substack{62788 \\ 688}}^{60}$	$\stackrel{0}{20.016}$	－	${ }_{\substack{269 \\ 2898 \\ 268}}$	－	80 40 8			$\frac{627 \%}{674}$	（78			${ }_{\text {che }}^{\text {603 }}$		\bigcirc	$\stackrel{0}{10}$	$\stackrel{0}{8143}$	O．0．0\％	0	\bigcirc	coib	${ }^{33,50}$	$\frac{1986}{1298}$
\％ 128007	${ }^{3}$	${ }_{284}^{28,285}$	${ }^{\text {L，} 1,877,8,80}$	${ }_{6}^{684,97}$	${ }_{\text {L }}^{1.243,383}$	${ }_{6628}$	${ }_{10,455}^{20.065}$	－		$\stackrel{{ }_{\text {L2\％}}}{\text { 22\％}}$	${ }_{40}^{40}$		607，967 66,667	6408\％			$\xrightarrow{3.003} 9$			＋1096	1，07 1.62	${ }_{\substack{8.193 \\ 1.983}}^{\text {c，}}$	$\frac{17.0 \%}{4.28}$	\bigcirc	$\stackrel{0}{0}$	${ }_{\substack{5,991 \\ 35.551}}^{\substack{\text { c，}}}$	41，966 1.070	$\frac{1236}{12.48}$ 104
${ }^{128.08}$	${ }^{3}$	${ }^{2255}$	${ }_{\text {1，814，283 }}$	${ }^{547,725}$	${ }^{12266,599}$	698\％	${ }_{18,89}$	${ }^{28,720}$	${ }_{47,619}^{49}$	${ }_{\text {2，} 26 \%}$	${ }_{80}^{80}$	${ }_{1}^{1,218990}$	${ }_{\text {cos，}}^{594}$	67.28			${ }^{27,381}$	${ }^{10,610}$	${ }^{27,9 \%}$				${ }_{\text {138\％}}^{13,}$					
$\frac{12.01}{12.01}$	${ }^{3}$	${ }_{225}^{225}$		${ }^{\frac{342,211}{562011}}$	$\frac{1248,309}{1,27003}$	${ }_{\text {cosem }}^{689}$	${ }_{\text {24，}}^{\text {2432 }}$	${ }_{\substack{2,9,94 \\ 23,38}}$	${ }_{\text {4，997 }}^{57,70}$	－	旡	${ }_{\text {L }}^{1.120,3023}$		${ }_{\text {che }}^{6.9 .9 \%}$	${ }_{78}^{78}$	34，000 3.600	${ }_{\text {2，}}^{29.1045}$	${ }_{\text {9，4．46 }}^{4.65}$		$\stackrel{1.068}{87}$	－$\frac{3,068}{}$	$\stackrel{4.45}{87}$	－	\bigcirc	\bigcirc		${ }_{\text {2，}}^{\text {20，035 }}$	
${ }^{129.02}$	${ }^{3}$	${ }_{2}^{285}$	${ }_{\text {2，171，502 }}$	${ }^{\text {998，033 }}$	${ }^{\text {1．119，499 }}$	529\％	${ }^{72,749}$	${ }^{29,9,97}$	${ }_{\text {102，631 }}^{102}$		\％			（48，	${ }_{\substack{3,80 \\ 3120}}$	¢，	${ }_{\text {l }}^{17,081}$	${ }_{\text {4，}}^{4.369}$		0	0	$\stackrel{0}{10}$	－	\bigcirc	\bigcirc			
	${ }_{3}^{3}$	¢ 285		${ }^{1.008233}$				30，388	9，9891		\％	（680，122		${ }_{\substack{3,88 \% \\ 48.78}}$				${ }_{\text {14，} 284}^{587}$		${ }_{\text {6，300 }}$	4，552							
${ }^{129.05}$	${ }^{3}$	${ }_{286}$		${ }^{905,6,65}$	${ }_{\text {L }}^{1.175,24}$	${ }_{5}^{593 \%}$	${ }^{4.50,012}$	9，044		${ }^{\text {c．}}$ 3．8\％	${ }_{\substack{80 \\ 80 \\ 80}}$			${ }_{55,88}$	${ }^{1,459}$	${ }_{6}^{61,1,84}$	60，324	${ }^{861}$	${ }^{1.46 \%}$	0	0	0	0．0\％	0	0	${ }_{861}{ }^{39}$		－14\％
－	${ }^{3}$	${ }_{\text {286 }}^{288}$		${ }_{\text {a }}^{\text {43，} 31212}$	$\frac{1.66024}{1,484,053}$			¢，	${ }_{\text {L12，}}^{12189}$		${ }_{40}^{40}$		${ }_{\substack{\text { 55，7，73 } \\ 423,05}}$		${ }_{\text {¢ }}^{112}$	7,754 3,522		${ }^{4,0,54}$		${ }_{\substack{\text { 3，569 }}}^{\substack{\text { 306 }}}$	${ }_{378}$		${ }_{\text {L }}^{1.128 \%}$	\bigcirc	$\stackrel{40}{0}$		${ }_{\text {chen }}^{\text {31，655 }}$	－
	${ }^{3}$	${ }^{287}$	${ }_{\text {1，70，}, 59}$	${ }^{308585}$	${ }_{\text {1，4820，}}$	${ }_{8288}^{828}$	${ }_{\text {35，881 }}$	${ }_{7,8896}$	${ }^{112,777}$	${ }^{6.36 \%}$	${ }_{40}$	${ }_{\text {1．369，226 }}$			${ }^{78}$	${ }_{34,600}$	${ }_{18,966}^{126}$	${ }^{15,984}$	${ }_{46.28}^{48}$	${ }^{7,304}$	4.248	1.552	${ }^{33.48}$		0	4.433	30,188	
${ }^{121209}$	${ }^{3}$	${ }^{287}$		30，945	${ }_{\text {L，} 1,4,589}$	82.6		－	${ }_{112009}^{10.2}$		${ }_{40}$	， 1,544			${ }_{\text {281 }}^{28}$			${ }_{\text {4，3 }}$		\％ 68	900	0		0	－	${ }^{43}$		
${ }^{13.1}$	$\stackrel{1}{1}$	${ }_{30}$				9，15\％	${ }_{\substack{\text { 32，25 } \\ 56.464}}$	127，31 12501	${ }_{\text {192，}}$	－10．4\％	年 ${ }_{80}$				$\stackrel{\text { 1，35 }}{1.35}$	${ }_{\substack{4.8305 \\ 4830}}^{\text {ata }}$	${ }_{\text {L，}}^{4.851}$	（ince										
${ }_{130.01}$	${ }^{3}$	${ }^{287}$	${ }_{1,882,113}$	${ }^{3242482}$	${ }_{\text {L }}^{1,38,6,31}$	81.8%	${ }^{70,843}$	44，700	115.543	${ }_{6.1 \%}$	200	${ }^{1,242,088}$	${ }_{458,025}$	75，7\％		47381	46,895	${ }_{536}$	${ }^{1.19 \%}$	0	0	0	－0．0\％	0	0	${ }_{5}^{536}$	${ }_{46,845}^{4.085}$	¢，
${ }^{130.02}$	${ }^{3}$		${ }_{\text {L }}^{1.8,4,2884}$		${ }_{\text {L }}^{1,3888988}$	${ }^{76,6 \%}$	－	${ }^{\text {B1，406 }}$	${ }^{113,135}$	${ }^{6.2 \%}$	${ }_{40}^{40}$		${ }_{\text {cki }}^{588818}$	${ }^{70.36 \%}$	${ }_{\text {312 }}$	37，90．	${ }^{28,05}$	9，988	${ }^{26.286}$	${ }_{7,842}^{7}$	\bigcirc	${ }_{7}^{2,892}$	${ }^{20.68 \%}$		0	2.096		
（1303	${ }_{3}^{3}$			${ }^{\text {457，989 }}$		${ }_{\text {\％}}^{13.12 \%}$	¢	${ }_{\substack{30.655 \\ 56.414}}$	${ }_{\text {L12，}}^{112.699}$		${ }_{\text {c }}^{40}$			${ }_{\text {chem }}^{6.9 .9 \%}$	${ }^{78}$	34，000 3，600	34，57 22， 24	${ }_{11,966}^{23}$		${ }_{2,157}^{2}$	${ }_{7}^{7,20}$	\bigcirc		！	\bigcirc	－${ }_{\text {239 }}^{2.189}$		
${ }^{130.05}$	${ }^{3}$	288	${ }^{1,798,318}$	${ }_{538,874}$	1，259，45	70.08	${ }_{53,382}$	${ }_{57,74}$	111.116	${ }^{6.2 \%}$	${ }_{80}$	${ }_{\text {1，148，39 }}$	649,989	63.95	${ }_{107}^{107}$	${ }_{35,655}$	35，47	${ }^{258}$	0．7\％	0		0	0．0\％	0	0	${ }^{258}$	${ }^{35,407}$	${ }^{6.78 \%}$
	${ }_{3}^{3}$	288		${ }_{\text {L81，899 }}^{476712}$		${ }_{\text {\％}}^{73,188}$		¢	${ }_{\text {1212，}}^{11275}$			（1，95966			${ }_{18}$			${ }_{\text {11，}}^{11.94}$	－ 3 3，5\％		3，099	¢， 9.747		\bigcirc	\bigcirc	（2， 2106		${ }_{\text {c．a．}}^{6.68}$
${ }^{130.08}$	${ }_{3}^{3}$	－ 288		${ }_{507,8,43}$	－1，7349200	${ }_{7}^{7,4.4}$	${ }_{5}^{53,362}$	${ }_{\text {78，311 }}$	${ }^{1312,73}$	${ }_{5} 5$	${ }_{80}^{80}$			${ }^{71.56}$	（18．68	¢	$\xrightarrow{2.4 .455}$				${ }_{7,650}$		－	0	40	（i2039		
（130．10	${ }_{3}$	－				$\frac{7358}{7128}$		59，47 70,159	${ }^{1212,630}$	－	40 40 80		¢		18 28 188			12,139 10 1		9，880	\bigcirc	9，880	${ }_{\text {28，}}^{28.08}$	\bigcirc	\bigcirc	2,259 10	－323，31 3 3，24	
	3^{3}	${ }_{288}^{288}$	${ }_{\text {1，851，109 }}$	400,1		${ }_{78,46}$	${ }^{4,563}$	${ }^{109}$	${ }^{113,984}$	${ }_{6}^{6.2 \%}$	${ }_{80}$			${ }^{122 \%}$	${ }_{455}^{45}$		${ }^{4.7,70}$	${ }_{1,2,27}^{1,267}$	${ }^{29 \%}$		2	2	0．0\％\％	0	0	${ }_{\text {1，265 }}^{1,2}$		
${ }^{130.13}$	${ }_{3}^{3}$	－ 288	Li， $1.89,988$	¢	退 212	\％，9，8\％			${ }_{\text {c，}}^{5080}$		${ }_{80}$		退	7．4．88	－	－			51．48	\bigcirc	$\stackrel{0}{125}$	${ }_{124}$	0．0\％	0	0			
	${ }^{3}$	${ }^{200}$	${ }_{\text {L，} 1,222,399}$	1075，667		${ }_{41,0 \%}$	${ }_{\text {\％}}^{3}$	${ }^{\text {8，9，086 }}$	${ }_{92,51}$		${ }_{80}^{80}$	${ }_{654422}$	${ }_{\text {1，188，217 }}$	${ }_{\text {3 }}^{3}$	${ }_{50}$	${ }_{38860}$	${ }^{56,744}$	${ }_{\text {12，116 }}$		0	${ }^{1,25}$	$\stackrel{0}{0}$	－	0	\bigcirc	${ }^{12,116}$	${ }_{\substack{56,074 \\ 26,74}}$	－
${ }^{131.02}$	${ }^{3}$	290	${ }^{2.004,718}$	${ }^{1,202,750}$	${ }_{801,988}$	40．0\％	${ }_{3,465}$	${ }^{1012,27}$	104，722	5．2\％	${ }_{80}$	697225	${ }^{1.307,492}$	34．8\％	${ }_{4,3,32}^{4}$	${ }^{67,734}$	${ }^{42,45}$	${ }_{\text {25，329 }}$	37．4\％	0	${ }_{15,97}$	${ }_{15,97}$	${ }^{23,6 \%}$	0	0	${ }_{9,3,32}$	${ }_{58,41}$	${ }_{\text {138\％}}^{\substack{1288}}$
	${ }_{3}^{3}$	${ }^{290}$			（12127212						－	（1，04238	${ }_{\substack{\text { 800，500 } \\ 60225}}^{\text {a }}$		${ }^{1,399}$			（12，273	${ }_{\text {20，2\％}}^{5.18}$	\bigcirc	\bigcirc	\bigcirc	－0．0\％	\bigcirc	$\stackrel{0}{0}$	－	40，700 $\begin{array}{l}\text { 31594 }\end{array}$	${ }_{\substack{20.28 \\ 5.18}}^{\substack{\text { che }}}$
${ }^{131.048}$	${ }^{3}$	291	${ }_{\text {1，984，088 }}$		${ }_{\text {L，} 12414,089}$	${ }^{123 \%}$	${ }_{45,528}$	63，791	109319	${ }_{5}^{5.5 \%}$	${ }^{200}$	${ }^{1.3047,79}$	69729	65.8%	${ }^{3}, 642$	63,77	${ }_{52,37}$	${ }_{\text {11，411 }}$	${ }_{\text {18，}}^{18 \%}$	0	0	0	0．0\％			${ }_{\text {11，411 }}^{10}$	${ }_{52,37}$	
	${ }^{3}$	${ }_{292}^{292}$	${ }_{\text {L }}^{\substack{1,84,2,285 \\ 1,781035}}$	${ }_{\text {424，} 317}^{407}$		${ }_{\text {l }}^{7288 \%}$	28，390 4.850	83，889 107625	${ }_{\text {12122 }}^{112.215}$		160 40 40			${ }_{\substack{70.6 \% \\ 659 \%}}^{\substack{\text { a }}}$	${ }^{312}$	－3，991 33294 1		${ }_{\substack{2,858 \\ 12.654}}^{\text {2，}}$		${ }_{1.470}$	${ }_{\text {11，55 }}^{0}$	$\underbrace{\substack{\text { a }}}_{\substack{1,470 \\ 11,59}}$		！	${ }_{40}^{0}$			
${ }^{13202}$	${ }_{3}^{3}$	${ }_{\text {293 }}^{293}$	${ }_{\text {1，24，0，52 }}$	${ }^{\text {920，333 }}$		${ }_{53}^{53,16}$	${ }_{2}^{2,388}$	${ }_{\substack{85,820 \\ 4822}}$	${ }_{88,218}$	${ }_{4.46 \%}^{4.6 \%}$	${ }_{80}$	${ }_{\text {933，800 }}$	${ }^{990,251}$	${ }_{\text {4．5．5\％}}^{4.5}$	${ }^{282}$	${ }_{52571}$	${ }^{38,369}$	${ }_{14,202}^{120}$	27，0\％	0	${ }^{7,647}$	［，677	${ }^{14.5}$	0		${ }_{6}^{6.555}$	${ }_{46,016}$	${ }_{\text {125\％}}^{\text {12，}}$
（1323	${ }^{3}$	${ }^{293}$		${ }^{920,935} 6$			${ }_{58,706}$	${ }_{\substack{4.232 \\ \text { Si，} 51 \\ \hline 121}}$			40 80		¢		185 185		${ }_{\text {3，}}^{3,025} \mathbf{3 , 2 5}$	¢ 86 867		$\stackrel{0}{0}$	\bigcirc	\bigcirc	${ }^{\text {0．0．0\％}}$	\bigcirc	\bigcirc	$\frac{248}{867}$	¢，$\frac{3}{3,051}$ 3,255	（e，
${ }^{1330.02}$	${ }_{3}^{3}$	${ }_{294}^{294}$		${ }^{7024046}$		${ }_{6548}^{68}$	${ }_{\text {S4，732 }}$	${ }_{\text {chere }}^{6,89}$	${ }^{122,600}$	6．0\％\％	${ }_{80}$	${ }_{\text {1，202429 }}$	${ }_{\text {8250，}}^{8,068}$	${ }_{59,3 \%}$	${ }_{\text {L }}^{1,5151}$	${ }_{6}^{67,659}$	${ }_{6}^{61,703}$	${ }_{5}^{5,936}$	${ }^{888 \%}$	1.996	0	1.96	3．0\％\％	0	0	${ }^{3,490}$	${ }_{\text {che }}^{63,99}$	5．8\％\％
	${ }_{3}^{3}$	${ }_{295}^{295}$					－${ }_{\text {32，919 }}^{30.49}$	${ }_{\substack{12,189 \\ 84286}}$			40 80 80			${ }_{7}^{17.68 \%}$	＋，	499688 78,526		${ }_{\substack{\text { c，} \\ 6.355}}^{2.40}$		0	1	1	－0．0\％	O	\bigcirc		${ }_{\substack{4,1.158 \\ 72.12}}$	
${ }^{134401}$	${ }^{3}$	${ }^{297}$	${ }_{\text {1，93，9，93 }}$	${ }_{59,89}$	${ }_{\text {1，340，0，9 }}$	693\％	${ }_{4}^{42,988}$	${ }_{74,116}$	177.14	${ }_{6}^{6.1 \%}$	${ }_{80}$		71.008	${ }^{63.2 \%}$	${ }^{2.883}$	${ }_{56,30}$	${ }^{28,285}$	${ }^{28,065}$	49.8%	1.558	16.018	${ }_{17,677}$	${ }_{31.46}^{3,48}$	0		${ }^{10,388}$	${ }_{45,92}$	
${ }^{\text {13402 }}$	${ }^{3}$	${ }^{297}$		${ }_{\text {505，388 }}^{425.52}$		${ }_{7}$	${ }^{35,53}$			－	${ }^{\text {do }}$	${ }_{\text {L }}^{1.2650 .982}$				（is．036	$\begin{array}{r}\text { 2，4，45 } \\ \hline 2,45 \\ \hline\end{array}$	${ }^{201,088}$	年	－				0	0		3， 2,005 32,05	¢，
13404	3	297	${ }_{1.828,621}$	433，37	${ }_{1}^{1.394,884}$	76．3\％	23,55	90，188	113，788	6.2%	80	${ }_{\text {1，28，1，46 }}$	547,75	70．1\％	330	39，900	${ }^{31,166}$	8，733	21．9\％	3.597	1.837	5，434	13.6%	0	0	3.300	36，00	83\％

Exhibit 7－6 Non Significant State and Federal Jurisdictional Vernal Pools（Revised 7／13／18）																												
vp＿ID	Segnent	Nем ${ }^{\text {a }}$	Exstins Conditios in vema Pool habiat（750）				Proosed A Activtri V Vemal Pool habitat（50）					Proposed Post．Construction Conditions in Vemal Pool Habitat（TS0）														Proposed Post－Construction Conditions in VernalPool Depression and 100 ＇Envelope		
			$\begin{array}{\|} \begin{array}{c} \text { Total Vernal Pool } \\ \text { Habitat Area (sq } \\ \mathrm{ft}) \end{array} \end{array}$			Exising Perent	$\begin{gathered} \text { Proposed } \\ \text { Wetland } \\ \text { Clearing (sq } \mathrm{ft}) \end{gathered}$	$\left.\begin{gathered} \text { Proposed } \\ \text { Upland } \\ \text { Clearing }(\mathrm{sq} \mathrm{ft}) \end{gathered} \right\rvert\,$	$\begin{gathered} \text { Total } \\ \text { Poposed } \\ \text { Cearing } \\ \text { saf } \end{gathered}$			Foresed（sa			$\underbrace{}_{\substack{\text { Pool sice sad } \\ \text { sta }}}$	$\begin{aligned} & \text { Total Habitat } \\ & \text { Area (sq } \\ & \mathrm{ft} \text {)(depression } \\ & \text { and envelope) } \end{aligned}$			$\underbrace{}_{\substack{\text { using Perentent } \\ \text { Foresed }}}$	$\begin{gathered} \text { Proposed } \\ \text { Wetland } \\ \text { Clearing (} \mathrm{sq} \mathrm{ft} \text {) } \end{gathered}$		$\begin{array}{\|l} \text { Total Proposed } \\ \text { Forest Clearing } \\ \text { (sq ft) } \end{array}$		Direct Impact to Pool Depression $(\mathrm{sq} \mathrm{ft})$			$\begin{gathered} \text { Proposed Non- } \\ \text { Forested } \\ \text { Conditions }(\mathrm{sq} \mathrm{ft}) \end{gathered}$	$\left\|\begin{array}{c} \text { Proposed } \\ \text { Percent Forested } \\ \text { Conditions (sq } \mathrm{ft}) \end{array}\right\|$
$\frac{14709}{1480}$	$\stackrel{4}{4}$	${ }^{327}$	${ }^{2.188,582}$［180	${ }^{\text {700．037 }}$	$\frac{1.884 .455}{1.295}$	$\frac{680 \%}{68.36}$	0	\bigcirc	0	0．0\％\％	$\xrightarrow{150}$	${ }_{\text {L }}^{1.848,545}$	$\frac{700037}{6030}$	$\frac{680 \%}{638 \%}$	$\frac{11.829}{112}$	${ }_{\text {10，}}^{10.466}$			$\frac{2188 \%}{298 \%}$	0	\bigcirc	\bigcirc	0.00%	\bigcirc	${ }^{30}$			$\frac{2188 \%}{\substack{2,8 \%}}$
		${ }^{328,39}$								－0．0\％	¢ ${ }_{\text {150 }}^{\text {150 }}$				（1，129							O				14，844 1.043		
${ }^{148083}$	4	${ }^{328,329}$	${ }^{\text {2，003，518 }}$	${ }_{501,084}$	${ }_{1}^{1.502,43}$	750\％	0	。	0	${ }_{\text {O．}}^{0.008}$	${ }_{\text {1 }}^{150}$		${ }_{\text {coin }}^{50,084}$	${ }_{\text {75，}}^{750 \%}$	（1，519		－ 6	${ }_{3}^{\text {3，081 }}$		0	0	0	迷	0	\bigcirc			
－148．94	$\stackrel{4}{4}$	${ }^{328,39}$	${ }_{\text {1．872，} 280}$	${ }_{\text {L7 }}^{47,864}$	${ }_{\text {L }}^{1.393,4616}$	${ }_{\text {74，5\％}}^{73,5 \%}$	\bigcirc	\bigcirc	\bigcirc	${ }_{\text {coior }}^{0.00 \%}$	${ }^{\frac{120}{150}}$	${ }_{\text {L }}^{1.393 .466}$		${ }_{\text {74．5．}}^{72.58}$	（ ${ }_{\text {cos }}^{\substack{\text { 2052 }}}$	45.880 6053 6.5		${ }_{4}^{0}$	0．0．0\％	\bigcirc	\bigcirc	！	0．0\％\％	\bigcirc	0 30	${ }_{4}$	${ }_{\substack{45,880}}^{6080}$	－
（14806	4	${ }^{3238}$	${ }^{\text {L，} 2,031,095}$	${ }^{\text {540，721 }}$	${ }_{\text {1，4，20374 }}^{1.20,3}$	${ }_{63,0 \%}$	0	\bigcirc	\bigcirc	－0．0\％				，	（i，	coich	co．0．083		－	\bigcirc	！	！	－	\bigcirc	30 0		${ }_{\substack{60,080 \\ 70.053}}$	
	$\stackrel{4}{4}$	${ }^{\text {329 }}$		${ }_{\text {ata }}^{\text {47，575 }}$		${ }_{\substack{7.7 .78 \%}}^{5188}$	\bigcirc	\bigcirc	：	－0．0\％					（1，54	－46,891 6.4602	$\xrightarrow{45,580}$	（e932	－	\bigcirc	！	！	－0．0\％	\％	11	（e932		－
${ }^{199902}$	$\stackrel{4}{4}$	${ }_{\substack{330 \\ 330}}$	${ }_{\text {L，} 1,788388}$	${ }^{990,722}$	${ }_{\text {807，566 }}$	${ }_{4.958}$	0	\bigcirc	0	0．0\％	${ }^{135}$	${ }_{\text {807，566 }}$	900，722	${ }^{44.9 \%}$		${ }_{\text {35，699 }}$	${ }_{3,5699}$	\bigcirc	0.0%	0	0	0	－0．0\％	0	${ }_{30}$		－	－
（190．03	$\frac{4}{4}$	（i30	${ }_{\text {L }}^{1.887,587}$		${ }_{\substack{688409 \\ \hline 0033 \\ \hline 18}}$		\bigcirc	\bigcirc	\bigcirc	－0．0\％\％	${ }^{\frac{120}{120}}$	688409 70033 703				${ }_{\substack{41,265 \\ 83061}}^{\text {cier }}$	61.63	${ }_{21,388}$	－0．08\％	\bigcirc	\bigcirc	\bigcirc	－0．0\％	\bigcirc	\bigcirc	${ }_{21388}^{208}$	${ }_{\substack{41,265 \\ 66.163}}^{\text {che }}$	－
${ }_{-150.1}$	1	${ }^{35}$	${ }_{\text {1，299，519 }}$	${ }^{3} 8.3516$	${ }_{\text {1，819，203 }}$	${ }_{984 \%}$	0		25	${ }_{\text {1228 }}$	${ }_{8}^{180}$	${ }_{\text {L }}$		${ }_{\text {S }}^{361 \%}$	， 6	\％，001	\％		100\％	0	2， 216	${ }_{2}$	O．0．0．	\bigcirc	．	21，986		－
${ }^{\text {\％}}$			退， $1.82,1,199$	${ }^{855,44} 77$			0	0		O．0\％\％		（1010，734		S4．3\％	（1，20			年，			0	0	0．0\％	0	0	年，	${ }_{\text {38，822 }}$	－ 17.0%
${ }^{150.03}$	4	${ }^{332}$	${ }^{\text {2，009，928 }}$	${ }^{734,230}$	${ }^{1,275,5,98}$	${ }_{6} 6.36 \%$	0	0	0	0．0\％	${ }_{150}$	${ }_{\text {1，}}^{1,2,5,9,98}$	${ }^{734,230}$	${ }_{6} 6.56$	${ }_{1,312}$	${ }^{\text {65，93 }}$	${ }_{50,332}$		$\xrightarrow{1288}$	0	0	0	－0．0\％	0	\bigcirc			$\xrightarrow{12288}$
－ 150.098	$\stackrel{4}{4}$						\bigcirc	\bigcirc	\bigcirc	－				${ }_{\substack{62.188 \\ 6.358}}^{\text {cis }}$	${ }_{\substack{297 \\ 362}}^{2}$	40,290 40.691	40，200 37,703	$\xrightarrow{2,989}$	－0．0\％	\bigcirc	！	！	－	！	$\stackrel{0}{0}$	$\stackrel{0}{2,989}$	40,200 37,703	$\substack{0.00 \% \\ 7.36}$
${ }^{15150.01}$	4	${ }^{335}$	${ }^{1.856,643}$	${ }^{794,256}$	${ }_{\text {1，062，387 }}$	55.2%	0	0	0	0．0\％	${ }^{150}$	${ }_{\text {L }}^{1.0023887}$	${ }_{\text {794，266 }}$	${ }_{5}^{5122 \%}$	${ }^{863}$	${ }_{\text {44，07 }}^{3,07}$	${ }^{29,934}$	${ }_{\text {14，173 }}^{12}$	32.18	0	0	0	0.0%	0	0	${ }_{\text {14，173 }}^{12}$	${ }_{\text {2，9，34 }}$	
	$\stackrel{4}{4}$	${ }^{335}$			（1，053，302		\bigcirc	\bigcirc	\bigcirc	－0．0\％						（ibs31		${ }^{\frac{1}{2,028}}$	－	\bigcirc	！	\bigcirc	O．0．0\％	O	${ }^{30}$	（1，028		
${ }^{151.04}$	4	${ }^{\text {334 }}$			${ }_{\text {1．03，}{ }^{\text {a }} \text {／16 }}$	${ }^{\text {57，4\％}}$				0．0\％	${ }_{90}$	${ }_{1}^{1.083,46}$		${ }_{57,4 \%}$		${ }_{48,898}$			${ }^{12.48}$			0	0.0%			${ }_{6,047}^{6,04}$	${ }_{4}^{42,8}$	6．2\％
${ }^{152021}$	4	${ }^{338}$	$2.018,179$	${ }^{1.065,071}$	${ }_{\text {953，109 }}$	472%	0	0		0．0\％	${ }^{300}$	${ }_{\text {953，109 }}$	${ }^{1.0650971}$	47.26	${ }_{4,812}^{4,2}$	${ }^{20,53}$	${ }_{62835}$	7，702	12.98	0	0	0	0．0\％	0	${ }^{30}$	${ }^{7,702}$	${ }^{62885}$	
－	4	${ }_{\text {3，}}^{3}$	${ }^{1.882,464}$	－64．588		${ }_{\text {cki }}^{626 \%}$	0	0	\bigcirc	${ }_{0}^{0.00 \%}$	${ }_{2}^{200}$			26\％		40.30 4.531 4.51	${ }_{\text {40，}}^{20.30}$	${ }_{1.587}^{1.8}$	－		O	O	0．0．0\％	\bigcirc	\bigcirc		40，300	（0．0\％
	4	${ }_{34,345}$		${ }^{1020.5988}$	cole		\bigcirc	\bigcirc	0	－0．0\％	${ }^{240}$				－	${ }_{4}^{4.3,313}$	${ }_{22,94} 2$	${ }^{17,899}$	44228	0	0	0	0．0\％	0	0	$1,1,57$ 1,789	${ }_{\text {L }}^{\text {2，494 }}$	¢
	$\stackrel{4}{4}$	${ }^{344,345}$	（2，09，544	${ }_{\text {1．1．53，} 1.64}^{1.085}$		${ }_{\substack{4588 \% \\ 4236}}^{4}$	\bigcirc	\bigcirc	\bigcirc	－0．0\％	180 200 260			${ }_{\substack{4.58 \% \\ 423 \%}}^{\text {a }}$	${ }_{\substack{2,488 \\ 856}}^{\text {a，}}$	${ }_{\text {fro．119 }}$										${ }_{1,887}^{128}$		${ }^{28,7 \%}$
${ }_{15505}$	4	${ }^{344}$	2，13，9，20	1，347，765	${ }_{791986}$	370\％\％	0	0	0	0．0\％	260	${ }_{9919856}$	${ }_{1}^{1,3477,75}$	370\％	4，614		${ }_{82,131}$	2.972	${ }^{35 \%}$	0	0	0	0．0\％	0	0		${ }_{82,131}^{81}$	
${ }_{15506}^{1506}$	4	${ }^{\text {343 }}$		${ }_{\text {1．44，1700 }}$		$\frac{37778}{6026}$	0	0	0		300 300 0		${ }_{\text {L }}^{1.4 .4,1,170}$	$\frac{33778}{6,726}$			${ }_{\text {111，044 }}^{13828}$	${ }_{\text {L，77 }}^{1,78}$	${ }^{1.58 \%}$	0	0	0	0.08	0	${ }^{30}$	${ }_{\text {1，777 }}^{1,7}$		1．5\％
${ }_{\text {156022 }}$	$\stackrel{4}{4}$	${ }_{\text {346 }}{ }_{\text {346 }}$	${ }_{\text {L，} 1,818,543}$	${ }_{6999786}$	${ }_{\text {L }}^{\text {1，119，0，068 }}$	${ }_{6}^{60.15 \%}$	\bigcirc	\bigcirc	\bigcirc	－0．0\％	䰲300	${ }_{\text {1，110，088 }}$	${ }_{6999746}$	${ }_{6}^{6.15 \%}$	${ }_{2}^{23}$	${ }_{\substack{38,460}}^{3,46}$	${ }_{\substack{38,06 \\ 3,7313}}$	${ }_{1,147}^{1,47}$	${ }^{3.0 \%}$	\bigcirc	0	！	0．0\％	0	30 30	${ }_{1,147}^{1,4}$	${ }_{\substack{38,06 \\ 3,7,313}}$	－
${ }_{\text {－}}^{156.63}$	4		${ }^{1,929,887}$	${ }^{7882295}$	${ }_{\text {Li，138，628 }}$	59.18	0	0	0	0．0\％	${ }^{330}$	${ }_{\text {Li，138，688 }}$	${ }^{788829}$	${ }_{\text {59，}}^{51 \%}$	－	${ }_{5}^{54.4}$	${ }_{\text {54，}}^{543}$		0．0\％	0	0	0	0．0\％	0			${ }_{\text {54，33 }}$	0．0\％
	4	（	（1，995．24				\bigcirc	\bigcirc	\bigcirc	－0．0\％					${ }_{\substack{2.013 \\ 324}}$			－1，931	$\xrightarrow{36.9 .9 \%} 0$	！	！	！	$\frac{0.0 \% \%}{0.08 \%}$	！	${ }_{60}$			36.98 0.08
${ }^{157.02}$		348,349	${ }_{\text {L，} 1,822,2085}$	${ }_{975,789}^{1020,}$	${ }_{90,6296}$	48828	0	0	0	0．0\％	${ }^{240}$	${ }_{906,296}$	${ }_{\text {，}}^{\text {975，789 }}$	${ }_{48,28}$	${ }_{851}$	${ }_{4}^{47,886}$	${ }_{47,686}$	0	0．0\％	0	0	0	0.0%	0	0	0	${ }_{47,886}^{46}$	0．0．0\％
${ }^{1575}$	4	${ }^{348,399}$	${ }^{2,021,257}$	${ }^{1,1218,025}$	${ }_{\text {893，323 }}$	4428	0	0		0．0\％\％	${ }^{300}$	${ }_{\text {893，232 }}$	${ }_{\text {1，128，025 }}$	4428	${ }_{\text {L }}^{1.3,30}$	${ }_{6,8800}$	6,8800	\bigcirc	0．0\％8	0	0	0	0.0%	0	${ }^{60}$	，	${ }_{66,800}^{6}$	0．0\％
	$\stackrel{4}{4}$	${ }^{348,39}$		${ }^{1,3,82,044}$			0	$\stackrel{0}{0}$	0	${ }_{0}^{0.00 \%}$	$\stackrel{\text { 295 }}{300}$		（1．350，474		¢，			${ }_{60,318}$		0	0	\bigcirc	0．0\％	\bigcirc	\bigcirc	${ }^{10,373}$		
${ }^{158.01}$	$\stackrel{4}{4}$	${ }^{399,350}$	${ }^{2,222,2626}$	${ }^{\text {70，} 033}$	${ }_{1}^{1.562,243}$	68.16	0	0	0	0．0\％\％	${ }^{300}$	${ }_{1,5,5223}$	${ }^{780,383}$	68.16		${ }^{112,965}$	${ }_{79,853}$	${ }^{33,12}$	29，3\％	0	0	0	0.0%	0	0	${ }^{33,12}$	${ }_{\text {7，983 }}$	${ }_{\text {20，}}^{29.3 \%}$
	$\stackrel{4}{4}$	${ }^{353,354}$	${ }_{\text {L }}$	${ }_{\text {327，7，36 }}$		${ }^{6.748}$	\bigcirc	\bigcirc	\bigcirc	－	$\begin{array}{r}\text { 200 } \\ \\ 200 \\ \hline 20\end{array}$			－6．798\％		${ }_{\text {che }}^{42,785}$	${ }_{\substack{18,435 \\ 50,091}}^{10,}$	${ }_{\substack{23,879 \\ 2,721}}^{\text {a }}$		\bigcirc	！	！	年．0\％\％	\bigcirc	$\stackrel{0}{0}$	${ }_{\substack{2,8,89 \\ 27,21}}^{\text {ate }}$		
${ }_{15902}^{150}$	4	（ 353,34		691，252 $\substack{823221}$ 8.	${ }_{\text {L }}^{1.3,3,2.20}$	${ }_{\text {c．}}^{6.38 \%}$	0	0	0	${ }^{0.0 \%}$	${ }_{2}^{240}$			653\％			${ }_{\text {che }}^{4,053}$	${ }_{17,241}$	${ }^{26,88 \%}$	0	0	0	0．0\％	0		${ }_{\text {17，241 }}$		
${ }^{\text {Hepen }}$	4	${ }_{352}$		${ }_{9}^{965}$	（1，		\bigcirc	\bigcirc	\bigcirc		200 210 10						cisile	18，99	29，7\％		O	O			0	18，99	迷	
${ }^{1590.5}$	4	${ }_{3}^{33}$	${ }_{\text {L，} 1,87,8,05}^{1,05}$		${ }_{\text {987，008 }}$	5288	0	0	0	－0．0\％	${ }_{240}^{240}$	${ }_{\text {O88，708 }}$		${ }_{5288}^{528}$	${ }_{812}$	${ }_{4}^{45,920}$	${ }_{36,422}$	${ }_{0,508}$	${ }^{20,7 \%}$	0	0	0	0.0%	0	\bigcirc	0，508	${ }_{\text {atican }}$	
${ }^{16.1}$	1	${ }^{37}$	${ }_{\text {1．817，932 }}$	${ }_{62273}$	${ }^{1,75,5,59}$	96，6\％	${ }_{21,67}^{2,57}$	${ }^{183,666}$	${ }^{205,303}$	${ }^{\text {113\％}}$	${ }_{80}$	${ }_{1}^{1,50,3,56}$	${ }^{26,576}$	${ }_{85}^{8.3 \%}$		38，088	${ }_{4}^{4} 882$	${ }_{33,527}$	883\％	8.919	4，500	${ }_{13,49}$	349\％	0	0	${ }^{20,108}$	18,301	${ }_{5248}^{5048}$
${ }^{\frac{16.2}{16.3}}$	$\stackrel{1}{1}$	${ }_{37}^{37}$		${ }_{\text {ctin }}^{51,368}$				${ }_{\substack{16,099}}^{213280}$	${ }_{\text {200，}}^{20,68}$	${ }_{\text {L }}^{\text {L123\％}}$	\％	（i．516，295			${ }^{288}$	${ }_{\substack{32.437 \\ 40.515}}^{\text {ene }}$	\bigcirc	${ }_{\substack{32,47 \\ 40.515}}^{\text {4，}}$		${ }_{7}^{7,550}$		${ }^{\frac{1}{10.013}} \mathbf{}$		O	\bigcirc	31．244 1.399 189	${ }^{\frac{1}{20,13}}$	
${ }^{160.01}$	4	${ }^{354}$	${ }_{\text {2，066，037 }}$	${ }^{\text {1．014，215 }}$	${ }_{\text {L，} 1021,823}$	${ }_{502 \%}$	0	0	0	0．0\％	${ }^{240}$	${ }_{\text {L }}^{1.021,823}$	${ }^{1.014,2125}$	50．2\％	2，599	${ }^{69,866}$	65.49	${ }^{3,918}$	5.6%		0	0	0.0%	0	0	${ }_{3,918}$	${ }^{65,999}$	
	${ }_{4}^{4}$	${ }_{\text {cki }}^{3}$	${ }_{\text {L }}^{\substack{1,8,7.101 \\ 1,871.103}}$	${ }^{\text {a }}$	B9，9，99 30,02	${ }_{4}^{4.10 \%}$	0	0	0	－0．0\％	${ }^{180}{ }_{20}$			${ }_{4}^{4.10 \%}$	${ }^{28}$		${ }_{\substack{24,355 \\ 33,319}}$	${ }^{8,362}$	2．0\％	0	0	0	－0．0\％	0			${ }^{24,355}$	
	4		${ }_{\text {L }}^{1.78,1.100}$		$\frac{81.859}{18969}$	${ }_{\text {4．4．6\％}}^{108 \%}$	0	0	0	${ }^{0.00 \%}$	${ }_{\text {2，}}^{2.007}$	$\frac{81,889}{12961}$	（1，692．42	${ }_{\text {4．4．6\％}}^{108 \%}$	${ }_{\substack{28 \\ 28 \\ 28}}$	（3，3，77		\bigcirc	${ }_{0}^{0.0 \%}$	0	0	0	0．0\％	0	0	0	${ }^{33,317}$	0．0\％\％
	4		${ }_{\text {L }}^{1}$	${ }_{\text {1，549，250 }}$			\bigcirc	\bigcirc	\bigcirc	－0．0\％\％		${ }_{\substack{189481 \\ 23,50}}^{\text {ind }}$		$\underset{\substack{10.6 \% \\ 13.08}}{ }$	${ }^{28}$	${ }_{\substack{33,39 \\ 33,17}}$	${ }_{\substack{3,3,39 \\ 3,3,17}}$	$\stackrel{0}{0}$	${ }^{\text {O．0．0\％}}$	\bigcirc	\bigcirc	\bigcirc	－0．0．0\％	\bigcirc	\bigcirc	\bigcirc	（encio	－
${ }^{1610.04}$	4	${ }^{356}$	${ }^{\text {1，781，098 }}$	1．041， 7 \％8	${ }^{139,390}$	${ }^{4.15 \%}$	0	0	0	0．0\％	${ }^{300}$	739，300	${ }^{1.041,7,08}$	${ }_{41,5 \%}$	${ }^{28}$	33,318	${ }^{26,350}$	6，968	20.98	0	0	0	0．0\％	0	${ }^{30}$	${ }_{6,968}$	${ }^{26,30}$	${ }_{20,98}^{20.9}$
	$\stackrel{4}{4}$	${ }^{\text {356 }}$				${ }_{\text {3 }}^{3}$	\bigcirc	\bigcirc	\bigcirc	－0．0\％	（300				28 360 80			${ }_{\substack{1,903 \\ 11.037}}^{\text {c，}}$		！	！	！	－0．0\％\％	\bigcirc	\bigcirc			
	4	${ }_{35}^{35}$	${ }^{1,7,81,099}$	${ }_{603,260}$	${ }_{\text {1，177，} 39}$	66.18	0	\bigcirc	0	0．0\％	${ }_{20}^{24}$	${ }_{\text {L，} 177,839}$	${ }_{603,300}$	66.18	${ }^{28}$	${ }_{\text {33，317 }}^{30,}$	${ }_{3,3,37}^{30,}$	\bigcirc	0．0\％\％	\bigcirc	0	0	0．0\％	0	0	$\stackrel{0}{0}$	${ }_{3,3,17}$	
（16108	$\stackrel{4}{4}$	${ }_{\substack{35,388 \\ 358}}$		${ }_{\text {L，}}^{1,178,1,36}$			0	\bigcirc	0	－					${ }^{28}$		${ }_{\text {20，400 }}^{2,400}$				0		－0．0\％				${ }_{\text {20，080 }}^{2,400}$	
	troad subst	${ }_{\substack{338 \\ 356}}^{\substack{35 \\ \hline}}$	${ }_{\text {L，} 1,881.103}$	${ }^{1.050,546}$	${ }^{275,527}$	${ }_{\text {153\％}}^{135}$	0	\bigcirc	0	${ }^{0.0 \% \%}$	${ }^{224,41}$		${ }_{\text {L }}^{1.050,8,46}$		－${ }_{\text {28 }}^{28}$	－ 3 3，3．19	29，29	4.550	12.28	0	0	0	0.0%	${ }^{28}$	${ }^{33,319}$	4，050	${ }^{29,299}$	1228
（16111	$\stackrel{4}{4}$	${ }_{\substack{365 \\ 3657 \\ \hline 35}}$				${ }^{444.58}$	\bigcirc	\bigcirc	\bigcirc	－0．0\％	永 200	${ }_{\substack{811,69 \\ 1.151203}}^{\text {1，}}$	（1，02．401	${ }_{\text {che }}^{4.4 .58 \%}$	－${ }_{\text {433 }}^{28}$			$\stackrel{0}{3,82}$	$\underset{\substack{\text { O．0\％} \\ 11.68}}{\text { ane }}$	\bigcirc	！	！	0．0．0\％	\bigcirc	${ }^{30}$	${ }^{3.882}$		
${ }^{1661.13}$	4	${ }^{357}$	${ }^{\text {1，781，102 }}$	${ }_{59,470}$	${ }^{1.1,186,631}$ ，	${ }^{66.6 \%}$	0	0	0	0.0%	${ }^{300}$	${ }^{1.186,631}$	${ }_{\text {ctaqu0 }}^{59}$	66．6\％	${ }^{28}$	${ }_{\text {33，319 }}$	${ }_{33,319}$	\bigcirc	0．0\％\％	0	0	0	0.0%	0	${ }_{60}^{60}$	0	${ }_{\text {33，39 }}^{\text {3，}}$	0．0\％
	$\stackrel{4}{4}$		ci，${ }_{\text {L，02，947 }}^{1,781.106}$			${ }_{\text {chem }}^{6.69 \%}$	\bigcirc	\bigcirc	\bigcirc	－0．0\％			¢	${ }_{6}^{6.9 \% \%}$	${ }^{28}$		${ }_{\substack{36,1,68 \\ 21,08}}$	${ }_{\text {117，70 }}^{110}$		！	！	！	－0．0．0\％	\bigcirc	－${ }_{\text {18 }}^{0}$	${ }_{\text {11，970 }}^{19}$	${ }_{\substack{36,153 \\ 21,068}}$	
${ }_{-161.16}^{1617}$	4	${ }^{358}$	${ }^{\text {1，781，098 }}$	${ }^{1.8818,80}$	${ }^{29,2928}$	16．8\％	0		\bigcirc	0．0\％	${ }^{193,550}$	${ }_{\substack{299288 \\ \hline 2028}}$		${ }^{16.88 \%}$	${ }^{28}$			\bigcirc	0．0\％\％	\bigcirc	0	0	0．0\％	0	\bigcirc	0	${ }_{\text {33，318 }}$	－
－ 10.171	4			${ }_{\text {ctita }}$			0	．	0	－0．0\％	${ }^{184022}$	${ }_{\substack{31,0,74 \\ 1213,88}}$	（1405037		${ }_{\text {c，}}^{68}$	${ }_{\substack{3 \\ 7,292 \\ 7,292}}$		${ }_{\text {25，980 }}$	－	0	0	0	0．0．0\％	0	－	${ }_{25,880}$		$\xrightarrow{0.0 \%}$
退	5	$\frac{417}{416}$	${ }_{\text {1，} 1,18,377}$				0	0		O．0．0\％		${ }_{\substack{4076 \\ 586}}^{\text {dem }}$						${ }_{12,84}^{12,}$	${ }^{34.36 \%}$	0	0	0	0．0\％\％		0	${ }^{12,934}$		
${ }^{16302}$	${ }_{5}^{5}$	${ }_{4414.415}^{46}$	${ }_{\text {1，} 1,56,5,20}$	${ }_{\text {¢ }}^{180,139}$		${ }_{\substack{354 \\ 53.4 \\ \hline}}$	\bigcirc	\bigcirc	\bigcirc	O．0\％	¢95 59 1	${ }_{\text {905，} 81}$	${ }_{\text {\％}}^{180,139}$	${ }_{5}^{53,48}$	${ }_{684}^{684}$		${ }_{\text {31，}}^{31,73}$	${ }_{13,378}$	－0．6\％	\bigcirc	\bigcirc	\bigcirc	${ }^{0.008}$	\bigcirc	\bigcirc	${ }_{13,378}$		
16303	5	${ }_{4}^{414}$	${ }_{\text {1，807，899 }}$	${ }^{603,434}$	${ }_{\text {1，204，416 }}$	66．6\％	0	0	0	0．0\％	${ }^{240}$	${ }_{1}^{12044,46}$	${ }_{60,34}$	66.6%	${ }^{109}$	${ }_{36,988}$	${ }_{32,547}$	4,380	${ }^{119 \%}$	0	0	0	0.088	0	0	4，390	${ }^{32,547}$	
－ 164002	5 5	${ }^{412}$	（1，827，969	${ }^{\text {che }}$			\bigcirc	\bigcirc	\bigcirc	－0．0\％	－${ }_{2}^{200}$			${ }_{\text {cher }}^{63.18 \%}$	－	40，29 6,35	${ }_{\substack{3,5888 \\ 62023}}$	－		0	\bigcirc	\bigcirc	－0．0\％\％	\bigcirc	$\stackrel{0}{0}$	4，412 1,24	35，983 6203 6.	
（160．39	5 5 5	${ }_{\text {412 }}^{4112}$		${ }_{\substack{430,461 \\ 45258}}$		${ }_{\text {I74\％}}^{7728}$	\bigcirc	\bigcirc	\bigcirc	－0．0\％		${ }_{\text {L }}^{1.474 .960}$	${ }_{\substack{430,461 \\ 455268}}^{\text {and }}$	$\frac{774 \%}{7726}$	（1．999		${ }_{\substack{2,1,266 \\ 4153}}^{\text {a }}$			\bigcirc	\bigcirc	！	${ }^{0.00 \%}$	0	\bigcirc	${ }_{\substack{28.187 \\ 2263 \\ \hline 18}}$	21，266 4.533 1	
${ }^{16405}$	5	${ }^{411,412}$	${ }_{\text {1，} 1,50,3088}$	${ }_{\text {438，411 }}$	${ }_{\text {L，}}^{1.59,1897}$	76.0%	0	0	0	0．0\％	${ }_{360}$	${ }_{\text {L }}^{1,59,9,897}$	${ }_{\text {438，411 }}^{4.4828}$	76．0\％	${ }^{218}$	${ }_{40,027}$	${ }_{35,108}$	4.919		0	0	0	0．0\％	0	0	${ }_{4}^{4.2919}$	${ }_{\text {4，}}^{\text {3，1，08 }}$	隹
¢	5 5 5	410，411		${ }_{\text {rin }}^{10.42}$			0	0		O．0．0\％	䧶 200	（1，012，299	${ }_{\text {710．422 }}^{10.427}$		¢，		${ }_{\text {chen }}^{5,34}$		${ }_{\text {27，}}^{278 \%}$	0	0	0	0．0\％		0	${ }_{\substack{22,699}}^{1259}$		${ }^{27.6 \%}$
${ }_{\text {L }}^{16601}$	5	${ }_{408}^{408}$	${ }_{\text {L }}^{1.936,0,066}$	${ }_{6093513}$		${ }_{6} 6428$	0	0	0	$\stackrel{0.08}{ }$	${ }_{4}^{435}$	${ }^{1.12020,543}$	${ }_{60,3513}$		${ }_{1}^{20.00}$			$\stackrel{14,39}{0}$	－	0	0	！	－0．0\％	0	${ }^{120}$	$\stackrel{14,589}{ }$		
${ }^{166602}$	${ }_{5}^{5}$	${ }^{408}$	${ }^{1,781,033}$	${ }^{738,97}$	${ }^{1,0,32335}$		\bigcirc	\bigcirc	\bigcirc	${ }^{0.006 \%}$			748，67		（ ${ }_{\text {28 }}^{\substack{98}}$				O．0．0\％	\bigcirc	0	0	0．0\％\％	0		${ }^{\circ}$	33，24 $\substack{\text { 3，24 }}$	－0，
	${ }_{5}$	407		$\xrightarrow{719,737}$	${ }_{\text {L，}}^{1.78,8.001}$	${ }^{561 \%}$	\bigcirc	\bigcirc	\bigcirc	$\stackrel{0}{0.0 \%}$	${ }_{20}^{20}$	${ }_{\text {1，787．01 }}$	${ }^{\text {799，997 }}$	${ }_{\substack{5 \\ 68.18}}$	${ }_{766}$	${ }_{\text {a }}^{4.993}$	${ }_{\text {la }}$		${ }^{30.5096}$	\bigcirc	0	0	－0．0\％	0	\bigcirc	${ }_{\substack{\text { Le，962 } \\ \text { 20，32 }}}$	${ }_{\substack{3,2,26 \\ 2,200}}$	－

Exhibit 7－6 Non Significant State and Federal Jurisdictional Vernal Pools（Revised 7／13／18）																												
			Exsting Conitions in veral Pool habitat（750）				Proosed ACtivitri V Vemal Pool habitat（50）					Proposed Post．Construction Conditions in Vemal Pool habitat（50）			Exsting Conditions in vemal Pool Ieperession and 100 envelope					Prosesed Atcivtry in vemal Pool oepesesion and 100 ＇Envelope						Proposed Post－Construction Conditions in Vernal Pool Depression and 100 ＇Envelope		
ve＿10	Segnent	NeM＊	$\begin{aligned} & \text { Total Vernal Pool } \\ & \text { Habitat Area (sq } \\ & \mathrm{ft}) \end{aligned}$	$\begin{gathered} \text { Existing Non- } \\ \text { Forested (sq } \\ \mathrm{ft}) \end{gathered}$	$\begin{array}{\|l} \text { Existing Forested } \\ \text { (sq ft) } \end{array}$	Exitiofereent	$\begin{gathered} \text { Proposed } \\ \text { Wetland } \\ \text { Clearing (sq ft) } \end{gathered}$					consed foresed saq	Proposed Non－ Forested（sq ft）		${ }_{\text {Pool size }}^{\text {fica }}$		Non－Forested （sq ft）			$\begin{gathered} \text { Proposed } \\ \text { Wetland } \\ \text { Clearing (sq } \mathrm{ft} \text {) } \end{gathered}$	$\begin{gathered} \text { Proposed } \\ \text { Upland Clearing } \\ (\mathrm{sq} \mathrm{ft}) \end{gathered}$	$\begin{array}{\|c} \begin{array}{c} \text { Total Proposed } \\ \text { Forest Clearing } \\ \text { (sq ft) } \end{array} \end{array}$		$\left\|\begin{array}{c}\text { Direct Impact to } \\ \text { Pool Depression } \\ \text {（sq } \mathrm{ft})\end{array}\right\|$			$\begin{gathered} \text { Proposed Non- } \\ \text { Forested } \\ \text { Conditions }(\mathrm{sq} \mathrm{ft}) \end{gathered}$	$\left\|\begin{array}{c} \text { Proposed } \\ \text { Percent Forested } \\ \text { Conditions }(\mathrm{sq} \mathrm{ft}) \end{array}\right\|$
${ }_{\substack{336 \\ 33.7}}$	1	${ }^{74}$	$\frac{1.846,964}{1.814 .688}$			$\frac{9348 \%}{9218}$	$\frac{141}{191}$	${ }_{\substack{1946.177}}^{13,75}$		$\frac{8.10 \%}{1.6 \%}$	40 80 80	${ }_{\text {1．574，995 }}^{1.52595}$			${ }^{203}$	${ }_{\substack{42,134 \\ 3743}}^{\substack{\text { and }}}$	$\frac{4799}{535}$		¢	\bigcirc	\bigcirc	\bigcirc	$\frac{0.0 \%}{0.0 \%}$	\bigcirc	\bigcirc	${ }_{\substack{37.45 \\ 36988}}$	4799 535	
	1	${ }_{\text {co，} 81}^{80}$	${ }_{\text {L }}^{1.9404,168}$		${ }_{\text {L }}^{1.868,171}$	95．9\％	¢			¢，	边			${ }_{\text {86，}}^{8.19}$	${ }_{7}^{1790}$					15.072	$\stackrel{0}{21,136}$	${ }^{36,208}$	－	\bigcirc	0			
	${ }_{1}^{1}$	\％${ }_{\text {800 }}^{83}$		${ }_{\substack{319,297 \\ 89180}}$			${ }_{\text {22，01 }}^{212}$		${ }_{\text {Sli，}}^{\text {Si，}}$	－${ }_{\text {29\％}}^{\text {29\％}}$						${ }_{\substack{\text { 34，957 } \\ \text { 4．as7 }}}$	${ }_{\text {22，}}^{2202}$	－${ }_{\substack{12,268 \\ 13,45}}^{\text {a }}$			\bigcirc	\bigcirc	$\frac{0.0 \% 8}{0.08}$		$\stackrel{0}{0}$	＋12．265	${ }_{\text {22，02 }}^{22,202}$	
${ }_{\text {36－2 }}$	$\stackrel{1}{1}$	${ }_{81}^{81}$		${ }^{\text {17，600 }}$	${ }_{\text {L }}^{1,794,7,39}$	990\％	${ }_{44,988}^{4,}$	${ }^{1088,751}$	${ }^{213,599}$	${ }^{11.88}$	${ }_{80}^{80}$		${ }_{\text {23，}}^{\text {20，}}$	${ }_{\text {8 }}^{8,2 \%}$	${ }^{117}$	${ }^{37,543}$	\bigcirc	${ }^{\text {3，5，43 }}$	${ }^{1000.08}$	0	0	0	${ }_{0}^{0.00 \%}$	0	\bigcirc	${ }^{37,543}$	0	¢
${ }_{\substack{391 \\ 39,1}}$	1	${ }^{84} 8$		${ }_{\text {cheng }}^{60,59}$	$\frac{1,971,484}{1,75956}$	${ }_{\text {96，}}^{\text {96\％}}$	（19，577	${ }^{1096,873}$	${ }_{\text {210，}}^{\text {21924 }}$	${ }_{\text {L12，}}^{11.7 \%}$			277，173 262888		${ }^{\frac{1422}{310}}$	${ }_{\substack{42902 \\ 42,146}}^{4.4}$	$\frac{6.633}{0}$			\bigcirc	－1，700	${ }^{\frac{1,7,70}{0}}$		\bigcirc	${ }^{80}$	22，39 42,146 18	${ }^{20,363}$	
${ }^{39,2}$	1	${ }_{8}^{89}$	（1，79，959	${ }^{71,550}$	${ }_{\text {1，7204099 }}$	96.08	${ }_{6,986}^{6,985}$	${ }^{189,161}$	${ }^{1959647}$	${ }^{10996}$	${ }_{80}^{80}$	（1．247，71	${ }_{\substack{267,197 \\ \hline 29651}}^{\text {2061 }}$		$\stackrel{40}{1000}$		0	${ }_{\text {34，744 }}$	${ }^{10000 \%}$	0	0	0	－	0	\bigcirc	${ }_{\substack{34,744}}^{\text {326 }}$	0	－
${ }^{40,1}$	1	${ }^{91,92}$	${ }_{\text {1，} 1,88,8,80}$	${ }^{120,794}$	${ }_{\text {L }}^{1.666 .027}$	${ }_{932 \%}$	${ }_{4}^{4.3,275}$	${ }^{1949493}$	${ }_{102678}$	${ }^{10.88 \%}$	200	${ }_{\text {1，} 1,73,3,38}$	${ }_{\text {313，42 }}$	${ }_{\text {825\％}}$	${ }^{30}$	39060	0		${ }^{10000 \%}$	0	0	0	0．0\％	0	0		0	（100．0\％
${ }^{40.2}$	1	${ }_{91,92}^{91,92}$	${ }^{\text {L，7，9，5i3 }}$	${ }^{118,056}$		${ }_{93,48}^{9346}$	${ }_{\substack{42,37 \\ 42,29}}^{4}$				200 200 20				${ }^{13}$		\bigcirc		（100．0\％ $\begin{aligned} & \text { 100\％} \\ & \text { 100\％}\end{aligned}$	0	\bigcirc	\bigcirc	－	！	\bigcirc	（35.19 3 3，186	\bigcirc	
${ }_{40.4}^{405}$	1	92		${ }^{114,617}$		${ }_{\text {93，}}^{0.6 \%}$	${ }_{4}^{4,951}$	${ }_{\text {cke }}^{1212,651}$	${ }^{214,602}$	${ }_{\text {120\％}}^{120}$	200 20 1	（1266，0，50			${ }_{5,552}$		${ }_{16286}$		${ }_{\text {100．0\％}}^{\substack{1008 \\ 7720}}$		¢			0	\bigcirc	${ }_{\substack{15.44 \\ 3.555}}^{\text {30，}}$	（20．66	
	1	${ }_{91}^{91}$	${ }_{\text {2，092，64 }}$	${ }^{135,096}$	${ }_{\text {L，} 1,965,578}$	${ }_{\text {93，}}^{\text {925\％}}$		180，632 18	${ }_{201,354}$	103\％	\％	1，	${ }^{3654,45}$	22，		$\xrightarrow{79,799}$		7，4，41	970%	$\stackrel{\text { c，}}{5.135}$	${ }^{\text {3，243 }}$	${ }_{8,378}^{\text {en }}$	，	0	0		10，766 10,5	${ }^{483 \%}$
${ }_{\text {41－1 }}^{4}$	1	${ }^{93}$	${ }_{\text {1，882，520 }}$	${ }^{26,002}$	${ }_{\text {L }}^{1828,499}$	${ }_{\text {98，}}^{980}$			${ }^{229,933} \mathbf{2 0 8 9}$	${ }^{12.48}$	80	${ }_{\text {L }}^{1.1989886}$		${ }_{\text {cke }}^{88.28}$	（esme		\bigcirc		${ }^{10000 \%}$	${ }^{19,999}$	${ }^{12,235}$	${ }_{32,184}$		\bigcirc	0	${ }_{\text {11，159 }}$	${ }^{32,184}$	¢
${ }^{42.1}$	1	95，96	${ }_{\text {1，80，}, 183}$	56,890	${ }_{\text {1，746273 }}$	96.88	${ }_{16,189}$	200,65	216,84	${ }^{120 \% \%}$	${ }_{71}$	${ }_{1}^{1,29,499}$	${ }^{273,704}$	${ }_{\text {ckis8\％}}$	${ }_{90}$	36,26	7.550	${ }_{26,677}^{29,68}$	${ }_{78,96}$	0	8.999	8.999	2488	0	0	${ }^{19,988}$	16.648	
	1	${ }^{95}$			（1，07，599			（195，081	${ }_{\text {20，}}^{210,872}$	－ 11.88	－	（1．496，722			${ }^{\frac{34}{845}}$	33，994 54785	${ }_{\text {2，}}^{21,367}$			1，588	${ }_{\text {l }}^{\substack{4.23 \\ 4.23}}$			\bigcirc	！	32294 2895 295		
${ }^{432}$	1	${ }_{98}^{98}$	${ }_{\text {1．916，673 }}$	${ }_{84016}$		95．6\％	${ }_{6}^{6,769}$	${ }^{195,968}$	${ }^{2029.464}$	${ }^{10.6 \%}$	${ }^{40}$	， $1.680,193$	${ }^{288,480}$	${ }_{85.15}^{8.8}$	${ }^{1.956}$	${ }_{53,214}^{5}$	0	53,24	100．0\％	0		0	0．0\％\％	0	0	${ }_{53,214}$		¢
$\frac{452}{46.1}$	1	${ }^{100}{ }^{101}$		－${ }_{\text {392，212 }}^{2.510}$	（1，975494		－10280	（125066	${ }_{\substack{\text { 272，866 } \\ 2380}}$		80 200 						0			$\xrightarrow{2.700}$	－18，111	${ }^{20.851}$		！	\bigcirc		20．851	492．2\％ 100%
${ }^{46 \cdot 2}$	1	${ }^{101}$	${ }^{2,155,429}$	${ }^{23,249}$		989\％	\bigcirc	${ }^{249} 984$	${ }^{249,891}$	${ }^{11.6 \%}$	${ }^{200}$	${ }_{1}^{1.882,380}$	${ }^{27,089}$	${ }^{883 \%}$	${ }_{\text {13，800 }}^{12}$	${ }^{96,043}$	0	${ }^{96,0,03}$	100．0\％	0	0	0	0.08	0	0	${ }^{96,043}$	0	
${ }^{488.1}$	1	${ }^{106}$		I，7，76 17,58		${ }_{\text {95，}}^{\text {9，5\％}}$	（i，	179，888 15,707		${ }_{\text {Le，}}^{10.48} \times$	${ }_{40}^{40}$		${ }_{\substack{261,46 \\ 260,90}}^{\text {20，}}$		${ }^{49}$	3，380 34696	${ }_{\text {4，}}^{4.953} 4$	${ }_{\substack{31,266 \\ 29,72}}$		\bigcirc	0	0	O．0．0\％	！	！	${ }_{\substack{312,26 \\ 29,722}}$	${ }_{\text {4，}}^{\substack{4.93 \\ 4.964}}$	${ }_{\substack{87.36 \\ 85.7 \%}}^{\substack{\text { 8，}}}$
¢ ${ }_{\substack{48.3 \\ 48.4}}$	$\stackrel{1}{1}$	${ }^{106}$	退1，783．399	81.090 11395 1.8	${ }_{\text {1，02279 }}^{1,20250}$		（i，	${ }^{\frac{177.003}{140983}}$	${ }_{\text {lin }}^{178.850} 1$	${ }_{\text {10．0\％}}^{10.0}$	${ }_{80}$				${ }_{454}^{45}$	${ }^{40982}$	2528			0	${ }_{4}^{4}$	${ }_{4}^{4}$		\bigcirc	\bigcirc	${ }_{\substack{284888 \\ 3843 \\ \hline \\ \hline \\ \hline}}$	$\underset{\substack{5.156 \\ 7.509}}{ }$	
48.5	1	${ }^{106}$	${ }^{1 ., 74,5,50}$	${ }^{74,970}$	1，999，600	9588			183,017		${ }_{40}^{40}$	${ }_{1}^{1.516,583}$	${ }^{257,986}$	${ }_{8,5 \%}$	8	${ }^{32443}$	4.683	${ }^{2,7773}$	${ }_{85,6 \%}$	0			0.0%	0	0	${ }^{27,773}$	4，663	${ }_{\text {B }}^{\text {Bi．6\％}}$
${ }_{\text {¢ }}^{49.1}$	$\begin{array}{r}1 \\ 1 \\ \hline\end{array}$	108 107 1	${ }_{\substack{1,794,421 \\ 1,53,974}}$	${ }^{245505} 4$			17，680 38,44		${ }_{\substack{209,924 \\ 16627}}^{\text {ate }}$		${ }^{200}$	${ }_{\substack{1.388993 \\ 1.212126}}$			${ }^{798}$		${ }_{25,955}$	－35，988 18,123	${ }_{\text {1000\％}}^{1.5 \%}$	${ }_{3,24}$	${ }_{663}$	${ }^{3,007}$	－0．0\％	0	${ }_{30}$	－${ }_{\text {3，0，088 }}^{14216}$	2，902	${ }_{\substack{100.0 \% \\ 32.6 \%}}^{\text {cem }}$
${ }_{49.12}$	1	${ }^{107}$	${ }_{\text {1，93，} 89}$	${ }^{6099888}$	${ }_{\text {－} 1.384010}^{10}$	69.48	${ }_{\text {16，699 }}^{17}$	${ }^{151,42}$	${ }^{168,111}$	${ }_{84 \%}$	${ }_{80}$	1，215，999	777，980	61.08	${ }_{5}^{5.162}$		25，07	${ }_{4}^{4.221}$	${ }^{622}$		0	0	0．0\％				25.07	
¢ ${ }_{\text {4．2．2 }}^{4.3}$	1	108 108 108					17，630 17630 180		${ }^{160,015}$	9．4\％	80 80 80	（1047，124		$56^{191 \%}$	${ }_{8}^{66}$		0	${ }_{\substack{36.076 \\ 32237}}^{\substack{312}}$	－ 10000%	\bigcirc	0	0	\％	\bigcirc	\bigcirc	${ }_{\substack{36.076 \\ 3237}}^{\substack{3137}}$	\bigcirc	
49.4	1	${ }^{108}$	${ }_{\text {1，7，90，532 }}$	${ }^{\text {750，940 }}$		${ }_{58.18}$	${ }_{\text {17，} 17,50}^{190}$	${ }^{1247,755}$	${ }^{145,585}$	${ }_{8.16}$	80 80 8			先	${ }_{42}$	${ }^{\text {324570 }}$	0		H00．0\％ 100\％	0	\bigcirc	\bigcirc	－0．0\％	\bigcirc	$\stackrel{0}{0}$		0	
		${ }_{\text {\％}}^{107}$	L， $1.810,784$	${ }^{885842}$	${ }_{\text {952222 }}$	退	（18，54	${ }^{60,640}$	${ }_{\text {9，9，94 }}^{12,25}$		${ }_{80}$			47.18	${ }_{\text {\％}}^{190}$				100．02	${ }^{20,217}$	9，168	$\stackrel{29,85}{ }$					${ }_{\text {2，}}^{2,35}$	
$\frac{497}{99.8}$	1	${ }^{107}$				5．59\％ 54.0%		${ }_{\substack{90,093 \\ 88,973}}$		$\xrightarrow{\text { 7．2．0\％}}$	$\frac{40}{80}$		${ }_{\substack{955889 \\ 956516}}$		$\frac{32}{90}$ 	${ }_{\substack{33,71 \\ 36,988}}^{\substack{\text { 3，}}}$	22，288 2,883 1	${ }_{\text {a }}^{4.4,43}$		$\underbrace{\text { 2，}}_{\substack{2,576 \\ 4,104}}$	${ }^{274}$		¢，	！	\bigcirc	－		
49.9	1	${ }^{107}$	${ }_{1,822,537}$	${ }^{803,242}$	${ }^{1.019,929}$	559\％	${ }^{34,045}$	${ }_{97,97}$	${ }^{132,041}$	${ }^{7.2 \%}$	${ }_{40}$	${ }_{\text {888，233 }}^{\text {82，}}$	${ }^{935,284}$	48.78	${ }_{\text {cki }}^{288}$	${ }_{\text {33，051 }}^{30}$	37，767	${ }_{1}^{1,284}$	${ }^{3.3 \% \%}$	1	\％	仡	${ }_{0}^{0.0 \%}$	0	\bigcirc	$\stackrel{1,283}{12}$	${ }_{\text {37，768 }}$	－
－${ }_{5}^{5.1}$	1	${ }^{\text {i3，14 }} 13$					${ }_{\text {l }}^{1,1016}$	${ }_{\substack{139998 \\ 99596}}^{\text {1996 }}$		，	${ }_{80}^{40}$						${ }_{20,051}$	¢，					－			28，01 10.36 18	${ }_{\substack{8,23 \\ 22051}}^{\frac{828}{}}$	－
	$\stackrel{1}{1}$	${ }^{\frac{116}{116}}$	（1，	${ }^{\text {33，519 }}$	${ }_{\substack{1,7877,195}}^{1,7635}$			${ }_{\text {151．099 }}^{1024}$	${ }_{\text {l }}^{193,305}$	－ 10.68	（160				${ }^{234}$					。	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc			¢
${ }_{5224}$	1	116	${ }^{1,7,79,7,76}$	${ }^{\text {32，} 1287}$		${ }_{982 \%}$	3，3，33 3	${ }^{155,54}$	${ }_{1}^{194,686}$	${ }^{10.88 \%}$	${ }_{160}$	${ }_{\text {L，} 1,51,1,133}$	${ }^{2226,613}$	${ }_{87,4 \%}^{88}$	${ }_{84}$	${ }^{35,569}$	${ }_{2}^{2,861}$	${ }^{32708}$	${ }_{9208}$	0	0	0	0．0\％	0	0	32，708 3,78	${ }_{2}^{2,881}$	
¢52．5	$\stackrel{1}{2}$	${ }^{116}$	${ }^{1.99,3,371}{ }_{1}^{1,00513}$		${ }_{\text {1，}}^{1,913,677}$		${ }_{\substack{22,99 \\ 11235}}$	（177039	${ }_{\text {200，} 38}^{40,5}$	（103\％	¢	（1，713，639			（1，199	－ 3 S．900			¢894\％	$\stackrel{0}{109}$	\bigcirc	$\stackrel{0}{1091}$	${ }^{4.048}$	\bigcirc	\bigcirc			－
68.02	$\stackrel{2}{2}$	${ }_{\text {150，} 151}$	${ }_{\text {1，70，5，57 }}$	${ }_{24,468}^{248}$	${ }_{\text {L }}^{1,545,888}$	${ }_{863 \%}$	${ }^{37,439}$	${ }^{60.549}$	${ }^{97,988}$	${ }_{\text {S．5\％\％}}$	${ }^{40}$	${ }_{\text {1，477，901 }}$	${ }^{3242616}$	80.98	${ }_{78}^{78}$	34，000	${ }_{\text {24，143 }}^{20.48}$	${ }_{\text {10，457 }}$	${ }^{30.28}$	${ }^{3,703}$	6,424	${ }_{10,127}$	${ }^{29.36}$	0	0	${ }^{330}$	${ }_{34,270}$	$\frac{10 \%}{10 \%}$
\％ 6.03	1	${ }^{18}$	（1，	${ }^{\text {245，90 }}$				${ }_{\substack{\text { S10，31 } \\ 114,82}}$			80 40 0		341，60 421,80 4.60	${ }_{\text {80，}}^{768 \%}$	788 188 18		$\stackrel{24,288}{0}$				${ }_{\substack{4,929 \\ 1.829}}^{\text {a }}$		${ }_{\substack{28.18 \\ 10.28}}^{\text {cer }}$	\bigcirc	$\stackrel{0}{0}$	${ }_{\substack{\text { 34，472 }}}^{\text {32，}}$	${ }_{\substack{33,975 \\ 3,9,5}}^{\substack{\text { a }}}$	（188\％
（2．101	$\stackrel{2}{2}$	－${ }_{\text {159 }}^{159}$	（1，78．032	${ }^{135.191}$			$\underbrace{\substack{\text { a }}}_{\substack{3.988 \\ 3.988}}$	10,920 10201 1020	${ }^{1110,908} 10$		年				${ }_{\substack{28 \\ 141}}$	${ }^{\text {che }}$（3394	${ }_{\substack{14,275 \\ 20731}}$	－ 19.009				${ }_{\text {13，97 }}^{1271}$		\bigcirc	\bigcirc			－ 1 153\％
75.101	${ }^{3}$	${ }_{167}$	${ }_{\text {1，88，} 8,876}$	${ }_{20}^{21,862}$	${ }_{\text {1，6090，}}^{1 / 20}$	${ }_{8}^{899 \%}$	${ }_{\text {2，} 2,60}^{2,00}$	${ }_{92020}^{1020}$	${ }^{113,710}$	${ }_{6}^{6.2 \%}$	${ }^{200}$	${ }_{\text {L，}}^{1,4595303}$	${ }_{\text {33，573 }}$	${ }_{817 \%}^{88 \%}$	${ }^{188}$	${ }_{40,122}$	2,488	${ }_{\text {37，844 }}$	${ }_{93,9 \%}$	$\stackrel{4,94}{4,4}$	${ }_{9} 9.512$	${ }_{12,456}^{12,}$	${ }^{36,0 \%}$	0	\bigcirc	${ }_{\text {2，2，28 }}^{20.28}$	${ }_{\text {1，}}^{12,94}$	
	${ }^{3}$	${ }_{107}^{107}$	¢，	${ }_{\text {205，287 }}^{\text {215，00 }}$	$\xrightarrow{1.020,583}$		${ }_{\substack{21,640 \\ 21,640}}^{\text {20，}}$	90，768 8.4088	${ }_{\text {120，}}^{11298}$		200 160 1			${ }_{\substack{822 \% \\ 837 \%}}^{\substack{\text { 82，}}}$	－			${ }_{\substack{40,985 \\ 52,585}}^{\text {4，}}$			（10，749			！	\bigcirc	28，393 50,893	$\underbrace{}_{\substack{12,680 \\ 1.68}}$	
${ }_{75 \text { 5．104 }}$	${ }^{3}$	${ }_{16,167}^{161}$	${ }^{2,0292865}$	${ }^{364,151}$		${ }^{8236 \%}$	0	${ }^{1019976}$	${ }^{1019976}$	${ }^{\text {4．9\％\％}}$	${ }_{40}^{40}$	${ }_{\text {Li，} 1.596 .150}$	${ }_{\text {a66，126 }}^{46}$	${ }^{7} 7.48$	¢， 7,288	${ }_{\text {r7，041 }}$	${ }_{\text {50，399 }}$	${ }_{\text {26，672 }}^{20}$	${ }^{34.68}$	0	${ }^{29}$	，	0.08	0	0	26，642	${ }_{\text {50，398 }}$	${ }_{\text {34．6\％}}$
$\xrightarrow{77.02}$	${ }^{3}$	${ }_{170,171}^{17}$		${ }^{4337837}$		${ }_{\text {80，}}^{77.6 \%}$	$\stackrel{\text { 21，197 }}{\substack{\text { a }}}$	${ }_{\substack{86,46 \\ 128,761}}^{\text {18，}}$	107,63 12880	－ 4.98%	80 80 80		${ }_{\substack{\text { S41．，30 } \\ 71.685}}$		${ }_{\substack{16,799 \\ 44,627}}^{\text {a }}$	（111590				99	$\xrightarrow{33,910}$	$\xrightarrow{34009}$	（0．0\％\％	\bigcirc	$\stackrel{0}{0}$			
${ }_{7}^{7} 7.03$	${ }^{3}$	${ }^{170}$	${ }^{2,054,531}$	${ }_{315,511}$	${ }_{\text {L }}^{1,788,790}$	${ }_{84.6 \%}$	99	${ }^{97,972}$	98.011	4．8\％\％	${ }_{80}$	${ }_{\text {L }}^{1,640,670}$	${ }^{413,582}$	79．9\％	${ }^{2}, 7.50$	${ }_{7}^{76,637}$	3，392	${ }^{73,245}$	${ }^{\text {95，} 6 \%}$	\bigcirc	2.52	2.52	${ }^{3.3 \%}$	0	0	${ }^{70,723}$	${ }_{5}^{5,9,94}$	923．
$\stackrel{79.01}{79.02}$	${ }_{3}^{3}$	${ }^{175}$	¢					¢109，122	${ }^{1055,589}$		¢		365，50 34，537	鹪	${ }_{28}^{74}$			${ }_{\substack{15,711 \\ 7,239}}$		0	\bigcirc	\bigcirc		！	！	（is．711	（i8，21	
${ }^{790.03}$	${ }^{3}$	${ }^{174}$	${ }_{\text {1，976，206 }}$	${ }^{238,285}$	${ }^{1.1,73,929}$	${ }_{8}^{89 \%}$		${ }_{55,105}^{5020}$	${ }^{10,0585}$	¢， 5.5%	${ }_{40}^{40}$		${ }_{\text {348870 }}$		${ }_{\text {L }}^{1.34}$	${ }_{60,46}$	${ }_{20,29}^{20,29}$	${ }_{40.167}^{40}$		${ }_{13,182}^{10}$	${ }^{239}$	${ }_{13,421}^{10}$	$\stackrel{\text { 220\％}}{20 .}$	0	0	$\stackrel{\text { 26，766 }}{2,5}$		$\xrightarrow{\text { Li．2．}}$
\％904 79.05	${ }_{3}^{3}$	${ }^{174}$						50，208 6238	${ }_{\text {10，}}^{10.788}$ 10．13	¢，	80 40 40			${ }_{\text {cosem }}$	 18 88	－	－			0	\bigcirc	0	${ }^{\frac{0.008}{0.088}}$	0	$\stackrel{0}{0}$	，	26，905 26,605	－
${ }_{\text {790．}}^{80.0}$	3 3	－${ }_{\text {174 }}^{178}$	${ }_{\text {L，} 1,781,028}^{1,11315}$	258，020 109020	${ }^{1.523,008}$		${ }_{\substack{28,466 \\ 9,31}}$	${ }_{\substack{80,91 \\ 90904}}^{\text {cos }}$	${ }^{108557} 1065$		${ }^{40} 40$		36657 306536 30，	${ }_{\substack{79.48 \\ 840 \%}}^{\text {cos }}$	cois	－	${ }^{312,20}$	（2093		0	0	0	－	\％	\bigcirc		${ }^{312,02}$	
80.02	${ }^{3}$	17，178	${ }_{\text {1，781，032 }}$	${ }^{29,933}$	$\stackrel{1.541,699}{ }$	${ }_{86,6 \%} 8$	${ }_{10,31}$	${ }^{1019,58}$	${ }^{111,899}$	－	${ }_{80}$	（1，	${ }^{306536}$	${ }_{\text {80，3\％}}$	$\frac{28}{1258}$	${ }_{\text {33，29 }}$	${ }_{25,37}^{2,57}$		${ }_{\text {20，}}^{20.3 \%}$	${ }_{1,499}^{12}$	${ }^{3.446}$	4.85	${ }_{\text {14，7\％}}$			2，862	${ }^{30,432}$	
\％	${ }^{3}$	${ }_{17} 17$		${ }^{265,5206}$		${ }_{\text {\％}}^{\substack{8.25 \% \\ 885 \%}}$		${ }^{90.0293}$	${ }_{\text {113，326 }}^{11 / 29}$		${ }_{40}$	${ }_{\text {L }}^{1.1,595,2,139}$			－	6.110				${ }_{\substack{11,788 \\ 12,23}}^{\text {c，}}$		2,002 17.007		O	$\stackrel{40}{0}$		44,31 2.098	
80.05	${ }^{3}$	${ }^{176}$		${ }^{388,912}$		${ }^{783 \%}$	S．055	${ }^{\text {1040，933 }}$		${ }_{6}^{6.18 \%}$	${ }_{80}$	（1，23，988	年97，019		${ }^{78}$	－ $\begin{array}{r}\text { 34，600 } \\ 56599\end{array}$				0	6437	0	先．0\％	0	\bigcirc	${ }_{\text {ckind }}^{12,52}$		
（8006	${ }_{3}^{3}$	${ }^{180}$	${ }_{\text {L，}}^{1,577,7,888}$	${ }_{\substack{247,666}}^{27,186}$	${ }^{1.092003}$		－ 18.031		${ }_{\text {1127，039 }}^{120}$	－	80 200		${ }_{\text {ata }}^{40205}$		退，		${ }^{42.511}$	－		${ }_{\text {L，}}^{1.0245}$	1， 17,34	$\stackrel{\text { 28，800 }}{\text { 2，}}$	${ }_{\text {cose }}^{\text {295\％}}$	0	${ }^{160}$		22，790 60,70	
$8{ }^{81.02}$	3_{3}	${ }_{180}^{180}$	${ }_{\text {1，944，677 }}$	${ }^{239,787}$	${ }_{\text {1，74，480 }}$	${ }^{8777 \%}$	17，393	${ }_{98,266}$	${ }^{115,699}$	${ }_{5}^{5.9 \%}$	40			${ }_{\text {817\％\％}}^{817}$		${ }_{\substack{58.117 \\ 69423}}^{\substack{\text { a }}}$	${ }_{2883}$	${ }_{\text {ckin }}^{58.177}$	${ }_{\text {100．0\％}}^{\text {109\％}}$	\bigcirc	${ }_{\text {8，671 }}^{18.615}$	（8，		0	0	${ }^{49,466}$	${ }_{8}^{8.671}$	
8－03	${ }^{3}$	${ }_{1}^{179} 1780$		${ }_{\substack{269,31 \\ 2283 \\ \hline}}^{\text {27 }}$			¢，	（104，655	${ }^{135,725}$	¢，${ }_{\text {6．16\％}}^{6.16}$	80 40			${ }_{\text {coice }}^{\text {80，}}$	＋1，564	${ }_{49899}$	${ }_{\text {10，530 }}$	${ }^{\text {30，30，}}$		${ }_{5}^{5,884}$	${ }_{1}^{12,78}$	${ }_{\text {17，}}^{1782}$	化	0	${ }_{40}$			（i．4．4．
${ }_{8}^{8.05}$	${ }_{3}^{3}$	¢ 180		－${ }_{\text {20，}}^{20,593}$		${ }_{\text {cki }}^{88.0 \%}$	${ }_{\substack{13,866 \\ 4.991}}^{\text {ate }}$	9，5，82 106,726 1	${ }^{\text {109，888 }} 11127$	${ }_{\text {c．}}^{5.8 \%}$	${ }^{40} 40$		¢	${ }_{\substack{812 \% \\ 820 \%}}^{\text {8，}}$	＋1，099 ${ }^{18}$	4,723 3,294				3	${ }_{720}$	${ }_{723}$	$\frac{0.0 \% \%}{228}$	\bigcirc	$\stackrel{0}{0}$		－${ }_{\text {L1，992 }}^{2,093}$	7．1．18 $\substack{\text { 21．6\％}}$
（8202	${ }^{3}$	${ }_{\substack{181 \\ 181 \\ 181}}$			${ }_{\text {L }}^{1.571 .397}$		${ }_{\substack{4,491 \\ 2488}}^{\text {a }}$	（106308	${ }_{\text {1117，799 }}^{11396}$		${ }_{40}^{40}$		${ }_{\substack{320.435 \\ 30.634}}^{\text {30，}}$		${ }^{28}$	${ }_{\substack{33,24 \\ 3729}}$			${ }_{\text {20，}}^{200 \%}$	－	0	0	0．0\％\％	0	\bigcirc	${ }_{\text {6，} 6.65}^{\text {6，}}$		${ }_{\text {cke }}^{20.00 \%}$
8204	${ }^{3}$	${ }_{181}^{181}$	${ }_{\text {1，98，0，1 }}$	${ }_{24,1,39}^{238}$		${ }_{\text {87，}}^{87 \%}$		${ }^{113,9897}$	65		${ }_{40}^{40}$			${ }_{8}^{81,5 \%}$	$\stackrel{\text { 1，927 }}{\substack{29}}$	${ }_{\text {chen }}^{57,09}$	$\xrightarrow{28,723}$		${ }_{\text {L }}^{2500 \%}$	${ }_{2} 2.026$	${ }_{17,96}^{10}$	${ }_{19,962}$	－	\bigcirc	${ }_{40}$			
8205	${ }^{3}$	${ }_{182,183}^{188}$		$\xrightarrow{288,29}$			${ }_{\substack{4.187 \\ 38,65}}^{\text {4，}}$	$\xrightarrow{71,450} 1$	${ }^{112,687}$ 14．54		40 40 40		388，095 4020 as	${ }_{\text {\％}}^{77.6 \%}$	28 9 14	（3，294 4.591		（16，093			（			！	\bigcirc	${ }_{\substack{2,8,135 \\ 4,15}}^{\text {a }}$		
${ }_{8207}$	${ }^{3}$	${ }^{180}$	1，908，2］	${ }^{250,270}$	${ }_{1}^{1,657,980}$	86.9%	19，438	${ }_{88995}$	${ }_{\text {10，}}^{10,33}$	${ }_{5}^{5,7 \% \%}$			${ }^{359,704}$	81.28	${ }^{1,712}$		${ }_{16,102}$		${ }^{69,19 \%}$	0		0	0．0\％\％			${ }^{35,943}$	${ }^{16,102}$	
（8301	${ }^{3}$	${ }^{183} 183$				${ }_{7}^{17.40 \%}$	$\stackrel{\text { 2，}}{29,596}$	¢80，${ }_{\substack{80,92 \\ 88,66}}$	${ }^{\text {109，44 }}$ 117，52		${ }^{80} 40$	${ }_{\text {L，}}^{1.125,51,101}$			${ }_{\text {14，566 }}$			$\xrightarrow{\text { 3，3，}} 9$		${ }_{2,191}^{29}$	${ }_{\substack{1,288 \\ 7}}^{\text {ce }}$		－	\bigcirc	\bigcirc	${ }_{\substack{\text { 3，} \\ 9.558 \\ \hline 0.78}}$	${ }_{4}^{40,087}{ }_{20,98}$	${ }_{\substack{\text { cinc } \\ 8128}}^{718}$

xhibit 7 -6 Non Significant State and Federal Jurisdictional Vernal Pools (Revised 7/13/18)																												
vp-10	Segnent	NRM\#	Exsting Conditions in veral Pool thabiat (750)				Proosed Activity in vemal Pool hablat (750)					Prosesed Post Construction Conditions in vemal Pool Habitat (750)			SSting Condtions in veral Pool Ieperesiono nad 100 e eveloloe											Proposed Post-Construction Conditions in VernalPool Depression and 100 ' Envelope Pool Depression and 100 Envelope		
			$\begin{aligned} & \text { Total Vernal Pool } \\ & \text { Habitat Area (sq } \\ & \mathrm{ft}) \end{aligned}$		Existing Forested $(\mathrm{sq} \mathrm{ft})$	Existing Percent Forested	$\begin{gathered} \text { Proposed } \\ \text { Wetland } \\ \text { Clearing (sq } \mathrm{ft} \text {) } \end{gathered}$						${ }_{\substack{\text { Prosesed Non- } \\ \text { foeseded (sati) }}}$				Existing Non-Forested (sq ft)		${ }_{\text {Exsingrigerent }}^{\text {coested }}$	$\begin{gathered} \text { Proposed } \\ \text { Wetland } \\ \text { Clearing (sq ft) } \end{gathered}$		$\begin{gathered} \text { Total Proposed } \\ \text { Forest Clearing } \\ (\mathrm{sq} \mathrm{ft}) \end{gathered}$		$\left.\begin{gathered} \text { Pool Depression } \\ (\mathrm{sq} \mathrm{ft}) \end{gathered} \right\rvert\,$		Proposed forsed Condions tit s s		
99022	${ }^{3}$	${ }_{218}^{218}$		${ }_{\substack{356,034 \\ 36505}}$	$\frac{1.509232}{1.51973}$	${ }_{\text {80, }}^{809 \%}$	$\stackrel{0}{10,27}$	${ }^{1150.022} 10.011$	${ }_{\text {115,042 }}^{16,288}$		${ }^{40} 80$	${ }_{\text {1.394, }}^{1,295}$	$\underbrace{\text { 48,79 }}_{\text {474,076 }}$	${ }_{\text {74,78\% }}^{74.68}$	${ }_{\substack{307 \\ 785}}$	${ }_{\substack{44,766 \\ 51224}}^{\text {ciel }}$		${ }_{\substack{11.744 \\ 22,35}}^{\text {12, }}$	${ }_{\substack{26,2 \% \\ 43.68}}$	$\xrightarrow{0}$	${ }_{\substack{499 \\ 8.97}}$	${ }_{\substack{494 \\ 19.91}}^{1}$		\bigcirc	\bigcirc	${ }_{\substack{12,19 \\ 3,17}}$		$\frac{25.1 \%}{6.2 \%}$
${ }_{\text {90, }}$	${ }_{3}^{3}$	${ }_{219}^{219}$			${ }_{\text {L }}^{1.455 .502}$	${ }_{\text {80, }}^{802 \%}$	-			6.0\%\%	${ }_{40}^{40}$			$\frac{74.28}{70 .}$	- 188	(incor	${ }_{\text {20, }}^{24.78}$		(35.0\%	50	4	$\stackrel{54}{54}$	${ }^{\frac{1}{0.16 \%}}$	0	\bigcirc		-	-
${ }_{\text {990.05 }}$	${ }^{3}$	${ }_{219}^{219}$	¢,	${ }^{\text {355,29 }}$		${ }_{\text {80, }}^{80.10 \%}$	- 10.207	${ }^{996638}$		-6.0\%\%	${ }_{40}^{40}$			${ }_{\text {74,0\% }}$	${ }^{28}$	3,294 3,294	(18,976	${ }^{14.548}$		0	0	0	-0.0\%	\bigcirc	\bigcirc	${ }^{14.5538}$	${ }_{\text {Li, }}^{10,76}$	
9907	${ }^{3}$	${ }_{\substack{219 \\ 210}}^{200}$		${ }^{355,528}$	${ }_{\text {, } 1,425,503}$	80.08	${ }^{10,207}$	97,183	${ }_{1072030}$	6.0\%	${ }_{40}^{40}$	${ }_{\text {L, }}^{1,188,113}$	46292918	740.0\%	${ }^{28}$	${ }_{3}^{33,294}$	19,8080	${ }_{\text {13,454 }}$	40.48	0	0	0	0.0\%	0	\bigcirc	${ }_{\text {1,3,54 }}^{10,}$	${ }_{\text {1,9,80 }}^{10,}$	$\stackrel{40.46}{4.025}$
\%ownen	${ }_{3}$	${ }^{219.20}$	${ }_{\text {L, } 1,083,7,77}$	${ }^{1,30,3,30}$	${ }_{\substack{1,583,392}}^{403,39}$		${ }_{5}^{5,54}$	9,3427	98,91	- ${ }_{\text {a }}^{0.09 \%}$	20			${ }_{\text {l }}$	(1,40	${ }_{\substack{6.5288 \\ 40.582}}^{\text {6, }}$		34,820 21,276	${ }_{\text {S524\% }}^{5248}$	$\stackrel{4}{0}$	${ }_{2}^{2.091}$	$\stackrel{2.095}{0}$	${ }^{\frac{3}{3} .20 \%}$			${ }_{\substack{32,75 \\ 212127}}$		
${ }^{\text {tr-1 }}$	1	${ }_{12}^{12}$	${ }^{1.897,8,85}$	${ }^{217,747}$	${ }_{\text {1.880,088 }}$	${ }_{8858}^{88}$	${ }_{\text {19,688 }}$	${ }^{1388988}$	${ }^{1585596}$	${ }^{8446}$	${ }^{200}$	${ }_{1}^{1,521,472}$	${ }_{\text {376, }}^{3}$	${ }_{80228}^{8.28}$	${ }_{\text {847 }}^{84}$	${ }_{4}^{49,571}$	0	${ }_{\text {4, } 4.511}$	${ }^{100.0 \%}$	${ }_{8,469}^{8,89}$	${ }^{21,773}$	${ }_{30242}$	${ }^{610.0 \%}$	0	0	${ }_{10,39}^{129}$	20,	39.0\%
$\frac{\text { LT-2 }}{\text { LT. }}$	1	$\frac{12}{11,12}$	${ }^{\text {L,990,759 }}$		$\frac{1,788089}{1,24312}$	${ }_{\text {927.76 }}^{\text {927 }}$	${ }^{212,55}$ 30,54				$\frac{40}{40}$		${ }_{\substack{335,21 \\ 26,100}}$		${ }^{\frac{743}{2,935}}$		\bigcirc	${ }_{\substack{\text { S.4.49 } \\ 6.1488}}^{\text {c, }}$		$\underbrace{\substack{\text { ata }}}_{\substack{2,799 \\ 9,44}}$	${ }_{\substack{40,022 \\ 32655}}^{\substack{\text { a }}}$	42841 22099 0.	(73.35	\bigcirc	${ }_{40}^{0}$	-	42,841 2099 209	
	1	${ }^{11}$	${ }_{\text {1.840,08888 }}$	\bigcirc	1.880,08888	100.0\%	21,894 289 18	${ }^{2088688}$	${ }^{230,562}$	${ }^{\text {125\% }}$	${ }_{80}^{80}$	${ }_{\text {1,609506 }}$	$\underbrace{\substack{20,21}}_{\text {230,522 }}$				0	${ }_{\text {chen }}^{4.4 .74}$	$\frac{100.0 \%}{100}$	-	${ }_{\text {24,00 }}^{24.020}$			0	0		${ }^{\text {420,79 }}$	2,788
	$\stackrel{1}{1}$	${ }^{\frac{10,11}{10}}$		${ }_{5}^{5}, 288$,		${ }^{\text {24, }} 2$	${ }_{\text {25, } 298}$	${ }^{125 \%}$	${ }_{40}^{40}$			${ }_{8}^{872 \%}$	${ }^{125}$	32,497 36,49	0	${ }^{32,999}$	1000\% 100%	20,		${ }_{\text {L, }}^{15,78}$		0	${ }_{35}$		${ }_{\substack{24,78 \\ 15,78}}$	年
	$\frac{1}{5}$	${ }_{361}^{9}$					${ }_{16,580}$	${ }^{184938}$	${ }^{200,718}$	- 11.38	${ }^{200}$	${ }_{\substack{1,899978 \\ 65455}}$			$\stackrel{8}{7}$		${ }^{2} 1.550$	32,477 10,796		4.325	年, 0	9,35		\bigcirc	$\stackrel{0}{0}$	23,112 10,76	9,3, $\substack{\text { 2, } 5 \text { 50 }}$	
Perfor-1	${ }_{3}^{3}$	${ }^{320}$	${ }^{1,994,661}$	${ }^{328,148}$		${ }_{\text {cke }}^{88.18}$	${ }^{20,732}$	${ }_{0,386}^{96}$	${ }_{30,119}$	${ }^{1.5 \%}$							0			\bigcirc	\bigcirc	\bigcirc	-0.00\%	\bigcirc	${ }^{16977}$		\bigcirc	
S8.30	1	67		227,887		${ }_{88,6 \%}$	${ }^{1939355}$	80.376	${ }^{219,931}$	${ }^{10.9 \%}$	${ }_{40}$	${ }_{\text {1,59,921 }}$	447,18	${ }_{77,78}$	${ }_{1,421}$	$\stackrel{\text { 6,839 }}{ }$	6.77	${ }^{61,122}$	${ }_{\text {90, }}$	\bigcirc	0	0	0.0\%	\bigcirc	\bigcirc	${ }_{66,122}$	6,777	$\xrightarrow{\frac{1000 \%}{90.18}}$

[^0]: ${ }^{1}$ Gleason, N.C. 2008. Impacts of Power Line Rights-of-Way on Forested Stream Habitat in Western Washington. Environmental Symposium in Rights-of-Way Management, $8^{\text {th }}$ International Symposium, pages 665-678.

[^1]: ${ }^{2}$ Peterson, A.M. 1993. Effects of Electric Transmission Rights-of-Way on Trout in Forested Headwater Streams in New York. North American Journal of Fisheries Management, vol. 13 pp. 581-585.

